Linux 2.6.19-rc1
[linux-2.6/next.git] / drivers / acpi / osl.c
blob20beea778ea2d929a7efceec03a3fe60f6f9ec12
1 /*
2 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
4 * Copyright (C) 2000 Andrew Henroid
5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
28 #include <linux/module.h>
29 #include <linux/kernel.h>
30 #include <linux/slab.h>
31 #include <linux/mm.h>
32 #include <linux/pci.h>
33 #include <linux/smp_lock.h>
34 #include <linux/interrupt.h>
35 #include <linux/kmod.h>
36 #include <linux/delay.h>
37 #include <linux/workqueue.h>
38 #include <linux/nmi.h>
39 #include <acpi/acpi.h>
40 #include <asm/io.h>
41 #include <acpi/acpi_bus.h>
42 #include <acpi/processor.h>
43 #include <asm/uaccess.h>
45 #include <linux/efi.h>
47 #define _COMPONENT ACPI_OS_SERVICES
48 ACPI_MODULE_NAME("osl")
49 #define PREFIX "ACPI: "
50 struct acpi_os_dpc {
51 acpi_osd_exec_callback function;
52 void *context;
55 #ifdef CONFIG_ACPI_CUSTOM_DSDT
56 #include CONFIG_ACPI_CUSTOM_DSDT_FILE
57 #endif
59 #ifdef ENABLE_DEBUGGER
60 #include <linux/kdb.h>
62 /* stuff for debugger support */
63 int acpi_in_debugger;
64 EXPORT_SYMBOL(acpi_in_debugger);
66 extern char line_buf[80];
67 #endif /*ENABLE_DEBUGGER */
69 int acpi_specific_hotkey_enabled = TRUE;
70 EXPORT_SYMBOL(acpi_specific_hotkey_enabled);
72 static unsigned int acpi_irq_irq;
73 static acpi_osd_handler acpi_irq_handler;
74 static void *acpi_irq_context;
75 static struct workqueue_struct *kacpid_wq;
77 acpi_status acpi_os_initialize(void)
79 return AE_OK;
82 acpi_status acpi_os_initialize1(void)
85 * Initialize PCI configuration space access, as we'll need to access
86 * it while walking the namespace (bus 0 and root bridges w/ _BBNs).
88 if (!raw_pci_ops) {
89 printk(KERN_ERR PREFIX
90 "Access to PCI configuration space unavailable\n");
91 return AE_NULL_ENTRY;
93 kacpid_wq = create_singlethread_workqueue("kacpid");
94 BUG_ON(!kacpid_wq);
96 return AE_OK;
99 acpi_status acpi_os_terminate(void)
101 if (acpi_irq_handler) {
102 acpi_os_remove_interrupt_handler(acpi_irq_irq,
103 acpi_irq_handler);
106 destroy_workqueue(kacpid_wq);
108 return AE_OK;
111 void acpi_os_printf(const char *fmt, ...)
