pagecache-zeroing-zero_user_segment-zero_user_segments-and-zero_user
[linux-2.6/linux-trees-mm.git] / mm / shmem.c
blob253d205914bad382e48abfd49393f6fe87179646
1 /*
2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 * This file is released under the GPL.
21 * This virtual memory filesystem is heavily based on the ramfs. It
22 * extends ramfs by the ability to use swap and honor resource limits
23 * which makes it a completely usable filesystem.
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/fs.h>
29 #include <linux/xattr.h>
30 #include <linux/exportfs.h>
31 #include <linux/generic_acl.h>
32 #include <linux/mm.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/swap.h>
36 #include <linux/pagemap.h>
37 #include <linux/string.h>
38 #include <linux/slab.h>
39 #include <linux/backing-dev.h>
40 #include <linux/shmem_fs.h>
41 #include <linux/mount.h>
42 #include <linux/writeback.h>
43 #include <linux/vfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/security.h>
46 #include <linux/swapops.h>
47 #include <linux/mempolicy.h>
48 #include <linux/namei.h>
49 #include <linux/ctype.h>
50 #include <linux/migrate.h>
51 #include <linux/highmem.h>
53 #include <asm/uaccess.h>
54 #include <asm/div64.h>
55 #include <asm/pgtable.h>
57 /* This magic number is used in glibc for posix shared memory */
58 #define TMPFS_MAGIC 0x01021994
60 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
61 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
62 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
64 #define SHMEM_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
65 #define SHMEM_MAX_BYTES ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
67 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
69 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
70 #define SHMEM_PAGEIN VM_READ
71 #define SHMEM_TRUNCATE VM_WRITE
73 /* Definition to limit shmem_truncate's steps between cond_rescheds */
74 #define LATENCY_LIMIT 64
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
79 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
80 enum sgp_type {
81 SGP_QUICK, /* don't try more than file page cache lookup */
82 SGP_READ, /* don't exceed i_size, don't allocate page */
83 SGP_CACHE, /* don't exceed i_size, may allocate page */
84 SGP_WRITE, /* may exceed i_size, may allocate page */
85 SGP_FAULT, /* same as SGP_CACHE, return with page locked */
88 static int shmem_getpage(struct inode *inode, unsigned long idx,
89 struct page **pagep, enum sgp_type sgp, int *type);
91 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
94 * The above definition of ENTRIES_PER_PAGE, and the use of
95 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
96 * might be reconsidered if it ever diverges from PAGE_SIZE.
98 * Mobility flags are masked out as swap vectors cannot move
100 return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
101 PAGE_CACHE_SHIFT-PAGE_SHIFT);
104 static inline void shmem_dir_free(struct page *page)
106 __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
109 static struct page **shmem_dir_map(struct page *page)
111 return (struct page **)kmap_atomic(page, KM_USER0);
114 static inline void shmem_dir_unmap(struct page **dir)
116 kunmap_atomic(dir, KM_USER0);
119 static swp_entry_t *shmem_swp_map(struct page *page)
121 return (swp_entry_t *)kmap_atomic(page, KM_USER1);
124 static inline void shmem_swp_balance_unmap(void)
127 * When passing a pointer to an i_direct entry, to code which
128 * also handles indirect entries and so will shmem_swp_unmap,
129 * we must arrange for the preempt count to remain in balance.
130 * What kmap_atomic of a lowmem page does depends on config
131 * and architecture, so pretend to kmap_atomic some lowmem page.
133 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
136 static inline void shmem_swp_unmap(swp_entry_t *entry)
138 kunmap_atomic(entry, KM_USER1);
141 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
143 return sb->s_fs_info;
147 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
148 * for shared memory and for shared anonymous (/dev/zero) mappings
149 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
150 * consistent with the pre-accounting of private mappings ...
152 static inline int shmem_acct_size(unsigned long flags, loff_t size)
154 return (flags & VM_ACCOUNT)?
155 security_vm_enough_memory(VM_ACCT(size)): 0;
158 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
160 if (flags & VM_ACCOUNT)
161 vm_unacct_memory(VM_ACCT(size));
165 * ... whereas tmpfs objects are accounted incrementally as
166 * pages are allocated, in order to allow huge sparse files.
167 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
168 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
170 static inline int shmem_acct_block(unsigned long flags)
172 return (flags & VM_ACCOUNT)?
173 0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
176 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
178 if (!(flags & VM_ACCOUNT))
179 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
182 static const struct super_operations shmem_ops;
183 static const struct address_space_operations shmem_aops;
184 static const struct file_operations shmem_file_operations;
185 static const struct inode_operations shmem_inode_operations;
186 static const struct inode_operations shmem_dir_inode_operations;
187 static const struct inode_operations shmem_special_inode_operations;
188 static struct vm_operations_struct shmem_vm_ops;
190 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
191 .ra_pages = 0, /* No readahead */
192 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
193 .unplug_io_fn = default_unplug_io_fn,
196 static LIST_HEAD(shmem_swaplist);
197 static DEFINE_SPINLOCK(shmem_swaplist_lock);
199 static void shmem_free_blocks(struct inode *inode, long pages)
201 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
202 if (sbinfo->max_blocks) {
203 spin_lock(&sbinfo->stat_lock);
204 sbinfo->free_blocks += pages;
205 inode->i_blocks -= pages*BLOCKS_PER_PAGE;
206 spin_unlock(&sbinfo->stat_lock);
211 * shmem_recalc_inode - recalculate the size of an inode
213 * @inode: inode to recalc
215 * We have to calculate the free blocks since the mm can drop
216 * undirtied hole pages behind our back.
218 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
219 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
221 * It has to be called with the spinlock held.
223 static void shmem_recalc_inode(struct inode *inode)
225 struct shmem_inode_info *info = SHMEM_I(inode);
226 long freed;
228 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
229 if (freed > 0) {
230 info->alloced -= freed;
231 shmem_unacct_blocks(info->flags, freed);
232 shmem_free_blocks(inode, freed);
237 * shmem_swp_entry - find the swap vector position in the info structure
239 * @info: info structure for the inode
240 * @index: index of the page to find
241 * @page: optional page to add to the structure. Has to be preset to
242 * all zeros
244 * If there is no space allocated yet it will return NULL when
245 * page is NULL, else it will use the page for the needed block,
246 * setting it to NULL on return to indicate that it has been used.
248 * The swap vector is organized the following way:
250 * There are SHMEM_NR_DIRECT entries directly stored in the
251 * shmem_inode_info structure. So small files do not need an addional
252 * allocation.
254 * For pages with index > SHMEM_NR_DIRECT there is the pointer
255 * i_indirect which points to a page which holds in the first half
256 * doubly indirect blocks, in the second half triple indirect blocks:
258 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
259 * following layout (for SHMEM_NR_DIRECT == 16):
261 * i_indirect -> dir --> 16-19
262 * | +-> 20-23
264 * +-->dir2 --> 24-27
265 * | +-> 28-31
266 * | +-> 32-35
267 * | +-> 36-39
269 * +-->dir3 --> 40-43
270 * +-> 44-47
271 * +-> 48-51
272 * +-> 52-55
274 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
276 unsigned long offset;
277 struct page **dir;
278 struct page *subdir;
280 if (index < SHMEM_NR_DIRECT) {
281 shmem_swp_balance_unmap();
282 return info->i_direct+index;
284 if (!info->i_indirect) {
285 if (page) {
286 info->i_indirect = *page;
287 *page = NULL;
289 return NULL; /* need another page */
292 index -= SHMEM_NR_DIRECT;
293 offset = index % ENTRIES_PER_PAGE;
294 index /= ENTRIES_PER_PAGE;
295 dir = shmem_dir_map(info->i_indirect);
297 if (index >= ENTRIES_PER_PAGE/2) {
298 index -= ENTRIES_PER_PAGE/2;
299 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
300 index %= ENTRIES_PER_PAGE;
301 subdir = *dir;
302 if (!subdir) {
303 if (page) {
304 *dir = *page;
305 *page = NULL;
307 shmem_dir_unmap(dir);
308 return NULL; /* need another page */
310 shmem_dir_unmap(dir);
311 dir = shmem_dir_map(subdir);
314 dir += index;
315 subdir = *dir;
316 if (!subdir) {
317 if (!page || !(subdir = *page)) {
318 shmem_dir_unmap(dir);
319 return NULL; /* need a page */
321 *dir = subdir;
322 *page = NULL;
324 shmem_dir_unmap(dir);
325 return shmem_swp_map(subdir) + offset;
328 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
330 long incdec = value? 1: -1;
332 entry->val = value;
333 info->swapped += incdec;
334 if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
335 struct page *page = kmap_atomic_to_page(entry);
336 set_page_private(page, page_private(page) + incdec);
341 * shmem_swp_alloc - get the position of the swap entry for the page.
342 * If it does not exist allocate the entry.
344 * @info: info structure for the inode
345 * @index: index of the page to find
346 * @sgp: check and recheck i_size? skip allocation?
348 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
350 struct inode *inode = &info->vfs_inode;
351 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
352 struct page *page = NULL;
353 swp_entry_t *entry;
355 if (sgp != SGP_WRITE &&
356 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
357 return ERR_PTR(-EINVAL);
359 while (!(entry = shmem_swp_entry(info, index, &page))) {
360 if (sgp == SGP_READ)
361 return shmem_swp_map(ZERO_PAGE(0));
363 * Test free_blocks against 1 not 0, since we have 1 data
364 * page (and perhaps indirect index pages) yet to allocate:
365 * a waste to allocate index if we cannot allocate data.
