2 * drivers/cpufreq/cpufreq_ondemand.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
23 * dbs is used in this file as a shortform for demandbased switching
24 * It helps to keep variable names smaller, simpler
27 #define DEF_FREQUENCY_UP_THRESHOLD (80)
28 #define MIN_FREQUENCY_UP_THRESHOLD (11)
29 #define MAX_FREQUENCY_UP_THRESHOLD (100)
32 * The polling frequency of this governor depends on the capability of
33 * the processor. Default polling frequency is 1000 times the transition
34 * latency of the processor. The governor will work on any processor with
35 * transition latency <= 10mS, using appropriate sampling
37 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
38 * this governor will not work.
39 * All times here are in uS.
41 static unsigned int def_sampling_rate
;
42 #define MIN_SAMPLING_RATE_RATIO (2)
43 /* for correct statistics, we need at least 10 ticks between each measure */
44 #define MIN_STAT_SAMPLING_RATE (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
45 #define MIN_SAMPLING_RATE (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
46 #define MAX_SAMPLING_RATE (500 * def_sampling_rate)
47 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000)
48 #define TRANSITION_LATENCY_LIMIT (10 * 1000)
50 static void do_dbs_timer(void *data
);
52 struct cpu_dbs_info_s
{
53 cputime64_t prev_cpu_idle
;
54 cputime64_t prev_cpu_wall
;
55 struct cpufreq_policy
*cur_policy
;
56 struct work_struct work
;
58 struct cpufreq_frequency_table
*freq_table
;
60 unsigned int freq_lo_jiffies
;
61 unsigned int freq_hi_jiffies
;
63 static DEFINE_PER_CPU(struct cpu_dbs_info_s
, cpu_dbs_info
);
65 static unsigned int dbs_enable
; /* number of CPUs using this policy */
68 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
69 * lock and dbs_mutex. cpu_hotplug lock should always be held before
70 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
71 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
72 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
73 * is recursive for the same process. -Venki
75 static DEFINE_MUTEX(dbs_mutex
);
77 static struct workqueue_struct
*kondemand_wq
;
79 static struct dbs_tuners
{
80 unsigned int sampling_rate
;
81 unsigned int up_threshold
;
82 unsigned int ignore_nice
;
83 unsigned int powersave_bias
;
85 .up_threshold
= DEF_FREQUENCY_UP_THRESHOLD
,
90 static inline cputime64_t
get_cpu_idle_time(unsigned int cpu
)
94 retval
= cputime64_add(kstat_cpu(cpu
).cpustat
.idle
,
95 kstat_cpu(cpu
).cpustat
.iowait
);
97 if (dbs_tuners_ins
.ignore_nice
)
98 retval
= cputime64_add(retval
, kstat_cpu(cpu
).cpustat
.nice
);
104 * Find right freq to be set now with powersave_bias on.
105 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
106 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
108 static unsigned int powersave_bias_target(struct cpufreq_policy
*policy
,
109 unsigned int freq_next
,
110 unsigned int relation
)
112 unsigned int freq_req
, freq_reduc
, freq_avg
;
113 unsigned int freq_hi
, freq_lo
;
114 unsigned int index
= 0;
115 unsigned int jiffies_total
, jiffies_hi
, jiffies_lo
;
116 struct cpu_dbs_info_s
*dbs_info
= &per_cpu(cpu_dbs_info
, policy
->cpu
);
118 if (!dbs_info
->freq_table
) {
119 dbs_info
->freq_lo
= 0;
120 dbs_info
->freq_lo_jiffies
= 0;
124 cpufreq_frequency_table_target(policy
, dbs_info
->freq_table
, freq_next
,
126 freq_req
= dbs_info
->freq_table
[index
].frequency
;
127 freq_reduc
= freq_req
* dbs_tuners_ins
.powersave_bias
/ 1000;
128 freq_avg
= freq_req
- freq_reduc
;
130 /* Find freq bounds for freq_avg in freq_table */
132 cpufreq_frequency_table_target(policy
, dbs_info
->freq_table
, freq_avg
,
133 CPUFREQ_RELATION_H
, &index
);
134 freq_lo
= dbs_info
->freq_table
[index
].frequency
;
136 cpufreq_frequency_table_target(policy
, dbs_info
->freq_table
, freq_avg
,
137 CPUFREQ_RELATION_L
, &index
);
138 freq_hi
= dbs_info
->freq_table
[index
].frequency
;
140 /* Find out how long we have to be in hi and lo freqs */
141 if (freq_hi
== freq_lo
) {
142 dbs_info
->freq_lo
= 0;
143 dbs_info
->freq_lo_jiffies
= 0;
146 jiffies_total
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
147 jiffies_hi
= (freq_avg
- freq_lo
) * jiffies_total
;
148 jiffies_hi
+= ((freq_hi
- freq_lo
) / 2);
149 jiffies_hi
/= (freq_hi
- freq_lo
);
150 jiffies_lo
= jiffies_total
- jiffies_hi
;
151 dbs_info
->freq_lo
= freq_lo