113 va_list args;
114 va_start(args, fmt);
115 acpi_os_vprintf(fmt, args);
116 va_end(args);
119 EXPORT_SYMBOL(acpi_os_printf);
121 void acpi_os_vprintf(const char *fmt, va_list args)
123 static char buffer[512];
125 vsprintf(buffer, fmt, args);
127 #ifdef ENABLE_DEBUGGER
128 if (acpi_in_debugger) {
129 kdb_printf("%s", buffer);
130 } else {
131 printk("%s", buffer);
133 #else
134 printk("%s", buffer);
135 #endif
138 acpi_status acpi_os_get_root_pointer(u32 flags, struct acpi_pointer *addr)
140 if (efi_enabled) {
141 addr->pointer_type = ACPI_PHYSICAL_POINTER;
142 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
143 addr->pointer.physical = efi.acpi20;
144 else if (efi.acpi != EFI_INVALID_TABLE_ADDR)
145 addr->pointer.physical = efi.acpi;
146 else {
147 printk(KERN_ERR PREFIX
148 "System description tables not found\n");
149 return AE_NOT_FOUND;
151 } else {
152 if (ACPI_FAILURE(acpi_find_root_pointer(flags, addr))) {
153 printk(KERN_ERR PREFIX
154 "System description tables not found\n");
155 return AE_NOT_FOUND;
159 return AE_OK;
162 acpi_status
163 acpi_os_map_memory(acpi_physical_address phys, acpi_size size,
164 void __iomem ** virt)
166 if (phys > ULONG_MAX) {
167 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
168 return AE_BAD_PARAMETER;
171 * ioremap checks to ensure this is in reserved space
173 *virt = ioremap((unsigned long)phys, size);
175 if (!*virt)
176 return AE_NO_MEMORY;
178 return AE_OK;
180 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
182 void acpi_os_unmap_memory(void __iomem * virt, acpi_size size)
184 iounmap(virt);
186 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
188 #ifdef ACPI_FUTURE_USAGE
189 acpi_status
190 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
192 if (!phys || !virt)
193 return AE_BAD_PARAMETER;
195 *phys = virt_to_phys(virt);
197 return AE_OK;
199 #endif
201 #define ACPI_MAX_OVERRIDE_LEN 100
203 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
205 acpi_status
206 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
207 acpi_string * new_val)
209 if (!init_val || !new_val)
210 return AE_BAD_PARAMETER;
212 *new_val = NULL;
213 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
214 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
215 acpi_os_name);
216 *new_val = acpi_os_name;
219 return AE_OK;
222 acpi_status
223 acpi_os_table_override(struct acpi_table_header * existing_table,
224 struct acpi_table_header ** new_table)
226 if (!existing_table || !new_table)
227 return AE_BAD_PARAMETER;
229 #ifdef CONFIG_ACPI_CUSTOM_DSDT
230 if (strncmp(existing_table->signature, "DSDT", 4) == 0)
231 *new_table = (struct acpi_table_header *)AmlCode;
232 else
233 *new_table = NULL;
234 #else
235 *new_table = NULL;
236 #endif
237 return AE_OK;
240 static irqreturn_t acpi_irq(int irq, void *dev_id, struct pt_regs *regs)
242 return (*acpi_irq_handler) (acpi_irq_context) ? IRQ_HANDLED : IRQ_NONE;
245 acpi_status
246 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
247 void *context)
249 unsigned int irq;
252 * Ignore the GSI from the core, and use the value in our copy of the
253 * FADT. It may not be the same if an interrupt source override exists
254 * for the SCI.
256 gsi = acpi_fadt.sci_int;
257 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
258 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
259 gsi);
260 return AE_OK;
263 acpi_irq_handler = handler;
264 acpi_irq_context = context;
265 if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
266 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
267 return AE_NOT_ACQUIRED;
269 acpi_irq_irq = irq;
271 return AE_OK;
274 acpi_status acpi_os_remove_interrupt_handler(u32 irq, acpi_osd_handler handler)
276 if (irq) {
277 free_irq(irq, acpi_irq);
278 acpi_irq_handler = NULL;
279 acpi_irq_irq = 0;
282 return AE_OK;
286 * Running in interpreter thread context, safe to sleep