367 if (sbinfo->max_blocks) {
368 spin_lock(&sbinfo->stat_lock);
369 if (sbinfo->free_blocks <= 1) {
370 spin_unlock(&sbinfo->stat_lock);
371 return ERR_PTR(-ENOSPC);
373 sbinfo->free_blocks--;
374 inode->i_blocks += BLOCKS_PER_PAGE;
375 spin_unlock(&sbinfo->stat_lock);
378 spin_unlock(&info->lock);
379 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
380 if (page)
381 set_page_private(page, 0);
382 spin_lock(&info->lock);
384 if (!page) {
385 shmem_free_blocks(inode, 1);
386 return ERR_PTR(-ENOMEM);
388 if (sgp != SGP_WRITE &&
389 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
390 entry = ERR_PTR(-EINVAL);
391 break;
393 if (info->next_index <= index)
394 info->next_index = index + 1;
396 if (page) {
397 /* another task gave its page, or truncated the file */
398 shmem_free_blocks(inode, 1);
399 shmem_dir_free(page);
401 if (info->next_index <= index && !IS_ERR(entry))
402 info->next_index = index + 1;
403 return entry;
407 * shmem_free_swp - free some swap entries in a directory
409 * @dir: pointer to the directory
410 * @edir: pointer after last entry of the directory
411 * @punch_lock: pointer to spinlock when needed for the holepunch case
413 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
414 spinlock_t *punch_lock)
416 spinlock_t *punch_unlock = NULL;
417 swp_entry_t *ptr;
418 int freed = 0;
420 for (ptr = dir; ptr < edir; ptr++) {
421 if (ptr->val) {
422 if (unlikely(punch_lock)) {
423 punch_unlock = punch_lock;
424 punch_lock = NULL;
425 spin_lock(punch_unlock);
426 if (!ptr->val)
427 continue;
429 free_swap_and_cache(*ptr);
430 *ptr = (swp_entry_t){0};
431 freed++;
434 if (punch_unlock)
435 spin_unlock(punch_unlock);
436 return freed;
439 static int shmem_map_and_free_swp(struct page *subdir, int offset,
440 int limit, struct page ***dir, spinlock_t *punch_lock)
442 swp_entry_t *ptr;
443 int freed = 0;
445 ptr = shmem_swp_map(subdir);
446 for (; offset < limit; offset += LATENCY_LIMIT) {
447 int size = limit - offset;
448 if (size > LATENCY_LIMIT)
449 size = LATENCY_LIMIT;
450 freed += shmem_free_swp(ptr+offset, ptr+offset+size,
451 punch_lock);
452 if (need_resched()) {
453 shmem_swp_unmap(ptr);
454 if (*dir) {
455 shmem_dir_unmap(*dir);
456 *dir = NULL;
458 cond_resched();
459 ptr = shmem_swp_map(subdir);
462 shmem_swp_unmap(ptr);
463 return freed;
466 static void shmem_free_pages(struct list_head *next)
468 struct page *page;
469 int freed = 0;
471 do {
472 page = container_of(next, struct page, lru);
473 next = next->next;
474 shmem_dir_free(page);
475 freed++;
476 if (freed >= LATENCY_LIMIT) {
477 cond_resched();
478 freed = 0;
480 } while (next);
483 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
485 struct shmem_inode_info *info = SHMEM_I(inode);
486 unsigned long idx;
487 unsigned long size;
488 unsigned long limit;
489 unsigned long stage;
490 unsigned long diroff;
491 struct page **dir;
492 struct page *topdir;
493 struct page *middir;
494 struct page *subdir;
495 swp_entry_t *ptr;
496 LIST_HEAD(pages_to_free);
497 long nr_pages_to_free = 0;
498 long nr_swaps_freed = 0;
499 int offset;
500 int freed;
501 int punch_hole;
502 spinlock_t *needs_lock;
503 spinlock_t *punch_lock;
504 unsigned long upper_limit;
506 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
507 idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
508 if (idx >= info->next_index)
509 return;
511 spin_lock(&info->lock);
512 info->flags |= SHMEM_TRUNCATE;
513 if (likely(end == (loff_t) -1)) {
514 limit = info->next_index;
515 upper_limit = SHMEM_MAX_INDEX;
516 info->next_index = idx;
517 needs_lock = NULL;
518 punch_hole = 0;
519 } else {
520 if (end + 1 >= inode->i_size) { /* we may free a little more */
521 limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
522 PAGE_CACHE_SHIFT;
523 upper_limit = SHMEM_MAX_INDEX;
524 } else {
525 limit = (end + 1) >> PAGE_CACHE_SHIFT;
526 upper_limit = limit;
528 needs_lock = &info->lock;
529 punch_hole = 1;
532 topdir = info->i_indirect;
533 if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
534 info->i_indirect = NULL;
535 nr_pages_to_free++;
536 list_add(&topdir->lru, &pages_to_free);
538 spin_unlock(&info->lock);
540 if (info->swapped && idx < SHMEM_NR_DIRECT) {
541 ptr = info->i_direct;
542 size = limit;
543 if (size > SHMEM_NR_DIRECT)
544 size = SHMEM_NR_DIRECT;
545 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
549 * If there are no indirect blocks or we are punching a hole
550 * below indirect blocks, nothing to be done.
552 if (!topdir || limit <= SHMEM_NR_DIRECT)
553 goto done2;
556 * The truncation case has already dropped info->lock, and we're safe
557 * because i_size and next_index have already been lowered, preventing
558 * access beyond. But in the punch_hole case, we still need to take
559 * the lock when updating the swap directory, because there might be
560 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
561 * shmem_writepage. However, whenever we find we can remove a whole
562 * directory page (not at the misaligned start or end of the range),
563 * we first NULLify its pointer in the level above, and then have no
564 * need to take the lock when updating its contents: needs_lock and
565 * punch_lock (either pointing to info->lock or NULL) manage this.
568 upper_limit -= SHMEM_NR_DIRECT;
569 limit -= SHMEM_NR_DIRECT;
570 idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
571 offset = idx % ENTRIES_PER_PAGE;
572 idx -= offset;
574 dir = shmem_dir_map(topdir);
575 stage = ENTRIES_PER_PAGEPAGE/2;
576 if (idx < ENTRIES_PER_PAGEPAGE/2) {
577 middir = topdir;
578 diroff = idx/ENTRIES_PER_PAGE;
579 } else {
580 dir += ENTRIES_PER_PAGE/2;
581 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
582 while (stage <= idx)
583 stage += ENTRIES_PER_PAGEPAGE;
584 middir = *dir;
585 if (*dir) {
586 diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
587 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
588 if (!diroff && !offset && upper_limit >= stage) {
589 if (needs_lock) {
590 spin_lock(needs_lock);
591 *dir = NULL;
592 spin_unlock(needs_lock);
593 needs_lock = NULL;
594 } else
595 *dir = NULL;
596 nr_pages_to_free++;
597 list_add(&middir->lru, &pages_to_free);
599 shmem_dir_unmap(dir);
600 dir = shmem_dir_map(middir);
601 } else {
602 diroff = 0;
603 offset = 0;
604 idx = stage;
608 for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
609 if (unlikely(idx == stage)) {
610 shmem_dir_unmap(dir);
611 dir = shmem_dir_map(topdir) +
612 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
613 while (!*dir) {
614 dir++;
615 idx += ENTRIES_PER_PAGEPAGE;
616 if (idx >= limit)
617 goto done1;
619 stage = idx + ENTRIES_PER_PAGEPAGE;
620 middir = *dir;
621 if (punch_hole)
622 needs_lock = &info->lock;
623 if (upper_limit >= stage) {
624 if (needs_lock) {
625 spin_lock(needs_lock);
626 *dir = NULL;
627 spin_unlock(needs_lock);
628 needs_lock = NULL;
629 } else
630 *dir = NULL;
631 nr_pages_to_free++;
632 list_add(&middir->lru, &pages_to_free);
634 shmem_dir_unmap(dir);
635 cond_resched();
636 dir = shmem_dir_map(middir);
637 diroff = 0;
639 punch_lock = needs_lock;
640 subdir = dir[diroff];
641 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
642 if (needs_lock) {
643 spin_lock(needs_lock);
644 dir[diroff] = NULL;
645 spin_unlock(needs_lock);
646 punch_lock = NULL;
647 } else
648 dir[diroff] = NULL;
649 nr_pages_to_free++;
650 list_add(&subdir->lru, &pages_to_free);
652 if (subdir && page_private(subdir) /* has swap entries */) {
653 size = limit - idx;
654 if (size > ENTRIES_PER_PAGE)
655 size = ENTRIES_PER_PAGE;
656 freed = shmem_map_and_free_swp(subdir,
657 offset, size, &dir, punch_lock);
658 if (!dir)
659 dir = shmem_dir_map(middir);
660 nr_swaps_freed += freed;
661 if (offset || punch_lock) {
662 spin_lock(&info->lock);
663 set_page_private(subdir,
664 page_private(subdir) - freed);
665 spin_unlock(&info->lock);
666 } else
667 BUG_ON(page_private(subdir) != freed);
669 offset = 0;
671 done1:
672 shmem_dir_unmap(dir);
673 done2:
674 if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
676 * Call truncate_inode_pages again: racing shmem_unuse_inode
677 * may have swizzled a page in from swap since vmtruncate or
678 * generic_delete_inode did it, before we lowered next_index.
