2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/highmem.h>
49 #include <linux/bitops.h>
50 #include <linux/kthread.h>
51 #include <asm/atomic.h>
54 #include <linux/raid/bitmap.h>
60 #define NR_STRIPES 256
61 #define STRIPE_SIZE PAGE_SIZE
62 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
63 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
64 #define IO_THRESHOLD 1
65 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
66 #define HASH_MASK (NR_HASH - 1)
68 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
70 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
71 * order without overlap. There may be several bio's per stripe+device, and
72 * a bio could span several devices.
73 * When walking this list for a particular stripe+device, we must never proceed
74 * beyond a bio that extends past this device, as the next bio might no longer
76 * This macro is used to determine the 'next' bio in the list, given the sector
77 * of the current stripe+device
79 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
81 * The following can be used to debug the driver
84 #define RAID5_PARANOIA 1
85 #if RAID5_PARANOIA && defined(CONFIG_SMP)
86 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
88 # define CHECK_DEVLOCK()
91 #define PRINTK(x...) ((void)(RAID5_DEBUG && printk(x)))
97 #if !RAID6_USE_EMPTY_ZERO_PAGE
98 /* In .bss so it's zeroed */
99 const char raid6_empty_zero_page
[PAGE_SIZE
] __attribute__((aligned(256)));
102 static inline int raid6_next_disk(int disk
, int raid_disks
)
105 return (disk
< raid_disks
) ? disk
: 0;
107 static void print_raid5_conf (raid5_conf_t
*conf
);
109 static void __release_stripe(raid5_conf_t
*conf
, struct stripe_head
*sh
)
111 if (atomic_dec_and_test(&sh
->count
)) {
112 BUG_ON(!list_empty(&sh
->lru
));
113 BUG_ON(atomic_read(&conf
->active_stripes
)==0);
114 if (test_bit(STRIPE_HANDLE
, &sh
->state
)) {
115 if (test_bit(STRIPE_DELAYED
, &sh
->state
)) {
116 list_add_tail(&sh
->lru
, &conf
->delayed_list
);
117 blk_plug_device(conf
->mddev
->queue
);
118 } else if (test_bit(STRIPE_BIT_DELAY
, &sh
->state
) &&
119 sh
->bm_seq
- conf
->seq_write
> 0) {
120 list_add_tail(&sh
->lru
, &conf
->bitmap_list
);
121 blk_plug_device(conf
->mddev
->queue
);
123 clear_bit(STRIPE_BIT_DELAY
, &sh
->state
);
124 list_add_tail(&sh
->lru
, &conf
->handle_list
);
126 md_wakeup_thread(conf
->mddev
->thread
);
128 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
129 atomic_dec(&conf
->preread_active_stripes
);
130 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
)
131 md_wakeup_thread(conf
->mddev
->thread
);
133 atomic_dec(&conf
->active_stripes
);
134 if (!test_bit(STRIPE_EXPANDING
, &sh
->state
)) {
135 list_add_tail(&sh
->lru
, &conf
->inactive_list
);
136 wake_up(&conf
->wait_for_stripe
);
141 static void release_stripe(struct stripe_head
*sh
)
143 raid5_conf_t
*conf
= sh
->raid_conf
;
146 spin_lock_irqsave(&conf
->device_lock
, flags
);
147 __release_stripe(conf
, sh
);
148 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
151 static inline void remove_hash(struct stripe_head
*sh
)
153 PRINTK("remove_hash(), stripe %llu\n", (unsigned long long)sh
->sector
);
155 hlist_del_init(&sh
->hash
);
158 static inline void insert_hash(raid5_conf_t
*conf
, struct stripe_head
*sh
)
160 struct hlist_head
*hp
= stripe_hash(conf
, sh
->sector
);
162 PRINTK("insert_hash(), stripe %llu\n", (unsigned long long)sh
->sector
);
165 hlist_add_head(&sh
->hash
, hp
);
169 /* find an idle stripe, make sure it is unhashed, and return it. */
170 static struct stripe_head
*get_free_stripe(raid5_conf_t
*conf
)
172 struct stripe_head
*sh
= NULL
;
173 struct list_head
*first
;
176 if (list_empty(&conf
->inactive_list
))
178 first
= conf
->inactive_list
.next
;
179 sh
= list_entry(first
, struct stripe_head
, lru
);
180 list_del_init(first
);
182 atomic_inc(&conf
->active_stripes
);
187 static void shrink_buffers(struct stripe_head
*sh
, int num
)
192 for (i
=0; i
<num
; i
++) {
196 sh
->dev
[i
].page
= NULL
;
201 static int grow_buffers(struct stripe_head
*sh
, int num
)
205 for (i
=0; i
<num
; i
++) {
208 if (!(page
= alloc_page(GFP_KERNEL
))) {
211 sh
->dev
[i
].page
= page
;
216 static void raid5_build_block (struct stripe_head
*sh
, int i
);
218 static void init_stripe(struct stripe_head
*sh
, sector_t sector
, int pd_idx
, int disks
)
220 raid5_conf_t
*conf
= sh
->raid_conf
;
223 BUG_ON(atomic_read(&sh
->count
) != 0);
224 BUG_ON(test_bit(STRIPE_HANDLE
, &sh
->state
));
227 PRINTK("init_stripe called, stripe %llu\n",
228 (unsigned long long)sh
->sector
);
238 for (i
= sh
->disks
; i
--; ) {
239 struct r5dev
*dev
= &sh
->dev
[i
];
241 if (dev
->toread
|| dev
->towrite
|| dev
->written
||
242 test_bit(R5_LOCKED
, &dev
->flags
)) {
243 printk("sector=%llx i=%d %p %p %p %d\n",
244 (unsigned long long)sh
->sector
, i
, dev
->toread
,
245 dev
->towrite
, dev
->written
,
246 test_bit(R5_LOCKED
, &dev
->flags
));
250 raid5_build_block(sh
, i
);
252 insert_hash(conf
, sh
);
255 static struct stripe_head
*__find_stripe(raid5_conf_t
*conf
, sector_t sector
, int disks
)
257 struct stripe_head
*sh
;
258 struct hlist_node
*hn
;
261 PRINTK("__find_stripe, sector %llu\n", (unsigned long long)sector
);
262 hlist_for_each_entry(sh
, hn
, stripe_hash(conf
, sector
), hash
)
263 if (sh
->sector
== sector
&& sh
->disks
== disks
)
265 PRINTK("__stripe %llu not in cache\n", (unsigned long long)sector
);
269 static void unplug_slaves(mddev_t
*mddev
);
270 static void raid5_unplug_device(request_queue_t
*q
);
272 static struct stripe_head
*get_active_stripe(raid5_conf_t
*conf
, sector_t sector
, int disks
,
273 int pd_idx
, int noblock
)
275 struct stripe_head
*sh
;
277 PRINTK("get_stripe, sector %llu\n", (unsigned long long)sector
);
279 spin_lock_irq(&conf
->device_lock
);
282 wait_event_lock_irq(conf
->wait_for_stripe
,
284 conf
->device_lock
, /* nothing */);
285 sh
= __find_stripe(conf
, sector
, disks
);
287 if (!conf
->inactive_blocked
)
288 sh
= get_free_stripe(conf
);
289 if (noblock
&& sh
== NULL
)
292 conf
->inactive_blocked
= 1;
293 wait_event_lock_irq(conf
->wait_for_stripe
,
294 !list_empty(&conf
->inactive_list
) &&
295 (atomic_read(&conf
->active_stripes
)
296 < (conf
->max_nr_stripes
*3/4)
297 || !conf
->inactive_blocked
),
299 raid5_unplug_device(conf
->mddev
->queue
)
301 conf
->inactive_blocked
= 0;
303 init_stripe(sh
, sector
, pd_idx
, disks
);
305 if (atomic_read(&sh
->count
)) {
306 BUG_ON(!list_empty(&sh
->lru
));
308 if (!test_bit(STRIPE_HANDLE
, &sh
->state
))
309 atomic_inc(&conf
->active_stripes
);
310 if (list_empty(&sh
->lru
) &&
311 !test_bit(STRIPE_EXPANDING
, &sh
->state
))
313 list_del_init(&sh
->lru
);
316 } while (sh
== NULL
);
319 atomic_inc(&sh
->count
);
321 spin_unlock_irq(&conf
->device_lock
);
325 static int grow_one_stripe(raid5_conf_t
*conf
)
327 struct stripe_head
*sh
;
328 sh
= kmem_cache_alloc(conf
->slab_cache
, GFP_KERNEL
);
331 memset(sh
, 0, sizeof(*sh
) + (conf
->raid_disks
-1)*sizeof(struct r5dev
));
332 sh
->raid_conf
= conf
;
333 spin_lock_init(&sh
->lock
);
335 if (grow_buffers(sh
, conf
->raid_disks
)) {
336 shrink_buffers(sh
, conf
->raid_disks
);
337 kmem_cache_free(conf
->slab_cache
, sh
);
340 sh
->disks
= conf
->raid_disks
;
341 /* we just created an active stripe so... */
342 atomic_set(&sh
->count
, 1);
343 atomic_inc(&conf
->active_stripes
);
344 INIT_LIST_HEAD(&sh
->lru
);
349 static int grow_stripes(raid5_conf_t
*conf
, int num
)
352 int devs
= conf
->raid_disks
;
354 sprintf(conf
->cache_name
[0], "raid5/%s", mdname(conf
->mddev
));
355 sprintf(conf
->cache_name
[1], "raid5/%s-alt", mdname(conf
->mddev
));
356 conf
->active_name
= 0;
357 sc
= kmem_cache_create(conf
->cache_name
[conf
->active_name
],
358 sizeof(struct stripe_head
)+(devs
-1)*sizeof(struct r5dev
),
362 conf
->slab_cache
= sc
;
363 conf
->pool_size
= devs
;
365 if (!grow_one_stripe(conf
))
370 #ifdef CONFIG_MD_RAID5_RESHAPE
371 static int resize_stripes(raid5_conf_t
*conf
, int newsize
)
373 /* Make all the stripes able to hold 'newsize' devices.
374 * New slots in each stripe get 'page' set to a new page.
376 * This happens in stages:
377 * 1/ create a new kmem_cache and allocate the required number of
379 * 2/ gather all the old stripe_heads and tranfer the pages across
380 * to the new stripe_heads. This will have the side effect of
381 * freezing the array as once all stripe_heads have been collected,
382 * no IO will be possible. Old stripe heads are freed once their
383 * pages have been transferred over, and the old kmem_cache is
384 * freed when all stripes are done.
385 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
386 * we simple return a failre status - no need to clean anything up.
387 * 4/ allocate new pages for the new slots in the new stripe_heads.
388 * If this fails, we don't bother trying the shrink the
389 * stripe_heads down again, we just leave them as they are.
390 * As each stripe_head is processed the new one is released into
393 * Once step2 is started, we cannot afford to wait for a write,
394 * so we use GFP_NOIO allocations.
396 struct stripe_head
*osh
, *nsh
;
397 LIST_HEAD(newstripes
);
398 struct disk_info
*ndisks
;
403 if (newsize
<= conf
->pool_size
)
404 return 0; /* never bother to shrink */
407 sc
= kmem_cache_create(conf
->cache_name
[1-conf
->active_name
],
408 sizeof(struct stripe_head
)+(newsize
-1)*sizeof(struct r5dev
),
413 for (i
= conf
->max_nr_stripes
; i
; i
--) {
414 nsh
= kmem_cache_alloc(sc
, GFP_KERNEL
);
418 memset(nsh
, 0, sizeof(*nsh
) + (newsize
-1)*sizeof(struct r5dev
));
420 nsh
->raid_conf
= conf
;
421 spin_lock_init(&nsh
->lock
);
423 list_add(&nsh
->lru
, &newstripes
);
426 /* didn't get enough, give up */
427 while (!list_empty(&newstripes
)) {
428 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
430 kmem_cache_free(sc
, nsh
);
432 kmem_cache_destroy(sc
);
435 /* Step 2 - Must use GFP_NOIO now.