289 void acpi_os_sleep(acpi_integer ms)
291 schedule_timeout_interruptible(msecs_to_jiffies(ms));
294 EXPORT_SYMBOL(acpi_os_sleep);
296 void acpi_os_stall(u32 us)
298 while (us) {
299 u32 delay = 1000;
301 if (delay > us)
302 delay = us;
303 udelay(delay);
304 touch_nmi_watchdog();
305 us -= delay;
309 EXPORT_SYMBOL(acpi_os_stall);
312 * Support ACPI 3.0 AML Timer operand
313 * Returns 64-bit free-running, monotonically increasing timer
314 * with 100ns granularity
316 u64 acpi_os_get_timer(void)
318 static u64 t;
320 #ifdef CONFIG_HPET
321 /* TBD: use HPET if available */
322 #endif
324 #ifdef CONFIG_X86_PM_TIMER
325 /* TBD: default to PM timer if HPET was not available */
326 #endif
327 if (!t)
328 printk(KERN_ERR PREFIX "acpi_os_get_timer() TBD\n");
330 return ++t;
333 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
335 u32 dummy;
337 if (!value)
338 value = &dummy;
340 switch (width) {
341 case 8:
342 *(u8 *) value = inb(port);
343 break;
344 case 16:
345 *(u16 *) value = inw(port);
346 break;
347 case 32:
348 *(u32 *) value = inl(port);
349 break;
350 default:
351 BUG();
354 return AE_OK;
357 EXPORT_SYMBOL(acpi_os_read_port);
359 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
361 switch (width) {
362 case 8:
363 outb(value, port);
364 break;
365 case 16:
366 outw(value, port);
367 break;
368 case 32:
369 outl(value, port);
370 break;
371 default:
372 BUG();
375 return AE_OK;
378 EXPORT_SYMBOL(acpi_os_write_port);
380 acpi_status
381 acpi_os_read_memory(acpi_physical_address phys_addr, u32 * value, u32 width)
383 u32 dummy;
384 void __iomem *virt_addr;
386 virt_addr = ioremap(phys_addr, width);
387 if (!value)
388 value = &dummy;
390 switch (width) {
391 case 8:
392 *(u8 *) value = readb(virt_addr);
393 break;
394 case 16:
395 *(u16 *) value = readw(virt_addr);
396 break;
397 case 32:
398 *(u32 *) value = readl(virt_addr);
399 break;
400 default:
401 BUG();
404 iounmap(virt_addr);
406 return AE_OK;
409 acpi_status
410 acpi_os_write_memory(acpi_physical_address phys_addr, u32 value, u32 width)
412 void __iomem *virt_addr;
414 virt_addr = ioremap(phys_addr, width);
416 switch (width) {
417 case 8:
418 writeb(value, virt_addr);
419 break;
420 case 16:
421 writew(value, virt_addr);
422 break;
423 case 32:
424 writel(value, virt_addr);
425 break;
426 default:
427 BUG();
430 iounmap(virt_addr);
432 return AE_OK;
435 acpi_status
436 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
437 void *value, u32 width)
439 int result, size;
441 if (!value)
442 return AE_BAD_PARAMETER;
444 switch (width) {
445 case 8:
446 size = 1;
447 break;
448 case 16:
449 size = 2;
450 break;
451 case 32:
452 size = 4;
453 break;
454 default:
455 return AE_ERROR;
458 BUG_ON(!raw_pci_ops);
460 result = raw_pci_ops->read(pci_id->segment, pci_id->bus,
461 PCI_DEVFN(pci_id->device, pci_id->function),
462 reg, size, value);
464 return (result ? AE_ERROR : AE_OK);
467 EXPORT_SYMBOL(acpi_os_read_pci_configuration);
469 acpi_status
470 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
471 acpi_integer value, u32 width)
473 int result, size;
475 switch (width) {
476 case 8:
477 size = 1;
478 break;
479 case 16:
480 size = 2;
481 break;
482 case 32:
483 size = 4;
484 break;
485 default:
486 return AE_ERROR;
489 BUG_ON(!raw_pci_ops);
491 result = raw_pci_ops->write(pci_id->segment, pci_id->bus,
492 PCI_DEVFN(pci_id->device, pci_id->function),
493 reg, size, value);
495 return (result ? AE_ERROR : AE_OK);
498 /* TODO: Change code to take advantage of driver model more */
499 static void acpi_os_derive_pci_id_2(acpi_handle rhandle, /* upper bound */
500 acpi_handle chandle, /* current node */
501 struct acpi_pci_id **id,
502 int *is_bridge, u8 * bus_number)
504 acpi_handle handle;
505 struct acpi_pci_id *pci_id = *id;
506 acpi_status status;
507 unsigned long temp;