679 * Also, though shmem_getpage checks i_size before adding to
680 * cache, no recheck after: so fix the narrow window there too.
682 * Recalling truncate_inode_pages_range and unmap_mapping_range
683 * every time for punch_hole (which never got a chance to clear
684 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
685 * yet hardly ever necessary: try to optimize them out later.
687 truncate_inode_pages_range(inode->i_mapping, start, end);
688 if (punch_hole)
689 unmap_mapping_range(inode->i_mapping, start,
690 end - start, 1);
693 spin_lock(&info->lock);
694 info->flags &= ~SHMEM_TRUNCATE;
695 info->swapped -= nr_swaps_freed;
696 if (nr_pages_to_free)
697 shmem_free_blocks(inode, nr_pages_to_free);
698 shmem_recalc_inode(inode);
699 spin_unlock(&info->lock);
702 * Empty swap vector directory pages to be freed?
704 if (!list_empty(&pages_to_free)) {
705 pages_to_free.prev->next = NULL;
706 shmem_free_pages(pages_to_free.next);
710 static void shmem_truncate(struct inode *inode)
712 shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
715 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
717 struct inode *inode = dentry->d_inode;
718 struct page *page = NULL;
719 int error;
721 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
722 if (attr->ia_size < inode->i_size) {
724 * If truncating down to a partial page, then
725 * if that page is already allocated, hold it
726 * in memory until the truncation is over, so
727 * truncate_partial_page cannnot miss it were
728 * it assigned to swap.
730 if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
731 (void) shmem_getpage(inode,
732 attr->ia_size>>PAGE_CACHE_SHIFT,
733 &page, SGP_READ, NULL);
736 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
737 * detect if any pages might have been added to cache
738 * after truncate_inode_pages. But we needn't bother
739 * if it's being fully truncated to zero-length: the
740 * nrpages check is efficient enough in that case.
742 if (attr->ia_size) {
743 struct shmem_inode_info *info = SHMEM_I(inode);
744 spin_lock(&info->lock);
745 info->flags &= ~SHMEM_PAGEIN;
746 spin_unlock(&info->lock);
751 error = inode_change_ok(inode, attr);
752 if (!error)
753 error = inode_setattr(inode, attr);
754 #ifdef CONFIG_TMPFS_POSIX_ACL
755 if (!error && (attr->ia_valid & ATTR_MODE))
756 error = generic_acl_chmod(inode, &shmem_acl_ops);
757 #endif
758 if (page)
759 page_cache_release(page);
760 return error;
763 static void shmem_delete_inode(struct inode *inode)
765 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
766 struct shmem_inode_info *info = SHMEM_I(inode);
768 if (inode->i_op->truncate == shmem_truncate) {
769 truncate_inode_pages(inode->i_mapping, 0);
770 shmem_unacct_size(info->flags, inode->i_size);
771 inode->i_size = 0;
772 shmem_truncate(inode);
773 if (!list_empty(&info->swaplist)) {
774 spin_lock(&shmem_swaplist_lock);
775 list_del_init(&info->swaplist);
776 spin_unlock(&shmem_swaplist_lock);
779 BUG_ON(inode->i_blocks);
780 if (sbinfo->max_inodes) {
781 spin_lock(&sbinfo->stat_lock);
782 sbinfo->free_inodes++;
783 spin_unlock(&sbinfo->stat_lock);
785 clear_inode(inode);
788 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
790 swp_entry_t *ptr;
792 for (ptr = dir; ptr < edir; ptr++) {
793 if (ptr->val == entry.val)
794 return ptr - dir;
796 return -1;
799 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
801 struct inode *inode;
802 unsigned long idx;
803 unsigned long size;
804 unsigned long limit;
805 unsigned long stage;
806 struct page **dir;
807 struct page *subdir;
808 swp_entry_t *ptr;
809 int offset;
811 idx = 0;
812 ptr = info->i_direct;
813 spin_lock(&info->lock);
814 limit = info->next_index;
815 size = limit;
816 if (size > SHMEM_NR_DIRECT)
817 size = SHMEM_NR_DIRECT;
818 offset = shmem_find_swp(entry, ptr, ptr+size);
819 if (offset >= 0) {
820 shmem_swp_balance_unmap();
821 goto found;
823 if (!info->i_indirect)
824 goto lost2;
826 dir = shmem_dir_map(info->i_indirect);
827 stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
829 for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
830 if (unlikely(idx == stage)) {
831 shmem_dir_unmap(dir-1);
832 dir = shmem_dir_map(info->i_indirect) +
833 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
834 while (!*dir) {
835 dir++;
836 idx += ENTRIES_PER_PAGEPAGE;
837 if (idx >= limit)
838 goto lost1;
840 stage = idx + ENTRIES_PER_PAGEPAGE;
841 subdir = *dir;
842 shmem_dir_unmap(dir);
843 dir = shmem_dir_map(subdir);
845 subdir = *dir;
846 if (subdir && page_private(subdir)) {
847 ptr = shmem_swp_map(subdir);
848 size = limit - idx;
849 if (size > ENTRIES_PER_PAGE)
850 size = ENTRIES_PER_PAGE;
851 offset = shmem_find_swp(entry, ptr, ptr+size);
852 if (offset >= 0) {
853 shmem_dir_unmap(dir);
854 goto found;
856 shmem_swp_unmap(ptr);
859 lost1:
860 shmem_dir_unmap(dir-1);
861 lost2:
862 spin_unlock(&info->lock);
863 return 0;
864 found:
865 idx += offset;
866 inode = &info->vfs_inode;
867 if (move_from_swap_cache(page, idx, inode->i_mapping) == 0) {
868 info->flags |= SHMEM_PAGEIN;
869 shmem_swp_set(info, ptr + offset, 0);
871 shmem_swp_unmap(ptr);
872 spin_unlock(&info->lock);
874 * Decrement swap count even when the entry is left behind:
875 * try_to_unuse will skip over mms, then reincrement count.
877 swap_free(entry);
878 return 1;
882 * shmem_unuse() search for an eventually swapped out shmem page.
884 int shmem_unuse(swp_entry_t entry, struct page *page)
886 struct list_head *p, *next;
887 struct shmem_inode_info *info;
888 int found = 0;
890 spin_lock(&shmem_swaplist_lock);
891 list_for_each_safe(p, next, &shmem_swaplist) {
892 info = list_entry(p, struct shmem_inode_info, swaplist);
893 if (!info->swapped)
894 list_del_init(&info->swaplist);
895 else if (shmem_unuse_inode(info, entry, page)) {
896 /* move head to start search for next from here */
897 list_move_tail(&shmem_swaplist, &info->swaplist);
898 found = 1;
899 break;
902 spin_unlock(&shmem_swaplist_lock);
903 return found;
907 * Move the page from the page cache to the swap cache.
909 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
911 struct shmem_inode_info *info;
912 swp_entry_t *entry, swap;
913 struct address_space *mapping;
914 unsigned long index;
915 struct inode *inode;
917 BUG_ON(!PageLocked(page));
919 * shmem_backing_dev_info's capabilities prevent regular writeback or
920 * sync from ever calling shmem_writepage; but a stacking filesystem
921 * may use the ->writepage of its underlying filesystem, in which case
922 * we want to do nothing when that underlying filesystem is tmpfs
923 * (writing out to swap is useful as a response to memory pressure, but
924 * of no use to stabilize the data) - just redirty the page, unlock it
925 * and claim success in this case. AOP_WRITEPAGE_ACTIVATE, and the
926 * page_mapped check below, must be avoided unless we're in reclaim.
