2 * NAND flash simulator.
4 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
6 * Copyright (C) 2004 Nokia Corporation
8 * Note: NS means "NAND Simulator".
9 * Note: Input means input TO flash chip, output means output FROM chip.
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2, or (at your option) any later
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19 * Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
25 * $Id: nandsim.c,v 1.8 2005/03/19 15:33:56 dedekind Exp $
28 #include <linux/init.h>
29 #include <linux/types.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/vmalloc.h>
33 #include <linux/slab.h>
34 #include <linux/errno.h>
35 #include <linux/string.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/partitions.h>
39 #include <linux/delay.h>
40 #ifdef CONFIG_NS_ABS_POS
45 /* Default simulator parameters values */
46 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \
47 !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
48 !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \
49 !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
50 #define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98
51 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
52 #define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */
53 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
56 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
57 #define CONFIG_NANDSIM_ACCESS_DELAY 25
59 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
60 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
62 #ifndef CONFIG_NANDSIM_ERASE_DELAY
63 #define CONFIG_NANDSIM_ERASE_DELAY 2
65 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
66 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
68 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
69 #define CONFIG_NANDSIM_INPUT_CYCLE 50
71 #ifndef CONFIG_NANDSIM_BUS_WIDTH
72 #define CONFIG_NANDSIM_BUS_WIDTH 8
74 #ifndef CONFIG_NANDSIM_DO_DELAYS
75 #define CONFIG_NANDSIM_DO_DELAYS 0
77 #ifndef CONFIG_NANDSIM_LOG
78 #define CONFIG_NANDSIM_LOG 0
80 #ifndef CONFIG_NANDSIM_DBG
81 #define CONFIG_NANDSIM_DBG 0
84 static uint first_id_byte
= CONFIG_NANDSIM_FIRST_ID_BYTE
;
85 static uint second_id_byte
= CONFIG_NANDSIM_SECOND_ID_BYTE
;
86 static uint third_id_byte
= CONFIG_NANDSIM_THIRD_ID_BYTE
;
87 static uint fourth_id_byte
= CONFIG_NANDSIM_FOURTH_ID_BYTE
;
88 static uint access_delay
= CONFIG_NANDSIM_ACCESS_DELAY
;
89 static uint programm_delay
= CONFIG_NANDSIM_PROGRAMM_DELAY
;
90 static uint erase_delay
= CONFIG_NANDSIM_ERASE_DELAY
;
91 static uint output_cycle
= CONFIG_NANDSIM_OUTPUT_CYCLE
;
92 static uint input_cycle
= CONFIG_NANDSIM_INPUT_CYCLE
;
93 static uint bus_width
= CONFIG_NANDSIM_BUS_WIDTH
;
94 static uint do_delays
= CONFIG_NANDSIM_DO_DELAYS
;
95 static uint log
= CONFIG_NANDSIM_LOG
;
96 static uint dbg
= CONFIG_NANDSIM_DBG
;
98 module_param(first_id_byte
, uint
, 0400);
99 module_param(second_id_byte
, uint
, 0400);
100 module_param(third_id_byte
, uint
, 0400);
101 module_param(fourth_id_byte
, uint
, 0400);
102 module_param(access_delay
, uint
, 0400);
103 module_param(programm_delay
, uint
, 0400);
104 module_param(erase_delay
, uint
, 0400);
105 module_param(output_cycle
, uint
, 0400);
106 module_param(input_cycle
, uint
, 0400);
107 module_param(bus_width
, uint
, 0400);
108 module_param(do_delays
, uint
, 0400);
109 module_param(log
, uint
, 0400);
110 module_param(dbg
, uint
, 0400);
112 MODULE_PARM_DESC(first_id_byte
, "The fist byte returned by NAND Flash 'read ID' command (manufaturer ID)");
113 MODULE_PARM_DESC(second_id_byte
, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
114 MODULE_PARM_DESC(third_id_byte
, "The third byte returned by NAND Flash 'read ID' command");
115 MODULE_PARM_DESC(fourth_id_byte
, "The fourth byte returned by NAND Flash 'read ID' command");
116 MODULE_PARM_DESC(access_delay
, "Initial page access delay (microiseconds)");
117 MODULE_PARM_DESC(programm_delay
, "Page programm delay (microseconds");
118 MODULE_PARM_DESC(erase_delay
, "Sector erase delay (milliseconds)");
119 MODULE_PARM_DESC(output_cycle
, "Word output (from flash) time (nanodeconds)");
120 MODULE_PARM_DESC(input_cycle
, "Word input (to flash) time (nanodeconds)");
121 MODULE_PARM_DESC(bus_width
, "Chip's bus width (8- or 16-bit)");
122 MODULE_PARM_DESC(do_delays
, "Simulate NAND delays using busy-waits if not zero");
123 MODULE_PARM_DESC(log
, "Perform logging if not zero");
124 MODULE_PARM_DESC(dbg
, "Output debug information if not zero");
126 /* The largest possible page size */
127 #define NS_LARGEST_PAGE_SIZE 2048
129 /* The prefix for simulator output */
130 #define NS_OUTPUT_PREFIX "[nandsim]"