508 acpi_object_type type;
509 u8 tu8;
511 acpi_get_parent(chandle, &handle);
512 if (handle != rhandle) {
513 acpi_os_derive_pci_id_2(rhandle, handle, &pci_id, is_bridge,
514 bus_number);
516 status = acpi_get_type(handle, &type);
517 if ((ACPI_FAILURE(status)) || (type != ACPI_TYPE_DEVICE))
518 return;
520 status =
521 acpi_evaluate_integer(handle, METHOD_NAME__ADR, NULL,
522 &temp);
523 if (ACPI_SUCCESS(status)) {
524 pci_id->device = ACPI_HIWORD(ACPI_LODWORD(temp));
525 pci_id->function = ACPI_LOWORD(ACPI_LODWORD(temp));
527 if (*is_bridge)
528 pci_id->bus = *bus_number;
530 /* any nicer way to get bus number of bridge ? */
531 status =
532 acpi_os_read_pci_configuration(pci_id, 0x0e, &tu8,
534 if (ACPI_SUCCESS(status)
535 && ((tu8 & 0x7f) == 1 || (tu8 & 0x7f) == 2)) {
536 status =
537 acpi_os_read_pci_configuration(pci_id, 0x18,
538 &tu8, 8);
539 if (!ACPI_SUCCESS(status)) {
540 /* Certainly broken... FIX ME */
541 return;
543 *is_bridge = 1;
544 pci_id->bus = tu8;
545 status =
546 acpi_os_read_pci_configuration(pci_id, 0x19,
547 &tu8, 8);
548 if (ACPI_SUCCESS(status)) {
549 *bus_number = tu8;
551 } else
552 *is_bridge = 0;
557 void acpi_os_derive_pci_id(acpi_handle rhandle, /* upper bound */
558 acpi_handle chandle, /* current node */
559 struct acpi_pci_id **id)
561 int is_bridge = 1;
562 u8 bus_number = (*id)->bus;
564 acpi_os_derive_pci_id_2(rhandle, chandle, id, &is_bridge, &bus_number);
567 static void acpi_os_execute_deferred(void *context)
569 struct acpi_os_dpc *dpc = NULL;
572 dpc = (struct acpi_os_dpc *)context;
573 if (!dpc) {
574 printk(KERN_ERR PREFIX "Invalid (NULL) context\n");
575 return;
578 dpc->function(dpc->context);
580 kfree(dpc);
582 return;
585 /*******************************************************************************
587 * FUNCTION: acpi_os_execute
589 * PARAMETERS: Type - Type of the callback
590 * Function - Function to be executed
591 * Context - Function parameters
593 * RETURN: Status
595 * DESCRIPTION: Depending on type, either queues function for deferred execution or
596 * immediately executes function on a separate thread.
598 ******************************************************************************/
600 acpi_status acpi_os_execute(acpi_execute_type type,
601 acpi_osd_exec_callback function, void *context)
603 acpi_status status = AE_OK;
604 struct acpi_os_dpc *dpc;
605 struct work_struct *task;
607 ACPI_FUNCTION_TRACE("os_queue_for_execution");
609 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
610 "Scheduling function [%p(%p)] for deferred execution.\n",
611 function, context));
613 if (!function)
614 return_ACPI_STATUS(AE_BAD_PARAMETER);
617 * Allocate/initialize DPC structure. Note that this memory will be
618 * freed by the callee. The kernel handles the tq_struct list in a
619 * way that allows us to also free its memory inside the callee.
620 * Because we may want to schedule several tasks with different
621 * parameters we can't use the approach some kernel code uses of
622 * having a static tq_struct.
623 * We can save time and code by allocating the DPC and tq_structs
624 * from the same memory.
627 dpc =
628 kmalloc(sizeof(struct acpi_os_dpc) + sizeof(struct work_struct),
629 GFP_ATOMIC);
630 if (!dpc)
631 return_ACPI_STATUS(AE_NO_MEMORY);
633 dpc->function = function;
634 dpc->context = context;
636 task = (void *)(dpc + 1);
637 INIT_WORK(task, acpi_os_execute_deferred, (void *)dpc);
639 if (!queue_work(kacpid_wq, task)) {
640 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
641 "Call to queue_work() failed.\n"));
642 kfree(dpc);
643 status = AE_ERROR;
646 return_ACPI_STATUS(status);
649 EXPORT_SYMBOL(acpi_os_execute);
651 void acpi_os_wait_events_complete(void *context)
653 flush_workqueue(kacpid_wq);
656 EXPORT_SYMBOL(acpi_os_wait_events_complete);
659 * Allocate the memory for a spinlock and initialize it.