928 if (!wbc->for_reclaim) {
929 set_page_dirty(page);
930 unlock_page(page);
931 return 0;
933 BUG_ON(page_mapped(page));
935 mapping = page->mapping;
936 index = page->index;
937 inode = mapping->host;
938 info = SHMEM_I(inode);
939 if (info->flags & VM_LOCKED)
940 goto redirty;
941 swap = get_swap_page();
942 if (!swap.val)
943 goto redirty;
945 spin_lock(&info->lock);
946 shmem_recalc_inode(inode);
947 if (index >= info->next_index) {
948 BUG_ON(!(info->flags & SHMEM_TRUNCATE));
949 goto unlock;
951 entry = shmem_swp_entry(info, index, NULL);
952 BUG_ON(!entry);
953 BUG_ON(entry->val);
955 if (move_to_swap_cache(page, swap) == 0) {
956 shmem_swp_set(info, entry, swap.val);
957 shmem_swp_unmap(entry);
958 spin_unlock(&info->lock);
959 if (list_empty(&info->swaplist)) {
960 spin_lock(&shmem_swaplist_lock);
961 /* move instead of add in case we're racing */
962 list_move_tail(&info->swaplist, &shmem_swaplist);
963 spin_unlock(&shmem_swaplist_lock);
965 unlock_page(page);
966 return 0;
969 shmem_swp_unmap(entry);
970 unlock:
971 spin_unlock(&info->lock);
972 swap_free(swap);
973 redirty:
974 set_page_dirty(page);
975 return AOP_WRITEPAGE_ACTIVATE; /* Return with the page locked */
978 #ifdef CONFIG_NUMA
979 static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
981 char *nodelist = strchr(value, ':');
982 int err = 1;
984 if (nodelist) {
985 /* NUL-terminate policy string */
986 *nodelist++ = '\0';
987 if (nodelist_parse(nodelist, *policy_nodes))
988 goto out;
989 if (!nodes_subset(*policy_nodes, node_states[N_HIGH_MEMORY]))
990 goto out;
992 if (!strcmp(value, "default")) {
993 *policy = MPOL_DEFAULT;
994 /* Don't allow a nodelist */
995 if (!nodelist)
996 err = 0;
997 } else if (!strcmp(value, "prefer")) {
998 *policy = MPOL_PREFERRED;
999 /* Insist on a nodelist of one node only */
1000 if (nodelist) {
1001 char *rest = nodelist;
1002 while (isdigit(*rest))
1003 rest++;
1004 if (!*rest)
1005 err = 0;
1007 } else if (!strcmp(value, "bind")) {
1008 *policy = MPOL_BIND;
1009 /* Insist on a nodelist */
1010 if (nodelist)
1011 err = 0;
1012 } else if (!strcmp(value, "interleave")) {
1013 *policy = MPOL_INTERLEAVE;
1015 * Default to online nodes with memory if no nodelist
1017 if (!nodelist)
1018 *policy_nodes = node_states[N_HIGH_MEMORY];
1019 err = 0;
1021 out:
1022 /* Restore string for error message */
1023 if (nodelist)
1024 *--nodelist = ':';
1025 return err;
1028 static struct page *shmem_swapin_async(struct shared_policy *p,
1029 swp_entry_t entry, unsigned long idx)
1031 struct page *page;
1032 struct vm_area_struct pvma;
1034 /* Create a pseudo vma that just contains the policy */
1035 memset(&pvma, 0, sizeof(struct vm_area_struct));
1036 pvma.vm_end = PAGE_SIZE;
1037 pvma.vm_pgoff = idx;
1038 pvma.vm_policy = mpol_shared_policy_lookup(p, idx);
1039 page = read_swap_cache_async(entry, &pvma, 0);
1040 mpol_free(pvma.vm_policy);
1041 return page;
1044 static struct page *shmem_swapin(struct shmem_inode_info *info,
1045 swp_entry_t entry, unsigned long idx)
1047 struct shared_policy *p = &info->policy;
1048 int i, num;
1049 struct page *page;
1050 unsigned long offset;
1052 num = valid_swaphandles(entry, &offset);
1053 for (i = 0; i < num; offset++, i++) {
1054 page = shmem_swapin_async(p,
1055 swp_entry(swp_type(entry), offset), idx);
1056 if (!page)
1057 break;
1058 page_cache_release(page);
1060 lru_add_drain(); /* Push any new pages onto the LRU now */
1061 return shmem_swapin_async(p, entry, idx);
1064 static struct page *
1065 shmem_alloc_page(gfp_t gfp, struct shmem_inode_info *info,
1066 unsigned long idx)
1068 struct vm_area_struct pvma;
1069 struct page *page;
1071 memset(&pvma, 0, sizeof(struct vm_area_struct));
1072 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1073 pvma.vm_pgoff = idx;
1074 pvma.vm_end = PAGE_SIZE;
1075 page = alloc_page_vma(gfp | __GFP_ZERO, &pvma, 0);
1076 mpol_free(pvma.vm_policy);
1077 return page;
1079 #else
1080 static inline int shmem_parse_mpol(char *value, int *policy,
1081 nodemask_t *policy_nodes)
1083 return 1;
1086 static inline struct page *
1087 shmem_swapin(struct shmem_inode_info *info,swp_entry_t entry,unsigned long idx)
1089 swapin_readahead(entry, 0, NULL);
1090 return read_swap_cache_async(entry, NULL, 0);
1093 static inline struct page *
1094 shmem_alloc_page(gfp_t gfp,struct shmem_inode_info *info, unsigned long idx)
1096 return alloc_page(gfp | __GFP_ZERO);
1098 #endif
1101 * shmem_getpage - either get the page from swap or allocate a new one
1103 * If we allocate a new one we do not mark it dirty. That's up to the
1104 * vm. If we swap it in we mark it dirty since we also free the swap
1105 * entry since a page cannot live in both the swap and page cache
1107 static int shmem_getpage(struct inode *inode, unsigned long idx,
1108 struct page **pagep, enum sgp_type sgp, int *type)
1110 struct address_space *mapping = inode->i_mapping;
1111 struct shmem_inode_info *info = SHMEM_I(inode);
1112 struct shmem_sb_info *sbinfo;
1113 struct page *filepage = *pagep;
1114 struct page *swappage;
1115 swp_entry_t *entry;
1116 swp_entry_t swap;
1117 int error;
1119 if (idx >= SHMEM_MAX_INDEX)
1120 return -EFBIG;
1122 if (type)
1123 *type = 0;
1126 * Normally, filepage is NULL on entry, and either found
1127 * uptodate immediately, or allocated and zeroed, or read
1128 * in under swappage, which is then assigned to filepage.
1129 * But shmem_readpage and shmem_write_begin pass in a locked
1130 * filepage, which may be found not uptodate by other callers
1131 * too, and may need to be copied from the swappage read in.
1133 repeat:
1134 if (!filepage)
1135 filepage = find_lock_page(mapping, idx);
1136 if (filepage && PageUptodate(filepage))
1137 goto done;
1138 error = 0;
1139 if (sgp == SGP_QUICK)
1140 goto failed;
1142 spin_lock(&info->lock);
1143 shmem_recalc_inode(inode);
1144 entry = shmem_swp_alloc(info, idx, sgp);
1145 if (IS_ERR(entry)) {
1146 spin_unlock(&info->lock);
1147 error = PTR_ERR(entry);
1148 goto failed;
1150 swap = *entry;
1152 if (swap.val) {
1153 /* Look it up and read it in.. */
1154 swappage = lookup_swap_cache(swap);
1155 if (!swappage) {
1156 shmem_swp_unmap(entry);
1157 /* here we actually do the io */
1158 if (type && !(*type & VM_FAULT_MAJOR)) {
1159 __count_vm_event(PGMAJFAULT);
1160 *type |= VM_FAULT_MAJOR;
1162 spin_unlock(&info->lock);
1163 swappage = shmem_swapin(info, swap, idx);
1164 if (!swappage) {
1165 spin_lock(&info->lock);
1166 entry = shmem_swp_alloc(info, idx, sgp);
1167 if (IS_ERR(entry))
1168 error = PTR_ERR(entry);
1169 else {
1170 if (entry->val == swap.val)
1171 error = -ENOMEM;
1172 shmem_swp_unmap(entry);
1174 spin_unlock(&info->lock);
1175 if (error)
1176 goto failed;
1177 goto repeat;
1179 wait_on_page_locked(swappage);
1180 page_cache_release(swappage);
1181 goto repeat;
1184 /* We have to do this with page locked to prevent races */
1185 if (TestSetPageLocked(swappage)) {
1186 shmem_swp_unmap(entry);
1187 spin_unlock(&info->lock);
1188 wait_on_page_locked(swappage);
1189 page_cache_release(swappage);
1190 goto repeat;
1192 if (PageWriteback(swappage)) {
1193 shmem_swp_unmap(entry);
1194 spin_unlock(&info->lock);
1195 wait_on_page_writeback(swappage);
1196 unlock_page(swappage);
1197 page_cache_release(swappage);
1198 goto repeat;
1200 if (!PageUptodate(swappage)) {
1201 shmem_swp_unmap(entry);
1202 spin_unlock(&info->lock);
1203 unlock_page(swappage);
1204 page_cache_release(swappage);
1205 error = -EIO;
1206 goto failed;
1209 if (filepage) {
1210 shmem_swp_set(info, entry, 0);
1211 shmem_swp_unmap(entry);
1212 delete_from_swap_cache(swappage);
1213 spin_unlock(&info->lock);
1214 copy_highpage(filepage, swappage);
1215 unlock_page(swappage);
1216 page_cache_release(swappage);
1217 flush_dcache_page(filepage);
1218 SetPageUptodate(filepage);
1219 set_page_dirty(filepage);
1220 swap_free(swap);
1221 } else if (!(error = move_from_swap_cache(
1222 swappage, idx, mapping))) {
1223 info->flags |= SHMEM_PAGEIN;
1224 shmem_swp_set(info, entry, 0);
1225 shmem_swp_unmap(entry);
1226 spin_unlock(&info->lock);
1227 filepage = swappage;
1228 swap_free(swap);
1229 } else {
1230 shmem_swp_unmap(entry);
1231 spin_unlock(&info->lock);
1232 unlock_page(swappage);
1233 page_cache_release(swappage);
1234 if (error == -ENOMEM) {
1235 /* let kswapd refresh zone for GFP_ATOMICs */
1236 congestion_wait(WRITE, HZ/50);
1238 goto repeat;
1240 } else if (sgp == SGP_READ && !filepage) {
1241 shmem_swp_unmap(entry);
1242 filepage = find_get_page(mapping, idx);
1243 if (filepage &&
1244 (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1245 spin_unlock(&info->lock);
1246 wait_on_page_locked(filepage);
1247 page_cache_release(filepage);
1248 filepage = NULL;
1249 goto repeat;
1251 spin_unlock(&info->lock);
1252 } else {