436 * OK, we have enough stripes, start collecting inactive
437 * stripes and copying them over
439 list_for_each_entry(nsh
, &newstripes
, lru
) {
440 spin_lock_irq(&conf
->device_lock
);
441 wait_event_lock_irq(conf
->wait_for_stripe
,
442 !list_empty(&conf
->inactive_list
),
444 unplug_slaves(conf
->mddev
)
446 osh
= get_free_stripe(conf
);
447 spin_unlock_irq(&conf
->device_lock
);
448 atomic_set(&nsh
->count
, 1);
449 for(i
=0; i
<conf
->pool_size
; i
++)
450 nsh
->dev
[i
].page
= osh
->dev
[i
].page
;
451 for( ; i
<newsize
; i
++)
452 nsh
->dev
[i
].page
= NULL
;
453 kmem_cache_free(conf
->slab_cache
, osh
);
455 kmem_cache_destroy(conf
->slab_cache
);
458 * At this point, we are holding all the stripes so the array
459 * is completely stalled, so now is a good time to resize
462 ndisks
= kzalloc(newsize
* sizeof(struct disk_info
), GFP_NOIO
);
464 for (i
=0; i
<conf
->raid_disks
; i
++)
465 ndisks
[i
] = conf
->disks
[i
];
467 conf
->disks
= ndisks
;
471 /* Step 4, return new stripes to service */
472 while(!list_empty(&newstripes
)) {
473 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
474 list_del_init(&nsh
->lru
);
475 for (i
=conf
->raid_disks
; i
< newsize
; i
++)
476 if (nsh
->dev
[i
].page
== NULL
) {
477 struct page
*p
= alloc_page(GFP_NOIO
);
478 nsh
->dev
[i
].page
= p
;
484 /* critical section pass, GFP_NOIO no longer needed */
486 conf
->slab_cache
= sc
;
487 conf
->active_name
= 1-conf
->active_name
;
488 conf
->pool_size
= newsize
;
493 static int drop_one_stripe(raid5_conf_t
*conf
)
495 struct stripe_head
*sh
;
497 spin_lock_irq(&conf
->device_lock
);
498 sh
= get_free_stripe(conf
);
499 spin_unlock_irq(&conf
->device_lock
);
502 BUG_ON(atomic_read(&sh
->count
));
503 shrink_buffers(sh
, conf
->pool_size
);
504 kmem_cache_free(conf
->slab_cache
, sh
);
505 atomic_dec(&conf
->active_stripes
);
509 static void shrink_stripes(raid5_conf_t
*conf
)
511 while (drop_one_stripe(conf
))
514 if (conf
->slab_cache
)
515 kmem_cache_destroy(conf
->slab_cache
);
516 conf
->slab_cache
= NULL
;
519 static int raid5_end_read_request(struct bio
* bi
, unsigned int bytes_done
,
522 struct stripe_head
*sh
= bi
->bi_private
;
523 raid5_conf_t
*conf
= sh
->raid_conf
;
524 int disks
= sh
->disks
, i
;
525 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
526 char b
[BDEVNAME_SIZE
];
532 for (i
=0 ; i
<disks
; i
++)
533 if (bi
== &sh
->dev
[i
].req
)
536 PRINTK("end_read_request %llu/%d, count: %d, uptodate %d.\n",
537 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
548 spin_lock_irqsave(&conf
->device_lock
, flags
);
549 /* we can return a buffer if we bypassed the cache or
550 * if the top buffer is not in highmem. If there are
551 * multiple buffers, leave the extra work to
554 buffer
= sh
->bh_read
[i
];
556 (!PageHighMem(buffer
->b_page
)
557 || buffer
->b_page
== bh
->b_page
)
559 sh
->bh_read
[i
] = buffer
->b_reqnext
;
560 buffer
->b_reqnext
= NULL
;
563 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
564 if (sh
->bh_page
[i
]==bh
->b_page
)
565 set_buffer_uptodate(bh
);
567 if (buffer
->b_page
!= bh
->b_page
)
568 memcpy(buffer
->b_data
, bh
->b_data
, bh
->b_size
);
569 buffer
->b_end_io(buffer
, 1);
572 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
574 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
575 rdev
= conf
->disks
[i
].rdev
;
576 printk(KERN_INFO
"raid5:%s: read error corrected (%lu sectors at %llu on %s)\n",
577 mdname(conf
->mddev
), STRIPE_SECTORS
,
578 (unsigned long long)sh
->sector
+ rdev
->data_offset
,
579 bdevname(rdev
->bdev
, b
));
580 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
581 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
583 if (atomic_read(&conf
->disks
[i
].rdev
->read_errors
))
584 atomic_set(&conf
->disks
[i
].rdev
->read_errors
, 0);
586 const char *bdn
= bdevname(conf
->disks
[i
].rdev
->bdev
, b
);
588 rdev
= conf
->disks
[i
].rdev
;
590 clear_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
591 atomic_inc(&rdev
->read_errors
);
592 if (conf
->mddev
->degraded
)
593 printk(KERN_WARNING
"raid5:%s: read error not correctable (sector %llu on %s).\n",
595 (unsigned long long)sh
->sector
+ rdev
->data_offset
,
597 else if (test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
599 printk(KERN_WARNING
"raid5:%s: read error NOT corrected!! (sector %llu on %s).\n",
601 (unsigned long long)sh
->sector
+ rdev
->data_offset
,
603 else if (atomic_read(&rdev
->read_errors
)
604 > conf
->max_nr_stripes
)
606 "raid5:%s: Too many read errors, failing device %s.\n",
607 mdname(conf
->mddev
), bdn
);
611 set_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
613 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
614 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
615 md_error(conf
->mddev
, rdev
);
618 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
620 /* must restore b_page before unlocking buffer... */
621 if (sh
->bh_page
[i
] != bh
->b_page
) {
622 bh
->b_page
= sh
->bh_page
[i
];
623 bh
->b_data
= page_address(bh
->b_page
);
624 clear_buffer_uptodate(bh
);
627 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
628 set_bit(STRIPE_HANDLE
, &sh
->state
);
633 static int raid5_end_write_request (struct bio
*bi
, unsigned int bytes_done
,
636 struct stripe_head
*sh
= bi
->bi_private
;
637 raid5_conf_t
*conf
= sh
->raid_conf
;
638 int disks
= sh
->disks
, i
;
639 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
644 for (i
=0 ; i
<disks
; i
++)
645 if (bi
== &sh
->dev
[i
].req
)
648 PRINTK("end_write_request %llu/%d, count %d, uptodate: %d.\n",
649 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
657 md_error(conf
->mddev
, conf
->disks
[i
].rdev
);
659 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
661 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
662 set_bit(STRIPE_HANDLE
, &sh
->state
);
668 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
);
670 static void raid5_build_block (struct stripe_head
*sh
, int i
)
672 struct r5dev
*dev
= &sh
->dev
[i
];
675 dev
->req
.bi_io_vec
= &dev
->vec
;
677 dev
->req
.bi_max_vecs
++;
678 dev
->vec
.bv_page
= dev
->page
;
679 dev
->vec
.bv_len
= STRIPE_SIZE
;
680 dev
->vec
.bv_offset
= 0;
682 dev
->req
.bi_sector
= sh
->sector
;
683 dev
->req
.bi_private
= sh
;
686 dev
->sector
= compute_blocknr(sh
, i
);
689 static void error(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
691 char b
[BDEVNAME_SIZE
];
692 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
693 PRINTK("raid5: error called\n");
695 if (!test_bit(Faulty
, &rdev
->flags
)) {
696 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
697 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
699 spin_lock_irqsave(&conf
->device_lock
, flags
);
701 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
703 * if recovery was running, make sure it aborts.
705 set_bit(MD_RECOVERY_ERR
, &mddev
->recovery
);
707 set_bit(Faulty
, &rdev
->flags
);
709 "raid5: Disk failure on %s, disabling device."
710 " Operation continuing on %d devices\n",
711 bdevname(rdev
->bdev
,b
), conf
->raid_disks
- mddev
->degraded
);
716 * Input: a 'big' sector number,
717 * Output: index of the data and parity disk, and the sector # in them.
719 static sector_t
raid5_compute_sector(sector_t r_sector
, unsigned int raid_disks
,
720 unsigned int data_disks
, unsigned int * dd_idx
,
721 unsigned int * pd_idx
, raid5_conf_t
*conf
)
724 unsigned long chunk_number
;
725 unsigned int chunk_offset
;
727 int sectors_per_chunk
= conf
->chunk_size
>> 9;
729 /* First compute the information on this sector */
732 * Compute the chunk number and the sector offset inside the chunk
734 chunk_offset
= sector_div(r_sector
, sectors_per_chunk
);
735 chunk_number
= r_sector
;
736 BUG_ON(r_sector
!= chunk_number
);
739 * Compute the stripe number
741 stripe
= chunk_number
/ data_disks
;
744 * Compute the data disk and parity disk indexes inside the stripe
746 *dd_idx
= chunk_number
% data_disks
;
749 * Select the parity disk based on the user selected algorithm.
751 switch(conf
->level
) {
753 *pd_idx
= data_disks
;
756 switch (conf
->algorithm
) {
757 case ALGORITHM_LEFT_ASYMMETRIC
:
758 *pd_idx
= data_disks
- stripe
% raid_disks
;
759 if (*dd_idx
>= *pd_idx
)
762 case ALGORITHM_RIGHT_ASYMMETRIC
:
763 *pd_idx
= stripe
% raid_disks
;
764 if (*dd_idx
>= *pd_idx
)
767 case ALGORITHM_LEFT_SYMMETRIC
:
768 *pd_idx
= data_disks
- stripe
% raid_disks
;
769 *dd_idx
= (*pd_idx
+ 1 + *dd_idx
) % raid_disks
;
771 case ALGORITHM_RIGHT_SYMMETRIC
:
772 *pd_idx
= stripe
% raid_disks
;
773 *dd_idx
= (*pd_idx
+ 1 + *dd_idx
) % raid_disks
;
776 printk(KERN_ERR
"raid5: unsupported algorithm %d\n",
783 switch (conf
->algorithm
) {
784 case ALGORITHM_LEFT_ASYMMETRIC
:
785 *pd_idx
= raid_disks
- 1 - (stripe
% raid_disks
);
786 if (*pd_idx
== raid_disks
-1)
787 (*dd_idx
)++; /* Q D D D P */
788 else if (*dd_idx
>= *pd_idx
)
789 (*dd_idx
) += 2; /* D D P Q D */
791 case ALGORITHM_RIGHT_ASYMMETRIC
:
792 *pd_idx
= stripe
% raid_disks
;
793 if (*pd_idx
== raid_disks
-1)
794 (*dd_idx
)++; /* Q D D D P */
795 else if (*dd_idx
>= *pd_idx
)
796 (*dd_idx
) += 2; /* D D P Q D */
798 case ALGORITHM_LEFT_SYMMETRIC
:
799 *pd_idx
= raid_disks
- 1 - (stripe
% raid_disks
);
800 *dd_idx
= (*pd_idx
+ 2 + *dd_idx
) % raid_disks
;
802 case ALGORITHM_RIGHT_SYMMETRIC
:
803 *pd_idx
= stripe
% raid_disks
;
804 *dd_idx
= (*pd_idx
+ 2 + *dd_idx
) % raid_disks
;
807 printk (KERN_CRIT
"raid6: unsupported algorithm %d\n",
814 * Finally, compute the new sector number
816 new_sector
= (sector_t
)stripe
* sectors_per_chunk
+ chunk_offset
;
821 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
)
823 raid5_conf_t
*conf
= sh
->raid_conf
;
824 int raid_disks
= sh
->disks
, data_disks
= raid_disks
- 1;
825 sector_t new_sector
= sh
->sector
, check
;
826 int sectors_per_chunk
= conf
->chunk_size
>> 9;
829 int chunk_number
, dummy1
, dummy2
, dd_idx
= i
;
833 chunk_offset
= sector_div(new_sector
, sectors_per_chunk
);
835 BUG_ON(new_sector
!= stripe
);
839 switch(conf
->level
) {
842 switch (conf
->algorithm
) {
843 case ALGORITHM_LEFT_ASYMMETRIC
:
844 case ALGORITHM_RIGHT_ASYMMETRIC
:
848 case ALGORITHM_LEFT_SYMMETRIC
:
849 case ALGORITHM_RIGHT_SYMMETRIC
:
852 i
-= (sh
->pd_idx
+ 1);
855 printk(KERN_ERR
"raid5: unsupported algorithm %d\n",
860 data_disks
= raid_disks
- 2;
861 if (i
== raid6_next_disk(sh
->pd_idx
, raid_disks
))
862 return 0; /* It is the Q disk */
863 switch (conf
->algorithm
) {
864 case ALGORITHM_LEFT_ASYMMETRIC
:
865 case ALGORITHM_RIGHT_ASYMMETRIC
:
866 if (sh
->pd_idx
== raid_disks
-1)
868 else if (i
> sh
->pd_idx
)
869 i
-= 2; /* D D P Q D */
871 case ALGORITHM_LEFT_SYMMETRIC
:
872 case ALGORITHM_RIGHT_SYMMETRIC
:
873 if (sh
->pd_idx
== raid_disks
-1)
879 i
-= (sh
->pd_idx
+ 2);
883 printk (KERN_CRIT
"raid6: unsupported algorithm %d\n",
889 chunk_number
= stripe
* data_disks
+ i
;
890 r_sector
= (sector_t
)chunk_number
* sectors_per_chunk
+ chunk_offset
;
892 check
= raid5_compute_sector (r_sector
, raid_disks
, data_disks
, &dummy1
, &dummy2
, conf
);
893 if (check
!= sh
->sector
|| dummy1
!= dd_idx
|| dummy2
!= sh
->pd_idx
) {
894 printk(KERN_ERR
"compute_blocknr: map not correct\n");
903 * Copy data between a page in the stripe cache, and one or more bion
904 * The page could align with the middle of the bio, or there could be
905 * several bion, each with several bio_vecs, which cover part of the page
906 * Multiple bion are linked together on bi_next. There may be extras
907 * at the end of this list. We ignore them.
909 static void copy_data(int frombio
, struct bio
*bio
,
913 char *pa
= page_address(page
);
918 if (bio
->bi_sector
>= sector
)
919 page_offset
= (signed)(bio
->bi_sector
- sector
) * 512;
921 page_offset
= (signed)(sector
- bio
->bi_sector
) * -512;
922 bio_for_each_segment(bvl
, bio
, i
) {
923 int len
= bio_iovec_idx(bio
,i
)->bv_len
;
927 if (page_offset
< 0) {
928 b_offset
= -page_offset
;
929 page_offset
+= b_offset
;
933 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
934 clen
= STRIPE_SIZE
- page_offset
;
938 char *ba
= __bio_kmap_atomic(bio
, i
, KM_USER0
);
940 memcpy(pa
+page_offset
, ba
+b_offset
, clen
);
942 memcpy(ba
+b_offset
, pa
+page_offset
, clen
);
943 __bio_kunmap_atomic(ba
, KM_USER0
);
945 if (clen
< len
) /* hit end of page */
951 #define check_xor() do { \
952 if (count == MAX_XOR_BLOCKS) { \
953 xor_block(count, STRIPE_SIZE, ptr); \
959 static void compute_block(struct stripe_head
*sh
, int dd_idx
)
961 int i
, count
, disks
= sh
->disks
;
962 void *ptr
[MAX_XOR_BLOCKS
], *p
;
964 PRINTK("compute_block, stripe %llu, idx %d\n",
965 (unsigned long long)sh
->sector
, dd_idx
);
967 ptr
[0] = page_address(sh
->dev
[dd_idx
].page
);
968 memset(ptr
[0], 0, STRIPE_SIZE
);
970 for (i
= disks
; i
--; ) {
973 p
= page_address(sh
->dev
[i
].page
);
974 if (test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
))
977 printk(KERN_ERR
"compute_block() %d, stripe %llu, %d"
978 " not present\n", dd_idx
,
979 (unsigned long long)sh
->sector
, i
);
984 xor_block(count
, STRIPE_SIZE
, ptr
);
985 set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx
].flags
);
988 static void compute_parity5(struct stripe_head
*sh
, int method
)
990 raid5_conf_t
*conf
= sh
->raid_conf
;
991 int i
, pd_idx
= sh
->pd_idx
, disks
= sh
->disks
, count
;
992 void *ptr
[MAX_XOR_BLOCKS
];
995 PRINTK("compute_parity5, stripe %llu, method %d\n",
996 (unsigned long long)sh
->sector
, method
);
999 ptr
[0] = page_address(sh
->dev
[pd_idx
].page
);
1001 case READ_MODIFY_WRITE
:
1002 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
));
1003 for (i
=disks
; i
-- ;) {
1006 if (sh
->dev
[i
].towrite
&&
1007 test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
)) {
1008 ptr
[count
++] = page_address(sh
->dev
[i
].page
);
1009 chosen
= sh
->dev
[i
].towrite
;
1010 sh
->dev
[i
].towrite
= NULL
;
1012 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
1013 wake_up(&conf
->wait_for_overlap
);
1015 BUG_ON(sh
->dev
[i
].written
);
1016 sh
->dev
[i
].written
= chosen
;
1021 case RECONSTRUCT_WRITE
:
1022 memset(ptr
[0], 0, STRIPE_SIZE
);
1023 for (i
= disks
; i
-- ;)
1024 if (i
!=pd_idx
&& sh
->dev
[i
].towrite
) {
1025 chosen
= sh
->dev
[i
].towrite
;
1026 sh
->dev
[i
].towrite
= NULL
;
1028 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
1029 wake_up(&conf
->wait_for_overlap
);
1031 BUG_ON(sh
->dev
[i
].written
);
1032 sh
->dev
[i
].written
= chosen
;
1039 xor_block(count
, STRIPE_SIZE
, ptr
);
1043 for (i
= disks
; i
--;)
1044 if (sh
->dev
[i
].written
) {
1045 sector_t sector
= sh
->dev
[i
].sector
;
1046 struct bio
*wbi
= sh
->dev
[i
].written
;
1047 while (wbi
&& wbi
->bi_sector
< sector
+ STRIPE_SECTORS
) {
1048 copy_data(1, wbi
, sh
->dev
[i
].page
, sector
);
1049 wbi
= r5_next_bio(wbi
, sector
);