661 acpi_status acpi_os_create_lock(acpi_spinlock * handle)
663 spin_lock_init(*handle);
665 return AE_OK;
669 * Deallocate the memory for a spinlock.
671 void acpi_os_delete_lock(acpi_spinlock handle)
673 return;
676 acpi_status
677 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
679 struct semaphore *sem = NULL;
682 sem = acpi_os_allocate(sizeof(struct semaphore));
683 if (!sem)
684 return AE_NO_MEMORY;
685 memset(sem, 0, sizeof(struct semaphore));
687 sema_init(sem, initial_units);
689 *handle = (acpi_handle *) sem;
691 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
692 *handle, initial_units));
694 return AE_OK;
697 EXPORT_SYMBOL(acpi_os_create_semaphore);
700 * TODO: A better way to delete semaphores? Linux doesn't have a
701 * 'delete_semaphore()' function -- may result in an invalid
702 * pointer dereference for non-synchronized consumers. Should
703 * we at least check for blocked threads and signal/cancel them?
706 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
708 struct semaphore *sem = (struct semaphore *)handle;
711 if (!sem)
712 return AE_BAD_PARAMETER;
714 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
716 kfree(sem);
717 sem = NULL;
719 return AE_OK;
722 EXPORT_SYMBOL(acpi_os_delete_semaphore);
725 * TODO: The kernel doesn't have a 'down_timeout' function -- had to
726 * improvise. The process is to sleep for one scheduler quantum
727 * until the semaphore becomes available. Downside is that this
728 * may result in starvation for timeout-based waits when there's
729 * lots of semaphore activity.
731 * TODO: Support for units > 1?
733 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
735 acpi_status status = AE_OK;
736 struct semaphore *sem = (struct semaphore *)handle;
737 int ret = 0;
740 if (!sem || (units < 1))
741 return AE_BAD_PARAMETER;
743 if (units > 1)
744 return AE_SUPPORT;
746 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
747 handle, units, timeout));
750 * This can be called during resume with interrupts off.
751 * Like boot-time, we should be single threaded and will
752 * always get the lock if we try -- timeout or not.
753 * If this doesn't succeed, then we will oops courtesy of
754 * might_sleep() in down().
756 if (!down_trylock(sem))
757 return AE_OK;
759 switch (timeout) {
761 * No Wait:
762 * --------
763 * A zero timeout value indicates that we shouldn't wait - just
764 * acquire the semaphore if available otherwise return AE_TIME
765 * (a.k.a. 'would block').
767 case 0:
768 if (down_trylock(sem))
769 status = AE_TIME;
770 break;
773 * Wait Indefinitely:
774 * ------------------
776 case ACPI_WAIT_FOREVER:
777 down(sem);
778 break;
781 * Wait w/ Timeout:
782 * ----------------
784 default:
785 // TODO: A better timeout algorithm?
787 int i = 0;
788 static const int quantum_ms = 1000 / HZ;
790 ret = down_trylock(sem);
791 for (i = timeout; (i > 0 && ret != 0); i -= quantum_ms) {
792 schedule_timeout_interruptible(1);
793 ret = down_trylock(sem);
796 if (ret != 0)
797 status = AE_TIME;
799 break;
802 if (ACPI_FAILURE(status)) {
803 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
804 "Failed to acquire semaphore[%p|%d|%d], %s",
805 handle, units, timeout,
806 acpi_format_exception(status)));
807 } else {
808 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
809 "Acquired semaphore[%p|%d|%d]", handle,
810 units, timeout));
813 return status;
816 EXPORT_SYMBOL(acpi_os_wait_semaphore);
819 * TODO: Support for units > 1?