1253 shmem_swp_unmap(entry);
1254 sbinfo = SHMEM_SB(inode->i_sb);
1255 if (sbinfo->max_blocks) {
1256 spin_lock(&sbinfo->stat_lock);
1257 if (sbinfo->free_blocks == 0 ||
1258 shmem_acct_block(info->flags)) {
1259 spin_unlock(&sbinfo->stat_lock);
1260 spin_unlock(&info->lock);
1261 error = -ENOSPC;
1262 goto failed;
1264 sbinfo->free_blocks--;
1265 inode->i_blocks += BLOCKS_PER_PAGE;
1266 spin_unlock(&sbinfo->stat_lock);
1267 } else if (shmem_acct_block(info->flags)) {
1268 spin_unlock(&info->lock);
1269 error = -ENOSPC;
1270 goto failed;
1273 if (!filepage) {
1274 spin_unlock(&info->lock);
1275 filepage = shmem_alloc_page(mapping_gfp_mask(mapping),
1276 info,
1277 idx);
1278 if (!filepage) {
1279 shmem_unacct_blocks(info->flags, 1);
1280 shmem_free_blocks(inode, 1);
1281 error = -ENOMEM;
1282 goto failed;
1285 spin_lock(&info->lock);
1286 entry = shmem_swp_alloc(info, idx, sgp);
1287 if (IS_ERR(entry))
1288 error = PTR_ERR(entry);
1289 else {
1290 swap = *entry;
1291 shmem_swp_unmap(entry);
1293 if (error || swap.val || 0 != add_to_page_cache_lru(
1294 filepage, mapping, idx, GFP_ATOMIC)) {
1295 spin_unlock(&info->lock);
1296 page_cache_release(filepage);
1297 shmem_unacct_blocks(info->flags, 1);
1298 shmem_free_blocks(inode, 1);
1299 filepage = NULL;
1300 if (error)
1301 goto failed;
1302 goto repeat;
1304 info->flags |= SHMEM_PAGEIN;
1307 info->alloced++;
1308 spin_unlock(&info->lock);
1309 flush_dcache_page(filepage);
1310 SetPageUptodate(filepage);
1312 done:
1313 if (*pagep != filepage) {
1314 *pagep = filepage;
1315 if (sgp != SGP_FAULT)
1316 unlock_page(filepage);
1319 return 0;
1321 failed:
1322 if (*pagep != filepage) {
1323 unlock_page(filepage);
1324 page_cache_release(filepage);
1326 return error;
1329 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1331 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1332 int error;
1333 int ret;
1335 if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1336 return VM_FAULT_SIGBUS;
1338 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_FAULT, &ret);
1339 if (error)
1340 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1342 mark_page_accessed(vmf->page);
1343 return ret | VM_FAULT_LOCKED;
1346 #ifdef CONFIG_NUMA
1347 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1349 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1350 return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1353 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1354 unsigned long addr)
1356 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1357 unsigned long idx;
1359 idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1360 return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1362 #endif
1364 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1366 struct inode *inode = file->f_path.dentry->d_inode;
1367 struct shmem_inode_info *info = SHMEM_I(inode);
1368 int retval = -ENOMEM;
1370 spin_lock(&info->lock);
1371 if (lock && !(info->flags & VM_LOCKED)) {
1372 if (!user_shm_lock(inode->i_size, user))
1373 goto out_nomem;
1374 info->flags |= VM_LOCKED;
1376 if (!lock && (info->flags & VM_LOCKED) && user) {
1377 user_shm_unlock(inode->i_size, user);
1378 info->flags &= ~VM_LOCKED;
1380 retval = 0;
1381 out_nomem:
1382 spin_unlock(&info->lock);
1383 return retval;
1386 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1388 file_accessed(file);
1389 vma->vm_ops = &shmem_vm_ops;
1390 vma->vm_flags |= VM_CAN_NONLINEAR;
1391 return 0;
1394 static struct inode *
1395 shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1397 struct inode *inode;
1398 struct shmem_inode_info *info;
1399 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1401 if (sbinfo->max_inodes) {
1402 spin_lock(&sbinfo->stat_lock);
1403 if (!sbinfo->free_inodes) {
1404 spin_unlock(&sbinfo->stat_lock);
1405 return NULL;
1407 sbinfo->free_inodes--;
1408 spin_unlock(&sbinfo->stat_lock);
1411 inode = new_inode(sb);
1412 if (inode) {
1413 inode->i_mode = mode;
1414 inode->i_uid = current->fsuid;
1415 inode->i_gid = current->fsgid;
1416 inode->i_blocks = 0;
1417 inode->i_mapping->a_ops = &shmem_aops;
1418 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1419 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1420 inode->i_generation = get_seconds();
1421 info = SHMEM_I(inode);
1422 memset(info, 0, (char *)inode - (char *)info);
1423 spin_lock_init(&info->lock);
1424 INIT_LIST_HEAD(&info->swaplist);
1426 switch (mode & S_IFMT) {
1427 default:
1428 inode->i_op = &shmem_special_inode_operations;
1429 init_special_inode(inode, mode, dev);
1430 break;
1431 case S_IFREG:
1432 inode->i_op = &shmem_inode_operations;
1433 inode->i_fop = &shmem_file_operations;
1434 mpol_shared_policy_init(&info->policy, sbinfo->policy,
1435 &sbinfo->policy_nodes);
1436 break;
1437 case S_IFDIR:
1438 inc_nlink(inode);
1439 /* Some things misbehave if size == 0 on a directory */
1440 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1441 inode->i_op = &shmem_dir_inode_operations;
1442 inode->i_fop = &simple_dir_operations;
1443 break;
1444 case S_IFLNK:
1446 * Must not load anything in the rbtree,
1447 * mpol_free_shared_policy will not be called.
1449 mpol_shared_policy_init(&info->policy, MPOL_DEFAULT,
1450 NULL);
1451 break;
1453 } else if (sbinfo->max_inodes) {
1454 spin_lock(&sbinfo->stat_lock);
1455 sbinfo->free_inodes++;
1456 spin_unlock(&sbinfo->stat_lock);
1458 return inode;
1461 #ifdef CONFIG_TMPFS
1462 static const struct inode_operations shmem_symlink_inode_operations;
1463 static const struct inode_operations shmem_symlink_inline_operations;
1466 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1467 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1468 * below the loop driver, in the generic fashion that many filesystems support.
1470 static int shmem_readpage(struct file *file, struct page *page)
1472 struct inode *inode = page->mapping->host;
1473 int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1474 unlock_page(page);
1475 return error;
1478 static int
1479 shmem_write_begin(struct file *file, struct address_space *mapping,
1480 loff_t pos, unsigned len, unsigned flags,
1481 struct page **pagep, void **fsdata)
1483 struct inode *inode = mapping->host;
1484 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1485 *pagep = NULL;
1486 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1489 static int
1490 shmem_write_end(struct file *file, struct address_space *mapping,
1491 loff_t pos, unsigned len, unsigned copied,
1492 struct page *page, void *fsdata)
1494 struct inode *inode = mapping->host;
1496 set_page_dirty(page);
1497 page_cache_release(page);
1499 if (pos+copied > inode->i_size)
1500 i_size_write(inode, pos+copied);
1502 return copied;
1505 static ssize_t
1506 shmem_file_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos)
1508 struct inode *inode = file->f_path.dentry->d_inode;
1509 loff_t pos;
1510 unsigned long written;
1511 ssize_t err;
1513 if ((ssize_t) count < 0)
1514 return -EINVAL;
1516 if (!access_ok(VERIFY_READ, buf, count))
1517 return -EFAULT;
1519 mutex_lock(&inode->i_mutex);
1521 pos = *ppos;
1522 written = 0;
1524 err = generic_write_checks(file, &pos, &count, 0);
1525 if (err || !count)
1526 goto out;
1528 err = remove_suid(file->f_path.dentry);
1529 if (err)
1530 goto out;
1532 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1534 do {
1535 struct page *page = NULL;
1536 unsigned long bytes, index, offset;
1537 char *kaddr;
1538 int left;
1540 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1541 index = pos >> PAGE_CACHE_SHIFT;
1542 bytes = PAGE_CACHE_SIZE - offset;
1543 if (bytes > count)
1544 bytes = count;
1547 * We don't hold page lock across copy from user -
1548 * what would it guard against? - so no deadlock here.
1549 * But it still may be a good idea to prefault below.
1552 err = shmem_getpage(inode, index, &page, SGP_WRITE, NULL);
1553 if (err)
1554 break;
1556 left = bytes;
1557 if (PageHighMem(page)) {
1558 volatile unsigned char dummy;
1559 __get_user(dummy, buf);
1560 __get_user(dummy, buf + bytes - 1);
1562 kaddr = kmap_atomic(page, KM_USER0);
1563 left = __copy_from_user_inatomic(kaddr + offset,
1564 buf, bytes);
1565 kunmap_atomic(kaddr, KM_USER0);
1567 if (left) {
1568 kaddr = kmap(page);
1569 left = __copy_from_user(kaddr + offset, buf, bytes);
1570 kunmap(page);
1573 written += bytes;
1574 count -= bytes;
1575 pos += bytes;
1576 buf += bytes;
1577 if (pos > inode->i_size)
1578 i_size_write(inode, pos);
1580 flush_dcache_page(page);
1581 set_page_dirty(page);
1582 mark_page_accessed(page);
1583 page_cache_release(page);
1585 if (left) {
1586 pos -= left;
1587 written -= left;
1588 err = -EFAULT;
1589 break;
1593 * Our dirty pages are not counted in nr_dirty,
1594 * and we do not attempt to balance dirty pages.