;
152 dbs_info
->freq_lo_jiffies
= jiffies_lo
;
153 dbs_info
->freq_hi_jiffies
= jiffies_hi
;
157 static void ondemand_powersave_bias_init(void)
160 for_each_online_cpu(i
) {
161 struct cpu_dbs_info_s
*dbs_info
= &per_cpu(cpu_dbs_info
, i
);
162 dbs_info
->freq_table
= cpufreq_frequency_get_table(i
);
163 dbs_info
->freq_lo
= 0;
167 /************************** sysfs interface ************************/
168 static ssize_t
show_sampling_rate_max(struct cpufreq_policy
*policy
, char *buf
)
170 return sprintf (buf
, "%u\n", MAX_SAMPLING_RATE
);
173 static ssize_t
show_sampling_rate_min(struct cpufreq_policy
*policy
, char *buf
)
175 return sprintf (buf
, "%u\n", MIN_SAMPLING_RATE
);
178 #define define_one_ro(_name) \
179 static struct freq_attr _name = \
180 __ATTR(_name, 0444, show_##_name, NULL)
182 define_one_ro(sampling_rate_max
);
183 define_one_ro(sampling_rate_min
);
185 /* cpufreq_ondemand Governor Tunables */
186 #define show_one(file_name, object) \
187 static ssize_t show_##file_name \
188 (struct cpufreq_policy *unused, char *buf) \
190 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
192 show_one(sampling_rate
, sampling_rate
);
193 show_one(up_threshold
, up_threshold
);
194 show_one(ignore_nice_load
, ignore_nice
);
195 show_one(powersave_bias
, powersave_bias
);
197 static ssize_t
store_sampling_rate(struct cpufreq_policy
*unused
,
198 const char *buf
, size_t count
)
202 ret
= sscanf(buf
, "%u", &input
);
204 mutex_lock(&dbs_mutex
);
205 if (ret
!= 1 || input
> MAX_SAMPLING_RATE
|| input
< MIN_SAMPLING_RATE
) {
206 mutex_unlock(&dbs_mutex
);
210 dbs_tuners_ins
.sampling_rate
= input
;
211 mutex_unlock(&dbs_mutex
);
216 static ssize_t
store_up_threshold(struct cpufreq_policy
*unused
,
217 const char *buf
, size_t count
)
221 ret
= sscanf(buf
, "%u", &input
);
223 mutex_lock(&dbs_mutex
);
224 if (ret
!= 1 || input
> MAX_FREQUENCY_UP_THRESHOLD
||
225 input
< MIN_FREQUENCY_UP_THRESHOLD
) {
226 mutex_unlock(&dbs_mutex
);
230 dbs_tuners_ins
.up_threshold
= input
;
231 mutex_unlock(&dbs_mutex
);
236 static ssize_t
store_ignore_nice_load(struct cpufreq_policy
*policy
,
237 const char *buf
, size_t count
)
244 ret
= sscanf(buf
, "%u", &input
);
251 mutex_lock(&dbs_mutex
);
252 if ( input
== dbs_tuners_ins
.ignore_nice
) { /* nothing to do */
253 mutex_unlock(&dbs_mutex
);
256 dbs_tuners_ins
.ignore_nice
= input
;
258 /* we need to re-evaluate prev_cpu_idle */
259 for_each_online_cpu(j
) {
260 struct cpu_dbs_info_s
*dbs_info
;
261 dbs_info
= &per_cpu(cpu_dbs_info
, j
);
262 dbs_info
->prev_cpu_idle
= get_cpu_idle_time(j
);
263 dbs_info
->prev_cpu_wall
= get_jiffies_64();
265 mutex_unlock(&dbs_mutex
);
270 static ssize_t
store_powersave_bias(struct cpufreq_policy
*unused
,
271 const char *buf
, size_t count
)
275 ret
= sscanf(buf
, "%u", &input
);
283 mutex_lock(&dbs_mutex
);
284 dbs_tuners_ins
.powersave_bias
= input
;
285 ondemand_powersave_bias_init();
286 mutex_unlock(&dbs_mutex
);
291 #define define_one_rw(_name) \
292 static struct freq_attr _name = \
293 __ATTR(_name, 0644, show_##_name, store_##_name)
295 define_one_rw(sampling_rate
);
296 define_one_rw(up_threshold
);
297 define_one_rw(ignore_nice_load
);
298 define_one_rw(powersave_bias
);
300 static struct attribute
* dbs_attributes
[] = {
301 &sampling_rate_max
.attr
,
302 &sampling_rate_min
.attr
,
305 &ignore_nice_load
.attr
,
306 &powersave_bias
.attr
,
310 static struct attribute_group dbs_attr_group
= {
311 .attrs
= dbs_attributes
,
315 /************************** sysfs end ************************/
317 static void dbs_check_cpu(struct cpu_dbs_info_s
*this_dbs_info
)
319 unsigned int idle_ticks
, total_ticks
;
321 cputime64_t cur_jiffies
;
323 struct cpufreq_policy
*policy
;
326 if (!this_dbs_info
->enable
)
329 this_dbs_info
->freq_lo
= 0;
330 policy
= this_dbs_info
->cur_policy
;
331 cur_jiffies
= jiffies64_to_cputime64(get_jiffies_64());
332 total_ticks
= (unsigned int) cputime64_sub(cur_jiffies
,
333 this_dbs_info
->prev_cpu_wall
);
334 this_dbs_info
->prev_cpu_wall
= cur_jiffies
;
338 * Every sampling_rate, we check, if current idle time is less
339 * than 20% (default), then we try to increase frequency
340 * Every sampling_rate, we look for a the lowest
341 * frequency which can sustain the load while keeping idle time over
342 * 30%. If such a frequency exist, we try to decrease to this frequency.