821 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
823 struct semaphore *sem = (struct semaphore *)handle;
826 if (!sem || (units < 1))
827 return AE_BAD_PARAMETER;
829 if (units > 1)
830 return AE_SUPPORT;
832 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
833 units));
835 up(sem);
837 return AE_OK;
840 EXPORT_SYMBOL(acpi_os_signal_semaphore);
842 #ifdef ACPI_FUTURE_USAGE
843 u32 acpi_os_get_line(char *buffer)
846 #ifdef ENABLE_DEBUGGER
847 if (acpi_in_debugger) {
848 u32 chars;
850 kdb_read(buffer, sizeof(line_buf));
852 /* remove the CR kdb includes */
853 chars = strlen(buffer) - 1;
854 buffer[chars] = '\0';
856 #endif
858 return 0;
860 #endif /* ACPI_FUTURE_USAGE */
862 /* Assumes no unreadable holes inbetween */
863 u8 acpi_os_readable(void *ptr, acpi_size len)
865 #if defined(__i386__) || defined(__x86_64__)
866 char tmp;
867 return !__get_user(tmp, (char __user *)ptr)
868 && !__get_user(tmp, (char __user *)ptr + len - 1);
869 #endif
870 return 1;
873 #ifdef ACPI_FUTURE_USAGE
874 u8 acpi_os_writable(void *ptr, acpi_size len)
876 /* could do dummy write (racy) or a kernel page table lookup.
877 The later may be difficult at early boot when kmap doesn't work yet. */
878 return 1;
880 #endif
882 acpi_status acpi_os_signal(u32 function, void *info)
884 switch (function) {
885 case ACPI_SIGNAL_FATAL:
886 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
887 break;
888 case ACPI_SIGNAL_BREAKPOINT:
890 * AML Breakpoint
891 * ACPI spec. says to treat it as a NOP unless
892 * you are debugging. So if/when we integrate
893 * AML debugger into the kernel debugger its
894 * hook will go here. But until then it is
895 * not useful to print anything on breakpoints.
897 break;
898 default:
899 break;
902 return AE_OK;
905 EXPORT_SYMBOL(acpi_os_signal);
907 static int __init acpi_os_name_setup(char *str)
909 char *p = acpi_os_name;
910 int count = ACPI_MAX_OVERRIDE_LEN - 1;
912 if (!str || !*str)
913 return 0;
915 for (; count-- && str && *str; str++) {
916 if (isalnum(*str) || *str == ' ' || *str == ':')
917 *p++ = *str;
918 else if (*str == '\'' || *str == '"')
919 continue;
920 else
921 break;
923 *p = 0;
925 return 1;
929 __setup("acpi_os_name=", acpi_os_name_setup);
932 * _OSI control
933 * empty string disables _OSI
934 * TBD additional string adds to _OSI
936 static int __init acpi_osi_setup(char *str)
938 if (str == NULL || *str == '\0') {
939 printk(KERN_INFO PREFIX "_OSI method disabled\n");
940 acpi_gbl_create_osi_method = FALSE;
941 } else {
942 /* TBD */
943 printk(KERN_ERR PREFIX "_OSI additional string ignored -- %s\n",
944 str);
947 return 1;
950 __setup("acpi_osi=", acpi_osi_setup);
952 /* enable serialization to combat AE_ALREADY_EXISTS errors */
953 static int __init acpi_serialize_setup(char *str)
955 printk(KERN_INFO PREFIX "serialize enabled\n");
957 acpi_gbl_all_methods_serialized = TRUE;
959 return 1;
962 __setup("acpi_serialize", acpi_serialize_setup);
965 * Wake and Run-Time GPES are expected to be separate.
966 * We disable wake-GPEs at run-time to prevent spurious
967 * interrupts.
969 * However, if a system exists that shares Wake and
970 * Run-time events on the same GPE this flag is available
971 * to tell Linux to keep the wake-time GPEs enabled at run-time.