1052 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1053 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1057 case RECONSTRUCT_WRITE
:
1061 ptr
[count
++] = page_address(sh
->dev
[i
].page
);
1065 case READ_MODIFY_WRITE
:
1066 for (i
= disks
; i
--;)
1067 if (sh
->dev
[i
].written
) {
1068 ptr
[count
++] = page_address(sh
->dev
[i
].page
);
1073 xor_block(count
, STRIPE_SIZE
, ptr
);
1075 if (method
!= CHECK_PARITY
) {
1076 set_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
1077 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
1079 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
1082 static void compute_parity6(struct stripe_head
*sh
, int method
)
1084 raid6_conf_t
*conf
= sh
->raid_conf
;
1085 int i
, pd_idx
= sh
->pd_idx
, qd_idx
, d0_idx
, disks
= conf
->raid_disks
, count
;
1087 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1090 qd_idx
= raid6_next_disk(pd_idx
, disks
);
1091 d0_idx
= raid6_next_disk(qd_idx
, disks
);
1093 PRINTK("compute_parity, stripe %llu, method %d\n",
1094 (unsigned long long)sh
->sector
, method
);
1097 case READ_MODIFY_WRITE
:
1098 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1099 case RECONSTRUCT_WRITE
:
1100 for (i
= disks
; i
-- ;)
1101 if ( i
!= pd_idx
&& i
!= qd_idx
&& sh
->dev
[i
].towrite
) {
1102 chosen
= sh
->dev
[i
].towrite
;
1103 sh
->dev
[i
].towrite
= NULL
;
1105 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
1106 wake_up(&conf
->wait_for_overlap
);
1108 BUG_ON(sh
->dev
[i
].written
);
1109 sh
->dev
[i
].written
= chosen
;
1113 BUG(); /* Not implemented yet */
1116 for (i
= disks
; i
--;)
1117 if (sh
->dev
[i
].written
) {
1118 sector_t sector
= sh
->dev
[i
].sector
;
1119 struct bio
*wbi
= sh
->dev
[i
].written
;
1120 while (wbi
&& wbi
->bi_sector
< sector
+ STRIPE_SECTORS
) {
1121 copy_data(1, wbi
, sh
->dev
[i
].page
, sector
);
1122 wbi
= r5_next_bio(wbi
, sector
);
1125 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1126 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1130 // case RECONSTRUCT_WRITE:
1131 // case CHECK_PARITY:
1132 // case UPDATE_PARITY:
1133 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1134 /* FIX: Is this ordering of drives even remotely optimal? */
1138 ptrs
[count
++] = page_address(sh
->dev
[i
].page
);
1139 if (count
<= disks
-2 && !test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
))
1140 printk("block %d/%d not uptodate on parity calc\n", i
,count
);
1141 i
= raid6_next_disk(i
, disks
);
1142 } while ( i
!= d0_idx
);
1146 raid6_call
.gen_syndrome(disks
, STRIPE_SIZE
, ptrs
);
1149 case RECONSTRUCT_WRITE
:
1150 set_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
1151 set_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
);
1152 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
1153 set_bit(R5_LOCKED
, &sh
->dev
[qd_idx
].flags
);
1156 set_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
1157 set_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
);
1163 /* Compute one missing block */
1164 static void compute_block_1(struct stripe_head
*sh
, int dd_idx
, int nozero
)
1166 raid6_conf_t
*conf
= sh
->raid_conf
;
1167 int i
, count
, disks
= conf
->raid_disks
;
1168 void *ptr
[MAX_XOR_BLOCKS
], *p
;
1169 int pd_idx
= sh
->pd_idx
;
1170 int qd_idx
= raid6_next_disk(pd_idx
, disks
);
1172 PRINTK("compute_block_1, stripe %llu, idx %d\n",
1173 (unsigned long long)sh
->sector
, dd_idx
);
1175 if ( dd_idx
== qd_idx
) {
1176 /* We're actually computing the Q drive */
1177 compute_parity6(sh
, UPDATE_PARITY
);
1179 ptr
[0] = page_address(sh
->dev
[dd_idx
].page
);
1180 if (!nozero
) memset(ptr
[0], 0, STRIPE_SIZE
);
1182 for (i
= disks
; i
--; ) {
1183 if (i
== dd_idx
|| i
== qd_idx
)
1185 p
= page_address(sh
->dev
[i
].page
);
1186 if (test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
))
1189 printk("compute_block() %d, stripe %llu, %d"
1190 " not present\n", dd_idx
,
1191 (unsigned long long)sh
->sector
, i
);
1196 xor_block(count
, STRIPE_SIZE
, ptr
);
1197 if (!nozero
) set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx
].flags
);
1198 else clear_bit(R5_UPTODATE
, &sh
->dev
[dd_idx
].flags
);
1202 /* Compute two missing blocks */
1203 static void compute_block_2(struct stripe_head
*sh
, int dd_idx1
, int dd_idx2
)
1205 raid6_conf_t
*conf
= sh
->raid_conf
;
1206 int i
, count
, disks
= conf
->raid_disks
;
1207 int pd_idx
= sh
->pd_idx
;
1208 int qd_idx
= raid6_next_disk(pd_idx
, disks
);
1209 int d0_idx
= raid6_next_disk(qd_idx
, disks
);
1212 /* faila and failb are disk numbers relative to d0_idx */
1213 /* pd_idx become disks-2 and qd_idx become disks-1 */
1214 faila
= (dd_idx1
< d0_idx
) ? dd_idx1
+(disks
-d0_idx
) : dd_idx1
-d0_idx
;
1215 failb
= (dd_idx2
< d0_idx
) ? dd_idx2
+(disks
-d0_idx
) : dd_idx2
-d0_idx
;
1217 BUG_ON(faila
== failb
);
1218 if ( failb
< faila
) { int tmp
= faila
; faila
= failb
; failb
= tmp
; }
1220 PRINTK("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1221 (unsigned long long)sh
->sector
, dd_idx1
, dd_idx2
, faila
, failb
);
1223 if ( failb
== disks
-1 ) {
1224 /* Q disk is one of the missing disks */
1225 if ( faila
== disks
-2 ) {
1226 /* Missing P+Q, just recompute */
1227 compute_parity6(sh
, UPDATE_PARITY
);
1230 /* We're missing D+Q; recompute D from P */
1231 compute_block_1(sh
, (dd_idx1
== qd_idx
) ? dd_idx2
: dd_idx1
, 0);
1232 compute_parity6(sh
, UPDATE_PARITY
); /* Is this necessary? */
1237 /* We're missing D+P or D+D; build pointer table */
1239 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1245 ptrs
[count
++] = page_address(sh
->dev
[i
].page
);
1246 i
= raid6_next_disk(i
, disks
);
1247 if (i
!= dd_idx1
&& i
!= dd_idx2
&&
1248 !test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
))
1249 printk("compute_2 with missing block %d/%d\n", count
, i
);
1250 } while ( i
!= d0_idx
);
1252 if ( failb
== disks
-2 ) {
1253 /* We're missing D+P. */
1254 raid6_datap_recov(disks
, STRIPE_SIZE
, faila
, ptrs
);
1256 /* We're missing D+D. */
1257 raid6_2data_recov(disks
, STRIPE_SIZE
, faila
, failb
, ptrs
);
1260 /* Both the above update both missing blocks */
1261 set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx1
].flags
);
1262 set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx2
].flags
);
1269 * Each stripe/dev can have one or more bion attached.
1270 * toread/towrite point to the first in a chain.
1271 * The bi_next chain must be in order.
1273 static int add_stripe_bio(struct stripe_head
*sh
, struct bio
*bi
, int dd_idx
, int forwrite
)
1276 raid5_conf_t
*conf
= sh
->raid_conf
;
1279 PRINTK("adding bh b#%llu to stripe s#%llu\n",
1280 (unsigned long long)bi
->bi_sector
,
1281 (unsigned long long)sh
->sector
);
1284 spin_lock(&sh
->lock
);
1285 spin_lock_irq(&conf
->device_lock
);
1287 bip
= &sh
->dev
[dd_idx
].towrite
;
1288 if (*bip
== NULL
&& sh
->dev
[dd_idx
].written
== NULL
)
1291 bip
= &sh
->dev
[dd_idx
].toread
;
1292 while (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
) {
1293 if ((*bip
)->bi_sector
+ ((*bip
)->bi_size
>> 9) > bi
->bi_sector
)
1295 bip
= & (*bip
)->bi_next
;
1297 if (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
+ ((bi
->bi_size
)>>9))
1300 BUG_ON(*bip
&& bi
->bi_next
&& (*bip
) != bi
->bi_next
);
1304 bi
->bi_phys_segments
++;
1305 spin_unlock_irq(&conf
->device_lock
);
1306 spin_unlock(&sh
->lock
);
1308 PRINTK("added bi b#%llu to stripe s#%llu, disk %d.\n",
1309 (unsigned long long)bi
->bi_sector
,
1310 (unsigned long long)sh
->sector
, dd_idx
);
1312 if (conf
->mddev
->bitmap
&& firstwrite
) {
1313 bitmap_startwrite(conf
->mddev
->bitmap
, sh
->sector
,
1315 sh
->bm_seq
= conf
->seq_flush
+1;
1316 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
1320 /* check if page is covered */
1321 sector_t sector
= sh
->dev
[dd_idx
].sector
;
1322 for (bi
=sh
->dev
[dd_idx
].towrite
;
1323 sector
< sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
&&
1324 bi
&& bi
->bi_sector
<= sector
;
1325 bi
= r5_next_bio(bi
, sh
->dev
[dd_idx
].sector
)) {
1326 if (bi
->bi_sector
+ (bi
->bi_size
>>9) >= sector
)
1327 sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
1329 if (sector
>= sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
)
1330 set_bit(R5_OVERWRITE
, &sh
->dev
[dd_idx
].flags
);
1335 set_bit(R5_Overlap
, &sh
->dev
[dd_idx
].flags
);
1336 spin_unlock_irq(&conf
->device_lock
);
1337 spin_unlock(&sh
->lock
);
1341 static void end_reshape(raid5_conf_t
*conf
);
1343 static int page_is_zero(struct page
*p
)
1345 char *a
= page_address(p
);
1346 return ((*(u32
*)a
) == 0 &&
1347 memcmp(a
, a
+4, STRIPE_SIZE
-4)==0);
1350 static int stripe_to_pdidx(sector_t stripe
, raid5_conf_t
*conf
, int disks
)
1352 int sectors_per_chunk
= conf
->chunk_size
>> 9;
1354 int chunk_offset
= sector_div(stripe
, sectors_per_chunk
);
1356 raid5_compute_sector(stripe
*(disks
-1)*sectors_per_chunk
1357 + chunk_offset
, disks
, disks
-1, &dd_idx
, &pd_idx
, conf
);
1363 * handle_stripe - do things to a stripe.
1365 * We lock the stripe and then examine the state of various bits
1366 * to see what needs to be done.
1368 * return some read request which now have data
1369 * return some write requests which are safely on disc
1370 * schedule a read on some buffers
1371 * schedule a write of some buffers
1372 * return confirmation of parity correctness
1374 * Parity calculations are done inside the stripe lock
1375 * buffers are taken off read_list or write_list, and bh_cache buffers
1376 * get BH_Lock set before the stripe lock is released.
1380 static void handle_stripe5(struct stripe_head
*sh
)
1382 raid5_conf_t
*conf
= sh
->raid_conf
;
1383 int disks
= sh
->disks
;
1384 struct bio
*return_bi
= NULL
;
1387 int syncing
, expanding
, expanded
;
1388 int locked
=0, uptodate
=0, to_read
=0, to_write
=0, failed
=0, written
=0;
1389 int non_overwrite
= 0;
1393 PRINTK("handling stripe %llu, cnt=%d, pd_idx=%d\n",
1394 (unsigned long long)sh
->sector
, atomic_read(&sh
->count
),
1397 spin_lock(&sh
->lock
);
1398 clear_bit(STRIPE_HANDLE
, &sh
->state
);
1399 clear_bit(STRIPE_DELAYED
, &sh
->state
);
1401 syncing
= test_bit(STRIPE_SYNCING
, &sh
->state
);
1402 expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
1403 expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
);
1404 /* Now to look around and see what can be done */
1407 for (i
=disks
; i
--; ) {
1410 clear_bit(R5_Insync
, &dev
->flags
);
1412 PRINTK("check %d: state 0x%lx read %p write %p written %p\n",
1413 i
, dev
->flags
, dev
->toread
, dev
->towrite
, dev
->written
);
1414 /* maybe we can reply to a read */
1415 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
) {
1416 struct bio
*rbi
, *rbi2
;
1417 PRINTK("Return read for disc %d\n", i
);
1418 spin_lock_irq(&conf
->device_lock
);
1421 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
1422 wake_up(&conf
->wait_for_overlap
);
1423 spin_unlock_irq(&conf
->device_lock
);
1424 while (rbi
&& rbi
->bi_sector
< dev
->sector
+ STRIPE_SECTORS
) {
1425 copy_data(0, rbi
, dev
->page
, dev
->sector
);
1426 rbi2
= r5_next_bio(rbi
, dev
->sector
);
1427 spin_lock_irq(&conf
->device_lock
);
1428 if (--rbi
->bi_phys_segments
== 0) {
1429 rbi
->bi_next
= return_bi
;
1432 spin_unlock_irq(&conf
->device_lock
);
1437 /* now count some things */
1438 if (test_bit(R5_LOCKED
, &dev
->flags
)) locked
++;
1439 if (test_bit(R5_UPTODATE
, &dev
->flags
)) uptodate
++;
1442 if (dev
->toread
) to_read
++;
1445 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
1448 if (dev
->written
) written
++;
1449 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
1450 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)) {
1451 /* The ReadError flag will just be confusing now */
1452 clear_bit(R5_ReadError
, &dev
->flags
);
1453 clear_bit(R5_ReWrite
, &dev
->flags
);
1455 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)
1456 || test_bit(R5_ReadError
, &dev
->flags
)) {
1460 set_bit(R5_Insync
, &dev
->flags
);
1463 PRINTK("locked=%d uptodate=%d to_read=%d"
1464 " to_write=%d failed=%d failed_num=%d\n",
1465 locked
, uptodate
, to_read
, to_write
, failed
, failed_num
);
1466 /* check if the array has lost two devices and, if so, some requests might
1469 if (failed
> 1 && to_read
+to_write
+written
) {
1470 for (i
=disks
; i
--; ) {
1473 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
1476 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
1477 if (rdev
&& test_bit(In_sync
, &rdev
->flags
))
1478 /* multiple read failures in one stripe */
1479 md_error(conf
->mddev
, rdev
);
1483 spin_lock_irq(&conf
->device_lock
);
1484 /* fail all writes first */
1485 bi
= sh
->dev
[i
].towrite
;
1486 sh
->dev
[i
].towrite
= NULL
;
1487 if (bi
) { to_write
--; bitmap_end
= 1; }
1489 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
1490 wake_up(&conf
->wait_for_overlap
);
1492 while (bi
&& bi
->bi_sector
< sh
->dev
[i
].sector
+ STRIPE_SECTORS
){
1493 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
1494 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1495 if (--bi
->bi_phys_segments
== 0) {
1496 md_write_end(conf
->mddev
);
1497 bi
->bi_next
= return_bi
;
1502 /* and fail all 'written' */
1503 bi
= sh
->dev
[i
].written
;
1504 sh
->dev
[i
].written
= NULL
;
1505 if (bi
) bitmap_end
= 1;
1506 while (bi
&& bi
->bi_sector
< sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
1507 struct bio
*bi2
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
1508 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1509 if (--bi
->bi_phys_segments
== 0) {
1510 md_write_end(conf
->mddev
);
1511 bi
->bi_next
= return_bi
;
1517 /* fail any reads if this device is non-operational */
1518 if (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
) ||
1519 test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
1520 bi
= sh
->dev
[i
].toread
;
1521 sh
->dev
[i
].toread
= NULL
;
1522 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
1523 wake_up(&conf
->wait_for_overlap
);
1525 while (bi
&& bi
->bi_sector
< sh
->dev
[i
].sector
+ STRIPE_SECTORS
){
1526 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
1527 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1528 if (--bi
->bi_phys_segments
== 0) {
1529 bi
->bi_next
= return_bi
;
1535 spin_unlock_irq(&conf
->device_lock
);
1537 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
1538 STRIPE_SECTORS
, 0, 0);
1541 if (failed
> 1 && syncing
) {
1542 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,0);
1543 clear_bit(STRIPE_SYNCING
, &sh
->state
);
1547 /* might be able to return some write requests if the parity block
1548 * is safe, or on a failed drive
1550 dev
= &sh
->dev
[sh
->pd_idx
];
1552 ( (test_bit(R5_Insync
, &dev
->flags
) && !test_bit(R5_LOCKED
, &dev
->flags
) &&
1553 test_bit(R5_UPTODATE
, &dev
->flags
))
1554 || (failed
== 1 && failed_num
== sh
->pd_idx
))
1556 /* any written block on an uptodate or failed drive can be returned.