1597 cond_resched();
1598 } while (count);
1600 *ppos = pos;
1601 if (written)
1602 err = written;
1603 out:
1604 mutex_unlock(&inode->i_mutex);
1605 return err;
1608 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1610 struct inode *inode = filp->f_path.dentry->d_inode;
1611 struct address_space *mapping = inode->i_mapping;
1612 unsigned long index, offset;
1614 index = *ppos >> PAGE_CACHE_SHIFT;
1615 offset = *ppos & ~PAGE_CACHE_MASK;
1617 for (;;) {
1618 struct page *page = NULL;
1619 unsigned long end_index, nr, ret;
1620 loff_t i_size = i_size_read(inode);
1622 end_index = i_size >> PAGE_CACHE_SHIFT;
1623 if (index > end_index)
1624 break;
1625 if (index == end_index) {
1626 nr = i_size & ~PAGE_CACHE_MASK;
1627 if (nr <= offset)
1628 break;
1631 desc->error = shmem_getpage(inode, index, &page, SGP_READ, NULL);
1632 if (desc->error) {
1633 if (desc->error == -EINVAL)
1634 desc->error = 0;
1635 break;
1639 * We must evaluate after, since reads (unlike writes)
1640 * are called without i_mutex protection against truncate
1642 nr = PAGE_CACHE_SIZE;
1643 i_size = i_size_read(inode);
1644 end_index = i_size >> PAGE_CACHE_SHIFT;
1645 if (index == end_index) {
1646 nr = i_size & ~PAGE_CACHE_MASK;
1647 if (nr <= offset) {
1648 if (page)
1649 page_cache_release(page);
1650 break;
1653 nr -= offset;
1655 if (page) {
1657 * If users can be writing to this page using arbitrary
1658 * virtual addresses, take care about potential aliasing
1659 * before reading the page on the kernel side.
1661 if (mapping_writably_mapped(mapping))
1662 flush_dcache_page(page);
1664 * Mark the page accessed if we read the beginning.
1666 if (!offset)
1667 mark_page_accessed(page);
1668 } else {
1669 page = ZERO_PAGE(0);
1670 page_cache_get(page);
1674 * Ok, we have the page, and it's up-to-date, so
1675 * now we can copy it to user space...
1677 * The actor routine returns how many bytes were actually used..
1678 * NOTE! This may not be the same as how much of a user buffer
1679 * we filled up (we may be padding etc), so we can only update
1680 * "pos" here (the actor routine has to update the user buffer
1681 * pointers and the remaining count).
1683 ret = actor(desc, page, offset, nr);
1684 offset += ret;
1685 index += offset >> PAGE_CACHE_SHIFT;
1686 offset &= ~PAGE_CACHE_MASK;
1688 page_cache_release(page);
1689 if (ret != nr || !desc->count)
1690 break;
1692 cond_resched();
1695 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1696 file_accessed(filp);
1699 static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1701 read_descriptor_t desc;
1703 if ((ssize_t) count < 0)
1704 return -EINVAL;
1705 if (!access_ok(VERIFY_WRITE, buf, count))
1706 return -EFAULT;
1707 if (!count)
1708 return 0;
1710 desc.written = 0;
1711 desc.count = count;
1712 desc.arg.buf = buf;
1713 desc.error = 0;
1715 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1716 if (desc.written)
1717 return desc.written;
1718 return desc.error;
1721 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1723 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1725 buf->f_type = TMPFS_MAGIC;
1726 buf->f_bsize = PAGE_CACHE_SIZE;
1727 buf->f_namelen = NAME_MAX;
1728 spin_lock(&sbinfo->stat_lock);
1729 if (sbinfo->max_blocks) {
1730 buf->f_blocks = sbinfo->max_blocks;
1731 buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1733 if (sbinfo->max_inodes) {
1734 buf->f_files = sbinfo->max_inodes;
1735 buf->f_ffree = sbinfo->free_inodes;
1737 /* else leave those fields 0 like simple_statfs */
1738 spin_unlock(&sbinfo->stat_lock);
1739 return 0;
1743 * File creation. Allocate an inode, and we're done..
1745 static int
1746 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1748 struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1749 int error = -ENOSPC;
1751 if (inode) {
1752 error = security_inode_init_security(inode, dir, NULL, NULL,
1753 NULL);
1754 if (error) {
1755 if (error != -EOPNOTSUPP) {
1756 iput(inode);
1757 return error;
1760 error = shmem_acl_init(inode, dir);
1761 if (error) {
1762 iput(inode);
1763 return error;
1765 if (dir->i_mode & S_ISGID) {
1766 inode->i_gid = dir->i_gid;
1767 if (S_ISDIR(mode))
1768 inode->i_mode |= S_ISGID;
1770 dir->i_size += BOGO_DIRENT_SIZE;
1771 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1772 d_instantiate(dentry, inode);
1773 dget(dentry); /* Extra count - pin the dentry in core */
1775 return error;
1778 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1780 int error;
1782 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1783 return error;
1784 inc_nlink(dir);
1785 return 0;
1788 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1789 struct nameidata *nd)
1791 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1795 * Link a file..
1797 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1799 struct inode *inode = old_dentry->d_inode;
1800 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1803 * No ordinary (disk based) filesystem counts links as inodes;
1804 * but each new link needs a new dentry, pinning lowmem, and
1805 * tmpfs dentries cannot be pruned until they are unlinked.
1807 if (sbinfo->max_inodes) {
1808 spin_lock(&sbinfo->stat_lock);
1809 if (!sbinfo->free_inodes) {
1810 spin_unlock(&sbinfo->stat_lock);
1811 return -ENOSPC;
1813 sbinfo->free_inodes--;
1814 spin_unlock(&sbinfo->stat_lock);
1817 dir->i_size += BOGO_DIRENT_SIZE;
1818 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1819 inc_nlink(inode);
1820 atomic_inc(&inode->i_count); /* New dentry reference */
1821 dget(dentry); /* Extra pinning count for the created dentry */
1822 d_instantiate(dentry, inode);
1823 return 0;
1826 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1828 struct inode *inode = dentry->d_inode;
1830 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) {
1831 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1832 if (sbinfo->max_inodes) {
1833 spin_lock(&sbinfo->stat_lock);
1834 sbinfo->free_inodes++;
1835 spin_unlock(&sbinfo->stat_lock);
1839 dir->i_size -= BOGO_DIRENT_SIZE;
1840 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1841 drop_nlink(inode);
1842 dput(dentry); /* Undo the count from "create" - this does all the work */
1843 return 0;
1846 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1848 if (!simple_empty(dentry))
1849 return -ENOTEMPTY;
1851 drop_nlink(dentry->d_inode);
1852 drop_nlink(dir);
1853 return shmem_unlink(dir, dentry);
1857 * The VFS layer already does all the dentry stuff for rename,
1858 * we just have to decrement the usage count for the target if
1859 * it exists so that the VFS layer correctly free's it when it
1860 * gets overwritten.
1862 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1864 struct inode *inode = old_dentry->d_inode;
1865 int they_are_dirs = S_ISDIR(inode->i_mode);
1867 if (!simple_empty(new_dentry))
1868 return -ENOTEMPTY;
1870 if (new_dentry->d_inode) {
1871 (void) shmem_unlink(new_dir, new_dentry);
1872 if (they_are_dirs)
1873 drop_nlink(old_dir);
1874 } else if (they_are_dirs) {
1875 drop_nlink(old_dir);
1876 inc_nlink(new_dir);
1879 old_dir->i_size -= BOGO_DIRENT_SIZE;
1880 new_dir->i_size += BOGO_DIRENT_SIZE;
1881 old_dir->i_ctime = old_dir->i_mtime =
1882 new_dir->i_ctime = new_dir->i_mtime =
1883 inode->i_ctime = CURRENT_TIME;
1884 return 0;
1887 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1889 int error;
1890 int len;
1891 struct inode *inode;
1892 struct page *page = NULL;
1893 char *kaddr;
1894 struct shmem_inode_info *info;
1896 len = strlen(symname) + 1;
1897 if (len > PAGE_CACHE_SIZE)
1898 return -ENAMETOOLONG;
1900 inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1901 if (!inode)
1902 return -ENOSPC;
1904 error = security_inode_init_security(inode, dir, NULL, NULL,
1905 NULL);
1906 if (error) {
1907 if (error != -EOPNOTSUPP) {
1908 iput(inode);
1909 return error;
1911 error = 0;
1914 info = SHMEM_I(inode);
1915 inode->i_size = len-1;
1916 if (len <= (char *)inode - (char *)info) {
1917 /* do it inline */
1918 memcpy(info, symname, len);
1919 inode->i_op = &shmem_symlink_inline_operations;
1920 } else {
1921 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1922 if (error) {
1923 iput(inode);
1924 return error;
1926 inode->i_op = &shmem_symlink_inode_operations;
1927 kaddr = kmap_atomic(page, KM_USER0);
1928 memcpy(kaddr, symname, len);
1929 kunmap_atomic(kaddr, KM_USER0);
1930 set_page_dirty(page);
1931 page_cache_release(page);
1933 if (dir->i_mode & S_ISGID)
1934 inode->i_gid = dir->i_gid;
1935 dir->i_size += BOGO_DIRENT_SIZE;
1936 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1937 d_instantiate(dentry, inode);
1938 dget(dentry);
1939 return 0;
1942 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1944 nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1945 return NULL;
1948 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1950 struct page *page = NULL;
1951 int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1952 nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1953 return page;
1956 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1958 if (!IS_ERR(nd_get_link(nd))) {
1959 struct page *page = cookie;
1960 kunmap(page);
1961 mark_page_accessed(page);
1962 page_cache_release(page);
1966 static const struct inode_operations shmem_symlink_inline_operations = {
1967 .readlink = generic_readlink,
1968 .follow_link = shmem_follow_link_inline,
1971 static const struct inode_operations shmem_symlink_inode_operations = {
1972 .truncate = shmem_truncate,
1973 .readlink = generic_readlink,
1974 .follow_link = shmem_follow_link,
1975 .put_link = shmem_put_link,
1978 #ifdef CONFIG_TMPFS_POSIX_ACL
1980 * Superblocks without xattr inode operations will get security.* xattr
1981 * support from the VFS "for free". As soon as we have any other xattrs
1982 * like ACLs, we also need to implement the security.* handlers at
1983 * filesystem level, though.