973 static int __init acpi_wake_gpes_always_on_setup(char *str)
975 printk(KERN_INFO PREFIX "wake GPEs not disabled\n");
977 acpi_gbl_leave_wake_gpes_disabled = FALSE;
979 return 1;
982 __setup("acpi_wake_gpes_always_on", acpi_wake_gpes_always_on_setup);
984 static int __init acpi_hotkey_setup(char *str)
986 acpi_specific_hotkey_enabled = FALSE;
987 return 1;
990 __setup("acpi_generic_hotkey", acpi_hotkey_setup);
993 * max_cstate is defined in the base kernel so modules can
994 * change it w/o depending on the state of the processor module.
996 unsigned int max_cstate = ACPI_PROCESSOR_MAX_POWER;
998 EXPORT_SYMBOL(max_cstate);
1001 * Acquire a spinlock.
1003 * handle is a pointer to the spinlock_t.
1006 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1008 acpi_cpu_flags flags;
1009 spin_lock_irqsave(lockp, flags);
1010 return flags;
1014 * Release a spinlock. See above.
1017 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1019 spin_unlock_irqrestore(lockp, flags);
1022 #ifndef ACPI_USE_LOCAL_CACHE
1024 /*******************************************************************************
1026 * FUNCTION: acpi_os_create_cache
1028 * PARAMETERS: name - Ascii name for the cache
1029 * size - Size of each cached object
1030 * depth - Maximum depth of the cache (in objects) <ignored>
1031 * cache - Where the new cache object is returned
1033 * RETURN: status
1035 * DESCRIPTION: Create a cache object
1037 ******************************************************************************/
1039 acpi_status
1040 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1042 *cache = kmem_cache_create(name, size, 0, 0, NULL, NULL);
1043 if (cache == NULL)
1044 return AE_ERROR;
1045 else
1046 return AE_OK;
1049 /*******************************************************************************
1051 * FUNCTION: acpi_os_purge_cache
1053 * PARAMETERS: Cache - Handle to cache object
1055 * RETURN: Status
1057 * DESCRIPTION: Free all objects within the requested cache.
1059 ******************************************************************************/
1061 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1063 (void)kmem_cache_shrink(cache);
1064 return (AE_OK);
1067 /*******************************************************************************
1069 * FUNCTION: acpi_os_delete_cache
1071 * PARAMETERS: Cache - Handle to cache object
1073 * RETURN: Status
1075 * DESCRIPTION: Free all objects within the requested cache and delete the
1076 * cache object.
1078 ******************************************************************************/
1080 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1082 kmem_cache_destroy(cache);
1083 return (AE_OK);
1086 /*******************************************************************************
1088 * FUNCTION: acpi_os_release_object
1090 * PARAMETERS: Cache - Handle to cache object
1091 * Object - The object to be released
1093 * RETURN: None
1095 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1096 * the object is deleted.
1098 ******************************************************************************/
1100 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1102 kmem_cache_free(cache, object);
1103 return (AE_OK);
1106 /******************************************************************************
1108 * FUNCTION: acpi_os_validate_interface
1110 * PARAMETERS: interface - Requested interface to be validated
1112 * RETURN: AE_OK if interface is supported, AE_SUPPORT otherwise
1114 * DESCRIPTION: Match an interface string to the interfaces supported by the
1115 * host. Strings originate from an AML call to the _OSI method.
1117 *****************************************************************************/
1119 acpi_status
1120 acpi_os_validate_interface (char *interface)
1123 return AE_SUPPORT;
1127 /******************************************************************************
1129 * FUNCTION: acpi_os_validate_address
1131 * PARAMETERS: space_id - ACPI space ID
1132 * address - Physical address
1133 * length - Address length
1135 * RETURN: AE_OK if address/length is valid for the space_id. Otherwise,
1136 * should return AE_AML_ILLEGAL_ADDRESS.
1138 * DESCRIPTION: Validate a system address via the host OS. Used to validate
1139 * the addresses accessed by AML operation regions.
1141 *****************************************************************************/
1143 acpi_status
1144 acpi_os_validate_address (
1145 u8 space_id,
1146 acpi_physical_address address,
1147 acpi_size length)
1150 return AE_OK;
1154 #endif