1557 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
1558 * never LOCKED, so we don't need to test 'failed' directly.
1560 for (i
=disks
; i
--; )
1561 if (sh
->dev
[i
].written
) {
1563 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
1564 test_bit(R5_UPTODATE
, &dev
->flags
) ) {
1565 /* We can return any write requests */
1566 struct bio
*wbi
, *wbi2
;
1568 PRINTK("Return write for disc %d\n", i
);
1569 spin_lock_irq(&conf
->device_lock
);
1571 dev
->written
= NULL
;
1572 while (wbi
&& wbi
->bi_sector
< dev
->sector
+ STRIPE_SECTORS
) {
1573 wbi2
= r5_next_bio(wbi
, dev
->sector
);
1574 if (--wbi
->bi_phys_segments
== 0) {
1575 md_write_end(conf
->mddev
);
1576 wbi
->bi_next
= return_bi
;
1581 if (dev
->towrite
== NULL
)
1583 spin_unlock_irq(&conf
->device_lock
);
1585 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
1587 !test_bit(STRIPE_DEGRADED
, &sh
->state
), 0);
1592 /* Now we might consider reading some blocks, either to check/generate
1593 * parity, or to satisfy requests
1594 * or to load a block that is being partially written.
1596 if (to_read
|| non_overwrite
|| (syncing
&& (uptodate
< disks
)) || expanding
) {
1597 for (i
=disks
; i
--;) {
1599 if (!test_bit(R5_LOCKED
, &dev
->flags
) && !test_bit(R5_UPTODATE
, &dev
->flags
) &&
1601 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
1604 (failed
&& (sh
->dev
[failed_num
].toread
||
1605 (sh
->dev
[failed_num
].towrite
&& !test_bit(R5_OVERWRITE
, &sh
->dev
[failed_num
].flags
))))
1608 /* we would like to get this block, possibly
1609 * by computing it, but we might not be able to
1611 if (uptodate
== disks
-1) {
1612 PRINTK("Computing block %d\n", i
);
1613 compute_block(sh
, i
);
1615 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
1616 set_bit(R5_LOCKED
, &dev
->flags
);
1617 set_bit(R5_Wantread
, &dev
->flags
);
1619 /* if I am just reading this block and we don't have
1620 a failed drive, or any pending writes then sidestep the cache */
1621 if (sh
->bh_read
[i
] && !sh
->bh_read
[i
]->b_reqnext
&&
1622 ! syncing
&& !failed
&& !to_write
) {
1623 sh
->bh_cache
[i
]->b_page
= sh
->bh_read
[i
]->b_page
;
1624 sh
->bh_cache
[i
]->b_data
= sh
->bh_read
[i
]->b_data
;
1628 PRINTK("Reading block %d (sync=%d)\n",
1633 set_bit(STRIPE_HANDLE
, &sh
->state
);
1636 /* now to consider writing and what else, if anything should be read */
1639 for (i
=disks
; i
--;) {
1640 /* would I have to read this buffer for read_modify_write */
1642 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
1643 (!test_bit(R5_LOCKED
, &dev
->flags
)
1645 || sh
->bh_page
[i
]!=bh
->b_page
1648 !test_bit(R5_UPTODATE
, &dev
->flags
)) {
1649 if (test_bit(R5_Insync
, &dev
->flags
)
1650 /* && !(!mddev->insync && i == sh->pd_idx) */
1653 else rmw
+= 2*disks
; /* cannot read it */
1655 /* Would I have to read this buffer for reconstruct_write */
1656 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) && i
!= sh
->pd_idx
&&
1657 (!test_bit(R5_LOCKED
, &dev
->flags
)
1659 || sh
->bh_page
[i
] != bh
->b_page
1662 !test_bit(R5_UPTODATE
, &dev
->flags
)) {
1663 if (test_bit(R5_Insync
, &dev
->flags
)) rcw
++;
1664 else rcw
+= 2*disks
;
1667 PRINTK("for sector %llu, rmw=%d rcw=%d\n",
1668 (unsigned long long)sh
->sector
, rmw
, rcw
);
1669 set_bit(STRIPE_HANDLE
, &sh
->state
);
1670 if (rmw
< rcw
&& rmw
> 0)
1671 /* prefer read-modify-write, but need to get some data */
1672 for (i
=disks
; i
--;) {
1674 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
1675 !test_bit(R5_LOCKED
, &dev
->flags
) && !test_bit(R5_UPTODATE
, &dev
->flags
) &&
1676 test_bit(R5_Insync
, &dev
->flags
)) {
1677 if (test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
1679 PRINTK("Read_old block %d for r-m-w\n", i
);
1680 set_bit(R5_LOCKED
, &dev
->flags
);
1681 set_bit(R5_Wantread
, &dev
->flags
);
1684 set_bit(STRIPE_DELAYED
, &sh
->state
);
1685 set_bit(STRIPE_HANDLE
, &sh
->state
);
1689 if (rcw
<= rmw
&& rcw
> 0)
1690 /* want reconstruct write, but need to get some data */
1691 for (i
=disks
; i
--;) {
1693 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) && i
!= sh
->pd_idx
&&
1694 !test_bit(R5_LOCKED
, &dev
->flags
) && !test_bit(R5_UPTODATE
, &dev
->flags
) &&
1695 test_bit(R5_Insync
, &dev
->flags
)) {
1696 if (test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
1698 PRINTK("Read_old block %d for Reconstruct\n", i
);
1699 set_bit(R5_LOCKED
, &dev
->flags
);
1700 set_bit(R5_Wantread
, &dev
->flags
);
1703 set_bit(STRIPE_DELAYED
, &sh
->state
);
1704 set_bit(STRIPE_HANDLE
, &sh
->state
);
1708 /* now if nothing is locked, and if we have enough data, we can start a write request */
1709 if (locked
== 0 && (rcw
== 0 ||rmw
== 0) &&
1710 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)) {
1711 PRINTK("Computing parity...\n");
1712 compute_parity5(sh
, rcw
==0 ? RECONSTRUCT_WRITE
: READ_MODIFY_WRITE
);
1713 /* now every locked buffer is ready to be written */
1715 if (test_bit(R5_LOCKED
, &sh
->dev
[i
].flags
)) {
1716 PRINTK("Writing block %d\n", i
);
1718 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
1719 if (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
)
1720 || (i
==sh
->pd_idx
&& failed
== 0))
1721 set_bit(STRIPE_INSYNC
, &sh
->state
);
1723 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
1724 atomic_dec(&conf
->preread_active_stripes
);
1725 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
)
1726 md_wakeup_thread(conf
->mddev
->thread
);
1731 /* maybe we need to check and possibly fix the parity for this stripe
1732 * Any reads will already have been scheduled, so we just see if enough data
1735 if (syncing
&& locked
== 0 &&
1736 !test_bit(STRIPE_INSYNC
, &sh
->state
)) {
1737 set_bit(STRIPE_HANDLE
, &sh
->state
);
1739 BUG_ON(uptodate
!= disks
);
1740 compute_parity5(sh
, CHECK_PARITY
);
1742 if (page_is_zero(sh
->dev
[sh
->pd_idx
].page
)) {
1743 /* parity is correct (on disc, not in buffer any more) */
1744 set_bit(STRIPE_INSYNC
, &sh
->state
);
1746 conf
->mddev
->resync_mismatches
+= STRIPE_SECTORS
;
1747 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
1748 /* don't try to repair!! */
1749 set_bit(STRIPE_INSYNC
, &sh
->state
);
1751 compute_block(sh
, sh
->pd_idx
);
1756 if (!test_bit(STRIPE_INSYNC
, &sh
->state
)) {
1757 /* either failed parity check, or recovery is happening */
1759 failed_num
= sh
->pd_idx
;
1760 dev
= &sh
->dev
[failed_num
];
1761 BUG_ON(!test_bit(R5_UPTODATE
, &dev
->flags
));
1762 BUG_ON(uptodate
!= disks
);
1764 set_bit(R5_LOCKED
, &dev
->flags
);
1765 set_bit(R5_Wantwrite
, &dev
->flags
);
1766 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
1768 set_bit(STRIPE_INSYNC
, &sh
->state
);
1771 if (syncing
&& locked
== 0 && test_bit(STRIPE_INSYNC
, &sh
->state
)) {
1772 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,1);
1773 clear_bit(STRIPE_SYNCING
, &sh
->state
);
1776 /* If the failed drive is just a ReadError, then we might need to progress
1777 * the repair/check process
1779 if (failed
== 1 && ! conf
->mddev
->ro
&&
1780 test_bit(R5_ReadError
, &sh
->dev
[failed_num
].flags
)
1781 && !test_bit(R5_LOCKED
, &sh
->dev
[failed_num
].flags
)
1782 && test_bit(R5_UPTODATE
, &sh
->dev
[failed_num
].flags
)
1784 dev
= &sh
->dev
[failed_num
];
1785 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
1786 set_bit(R5_Wantwrite
, &dev
->flags
);
1787 set_bit(R5_ReWrite
, &dev
->flags
);
1788 set_bit(R5_LOCKED
, &dev
->flags
);
1791 /* let's read it back */
1792 set_bit(R5_Wantread
, &dev
->flags
);
1793 set_bit(R5_LOCKED
, &dev
->flags
);
1798 if (expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
)) {
1799 /* Need to write out all blocks after computing parity */
1800 sh
->disks
= conf
->raid_disks
;
1801 sh
->pd_idx
= stripe_to_pdidx(sh
->sector
, conf
, conf
->raid_disks
);
1802 compute_parity5(sh
, RECONSTRUCT_WRITE
);
1803 for (i
= conf
->raid_disks
; i
--;) {
1804 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1806 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
1808 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
1809 } else if (expanded
) {
1810 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
1811 atomic_dec(&conf
->reshape_stripes
);
1812 wake_up(&conf
->wait_for_overlap
);
1813 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
1816 if (expanding
&& locked
== 0) {
1817 /* We have read all the blocks in this stripe and now we need to
1818 * copy some of them into a target stripe for expand.