344 * Any frequency increase takes it to the maximum frequency.
345 * Frequency reduction happens at minimum steps of
346 * 5% (default) of current frequency
350 idle_ticks
= UINT_MAX
;
351 for_each_cpu_mask(j
, policy
->cpus
) {
352 cputime64_t total_idle_ticks
;
353 unsigned int tmp_idle_ticks
;
354 struct cpu_dbs_info_s
*j_dbs_info
;
356 j_dbs_info
= &per_cpu(cpu_dbs_info
, j
);
357 total_idle_ticks
= get_cpu_idle_time(j
);
358 tmp_idle_ticks
= (unsigned int) cputime64_sub(total_idle_ticks
,
359 j_dbs_info
->prev_cpu_idle
);
360 j_dbs_info
->prev_cpu_idle
= total_idle_ticks
;
362 if (tmp_idle_ticks
< idle_ticks
)
363 idle_ticks
= tmp_idle_ticks
;
365 load
= (100 * (total_ticks
- idle_ticks
)) / total_ticks
;
367 /* Check for frequency increase */
368 if (load
> dbs_tuners_ins
.up_threshold
) {
369 /* if we are already at full speed then break out early */
370 if (!dbs_tuners_ins
.powersave_bias
) {
371 if (policy
->cur
== policy
->max
)
374 __cpufreq_driver_target(policy
, policy
->max
,
377 int freq
= powersave_bias_target(policy
, policy
->max
,
379 __cpufreq_driver_target(policy
, freq
,
385 /* Check for frequency decrease */
386 /* if we cannot reduce the frequency anymore, break out early */
387 if (policy
->cur
== policy
->min
)
391 * The optimal frequency is the frequency that is the lowest that
392 * can support the current CPU usage without triggering the up
393 * policy. To be safe, we focus 10 points under the threshold.
395 if (load
< (dbs_tuners_ins
.up_threshold
- 10)) {
396 unsigned int freq_next
= (policy
->cur
* load
) /
397 (dbs_tuners_ins
.up_threshold
- 10);
398 if (!dbs_tuners_ins
.powersave_bias
) {
399 __cpufreq_driver_target(policy
, freq_next
,
402 int freq
= powersave_bias_target(policy
, freq_next
,
404 __cpufreq_driver_target(policy
, freq
,
411 enum {DBS_NORMAL_SAMPLE
, DBS_SUB_SAMPLE
};
413 static void do_dbs_timer(void *data
)
415 unsigned int cpu
= smp_processor_id();
416 struct cpu_dbs_info_s
*dbs_info
= &per_cpu(cpu_dbs_info
, cpu
);
417 /* We want all CPUs to do sampling nearly on same jiffy */
418 int delay
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
419 delay
-= jiffies
% delay
;
421 if (!dbs_info
->enable
)
423 /* Common NORMAL_SAMPLE setup */
424 INIT_WORK(&dbs_info
->work
, do_dbs_timer
, (void *)DBS_NORMAL_SAMPLE
);
425 if (!dbs_tuners_ins
.powersave_bias
||
426 (unsigned long) data
== DBS_NORMAL_SAMPLE
) {
428 dbs_check_cpu(dbs_info
);
429 unlock_cpu_hotplug();
430 if (dbs_info
->freq_lo
) {
431 /* Setup timer for SUB_SAMPLE */
432 INIT_WORK(&dbs_info
->work
, do_dbs_timer
,
433 (void *)DBS_SUB_SAMPLE
);
434 delay
= dbs_info
->freq_hi_jiffies
;
437 __cpufreq_driver_target(dbs_info
->cur_policy
,
441 queue_delayed_work_on(cpu
, kondemand_wq
, &dbs_info
->work
, delay
);
444 static inline void dbs_timer_init(unsigned int cpu
)
446 struct cpu_dbs_info_s
*dbs_info
= &per_cpu(cpu_dbs_info
, cpu
);
447 /* We want all CPUs to do sampling nearly on same jiffy */
448 int delay
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
449 delay
-= jiffies
% delay
;
451 ondemand_powersave_bias_init();
452 INIT_WORK(&dbs_info
->work