1986 static size_t shmem_xattr_security_list(struct inode *inode, char *list,
1987 size_t list_len, const char *name,
1988 size_t name_len)
1990 return security_inode_listsecurity(inode, list, list_len);
1993 static int shmem_xattr_security_get(struct inode *inode, const char *name,
1994 void *buffer, size_t size)
1996 if (strcmp(name, "") == 0)
1997 return -EINVAL;
1998 return security_inode_getsecurity(inode, name, buffer, size,
1999 -EOPNOTSUPP);
2002 static int shmem_xattr_security_set(struct inode *inode, const char *name,
2003 const void *value, size_t size, int flags)
2005 if (strcmp(name, "") == 0)
2006 return -EINVAL;
2007 return security_inode_setsecurity(inode, name, value, size, flags);
2010 static struct xattr_handler shmem_xattr_security_handler = {
2011 .prefix = XATTR_SECURITY_PREFIX,
2012 .list = shmem_xattr_security_list,
2013 .get = shmem_xattr_security_get,
2014 .set = shmem_xattr_security_set,
2017 static struct xattr_handler *shmem_xattr_handlers[] = {
2018 &shmem_xattr_acl_access_handler,
2019 &shmem_xattr_acl_default_handler,
2020 &shmem_xattr_security_handler,
2021 NULL
2023 #endif
2025 static struct dentry *shmem_get_parent(struct dentry *child)
2027 return ERR_PTR(-ESTALE);
2030 static int shmem_match(struct inode *ino, void *vfh)
2032 __u32 *fh = vfh;
2033 __u64 inum = fh[2];
2034 inum = (inum << 32) | fh[1];
2035 return ino->i_ino == inum && fh[0] == ino->i_generation;
2038 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2039 struct fid *fid, int fh_len, int fh_type)
2041 struct inode *inode;
2042 struct dentry *dentry = NULL;
2043 u64 inum = fid->raw[2];
2044 inum = (inum << 32) | fid->raw[1];
2046 if (fh_len < 3)
2047 return NULL;
2049 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2050 shmem_match, fid->raw);
2051 if (inode) {
2052 dentry = d_find_alias(inode);
2053 iput(inode);
2056 return dentry;
2059 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2060 int connectable)
2062 struct inode *inode = dentry->d_inode;
2064 if (*len < 3)
2065 return 255;
2067 if (hlist_unhashed(&inode->i_hash)) {
2068 /* Unfortunately insert_inode_hash is not idempotent,
2069 * so as we hash inodes here rather than at creation
2070 * time, we need a lock to ensure we only try
2071 * to do it once
2073 static DEFINE_SPINLOCK(lock);
2074 spin_lock(&lock);
2075 if (hlist_unhashed(&inode->i_hash))
2076 __insert_inode_hash(inode,
2077 inode->i_ino + inode->i_generation);
2078 spin_unlock(&lock);
2081 fh[0] = inode->i_generation;
2082 fh[1] = inode->i_ino;
2083 fh[2] = ((__u64)inode->i_ino) >> 32;
2085 *len = 3;
2086 return 1;
2089 static const struct export_operations shmem_export_ops = {
2090 .get_parent = shmem_get_parent,
2091 .encode_fh = shmem_encode_fh,
2092 .fh_to_dentry = shmem_fh_to_dentry,
2095 static int shmem_parse_options(char *options, int *mode, uid_t *uid,
2096 gid_t *gid, unsigned long *blocks, unsigned long *inodes,
2097 int *policy, nodemask_t *policy_nodes)
2099 char *this_char, *value, *rest;
2101 while (options != NULL) {
2102 this_char = options;
2103 for (;;) {
2105 * NUL-terminate this option: unfortunately,
2106 * mount options form a comma-separated list,
2107 * but mpol's nodelist may also contain commas.
2109 options = strchr(options, ',');
2110 if (options == NULL)
2111 break;
2112 options++;
2113 if (!isdigit(*options)) {
2114 options[-1] = '\0';
2115 break;
2118 if (!*this_char)
2119 continue;
2120 if ((value = strchr(this_char,'=')) != NULL) {
2121 *value++ = 0;
2122 } else {
2123 printk(KERN_ERR
2124 "tmpfs: No value for mount option '%s'\n",
2125 this_char);
2126 return 1;
2129 if (!strcmp(this_char,"size")) {
2130 unsigned long long size;
2131 size = memparse(value,&rest);
2132 if (*rest == '%') {
2133 size <<= PAGE_SHIFT;
2134 size *= totalram_pages;
2135 do_div(size, 100);
2136 rest++;
2138 if (*rest)
2139 goto bad_val;
2140 *blocks = size >> PAGE_CACHE_SHIFT;
2141 } else if (!strcmp(this_char,"nr_blocks")) {
2142 *blocks = memparse(value,&rest);
2143 if (*rest)
2144 goto bad_val;
2145 } else if (!strcmp(this_char,"nr_inodes")) {
2146 *inodes = memparse(value,&rest);
2147 if (*rest)
2148 goto bad_val;
2149 } else if (!strcmp(this_char,"mode")) {
2150 if (!mode)
2151 continue;
2152 *mode = simple_strtoul(value,&rest,8);
2153 if (*rest)
2154 goto bad_val;
2155 } else if (!strcmp(this_char,"uid")) {
2156 if (!uid)
2157 continue;
2158 *uid = simple_strtoul(value,&rest,0);
2159 if (*rest)
2160 goto bad_val;
2161 } else if (!strcmp(this_char,"gid")) {
2162 if (!gid)
2163 continue;
2164 *gid = simple_strtoul(value,&rest,0);
2165 if (*rest)
2166 goto bad_val;
2167 } else if (!strcmp(this_char,"mpol")) {
2168 if (shmem_parse_mpol(value,policy,policy_nodes))
2169 goto bad_val;
2170 } else {
2171 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2172 this_char);
2173 return 1;
2176 return 0;
2178 bad_val:
2179 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2180 value, this_char);
2181 return 1;
2185 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2187 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2188 unsigned long max_blocks = sbinfo->max_blocks;
2189 unsigned long max_inodes = sbinfo->max_inodes;
2190 int policy = sbinfo->policy;
2191 nodemask_t policy_nodes = sbinfo->policy_nodes;
2192 unsigned long blocks;
2193 unsigned long inodes;
2194 int error = -EINVAL;
2196 if (shmem_parse_options(data, NULL, NULL, NULL, &max_blocks,
2197 &max_inodes, &policy, &policy_nodes))
2198 return error;
2200 spin_lock(&sbinfo->stat_lock);
2201 blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2202 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2203 if (max_blocks < blocks)
2204 goto out;
2205 if (max_inodes < inodes)
2206 goto out;
2208 * Those tests also disallow limited->unlimited while any are in
2209 * use, so i_blocks will always be zero when max_blocks is zero;
2210 * but we must separately disallow unlimited->limited, because
2211 * in that case we have no record of how much is already in use.
2213 if (max_blocks && !sbinfo->max_blocks)
2214 goto out;
2215 if (max_inodes && !sbinfo->max_inodes)
2216 goto out;
2218 error = 0;
2219 sbinfo->max_blocks = max_blocks;
2220 sbinfo->free_blocks = max_blocks - blocks;
2221 sbinfo->max_inodes = max_inodes;
2222 sbinfo->free_inodes = max_inodes - inodes;
2223 sbinfo->policy = policy;
2224 sbinfo->policy_nodes = policy_nodes;
2225 out:
2226 spin_unlock(&sbinfo->stat_lock);
2227 return error;
2229 #endif
2231 static void shmem_put_super(struct super_block *sb)
2233 kfree(sb->s_fs_info);
2234 sb->s_fs_info = NULL;
2237 static int shmem_fill_super(struct super_block *sb,
2238 void *data, int silent)
2240 struct inode *inode;
2241 struct dentry *root;
2242 int mode = S_IRWXUGO | S_ISVTX;
2243 uid_t uid = current->fsuid;
2244 gid_t gid = current->fsgid;
2245 int err = -ENOMEM;
2246 struct shmem_sb_info *sbinfo;
2247 unsigned long blocks = 0;
2248 unsigned long inodes = 0;
2249 int policy = MPOL_DEFAULT;
2250 nodemask_t policy_nodes = node_states[N_HIGH_MEMORY];
2252 #ifdef CONFIG_TMPFS
2254 * Per default we only allow half of the physical ram per
2255 * tmpfs instance, limiting inodes to one per page of lowmem;
2256 * but the internal instance is left unlimited.