1820 clear_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
1821 for (i
=0; i
< sh
->disks
; i
++)
1822 if (i
!= sh
->pd_idx
) {
1823 int dd_idx
, pd_idx
, j
;
1824 struct stripe_head
*sh2
;
1826 sector_t bn
= compute_blocknr(sh
, i
);
1827 sector_t s
= raid5_compute_sector(bn
, conf
->raid_disks
,
1829 &dd_idx
, &pd_idx
, conf
);
1830 sh2
= get_active_stripe(conf
, s
, conf
->raid_disks
, pd_idx
, 1);
1832 /* so far only the early blocks of this stripe
1833 * have been requested. When later blocks
1834 * get requested, we will try again
1837 if(!test_bit(STRIPE_EXPANDING
, &sh2
->state
) ||
1838 test_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
)) {
1839 /* must have already done this block */
1840 release_stripe(sh2
);
1843 memcpy(page_address(sh2
->dev
[dd_idx
].page
),
1844 page_address(sh
->dev
[i
].page
),
1846 set_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
);
1847 set_bit(R5_UPTODATE
, &sh2
->dev
[dd_idx
].flags
);
1848 for (j
=0; j
<conf
->raid_disks
; j
++)
1849 if (j
!= sh2
->pd_idx
&&
1850 !test_bit(R5_Expanded
, &sh2
->dev
[j
].flags
))
1852 if (j
== conf
->raid_disks
) {
1853 set_bit(STRIPE_EXPAND_READY
, &sh2
->state
);
1854 set_bit(STRIPE_HANDLE
, &sh2
->state
);
1856 release_stripe(sh2
);
1860 spin_unlock(&sh
->lock
);
1862 while ((bi
=return_bi
)) {
1863 int bytes
= bi
->bi_size
;
1865 return_bi
= bi
->bi_next
;
1868 bi
->bi_end_io(bi
, bytes
, 0);
1870 for (i
=disks
; i
-- ;) {
1874 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
))
1876 else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
1881 bi
= &sh
->dev
[i
].req
;
1885 bi
->bi_end_io
= raid5_end_write_request
;
1887 bi
->bi_end_io
= raid5_end_read_request
;
1890 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
1891 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
1894 atomic_inc(&rdev
->nr_pending
);
1898 if (syncing
|| expanding
|| expanded
)
1899 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
1901 bi
->bi_bdev
= rdev
->bdev
;
1902 PRINTK("for %llu schedule op %ld on disc %d\n",
1903 (unsigned long long)sh
->sector
, bi
->bi_rw
, i
);
1904 atomic_inc(&sh
->count
);
1905 bi
->bi_sector
= sh
->sector
+ rdev
->data_offset
;
1906 bi
->bi_flags
= 1 << BIO_UPTODATE
;
1908 bi
->bi_max_vecs
= 1;
1910 bi
->bi_io_vec
= &sh
->dev
[i
].vec
;
1911 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
1912 bi
->bi_io_vec
[0].bv_offset
= 0;
1913 bi
->bi_size
= STRIPE_SIZE
;
1916 test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
1917 atomic_add(STRIPE_SECTORS
, &rdev
->corrected_errors
);
1918 generic_make_request(bi
);
1921 set_bit(STRIPE_DEGRADED
, &sh
->state
);
1922 PRINTK("skip op %ld on disc %d for sector %llu\n",
1923 bi
->bi_rw
, i
, (unsigned long long)sh
->sector
);
1924 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1925 set_bit(STRIPE_HANDLE
, &sh
->state
);
1930 static void handle_stripe6(struct stripe_head
*sh
, struct page
*tmp_page
)
1932 raid6_conf_t
*conf
= sh
->raid_conf
;
1933 int disks
= conf
->raid_disks
;
1934 struct bio
*return_bi
= NULL
;
1938 int locked
=0, uptodate
=0, to_read
=0, to_write
=0, failed
=0, written
=0;
1939 int non_overwrite
= 0;
1940 int failed_num
[2] = {0, 0};
1941 struct r5dev
*dev
, *pdev
, *qdev
;
1942 int pd_idx
= sh
->pd_idx
;
1943 int qd_idx
= raid6_next_disk(pd_idx
, disks
);
1944 int p_failed
, q_failed
;
1946 PRINTK("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d, qd_idx=%d\n",
1947 (unsigned long long)sh
->sector
, sh
->state
, atomic_read(&sh
->count
),
1950 spin_lock(&sh
->lock
);
1951 clear_bit(STRIPE_HANDLE
, &sh
->state
);
1952 clear_bit(STRIPE_DELAYED
, &sh
->state
);
1954 syncing
= test_bit(STRIPE_SYNCING
, &sh
->state
);
1955 /* Now to look around and see what can be done */
1958 for (i
=disks
; i
--; ) {
1961 clear_bit(R5_Insync
, &dev
->flags
);
1963 PRINTK("check %d: state 0x%lx read %p write %p written %p\n",
1964 i
, dev
->flags
, dev
->toread
, dev
->towrite
, dev
->written
);
1965 /* maybe we can reply to a read */
1966 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
) {
1967 struct bio
*rbi
, *rbi2
;
1968 PRINTK("Return read for disc %d\n", i
);
1969 spin_lock_irq(&conf
->device_lock
);
1972 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
1973 wake_up(&conf
->wait_for_overlap
);
1974 spin_unlock_irq(&conf
->device_lock
);
1975 while (rbi
&& rbi
->bi_sector
< dev
->sector
+ STRIPE_SECTORS
) {
1976 copy_data(0, rbi
, dev
->page
, dev
->sector
);
1977 rbi2
= r5_next_bio(rbi
, dev
->sector
);
1978 spin_lock_irq(&conf
->device_lock
);
1979 if (--rbi
->bi_phys_segments
== 0) {
1980 rbi
->bi_next
= return_bi
;
1983 spin_unlock_irq(&conf
->device_lock
);
1988 /* now count some things */
1989 if (test_bit(R5_LOCKED
, &dev
->flags
)) locked
++;
1990 if (test_bit(R5_UPTODATE
, &dev
->flags
)) uptodate
++;
1993 if (dev
->toread
) to_read
++;
1996 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
1999 if (dev
->written
) written
++;
2000 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2001 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)) {
2002 /* The ReadError flag will just be confusing now */
2003 clear_bit(R5_ReadError
, &dev
->flags
);
2004 clear_bit(R5_ReWrite
, &dev
->flags
);
2006 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)
2007 || test_bit(R5_ReadError
, &dev
->flags
)) {
2009 failed_num
[failed
] = i
;
2012 set_bit(R5_Insync
, &dev
->flags
);
2015 PRINTK("locked=%d uptodate=%d to_read=%d"
2016 " to_write=%d failed=%d failed_num=%d,%d\n",
2017 locked
, uptodate
, to_read
, to_write
, failed
,
2018 failed_num
[0], failed_num
[1]);
2019 /* check if the array has lost >2 devices and, if so, some requests might
2022 if (failed
> 2 && to_read
+to_write
+written
) {
2023 for (i
=disks
; i
--; ) {
2026 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
2029 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2030 if (rdev
&& test_bit(In_sync
, &rdev
->flags
))
2031 /* multiple read failures in one stripe */
2032 md_error(conf
->mddev
, rdev
);
2036 spin_lock_irq(&conf
->device_lock
);
2037 /* fail all writes first */
2038 bi
= sh
->dev
[i
].towrite
;
2039 sh
->dev
[i
].towrite
= NULL
;
2040 if (bi
) { to_write
--; bitmap_end
= 1; }
2042 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2043 wake_up(&conf
->wait_for_overlap
);
2045 while (bi
&& bi
->bi_sector
< sh
->dev
[i
].sector
+ STRIPE_SECTORS
){
2046 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
2047 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2048 if (--bi
->bi_phys_segments
== 0) {
2049 md_write_end(conf
->mddev
);
2050 bi
->bi_next
= return_bi
;
2055 /* and fail all 'written' */
2056 bi
= sh
->dev
[i
].written
;
2057 sh
->dev
[i
].written
= NULL
;
2058 if (bi
) bitmap_end
= 1;
2059 while (bi
&& bi
->bi_sector
< sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2060 struct bio
*bi2
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
2061 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2062 if (--bi
->bi_phys_segments
== 0) {
2063 md_write_end(conf
->mddev
);
2064 bi
->bi_next
= return_bi
;
2070 /* fail any reads if this device is non-operational */
2071 if (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
) ||
2072 test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
2073 bi
= sh
->dev
[i
].toread
;
2074 sh
->dev
[i
].toread
= NULL
;
2075 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2076 wake_up(&conf
->wait_for_overlap
);
2078 while (bi
&& bi
->bi_sector
< sh
->dev
[i
].sector
+ STRIPE_SECTORS
){
2079 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
2080 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2081 if (--bi
->bi_phys_segments
== 0) {
2082 bi
->bi_next
= return_bi
;
2088 spin_unlock_irq(&conf
->device_lock
);
2090 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
2091 STRIPE_SECTORS
, 0, 0);
2094 if (failed
> 2 && syncing
) {
2095 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,0);
2096 clear_bit(STRIPE_SYNCING
, &sh
->state
);
2101 * might be able to return some write requests if the parity blocks
2102 * are safe, or on a failed drive
2104 pdev
= &sh
->dev
[pd_idx
];
2105 p_failed
= (failed
>= 1 && failed_num
[0] == pd_idx
)
2106 || (failed
>= 2 && failed_num
[1] == pd_idx
);
2107 qdev
= &sh
->dev
[qd_idx
];
2108 q_failed
= (failed
>= 1 && failed_num
[0] == qd_idx
)
2109 || (failed
>= 2 && failed_num
[1] == qd_idx
);
2112 ( p_failed
|| ((test_bit(R5_Insync
, &pdev
->flags
)
2113 && !test_bit(R5_LOCKED
, &pdev
->flags
)
2114 && test_bit(R5_UPTODATE
, &pdev
->flags
))) ) &&
2115 ( q_failed
|| ((test_bit(R5_Insync
, &qdev
->flags
)
2116 && !test_bit(R5_LOCKED
, &qdev
->flags
)
2117 && test_bit(R5_UPTODATE
, &qdev
->flags
))) ) ) {
2118 /* any written block on an uptodate or failed drive can be
2119 * returned. Note that if we 'wrote' to a failed drive,
2120 * it will be UPTODATE, but never LOCKED, so we don't need
2121 * to test 'failed' directly.
2123 for (i
=disks
; i
--; )
2124 if (sh
->dev
[i
].written
) {
2126 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2127 test_bit(R5_UPTODATE
, &dev
->flags
) ) {
2128 /* We can return any write requests */
2130 struct bio
*wbi
, *wbi2
;
2131 PRINTK("Return write for stripe %llu disc %d\n",
2132 (unsigned long long)sh
->sector
, i
);
2133 spin_lock_irq(&conf
->device_lock
);
2135 dev
->written
= NULL
;
2136 while (wbi
&& wbi
->bi_sector
< dev
->sector
+ STRIPE_SECTORS
) {
2137 wbi2
= r5_next_bio(wbi
, dev
->sector
);
2138 if (--wbi
->bi_phys_segments
== 0) {
2139 md_write_end(conf
->mddev
);
2140 wbi
->bi_next
= return_bi
;
2145 if (dev
->towrite
== NULL
)
2147 spin_unlock_irq(&conf
->device_lock
);
2149 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
2151 !test_bit(STRIPE_DEGRADED
, &sh
->state
), 0);
2156 /* Now we might consider reading some blocks, either to check/generate
2157 * parity, or to satisfy requests
2158 * or to load a block that is being partially written.
2160 if (to_read
|| non_overwrite
|| (to_write
&& failed
) || (syncing
&& (uptodate
< disks
))) {
2161 for (i
=disks
; i
--;) {
2163 if (!test_bit(R5_LOCKED
, &dev
->flags
) && !test_bit(R5_UPTODATE
, &dev
->flags
) &&
2165 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
2167 (failed
>= 1 && (sh
->dev
[failed_num
[0]].toread
|| to_write
)) ||
2168 (failed
>= 2 && (sh
->dev
[failed_num
[1]].toread
|| to_write
))
2171 /* we would like to get this block, possibly
2172 * by computing it, but we might not be able to
2174 if (uptodate
== disks
-1) {
2175 PRINTK("Computing stripe %llu block %d\n",
2176 (unsigned long long)sh
->sector
, i
);
2177 compute_block_1(sh
, i
, 0);
2179 } else if ( uptodate
== disks
-2 && failed
>= 2 ) {
2180 /* Computing 2-failure is *very* expensive; only do it if failed >= 2 */
2182 for (other
=disks
; other
--;) {
2185 if ( !test_bit(R5_UPTODATE
, &sh
->dev
[other
].flags
) )
2189 PRINTK("Computing stripe %llu blocks %d,%d\n",
2190 (unsigned long long)sh
->sector
, i
, other
);
2191 compute_block_2(sh
, i
, other
);
2193 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
2194 set_bit(R5_LOCKED
, &dev
->flags
);
2195 set_bit(R5_Wantread
, &dev
->flags
);
2197 /* if I am just reading this block and we don't have
2198 a failed drive, or any pending writes then sidestep the cache */
2199 if (sh
->bh_read
[i
] && !sh
->bh_read
[i
]->b_reqnext
&&
2200 ! syncing
&& !failed
&& !to_write
) {
2201 sh
->bh_cache
[i
]->b_page
= sh
->bh_read
[i
]->b_page
;
2202 sh
->bh_cache
[i
]->b_data
= sh
->bh_read
[i
]->b_data
;
2206 PRINTK("Reading block %d (sync=%d)\n",
2211 set_bit(STRIPE_HANDLE
, &sh
->state
);
2214 /* now to consider writing and what else, if anything should be read */
2216 int rcw
=0, must_compute
=0;
2217 for (i
=disks
; i
--;) {
2219 /* Would I have to read this buffer for reconstruct_write */
2220 if (!test_bit(R5_OVERWRITE
, &dev
->flags
)
2221 && i
!= pd_idx
&& i
!= qd_idx
2222 && (!test_bit(R5_LOCKED
, &dev
->flags
)
2224 || sh
->bh_page
[i
] != bh
->b_page
2227 !test_bit(R5_UPTODATE
, &dev
->flags
)) {
2228 if (test_bit(R5_Insync
, &dev
->flags
)) rcw
++;
2230 PRINTK("raid6: must_compute: disk %d flags=%#lx\n", i
, dev
->flags
);
2235 PRINTK("for sector %llu, rcw=%d, must_compute=%d\n",
2236 (unsigned long long)sh
->sector
, rcw
, must_compute
);
2237 set_bit(STRIPE_HANDLE
, &sh
->state
);
2240 /* want reconstruct write, but need to get some data */
2241 for (i
=disks
; i
--;) {
2243 if (!test_bit(R5_OVERWRITE
, &dev
->flags
)
2244 && !(failed
== 0 && (i
== pd_idx
|| i
== qd_idx
))
2245 && !test_bit(R5_LOCKED
, &dev
->flags
) && !test_bit(R5_UPTODATE
, &dev
->flags
) &&
2246 test_bit(R5_Insync
, &dev
->flags
)) {
2247 if (test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
2249 PRINTK("Read_old stripe %llu block %d for Reconstruct\n",
2250 (unsigned long long)sh
->sector
, i
);
2251 set_bit(R5_LOCKED
, &dev
->flags
);
2252 set_bit(R5_Wantread
, &dev
->flags
);
2255 PRINTK("Request delayed stripe %llu block %d for Reconstruct\n",
2256 (unsigned long long)sh
->sector
, i
);
2257 set_bit(STRIPE_DELAYED
, &sh
->state
);
2258 set_bit(STRIPE_HANDLE
, &sh
->state
);
2262 /* now if nothing is locked, and if we have enough data, we can start a write request */
2263 if (locked
== 0 && rcw
== 0 &&
2264 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)) {
2265 if ( must_compute
> 0 ) {
2266 /* We have failed blocks and need to compute them */
2269 case 1: compute_block_1(sh
, failed_num
[0], 0); break;
2270 case 2: compute_block_2(sh
, failed_num
[0], failed_num
[1]); break;
2271 default: BUG(); /* This request should have been failed? */
2275 PRINTK("Computing parity for stripe %llu\n", (unsigned long long)sh
->sector
);
2276 compute_parity6(sh
, RECONSTRUCT_WRITE
);
2277 /* now every locked buffer is ready to be written */
2279 if (test_bit(R5_LOCKED
, &sh
->dev
[i
].flags
)) {
2280 PRINTK("Writing stripe %llu block %d\n",
2281 (unsigned long long)sh
->sector
, i
);
2283 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
2285 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2286 set_bit(STRIPE_INSYNC
, &sh
->state
);
2288 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2289 atomic_dec(&conf
->preread_active_stripes
);
2290 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
)
2291 md_wakeup_thread(conf
->mddev
->thread
);
2296 /* maybe we need to check and possibly fix the parity for this stripe
2297 * Any reads will already have been scheduled, so we just see if enough data
2300 if (syncing
&& locked
== 0 && !test_bit(STRIPE_INSYNC
, &sh
->state
)) {
2301 int update_p
= 0, update_q
= 0;
2304 set_bit(STRIPE_HANDLE
, &sh
->state
);
2307 BUG_ON(uptodate
< disks
);
2308 /* Want to check and possibly repair P and Q.
2309 * However there could be one 'failed' device, in which
2310 * case we can only check one of them, possibly using the
2311 * other to generate missing data
2314 /* If !tmp_page, we cannot do the calculations,
2315 * but as we have set STRIPE_HANDLE, we will soon be called
2316 * by stripe_handle with a tmp_page - just wait until then.
2319 if (failed
== q_failed
) {
2320 /* The only possible failed device holds 'Q', so it makes
2321 * sense to check P (If anything else were failed, we would
2322 * have used P to recreate it).