, do_dbs_timer
, NULL
);
453 queue_delayed_work_on(cpu
, kondemand_wq
, &dbs_info
->work
, delay
);
456 static inline void dbs_timer_exit(struct cpu_dbs_info_s
*dbs_info
)
458 dbs_info
->enable
= 0;
459 cancel_delayed_work(&dbs_info
->work
);
460 flush_workqueue(kondemand_wq
);
463 static int cpufreq_governor_dbs(struct cpufreq_policy
*policy
,
466 unsigned int cpu
= policy
->cpu
;
467 struct cpu_dbs_info_s
*this_dbs_info
;
470 this_dbs_info
= &per_cpu(cpu_dbs_info
, cpu
);
473 case CPUFREQ_GOV_START
:
474 if ((!cpu_online(cpu
)) || (!policy
->cur
))
477 if (policy
->cpuinfo
.transition_latency
>
478 (TRANSITION_LATENCY_LIMIT
* 1000)) {
479 printk(KERN_WARNING
"ondemand governor failed to load "
480 "due to too long transition latency\n");
483 if (this_dbs_info
->enable
) /* Already enabled */
486 mutex_lock(&dbs_mutex
);
488 if (dbs_enable
== 1) {
489 kondemand_wq
= create_workqueue("kondemand");
491 printk(KERN_ERR
"Creation of kondemand failed\n");
493 mutex_unlock(&dbs_mutex
);
497 for_each_cpu_mask(j
, policy
->cpus
) {
498 struct cpu_dbs_info_s
*j_dbs_info
;
499 j_dbs_info
= &per_cpu(cpu_dbs_info
, j
);
500 j_dbs_info
->cur_policy
= policy
;
502 j_dbs_info
->prev_cpu_idle
= get_cpu_idle_time(j
);
503 j_dbs_info
->prev_cpu_wall
= get_jiffies_64();
505 this_dbs_info
->enable
= 1;
506 sysfs_create_group(&policy
->kobj
, &dbs_attr_group
);
508 * Start the timerschedule work, when this governor
509 * is used for first time
511 if (dbs_enable
== 1) {
512 unsigned int latency
;
513 /* policy latency is in nS. Convert it to uS first */
514 latency
= policy
->cpuinfo
.transition_latency
/ 1000;
518 def_sampling_rate
= latency
*
519 DEF_SAMPLING_RATE_LATENCY_MULTIPLIER
;
521 if (def_sampling_rate
< MIN_STAT_SAMPLING_RATE
)
522 def_sampling_rate
= MIN_STAT_SAMPLING_RATE
;
524 dbs_tuners_ins
.sampling_rate
= def_sampling_rate
;
526 dbs_timer_init(policy
->cpu
);
528 mutex_unlock(&dbs_mutex
);
531 case CPUFREQ_GOV_STOP
:
532 mutex_lock(&dbs_mutex
);
533 dbs_timer_exit(this_dbs_info
);
534 sysfs_remove_group(&policy
->kobj
, &dbs_attr_group
);
537 destroy_workqueue(kondemand_wq
);
539 mutex_unlock(&dbs_mutex
);
543 case CPUFREQ_GOV_LIMITS
:
544 mutex_lock(&dbs_mutex
);
545 if (policy
->max
< this_dbs_info
->cur_policy
->cur
)
546 __cpufreq_driver_target(this_dbs_info
->cur_policy
,
549 else if (policy
->min
> this_dbs_info
->cur_policy
->cur
)
550 __cpufreq_driver_target(this_dbs_info
->cur_policy
,
553 mutex_unlock(&dbs_mutex
);
559 static struct cpufreq_governor cpufreq_gov_dbs
= {
561 .governor
= cpufreq_governor_dbs
,
562 .owner
= THIS_MODULE
,
565 static int __init
cpufreq_gov_dbs_init(void)
567 return cpufreq_register_governor(&cpufreq_gov_dbs
);
570 static void __exit
cpufreq_gov_dbs_exit(void)
572 cpufreq_unregister_governor(&cpufreq_gov_dbs
);
576 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
577 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
578 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
579 "Low Latency Frequency Transition capable processors");
580 MODULE_LICENSE("GPL");
582 module_init(cpufreq_gov_dbs_init
);
583 module_exit(cpufreq_gov_dbs_exit
);