2258 if (!(sb->s_flags & MS_NOUSER)) {
2259 blocks = totalram_pages / 2;
2260 inodes = totalram_pages - totalhigh_pages;
2261 if (inodes > blocks)
2262 inodes = blocks;
2263 if (shmem_parse_options(data, &mode, &uid, &gid, &blocks,
2264 &inodes, &policy, &policy_nodes))
2265 return -EINVAL;
2267 sb->s_export_op = &shmem_export_ops;
2268 #else
2269 sb->s_flags |= MS_NOUSER;
2270 #endif
2272 /* Round up to L1_CACHE_BYTES to resist false sharing */
2273 sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2274 L1_CACHE_BYTES), GFP_KERNEL);
2275 if (!sbinfo)
2276 return -ENOMEM;
2278 spin_lock_init(&sbinfo->stat_lock);
2279 sbinfo->max_blocks = blocks;
2280 sbinfo->free_blocks = blocks;
2281 sbinfo->max_inodes = inodes;
2282 sbinfo->free_inodes = inodes;
2283 sbinfo->policy = policy;
2284 sbinfo->policy_nodes = policy_nodes;
2286 sb->s_fs_info = sbinfo;
2287 sb->s_maxbytes = SHMEM_MAX_BYTES;
2288 sb->s_blocksize = PAGE_CACHE_SIZE;
2289 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2290 sb->s_magic = TMPFS_MAGIC;
2291 sb->s_op = &shmem_ops;
2292 sb->s_time_gran = 1;
2293 #ifdef CONFIG_TMPFS_POSIX_ACL
2294 sb->s_xattr = shmem_xattr_handlers;
2295 sb->s_flags |= MS_POSIXACL;
2296 #endif
2298 inode = shmem_get_inode(sb, S_IFDIR | mode, 0);
2299 if (!inode)
2300 goto failed;
2301 inode->i_uid = uid;
2302 inode->i_gid = gid;
2303 root = d_alloc_root(inode);
2304 if (!root)
2305 goto failed_iput;
2306 sb->s_root = root;
2307 return 0;
2309 failed_iput:
2310 iput(inode);
2311 failed:
2312 shmem_put_super(sb);
2313 return err;
2316 static struct kmem_cache *shmem_inode_cachep;
2318 static struct inode *shmem_alloc_inode(struct super_block *sb)
2320 struct shmem_inode_info *p;
2321 p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2322 if (!p)
2323 return NULL;
2324 return &p->vfs_inode;
2327 static void shmem_destroy_inode(struct inode *inode)
2329 if ((inode->i_mode & S_IFMT) == S_IFREG) {
2330 /* only struct inode is valid if it's an inline symlink */
2331 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2333 shmem_acl_destroy_inode(inode);
2334 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2337 static void init_once(struct kmem_cache *cachep, void *foo)
2339 struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2341 inode_init_once(&p->vfs_inode);
2342 #ifdef CONFIG_TMPFS_POSIX_ACL
2343 p->i_acl = NULL;
2344 p->i_default_acl = NULL;
2345 #endif
2348 static int init_inodecache(void)
2350 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2351 sizeof(struct shmem_inode_info),
2352 0, SLAB_PANIC, init_once);
2353 return 0;
2356 static void destroy_inodecache(void)
2358 kmem_cache_destroy(shmem_inode_cachep);
2361 static const struct address_space_operations shmem_aops = {
2362 .writepage = shmem_writepage,
2363 .set_page_dirty = __set_page_dirty_no_writeback,
2364 #ifdef CONFIG_TMPFS
2365 .readpage = shmem_readpage,
2366 .write_begin = shmem_write_begin,
2367 .write_end = shmem_write_end,
2368 #endif
2369 .migratepage = migrate_page,
2372 static const struct file_operations shmem_file_operations = {
2373 .mmap = shmem_mmap,
2374 #ifdef CONFIG_TMPFS
2375 .llseek = generic_file_llseek,
2376 .read = shmem_file_read,
2377 .write = shmem_file_write,
2378 .fsync = simple_sync_file,
2379 .splice_read = generic_file_splice_read,
2380 .splice_write = generic_file_splice_write,
2381 #endif
2384 static const struct inode_operations shmem_inode_operations = {
2385 .truncate = shmem_truncate,
2386 .setattr = shmem_notify_change,
2387 .truncate_range = shmem_truncate_range,
2388 #ifdef CONFIG_TMPFS_POSIX_ACL
2389 .setxattr = generic_setxattr,
2390 .getxattr = generic_getxattr,
2391 .listxattr = generic_listxattr,
2392 .removexattr = generic_removexattr,
2393 .permission = shmem_permission,
2394 #endif
2398 static const struct inode_operations shmem_dir_inode_operations = {
2399 #ifdef CONFIG_TMPFS
2400 .create = shmem_create,
2401 .lookup = simple_lookup,
2402 .link = shmem_link,
2403 .unlink = shmem_unlink,
2404 .symlink = shmem_symlink,
2405 .mkdir = shmem_mkdir,
2406 .rmdir = shmem_rmdir,
2407 .mknod = shmem_mknod,
2408 .rename = shmem_rename,
2409 #endif
2410 #ifdef CONFIG_TMPFS_POSIX_ACL
2411 .setattr = shmem_notify_change,
2412 .setxattr = generic_setxattr,
2413 .getxattr = generic_getxattr,
2414 .listxattr = generic_listxattr,
2415 .removexattr = generic_removexattr,
2416 .permission = shmem_permission,
2417 #endif
2420 static const struct inode_operations shmem_special_inode_operations = {
2421 #ifdef CONFIG_TMPFS_POSIX_ACL
2422 .setattr = shmem_notify_change,
2423 .setxattr = generic_setxattr,
2424 .getxattr = generic_getxattr,
2425 .listxattr = generic_listxattr,
2426 .removexattr = generic_removexattr,
2427 .permission = shmem_permission,
2428 #endif
2431 static const struct super_operations shmem_ops = {
2432 .alloc_inode = shmem_alloc_inode,
2433 .destroy_inode = shmem_destroy_inode,
2434 #ifdef CONFIG_TMPFS
2435 .statfs = shmem_statfs,
2436 .remount_fs = shmem_remount_fs,
2437 #endif
2438 .delete_inode = shmem_delete_inode,
2439 .drop_inode = generic_delete_inode,
2440 .put_super = shmem_put_super,
2443 static struct vm_operations_struct shmem_vm_ops = {
2444 .fault = shmem_fault,
2445 #ifdef CONFIG_NUMA
2446 .set_policy = shmem_set_policy,
2447 .get_policy = shmem_get_policy,
2448 #endif
2452 static int shmem_get_sb(struct file_system_type *fs_type,
2453 int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2455 return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2458 static struct file_system_type tmpfs_fs_type = {
2459 .owner = THIS_MODULE,
2460 .name = "tmpfs",
2461 .get_sb = shmem_get_sb,
2462 .kill_sb = kill_litter_super,
2464 static struct vfsmount *shm_mnt;
2466 static int __init init_tmpfs(void)
2468 int error;
2470 error = bdi_init(&shmem_backing_dev_info);
2471 if (error)
2472 goto out4;
2474 error = init_inodecache();
2475 if (error)
2476 goto out3;
2478 error = register_filesystem(&tmpfs_fs_type);
2479 if (error) {
2480 printk(KERN_ERR "Could not register tmpfs\n");
2481 goto out2;
2484 shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2485 tmpfs_fs_type.name, NULL);
2486 if (IS_ERR(shm_mnt)) {
2487 error = PTR_ERR(shm_mnt);
2488 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2489 goto out1;
2491 return 0;
2493 out1:
2494 unregister_filesystem(&tmpfs_fs_type);
2495 out2:
2496 destroy_inodecache();
2497 out3:
2498 bdi_destroy(&shmem_backing_dev_info);
2499 out4:
2500 shm_mnt = ERR_PTR(error);
2501 return error;
2503 module_init(init_tmpfs)
2506 * shmem_file_setup - get an unlinked file living in tmpfs
2508 * @name: name for dentry (to be seen in /proc/<pid>/maps
2509 * @size: size to be set for the file
2512 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2514 int error;
2515 struct file *file;
2516 struct inode *inode;
2517 struct dentry *dentry, *root;
2518 struct qstr this;
2520 if (IS_ERR(shm_mnt))
2521 return (void *)shm_mnt;
2523 if (size < 0 || size > SHMEM_MAX_BYTES)
2524 return ERR_PTR(-EINVAL);
2526 if (shmem_acct_size(flags, size))
2527 return ERR_PTR(-ENOMEM);
2529 error = -ENOMEM;
2530 this.name = name;
2531 this.len = strlen(name);
2532 this.hash = 0; /* will go */
2533 root = shm_mnt->mnt_root;
2534 dentry = d_alloc(root, &this);
2535 if (!dentry)
2536 goto put_memory;
2538 error = -ENFILE;
2539 file = get_empty_filp();
2540 if (!file)
2541 goto put_dentry;
2543 error = -ENOSPC;
2544 inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2545 if (!inode)
2546 goto close_file;
2548 SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2549 d_instantiate(dentry, inode);
2550 inode->i_size = size;
2551 inode->i_nlink = 0; /* It is unlinked */
2552 init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
2553 &shmem_file_operations);
2554 return file;
2556 close_file:
2557 put_filp(file);
2558 put_dentry:
2559 dput(dentry);
2560 put_memory:
2561 shmem_unacct_size(flags, size);
2562 return ERR_PTR(error);
2566 * shmem_zero_setup - setup a shared anonymous mapping
2568 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2570 int shmem_zero_setup(struct vm_area_struct *vma)
2572 struct file *file;
2573 loff_t size = vma->vm_end - vma->vm_start;
2575 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2576 if (IS_ERR(file))
2577 return PTR_ERR(file);
2579 if (vma->vm_file)
2580 fput(vma->vm_file);
2581 vma->vm_file = file;
2582 vma->vm_ops = &shmem_vm_ops;
2583 return 0;