2324 compute_block_1(sh
, pd_idx
, 1);
2325 if (!page_is_zero(sh
->dev
[pd_idx
].page
)) {
2326 compute_block_1(sh
,pd_idx
,0);
2330 if (!q_failed
&& failed
< 2) {
2331 /* q is not failed, and we didn't use it to generate
2332 * anything, so it makes sense to check it
2334 memcpy(page_address(tmp_page
),
2335 page_address(sh
->dev
[qd_idx
].page
),
2337 compute_parity6(sh
, UPDATE_PARITY
);
2338 if (memcmp(page_address(tmp_page
),
2339 page_address(sh
->dev
[qd_idx
].page
),
2341 clear_bit(STRIPE_INSYNC
, &sh
->state
);
2345 if (update_p
|| update_q
) {
2346 conf
->mddev
->resync_mismatches
+= STRIPE_SECTORS
;
2347 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
2348 /* don't try to repair!! */
2349 update_p
= update_q
= 0;
2352 /* now write out any block on a failed drive,
2353 * or P or Q if they need it
2357 dev
= &sh
->dev
[failed_num
[1]];
2359 set_bit(R5_LOCKED
, &dev
->flags
);
2360 set_bit(R5_Wantwrite
, &dev
->flags
);
2363 dev
= &sh
->dev
[failed_num
[0]];
2365 set_bit(R5_LOCKED
, &dev
->flags
);
2366 set_bit(R5_Wantwrite
, &dev
->flags
);
2370 dev
= &sh
->dev
[pd_idx
];
2372 set_bit(R5_LOCKED
, &dev
->flags
);
2373 set_bit(R5_Wantwrite
, &dev
->flags
);
2376 dev
= &sh
->dev
[qd_idx
];
2378 set_bit(R5_LOCKED
, &dev
->flags
);
2379 set_bit(R5_Wantwrite
, &dev
->flags
);
2381 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
2383 set_bit(STRIPE_INSYNC
, &sh
->state
);
2387 if (syncing
&& locked
== 0 && test_bit(STRIPE_INSYNC
, &sh
->state
)) {
2388 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,1);
2389 clear_bit(STRIPE_SYNCING
, &sh
->state
);
2392 /* If the failed drives are just a ReadError, then we might need
2393 * to progress the repair/check process
2395 if (failed
<= 2 && ! conf
->mddev
->ro
)
2396 for (i
=0; i
<failed
;i
++) {
2397 dev
= &sh
->dev
[failed_num
[i
]];
2398 if (test_bit(R5_ReadError
, &dev
->flags
)
2399 && !test_bit(R5_LOCKED
, &dev
->flags
)
2400 && test_bit(R5_UPTODATE
, &dev
->flags
)
2402 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
2403 set_bit(R5_Wantwrite
, &dev
->flags
);
2404 set_bit(R5_ReWrite
, &dev
->flags
);
2405 set_bit(R5_LOCKED
, &dev
->flags
);
2407 /* let's read it back */
2408 set_bit(R5_Wantread
, &dev
->flags
);
2409 set_bit(R5_LOCKED
, &dev
->flags
);
2413 spin_unlock(&sh
->lock
);
2415 while ((bi
=return_bi
)) {
2416 int bytes
= bi
->bi_size
;
2418 return_bi
= bi
->bi_next
;
2421 bi
->bi_end_io(bi
, bytes
, 0);
2423 for (i
=disks
; i
-- ;) {
2427 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
))
2429 else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
2434 bi
= &sh
->dev
[i
].req
;
2438 bi
->bi_end_io
= raid5_end_write_request
;
2440 bi
->bi_end_io
= raid5_end_read_request
;
2443 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2444 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
2447 atomic_inc(&rdev
->nr_pending
);
2452 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
2454 bi
->bi_bdev
= rdev
->bdev
;
2455 PRINTK("for %llu schedule op %ld on disc %d\n",
2456 (unsigned long long)sh
->sector
, bi
->bi_rw
, i
);
2457 atomic_inc(&sh
->count
);
2458 bi
->bi_sector
= sh
->sector
+ rdev
->data_offset
;
2459 bi
->bi_flags
= 1 << BIO_UPTODATE
;
2461 bi
->bi_max_vecs
= 1;
2463 bi
->bi_io_vec
= &sh
->dev
[i
].vec
;
2464 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
2465 bi
->bi_io_vec
[0].bv_offset
= 0;
2466 bi
->bi_size
= STRIPE_SIZE
;
2469 test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
2470 atomic_add(STRIPE_SECTORS
, &rdev
->corrected_errors
);
2471 generic_make_request(bi
);
2474 set_bit(STRIPE_DEGRADED
, &sh
->state
);
2475 PRINTK("skip op %ld on disc %d for sector %llu\n",
2476 bi
->bi_rw
, i
, (unsigned long long)sh
->sector
);
2477 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
2478 set_bit(STRIPE_HANDLE
, &sh
->state
);
2483 static void handle_stripe(struct stripe_head
*sh
, struct page
*tmp_page
)
2485 if (sh
->raid_conf
->level
== 6)
2486 handle_stripe6(sh
, tmp_page
);
2493 static void raid5_activate_delayed(raid5_conf_t
*conf
)
2495 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
) {
2496 while (!list_empty(&conf
->delayed_list
)) {
2497 struct list_head
*l
= conf
->delayed_list
.next
;
2498 struct stripe_head
*sh
;
2499 sh
= list_entry(l
, struct stripe_head
, lru
);
2501 clear_bit(STRIPE_DELAYED
, &sh
->state
);
2502 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
2503 atomic_inc(&conf
->preread_active_stripes
);
2504 list_add_tail(&sh
->lru
, &conf
->handle_list
);
2509 static void activate_bit_delay(raid5_conf_t
*conf
)
2511 /* device_lock is held */
2512 struct list_head head
;
2513 list_add(&head
, &conf
->bitmap_list
);
2514 list_del_init(&conf
->bitmap_list
);
2515 while (!list_empty(&head
)) {
2516 struct stripe_head
*sh
= list_entry(head
.next
, struct stripe_head
, lru
);
2517 list_del_init(&sh
->lru
);
2518 atomic_inc(&sh
->count
);
2519 __release_stripe(conf
, sh
);
2523 static void unplug_slaves(mddev_t
*mddev
)
2525 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
2529 for (i
=0; i
<mddev
->raid_disks
; i
++) {
2530 mdk_rdev_t
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2531 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
) && atomic_read(&rdev
->nr_pending
)) {
2532 request_queue_t
*r_queue
= bdev_get_queue(rdev
->bdev
);
2534 atomic_inc(&rdev
->nr_pending
);
2537 if (r_queue
->unplug_fn
)
2538 r_queue
->unplug_fn(r_queue
);
2540 rdev_dec_pending(rdev
, mddev
);
2547 static void raid5_unplug_device(request_queue_t
*q
)
2549 mddev_t
*mddev
= q
->queuedata
;
2550 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
2551 unsigned long flags
;
2553 spin_lock_irqsave(&conf
->device_lock
, flags
);
2555 if (blk_remove_plug(q
)) {
2557 raid5_activate_delayed(conf
);
2559 md_wakeup_thread(mddev
->thread
);
2561 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2563 unplug_slaves(mddev
);
2566 static int raid5_issue_flush(request_queue_t
*q
, struct gendisk
*disk
,
2567 sector_t
*error_sector
)
2569 mddev_t
*mddev
= q
->queuedata
;
2570 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
2574 for (i
=0; i
<mddev
->raid_disks
&& ret
== 0; i
++) {
2575 mdk_rdev_t
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2576 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
2577 struct block_device
*bdev
= rdev
->bdev
;
2578 request_queue_t
*r_queue
= bdev_get_queue(bdev
);
2580 if (!r_queue
->issue_flush_fn
)
2583 atomic_inc(&rdev
->nr_pending
);
2585 ret
= r_queue
->issue_flush_fn(r_queue
, bdev
->bd_disk
,
2587 rdev_dec_pending(rdev
, mddev
);
2596 static int raid5_congested(void *data
, int bits
)
2598 mddev_t
*mddev
= data
;
2599 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
2601 /* No difference between reads and writes. Just check
2602 * how busy the stripe_cache is
2604 if (conf
->inactive_blocked
)
2608 if (list_empty_careful(&conf
->inactive_list
))
2614 static int make_request(request_queue_t
*q
, struct bio
* bi
)
2616 mddev_t
*mddev
= q
->queuedata
;
2617 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
2618 unsigned int dd_idx
, pd_idx
;
2619 sector_t new_sector
;
2620 sector_t logical_sector
, last_sector
;
2621 struct stripe_head
*sh
;
2622 const int rw
= bio_data_dir(bi
);
2625 if (unlikely(bio_barrier(bi
))) {
2626 bio_endio(bi
, bi
->bi_size
, -EOPNOTSUPP
);
2630 md_write_start(mddev
, bi
);
2632 disk_stat_inc(mddev
->gendisk
, ios
[rw
]);
2633 disk_stat_add(mddev
->gendisk
, sectors
[rw
], bio_sectors(bi
));
2635 logical_sector
= bi
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
2636 last_sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
2638 bi
->bi_phys_segments
= 1; /* over-loaded to count active stripes */
2640 for (;logical_sector
< last_sector
; logical_sector
+= STRIPE_SECTORS
) {
2642 int disks
, data_disks
;
2645 prepare_to_wait(&conf
->wait_for_overlap
, &w
, TASK_UNINTERRUPTIBLE
);
2646 if (likely(conf
->expand_progress
== MaxSector
))
2647 disks
= conf
->raid_disks
;
2649 /* spinlock is needed as expand_progress may be
2650 * 64bit on a 32bit platform, and so it might be
2651 * possible to see a half-updated value
2652 * Ofcourse expand_progress could change after
2653 * the lock is dropped, so once we get a reference
2654 * to the stripe that we think it is, we will have
2657 spin_lock_irq(&conf
->device_lock
);
2658 disks
= conf
->raid_disks
;
2659 if (logical_sector
>= conf
->expand_progress
)
2660 disks
= conf
->previous_raid_disks
;
2662 if (logical_sector
>= conf
->expand_lo
) {
2663 spin_unlock_irq(&conf
->device_lock
);
2668 spin_unlock_irq(&conf
->device_lock
);
2670 data_disks
= disks
- conf
->max_degraded
;
2672 new_sector
= raid5_compute_sector(logical_sector
, disks
, data_disks
,
2673 &dd_idx
, &pd_idx
, conf
);
2674 PRINTK("raid5: make_request, sector %llu logical %llu\n",
2675 (unsigned long long)new_sector
,
2676 (unsigned long long)logical_sector
);
2678 sh
= get_active_stripe(conf
, new_sector
, disks
, pd_idx
, (bi
->bi_rw
&RWA_MASK
));
2680 if (unlikely(conf
->expand_progress
!= MaxSector
)) {
2681 /* expansion might have moved on while waiting for a
2682 * stripe, so we must do the range check again.
2683 * Expansion could still move past after this
2684 * test, but as we are holding a reference to
2685 * 'sh', we know that if that happens,
2686 * STRIPE_EXPANDING will get set and the expansion
2687 * won't proceed until we finish with the stripe.
2690 spin_lock_irq(&conf
->device_lock
);
2691 if (logical_sector
< conf
->expand_progress
&&
2692 disks
== conf
->previous_raid_disks
)
2693 /* mismatch, need to try again */
2695 spin_unlock_irq(&conf
->device_lock
);
2701 /* FIXME what if we get a false positive because these
2702 * are being updated.
2704 if (logical_sector
>= mddev
->suspend_lo
&&
2705 logical_sector
< mddev
->suspend_hi
) {
2711 if (test_bit(STRIPE_EXPANDING
, &sh
->state
) ||
2712 !add_stripe_bio(sh
, bi
, dd_idx
, (bi
->bi_rw
&RW_MASK
))) {
2713 /* Stripe is busy expanding or
2714 * add failed due to overlap. Flush everything
2717 raid5_unplug_device(mddev
->queue
);
2722 finish_wait(&conf
->wait_for_overlap
, &w
);
2723 handle_stripe(sh
, NULL
);
2726 /* cannot get stripe for read-ahead, just give-up */
2727 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2728 finish_wait(&conf
->wait_for_overlap
, &w
);
2733 spin_lock_irq(&conf
->device_lock
);
2734 remaining
= --bi
->bi_phys_segments
;
2735 spin_unlock_irq(&conf
->device_lock
);
2736 if (remaining
== 0) {
2737 int bytes
= bi
->bi_size
;
2740 md_write_end(mddev
);
2742 bi
->bi_end_io(bi
, bytes
, 0);
2747 static sector_t
reshape_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
)
2749 /* reshaping is quite different to recovery/resync so it is
2750 * handled quite separately ... here.
2752 * On each call to sync_request, we gather one chunk worth of
2753 * destination stripes and flag them as expanding.
2754 * Then we find all the source stripes and request reads.
2755 * As the reads complete, handle_stripe will copy the data
2756 * into the destination stripe and release that stripe.
2758 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
2759 struct stripe_head
*sh
;
2761 sector_t first_sector
, last_sector
;
2766 sector_t writepos
, safepos
, gap
;
2768 if (sector_nr
== 0 &&
2769 conf
->expand_progress
!= 0) {
2770 /* restarting in the middle, skip the initial sectors */
2771 sector_nr
= conf
->expand_progress
;
2772 sector_div(sector_nr
, conf
->raid_disks
-1);
2777 /* we update the metadata when there is more than 3Meg
2778 * in the block range (that is rather arbitrary, should
2779 * probably be time based) or when the data about to be
2780 * copied would over-write the source of the data at
2781 * the front of the range.
2782 * i.e. one new_stripe forward from expand_progress new_maps
2783 * to after where expand_lo old_maps to
2785 writepos
= conf
->expand_progress
+
2786 conf
->chunk_size
/512*(conf
->raid_disks
-1);
2787 sector_div(writepos
, conf
->raid_disks
-1);
2788 safepos
= conf
->expand_lo
;
2789 sector_div(safepos
, conf
->previous_raid_disks
-1);
2790 gap
= conf
->expand_progress
- conf
->expand_lo
;
2792 if (writepos
>= safepos
||
2793 gap
> (conf
->raid_disks
-1)*3000*2 /*3Meg*/) {
2794 /* Cannot proceed until we've updated the superblock... */
2795 wait_event(conf
->wait_for_overlap
,
2796 atomic_read(&conf
->reshape_stripes
)==0);
2797 mddev
->reshape_position
= conf
->expand_progress
;
2798 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
2799 md_wakeup_thread(mddev
->thread
);
2800 wait_event(mddev
->sb_wait
, mddev
->flags
== 0 ||
2801 kthread_should_stop());
2802 spin_lock_irq(&conf
->device_lock
);
2803 conf
->expand_lo
= mddev
->reshape_position
;
2804 spin_unlock_irq(&conf
->device_lock
);
2805 wake_up(&conf
->wait_for_overlap
);
2808 for (i
=0; i
< conf
->chunk_size
/512; i
+= STRIPE_SECTORS
) {
2811 pd_idx
= stripe_to_pdidx(sector_nr
+i
, conf
, conf
->raid_disks
);
2812 sh
= get_active_stripe(conf
, sector_nr
+i
,
2813 conf
->raid_disks
, pd_idx
, 0);
2814 set_bit(STRIPE_EXPANDING
, &sh
->state
);
2815 atomic_inc(&conf
->reshape_stripes
);
2816 /* If any of this stripe is beyond the end of the old
2817 * array, then we need to zero those blocks
2819 for (j
=sh
->disks
; j
--;) {
2821 if (j
== sh
->pd_idx
)
2823 s
= compute_blocknr(sh
, j
);
2824 if (s
< (mddev
->array_size
<<1)) {
2828 memset(page_address(sh
->dev
[j
].page
), 0, STRIPE_SIZE
);
2829 set_bit(R5_Expanded
, &sh
->dev
[j
].flags
);
2830 set_bit(R5_UPTODATE
, &sh
->dev
[j
].flags
);
2833 set_bit(STRIPE_EXPAND_READY
, &sh
->state
);
2834 set_bit(STRIPE_HANDLE
, &sh
->state
);
2838 spin_lock_irq(&conf
->device_lock
);
2839 conf
->expand_progress
= (sector_nr
+ i
)*(conf
->raid_disks
-1);
2840 spin_unlock_irq(&conf
->device_lock
);
2841 /* Ok, those stripe are ready. We can start scheduling
2842 * reads on the source stripes.
2843 * The source stripes are determined by mapping the first and last
2844 * block on the destination stripes.
2846 raid_disks
= conf
->previous_raid_disks
;
2847 data_disks
= raid_disks
- 1;
2849 raid5_compute_sector(sector_nr
*(conf
->raid_disks
-1),
2850 raid_disks
, data_disks
,
2851 &dd_idx
, &pd_idx
, conf
);
2853 raid5_compute_sector((sector_nr
+conf
->chunk_size
/512)
2854 *(conf
->raid_disks
-1) -1,
2855 raid_disks
, data_disks
,
2856 &dd_idx
, &pd_idx
, conf
);
2857 if (last_sector
>= (mddev
->size
<<1))
2858 last_sector
= (mddev
->size
<<1)-1;
2859 while (first_sector
<= last_sector
) {
2860 pd_idx
= stripe_to_pdidx(first_sector
, conf
, conf
->previous_raid_disks
);
2861 sh
= get_active_stripe(conf
, first_sector
,
2862 conf
->previous_raid_disks
, pd_idx
, 0);
2863 set_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
2864 set_bit(STRIPE_HANDLE
, &sh
->state
);
2866 first_sector
+= STRIPE_SECTORS
;
2868 return conf
->chunk_size
>>9;
2871 /* FIXME go_faster isn't used */
2872 static inline sector_t
sync_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
2874 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
2875 struct stripe_head
*sh
;
2877 int raid_disks
= conf
->raid_disks
;
2878 sector_t max_sector
= mddev
->size
<< 1;
2880 int still_degraded
= 0;
2883 if (sector_nr
>= max_sector
) {
2884 /* just being told to finish up .. nothing much to do */
2885 unplug_slaves(mddev
);
2886 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
2891 if (mddev
->curr_resync
< max_sector
) /* aborted */
2892 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
2894 else /* completed sync */
2896 bitmap_close_sync(mddev
->bitmap
);
2901 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
2902 return reshape_request(mddev
, sector_nr
, skipped
);
2904 /* if there is too many failed drives and we are trying
2905 * to resync, then assert that we are finished, because there is
2906 * nothing we can do.
2908 if (mddev
->degraded
>= conf
->max_degraded
&&
2909 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
2910 sector_t rv
= (mddev
->size
<< 1) - sector_nr
;
2914 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
2915 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
2916 !conf
->fullsync
&& sync_blocks
>= STRIPE_SECTORS
) {
2917 /* we can skip this block, and probably more */
2918 sync_blocks
/= STRIPE_SECTORS
;
2920 return sync_blocks
* STRIPE_SECTORS
; /* keep things rounded to whole stripes */
2923 pd_idx
= stripe_to_pdidx(sector_nr
, conf
, raid_disks
);
2924 sh
= get_active_stripe(conf
, sector_nr
, raid_disks
, pd_idx
, 1);
2926 sh
= get_active_stripe(conf
, sector_nr
, raid_disks
, pd_idx
, 0);
2927 /* make sure we don't swamp the stripe cache if someone else
2928 * is trying to get access
2930 schedule_timeout_uninterruptible(1);
2932 /* Need to check if array will still be degraded after recovery/resync
2933 * We don't need to check the 'failed' flag as when that gets set,
2936 for (i
=0; i
<mddev
->raid_disks
; i
++)
2937 if (conf
->disks
[i
].rdev
== NULL
)
2940 bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, still_degraded
);
2942 spin_lock(&sh
->lock
);
2943 set_bit(STRIPE_SYNCING
, &sh
->state
);
2944 clear_bit(STRIPE_INSYNC
, &sh
->state
);
2945 spin_unlock(&sh
->lock
);
2947 handle_stripe(sh
, NULL
);
2950 return STRIPE_SECTORS
;
2954 * This is our raid5 kernel thread.
2956 * We scan the hash table for stripes which can be handled now.
2957 * During the scan, completed stripes are saved for us by the interrupt
2958 * handler, so that they will not have to wait for our next wakeup.
2960 static void raid5d (mddev_t
*mddev
)
2962 struct stripe_head
*sh
;
2963 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
2966 PRINTK("+++ raid5d active\n");
2968 md_check_recovery(mddev
);
2971 spin_lock_irq(&conf
->device_lock
);
2973 struct list_head
*first
;
2975 if (conf
->seq_flush
!= conf
->seq_write
) {
2976 int seq
= conf
->seq_flush
;
2977 spin_unlock_irq(&conf
->device_lock
);
2978 bitmap_unplug(mddev
->bitmap
);
2979 spin_lock_irq(&conf
->device_lock
);
2980 conf
->seq_write
= seq
;
2981 activate_bit_delay(conf
);
2984 if (list_empty(&conf
->handle_list
) &&
2985 atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
&&
2986 !blk_queue_plugged(mddev
->queue
) &&
2987 !list_empty(&conf
->delayed_list
))
2988 raid5_activate_delayed(conf
);
2990 if (list_empty(&conf
->handle_list
))
2993 first
= conf
->handle_list
.next
;
2994 sh
= list_entry(first
, struct stripe_head
, lru
);
2996 list_del_init(first
);
2997 atomic_inc(&sh
->count
);
2998 BUG_ON(atomic_read(&sh
->count
)!= 1);
2999 spin_unlock_irq(&conf
->device_lock
);
3002 handle_stripe(sh
, conf
->spare_page
);
3005 spin_lock_irq(&conf
->device_lock
);
3007 PRINTK("%d stripes handled\n", handled
);
3009 spin_unlock_irq(&conf
->device_lock
);
3011 unplug_slaves(mddev
);
3013 PRINTK("--- raid5d inactive\n");
3017 raid5_show_stripe_cache_size(mddev_t
*mddev
, char *page
)
3019 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3021 return sprintf(page
, "%d\n", conf
->max_nr_stripes
);
3027 raid5_store_stripe_cache_size(mddev_t
*mddev
, const char *page
, size_t len
)
3029 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3032 if (len
>= PAGE_SIZE
)
3037 new = simple_strtoul(page
, &end
, 10);
3038 if (!*page
|| (*end
&& *end
!= '\n') )
3040 if (new <= 16 || new > 32768)
3042 while (new < conf
->max_nr_stripes
) {
3043 if (drop_one_stripe(conf
))
3044 conf
->max_nr_stripes
--;
3048 while (new > conf
->max_nr_stripes
) {
3049 if (grow_one_stripe(conf
))
3050 conf
->max_nr_stripes
++;
3056 static struct md_sysfs_entry
3057 raid5_stripecache_size
= __ATTR(stripe_cache_size
, S_IRUGO
| S_IWUSR
,
3058 raid5_show_stripe_cache_size
,
3059 raid5_store_stripe_cache_size
);
3062 stripe_cache_active_show(mddev_t
*mddev
, char *page
)
3064 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3066 return sprintf(page
, "%d\n", atomic_read(&conf
->active_stripes
));
3071 static struct md_sysfs_entry
3072 raid5_stripecache_active
= __ATTR_RO(stripe_cache_active
);
3074 static struct attribute
*raid5_attrs
[] = {
3075 &raid5_stripecache_size
.attr
,
3076 &raid5_stripecache_active
.attr
,
3079 static struct attribute_group raid5_attrs_group
= {
3081 .attrs
= raid5_attrs
,
3084 static int run(mddev_t
*mddev
)
3087 int raid_disk
, memory
;
3089 struct disk_info
*disk
;
3090 struct list_head
*tmp
;
3091 int working_disks
= 0;
3093 if (mddev
->level
!= 5 && mddev
->level
!= 4 && mddev
->level
!= 6) {
3094 printk(KERN_ERR
"raid5: %s: raid level not set to 4/5/6 (%d)\n",
3095 mdname(mddev
), mddev
->level
);
3099 if (mddev
->reshape_position
!= MaxSector
) {
3100 /* Check that we can continue the reshape.
3101 * Currently only disks can change, it must
3102 * increase, and we must be past the point where
3103 * a stripe over-writes itself
3105 sector_t here_new
, here_old
;
3108 if (mddev
->new_level
!= mddev
->level
||
3109 mddev
->new_layout
!= mddev
->layout
||
3110 mddev
->new_chunk
!= mddev
->chunk_size
) {
3111 printk(KERN_ERR
"raid5: %s: unsupported reshape required - aborting.\n",
3115 if (mddev
->delta_disks
<= 0) {
3116 printk(KERN_ERR
"raid5: %s: unsupported reshape (reduce disks) required - aborting.\n",
3120 old_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
3121 /* reshape_position must be on a new-stripe boundary, and one
3122 * further up in new geometry must map after here in old geometry.
3124 here_new
= mddev
->reshape_position
;
3125 if (sector_div(here_new
, (mddev
->chunk_size
>>9)*(mddev
->raid_disks
-1))) {
3126 printk(KERN_ERR
"raid5: reshape_position not on a stripe boundary\n");
3129 /* here_new is the stripe we will write to */
3130 here_old
= mddev
->reshape_position
;
3131 sector_div(here_old
, (mddev
->chunk_size
>>9)*(old_disks
-1));
3132 /* here_old is the first stripe that we might need to read from */
3133 if (here_new
>= here_old
) {
3134 /* Reading from the same stripe as writing to - bad */
3135 printk(KERN_ERR
"raid5: reshape_position too early for auto-recovery - aborting.\n");
3138 printk(KERN_INFO
"raid5: reshape will continue\n");
3139 /* OK, we should be able to continue; */
3143 mddev
->private = kzalloc(sizeof (raid5_conf_t
), GFP_KERNEL
);
3144 if ((conf
= mddev
->private) == NULL
)
3146 if (mddev
->reshape_position
== MaxSector
) {
3147 conf
->previous_raid_disks
= conf
->raid_disks
= mddev
->raid_disks
;
3149 conf
->raid_disks
= mddev
->raid_disks
;
3150 conf
->previous_raid_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
3153 conf
->disks
= kzalloc(conf
->raid_disks
* sizeof(struct disk_info
),
3158 conf
->mddev
= mddev
;
3160 if ((conf
->stripe_hashtbl
= kzalloc(PAGE_SIZE
, GFP_KERNEL
)) == NULL
)
3163 if (mddev
->level
== 6) {
3164 conf
->spare_page
= alloc_page(GFP_KERNEL
);
3165 if (!conf
->spare_page
)
3168 spin_lock_init(&conf
->device_lock
);
3169 init_waitqueue_head(&conf
->wait_for_stripe
);
3170 init_waitqueue_head(&conf
->wait_for_overlap
);
3171 INIT_LIST_HEAD(&conf
->handle_list
);
3172 INIT_LIST_HEAD(&conf
->delayed_list
);
3173 INIT_LIST_HEAD(&conf
->bitmap_list
);
3174 INIT_LIST_HEAD(&conf
->inactive_list
);
3175 atomic_set(&conf
->active_stripes
, 0);
3176 atomic_set(&conf
->preread_active_stripes
, 0);
3178 PRINTK("raid5: run(%s) called.\n", mdname(mddev
));
3180 ITERATE_RDEV(mddev
,rdev
,tmp
) {
3181 raid_disk
= rdev
->raid_disk
;
3182 if (raid_disk
>= conf
->raid_disks
3185 disk
= conf
->disks
+ raid_disk
;
3189 if (test_bit(In_sync
, &rdev
->flags
)) {
3190 char b
[BDEVNAME_SIZE
];
3191 printk(KERN_INFO
"raid5: device %s operational as raid"
3192 " disk %d\n", bdevname(rdev
->bdev
,b
),
3199 * 0 for a fully functional array, 1 or 2 for a degraded array.
3201 mddev
->degraded
= conf
->raid_disks
- working_disks
;
3202 conf
->mddev
= mddev
;
3203 conf
->chunk_size
= mddev
->chunk_size
;
3204 conf
->level
= mddev
->level
;
3205 if (conf
->level
== 6)
3206 conf
->max_degraded
= 2;
3208 conf
->max_degraded
= 1;
3209 conf
->algorithm
= mddev
->layout
;
3210 conf
->max_nr_stripes
= NR_STRIPES
;
3211 conf
->expand_progress
= mddev
->reshape_position
;
3213 /* device size must be a multiple of chunk size */
3214 mddev
->size
&= ~(mddev
->chunk_size
/1024 -1);
3215 mddev
->resync_max_sectors
= mddev
->size
<< 1;
3217 if (conf
->level
== 6 && conf
->raid_disks
< 4) {
3218 printk(KERN_ERR
"raid6: not enough configured devices for %s (%d, minimum 4)\n",
3219 mdname(mddev
), conf
->raid_disks
);
3222 if (!conf
->chunk_size
|| conf
->chunk_size
% 4) {
3223 printk(KERN_ERR
"raid5: invalid chunk size %d for %s\n",
3224 conf
->chunk_size
, mdname(mddev
));
3227 if (conf
->algorithm
> ALGORITHM_RIGHT_SYMMETRIC
) {
3229 "raid5: unsupported parity algorithm %d for %s\n",
3230 conf
->algorithm
, mdname(mddev
));
3233 if (mddev
->degraded
> conf
->max_degraded
) {
3234 printk(KERN_ERR
"raid5: not enough operational devices for %s"
3235 " (%d/%d failed)\n",
3236 mdname(mddev
), mddev
->degraded
, conf
->raid_disks
);
3240 if (mddev
->degraded
> 0 &&
3241 mddev
->recovery_cp
!= MaxSector
) {
3242 if (mddev
->ok_start_degraded
)
3244 "raid5: starting dirty degraded array: %s"
3245 "- data corruption possible.\n",
3249 "raid5: cannot start dirty degraded array for %s\n",
3256 mddev
->thread
= md_register_thread(raid5d
, mddev
, "%s_raid5");
3257 if (!mddev
->thread
) {
3259 "raid5: couldn't allocate thread for %s\n",
3264 memory
= conf
->max_nr_stripes
* (sizeof(struct stripe_head
) +
3265 conf
->raid_disks
* ((sizeof(struct bio
) + PAGE_SIZE
))) / 1024;
3266 if (grow_stripes(conf
, conf
->max_nr_stripes
)) {
3268 "raid5: couldn't allocate %dkB for buffers\n", memory
);
3269 shrink_stripes(conf
);
3270 md_unregister_thread(mddev
->thread
);
3273 printk(KERN_INFO
"raid5: allocated %dkB for %s\n",
3274 memory
, mdname(mddev
));
3276 if (mddev
->degraded
== 0)
3277 printk("raid5: raid level %d set %s active with %d out of %d"
3278 " devices, algorithm %d\n", conf
->level
, mdname(mddev
),
3279 mddev
->raid_disks
-mddev
->degraded
, mddev
->raid_disks
,
3282 printk(KERN_ALERT
"raid5: raid level %d set %s active with %d"
3283 " out of %d devices, algorithm %d\n", conf
->level
,
3284 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
3285 mddev
->raid_disks
, conf
->algorithm
);
3287 print_raid5_conf(conf
);
3289 if (conf
->expand_progress
!= MaxSector
) {
3290 printk("...ok start reshape thread\n");
3291 conf
->expand_lo
= conf
->expand_progress
;
3292 atomic_set(&conf
->reshape_stripes
, 0);
3293 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
3294 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
3295 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
3296 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
3297 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
3301 /* read-ahead size must cover two whole stripes, which is
3302 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
3305 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
3306 int stripe
= data_disks
*
3307 (mddev
->chunk_size
/ PAGE_SIZE
);
3308 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
3309 mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
3312 /* Ok, everything is just fine now */
3313 sysfs_create_group(&mddev
->kobj
, &raid5_attrs_group
);
3315 mddev
->queue
->unplug_fn
= raid5_unplug_device
;
3316 mddev
->queue
->issue_flush_fn
= raid5_issue_flush
;
3317 mddev
->queue
->backing_dev_info
.congested_fn
= raid5_congested
;
3318 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
3320 mddev
->array_size
= mddev
->size
* (conf
->previous_raid_disks
-
3321 conf
->max_degraded
);
3326 print_raid5_conf(conf
);
3327 safe_put_page(conf
->spare_page
);
3329 kfree(conf
->stripe_hashtbl
);
3332 mddev
->private = NULL
;
3333 printk(KERN_ALERT
"raid5: failed to run raid set %s\n", mdname(mddev
));
3339 static int stop(mddev_t
*mddev
)
3341 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
3343 md_unregister_thread(mddev
->thread
);
3344 mddev
->thread
= NULL
;
3345 shrink_stripes(conf
);
3346 kfree(conf
->stripe_hashtbl
);
3347 blk_sync_queue(mddev
->queue
); /* the unplug fn references 'conf'*/
3348 sysfs_remove_group(&mddev
->kobj
, &raid5_attrs_group
);
3351 mddev
->private = NULL
;
3356 static void print_sh (struct seq_file
*seq
, struct stripe_head
*sh
)
3360 seq_printf(seq
, "sh %llu, pd_idx %d, state %ld.\n",
3361 (unsigned long long)sh
->sector
, sh
->pd_idx
, sh
->state
);
3362 seq_printf(seq
, "sh %llu, count %d.\n",
3363 (unsigned long long)sh
->sector
, atomic_read(&sh
->count
));
3364 seq_printf(seq
, "sh %llu, ", (unsigned long long)sh
->sector
);
3365 for (i
= 0; i
< sh
->disks
; i
++) {
3366 seq_printf(seq
, "(cache%d: %p %ld) ",
3367 i
, sh
->dev
[i
].page
, sh
->dev
[i
].flags
);
3369 seq_printf(seq
, "\n");
3372 static void printall (struct seq_file
*seq
, raid5_conf_t
*conf
)
3374 struct stripe_head
*sh
;
3375 struct hlist_node
*hn
;
3378 spin_lock_irq(&conf
->device_lock
);
3379 for (i
= 0; i
< NR_HASH
; i
++) {
3380 hlist_for_each_entry(sh
, hn
, &conf
->stripe_hashtbl
[i
], hash
) {
3381 if (sh
->raid_conf
!= conf
)
3386 spin_unlock_irq(&conf
->device_lock
);
3390 static void status (struct seq_file
*seq
, mddev_t
*mddev
)
3392 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
3395 seq_printf (seq
, " level %d, %dk chunk, algorithm %d", mddev
->level
, mddev
->chunk_size
>> 10, mddev
->layout
);
3396 seq_printf (seq
, " [%d/%d] [", conf
->raid_disks
, conf
->raid_disks
- mddev
->degraded
);
3397 for (i
= 0; i
< conf
->raid_disks
; i
++)
3398 seq_printf (seq
, "%s",
3399 conf
->disks
[i
].rdev
&&
3400 test_bit(In_sync
, &conf
->disks
[i
].rdev
->flags
) ? "U" : "_");
3401 seq_printf (seq
, "]");
3403 seq_printf (seq
, "\n");
3404 printall(seq
, conf
);
3408 static void print_raid5_conf (raid5_conf_t
*conf
)
3411 struct disk_info
*tmp
;
3413 printk("RAID5 conf printout:\n");
3415 printk("(conf==NULL)\n");
3418 printk(" --- rd:%d wd:%d\n", conf
->raid_disks
,
3419 conf
->raid_disks
- conf
->mddev
->degraded
);
3421 for (i
= 0; i
< conf
->raid_disks
; i
++) {
3422 char b
[BDEVNAME_SIZE
];
3423 tmp
= conf
->disks
+ i
;
3425 printk(" disk %d, o:%d, dev:%s\n",
3426 i
, !test_bit(Faulty
, &tmp
->rdev
->flags
),
3427 bdevname(tmp
->rdev
->bdev
,b
));
3431 static int raid5_spare_active(mddev_t
*mddev
)
3434 raid5_conf_t
*conf
= mddev
->private;
3435 struct disk_info
*tmp
;
3437 for (i
= 0; i
< conf
->raid_disks
; i
++) {
3438 tmp
= conf
->disks
+ i
;
3440 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
3441 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
3442 unsigned long flags
;
3443 spin_lock_irqsave(&conf
->device_lock
, flags
);
3445 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3448 print_raid5_conf(conf
);
3452 static int raid5_remove_disk(mddev_t
*mddev
, int number
)
3454 raid5_conf_t
*conf
= mddev
->private;
3457 struct disk_info
*p
= conf
->disks
+ number
;
3459 print_raid5_conf(conf
);
3462 if (test_bit(In_sync
, &rdev
->flags
) ||
3463 atomic_read(&rdev
->nr_pending
)) {
3469 if (atomic_read(&rdev
->nr_pending
)) {
3470 /* lost the race, try later */
3477 print_raid5_conf(conf
);
3481 static int raid5_add_disk(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
3483 raid5_conf_t
*conf
= mddev
->private;
3486 struct disk_info
*p
;
3488 if (mddev
->degraded
> conf
->max_degraded
)
3489 /* no point adding a device */
3493 * find the disk ... but prefer rdev->saved_raid_disk
3496 if (rdev
->saved_raid_disk
>= 0 &&
3497 conf
->disks
[rdev
->saved_raid_disk
].rdev
== NULL
)
3498 disk
= rdev
->saved_raid_disk
;
3501 for ( ; disk
< conf
->raid_disks
; disk
++)
3502 if ((p
=conf
->disks
+ disk
)->rdev
== NULL
) {
3503 clear_bit(In_sync
, &rdev
->flags
);
3504 rdev
->raid_disk
= disk
;
3506 if (rdev
->saved_raid_disk
!= disk
)
3508 rcu_assign_pointer(p
->rdev
, rdev
);
3511 print_raid5_conf(conf
);
3515 static int raid5_resize(mddev_t
*mddev
, sector_t sectors
)
3517 /* no resync is happening, and there is enough space
3518 * on all devices, so we can resize.
3519 * We need to make sure resync covers any new space.
3520 * If the array is shrinking we should possibly wait until
3521 * any io in the removed space completes, but it hardly seems
3524 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3526 sectors
&= ~((sector_t
)mddev
->chunk_size
/512 - 1);
3527 mddev
->array_size
= (sectors
* (mddev
->raid_disks
-conf
->max_degraded
))>>1;
3528 set_capacity(mddev
->gendisk
, mddev
->array_size
<< 1);
3530 if (sectors
/2 > mddev
->size
&& mddev
->recovery_cp
== MaxSector
) {
3531 mddev
->recovery_cp
= mddev
->size
<< 1;
3532 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3534 mddev
->size
= sectors
/2;
3535 mddev
->resync_max_sectors
= sectors
;
3539 #ifdef CONFIG_MD_RAID5_RESHAPE
3540 static int raid5_check_reshape(mddev_t
*mddev
)
3542 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3545 if (mddev
->delta_disks
< 0 ||
3546 mddev
->new_level
!= mddev
->level
)
3547 return -EINVAL
; /* Cannot shrink array or change level yet */
3548 if (mddev
->delta_disks
== 0)
3549 return 0; /* nothing to do */
3551 /* Can only proceed if there are plenty of stripe_heads.
3552 * We need a minimum of one full stripe,, and for sensible progress
3553 * it is best to have about 4 times that.
3554 * If we require 4 times, then the default 256 4K stripe_heads will
3555 * allow for chunk sizes up to 256K, which is probably OK.
3556 * If the chunk size is greater, user-space should request more
3557 * stripe_heads first.
3559 if ((mddev
->chunk_size
/ STRIPE_SIZE
) * 4 > conf
->max_nr_stripes
||
3560 (mddev
->new_chunk
/ STRIPE_SIZE
) * 4 > conf
->max_nr_stripes
) {
3561 printk(KERN_WARNING
"raid5: reshape: not enough stripes. Needed %lu\n",
3562 (mddev
->chunk_size
/ STRIPE_SIZE
)*4);
3566 err
= resize_stripes(conf
, conf
->raid_disks
+ mddev
->delta_disks
);
3570 /* looks like we might be able to manage this */
3574 static int raid5_start_reshape(mddev_t
*mddev
)
3576 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3578 struct list_head
*rtmp
;
3580 int added_devices
= 0;
3581 unsigned long flags
;
3583 if (mddev
->degraded
||
3584 test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
3587 ITERATE_RDEV(mddev
, rdev
, rtmp
)
3588 if (rdev
->raid_disk
< 0 &&
3589 !test_bit(Faulty
, &rdev
->flags
))
3592 if (spares
< mddev
->delta_disks
-1)
3593 /* Not enough devices even to make a degraded array
3598 atomic_set(&conf
->reshape_stripes
, 0);
3599 spin_lock_irq(&conf
->device_lock
);
3600 conf
->previous_raid_disks
= conf
->raid_disks
;
3601 conf
->raid_disks
+= mddev
->delta_disks
;
3602 conf
->expand_progress
= 0;
3603 conf
->expand_lo
= 0;
3604 spin_unlock_irq(&conf
->device_lock
);
3606 /* Add some new drives, as many as will fit.
3607 * We know there are enough to make the newly sized array work.
3609 ITERATE_RDEV(mddev
, rdev
, rtmp
)
3610 if (rdev
->raid_disk
< 0 &&
3611 !test_bit(Faulty
, &rdev
->flags
)) {
3612 if (raid5_add_disk(mddev
, rdev
)) {
3614 set_bit(In_sync
, &rdev
->flags
);
3616 rdev
->recovery_offset
= 0;
3617 sprintf(nm
, "rd%d", rdev
->raid_disk
);
3618 sysfs_create_link(&mddev
->kobj
, &rdev
->kobj
, nm
);
3623 spin_lock_irqsave(&conf
->device_lock
, flags
);
3624 mddev
->degraded
= (conf
->raid_disks
- conf
->previous_raid_disks
) - added_devices
;
3625 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3626 mddev
->raid_disks
= conf
->raid_disks
;
3627 mddev
->reshape_position
= 0;
3628 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
3630 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
3631 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
3632 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
3633 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
3634 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
3636 if (!mddev
->sync_thread
) {
3637 mddev
->recovery
= 0;
3638 spin_lock_irq(&conf
->device_lock
);
3639 mddev
->raid_disks
= conf
->raid_disks
= conf
->previous_raid_disks
;
3640 conf
->expand_progress
= MaxSector
;
3641 spin_unlock_irq(&conf
->device_lock
);
3644 md_wakeup_thread(mddev
->sync_thread
);
3645 md_new_event(mddev
);
3650 static void end_reshape(raid5_conf_t
*conf
)
3652 struct block_device
*bdev
;
3654 if (!test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
)) {
3655 conf
->mddev
->array_size
= conf
->mddev
->size
* (conf
->raid_disks
-1);
3656 set_capacity(conf
->mddev
->gendisk
, conf
->mddev
->array_size
<< 1);
3657 conf
->mddev
->changed
= 1;
3659 bdev
= bdget_disk(conf
->mddev
->gendisk
, 0);
3661 mutex_lock(&bdev
->bd_inode
->i_mutex
);
3662 i_size_write(bdev
->bd_inode
, conf
->mddev
->array_size
<< 10);
3663 mutex_unlock(&bdev
->bd_inode
->i_mutex
);
3666 spin_lock_irq(&conf
->device_lock
);
3667 conf
->expand_progress
= MaxSector
;
3668 spin_unlock_irq(&conf
->device_lock
);
3669 conf
->mddev
->reshape_position
= MaxSector
;
3671 /* read-ahead size must cover two whole stripes, which is
3672 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
3675 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
3676 int stripe
= data_disks
*
3677 (conf
->mddev
->chunk_size
/ PAGE_SIZE
);
3678 if (conf
->mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
3679 conf
->mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
3684 static void raid5_quiesce(mddev_t
*mddev
, int state
)
3686 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3689 case 2: /* resume for a suspend */
3690 wake_up(&conf
->wait_for_overlap
);
3693 case 1: /* stop all writes */
3694 spin_lock_irq(&conf
->device_lock
);
3696 wait_event_lock_irq(conf
->wait_for_stripe
,
3697 atomic_read(&conf
->active_stripes
) == 0,
3698 conf
->device_lock
, /* nothing */);
3699 spin_unlock_irq(&conf
->device_lock
);
3702 case 0: /* re-enable writes */
3703 spin_lock_irq(&conf
->device_lock
);
3705 wake_up(&conf
->wait_for_stripe
);
3706 wake_up(&conf
->wait_for_overlap
);
3707 spin_unlock_irq(&conf
->device_lock
);
3712 static struct mdk_personality raid6_personality
=
3716 .owner
= THIS_MODULE
,
3717 .make_request
= make_request
,
3721 .error_handler
= error
,
3722 .hot_add_disk
= raid5_add_disk
,
3723 .hot_remove_disk
= raid5_remove_disk
,
3724 .spare_active
= raid5_spare_active
,
3725 .sync_request
= sync_request
,
3726 .resize
= raid5_resize
,
3727 .quiesce
= raid5_quiesce
,
3729 static struct mdk_personality raid5_personality
=
3733 .owner
= THIS_MODULE
,
3734 .make_request
= make_request
,
3738 .error_handler
= error
,
3739 .hot_add_disk
= raid5_add_disk
,
3740 .hot_remove_disk
= raid5_remove_disk
,
3741 .spare_active
= raid5_spare_active
,
3742 .sync_request
= sync_request
,
3743 .resize
= raid5_resize
,
3744 #ifdef CONFIG_MD_RAID5_RESHAPE
3745 .check_reshape
= raid5_check_reshape
,
3746 .start_reshape
= raid5_start_reshape
,
3748 .quiesce
= raid5_quiesce
,
3751 static struct mdk_personality raid4_personality
=
3755 .owner
= THIS_MODULE
,
3756 .make_request
= make_request
,
3760 .error_handler
= error
,
3761 .hot_add_disk
= raid5_add_disk
,
3762 .hot_remove_disk
= raid5_remove_disk
,
3763 .spare_active
= raid5_spare_active
,
3764 .sync_request
= sync_request
,
3765 .resize
= raid5_resize
,
3766 .quiesce
= raid5_quiesce
,
3769 static int __init
raid5_init(void)
3773 e
= raid6_select_algo();
3776 register_md_personality(&raid6_personality
);
3777 register_md_personality(&raid5_personality
);
3778 register_md_personality(&raid4_personality
);
3782 static void raid5_exit(void)
3784 unregister_md_personality(&raid6_personality
);
3785 unregister_md_personality(&raid5_personality
);
3786 unregister_md_personality(&raid4_personality
);
3789 module_init(raid5_init
);
3790 module_exit(raid5_exit
);
3791 MODULE_LICENSE("GPL");
3792 MODULE_ALIAS("md-personality-4"); /* RAID5 */
3793 MODULE_ALIAS("md-raid5");
3794 MODULE_ALIAS("md-raid4");
3795 MODULE_ALIAS("md-level-5");
3796 MODULE_ALIAS("md-level-4");
3797 MODULE_ALIAS("md-personality-8"); /* RAID6 */
3798 MODULE_ALIAS("md-raid6");
3799 MODULE_ALIAS("md-level-6");
3801 /* This used to be two separate modules, they were: */
3802 MODULE_ALIAS("raid5");
3803 MODULE_ALIAS("raid6");