132 /* Simulator's output macros (logging, debugging, warning, error) */
133 #define NS_LOG(args...) \
134 do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
135 #define NS_DBG(args...) \
136 do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
137 #define NS_WARN(args...) \
138 do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warnig: " args); } while(0)
139 #define NS_ERR(args...) \
140 do { printk(KERN_ERR NS_OUTPUT_PREFIX " errorr: " args); } while(0)
142 /* Busy-wait delay macros (microseconds, milliseconds) */
143 #define NS_UDELAY(us) \
144 do { if (do_delays) udelay(us); } while(0)
145 #define NS_MDELAY(us) \
146 do { if (do_delays) mdelay(us); } while(0)
148 /* Is the nandsim structure initialized ? */
149 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
151 /* Good operation completion status */
152 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
154 /* Operation failed completion status */
155 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
157 /* Calculate the page offset in flash RAM image by (row, column) address */
158 #define NS_RAW_OFFSET(ns) \
159 (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
161 /* Calculate the OOB offset in flash RAM image by (row, column) address */
162 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
164 /* After a command is input, the simulator goes to one of the following states */
165 #define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */
166 #define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */
167 #define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */
168 #define STATE_CMD_PAGEPROG 0x00000004 /* start page programm */
169 #define STATE_CMD_READOOB 0x00000005 /* read OOB area */
170 #define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */
171 #define STATE_CMD_STATUS 0x00000007 /* read status */
172 #define STATE_CMD_STATUS_M 0x00000008 /* read multi-plane status (isn't implemented) */
173 #define STATE_CMD_SEQIN 0x00000009 /* sequential data imput */
174 #define STATE_CMD_READID 0x0000000A /* read ID */
175 #define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */
176 #define STATE_CMD_RESET 0x0000000C /* reset */
177 #define STATE_CMD_MASK 0x0000000F /* command states mask */
179 /* After an addres is input, the simulator goes to one of these states */
180 #define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */
181 #define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */
182 #define STATE_ADDR_ZERO 0x00000030 /* one byte zero address was accepted */
183 #define STATE_ADDR_MASK 0x00000030 /* address states mask */
185 /* Durind data input/output the simulator is in these states */
186 #define STATE_DATAIN 0x00000100 /* waiting for data input */
187 #define STATE_DATAIN_MASK 0x00000100 /* data input states mask */
189 #define STATE_DATAOUT 0x00001000 /* waiting for page data output */
190 #define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */
191 #define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */
192 #define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
193 #define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */
195 /* Previous operation is done, ready to accept new requests */
196 #define STATE_READY 0x00000000
198 /* This state is used to mark that the next state isn't known yet */
199 #define STATE_UNKNOWN 0x10000000
201 /* Simulator's actions bit masks */
202 #define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */
203 #define ACTION_PRGPAGE 0x00200000 /* programm the internal buffer to flash */
204 #define ACTION_SECERASE 0x00300000 /* erase sector */
205 #define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */
206 #define ACTION_HALFOFF 0x00500000 /* add to address half of page */
207 #define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */
208 #define ACTION_MASK 0x00700000 /* action mask */
210 #define NS_OPER_NUM 12 /* Number of operations supported by the simulator */
211 #define NS_OPER_STATES 6 /* Maximum number of states in operation */
213 #define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */
214 #define OPT_PAGE256 0x00000001 /* 256-byte page chips */
215 #define OPT_PAGE512 0x00000002 /* 512-byte page chips */
216 #define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */
217 #define OPT_SMARTMEDIA 0x00000010 /* SmartMedia technology chips */
218 #define OPT_AUTOINCR 0x00000020 /* page number auto inctimentation is possible */
219 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
220 #define OPT_LARGEPAGE (OPT_PAGE2048) /* 2048-byte page chips */
221 #define OPT_SMALLPAGE (OPT_PAGE256 | OPT_PAGE512) /* 256 and 512-byte page chips */
223 /* Remove action bits ftom state */
224 #define NS_STATE(x) ((x) & ~ACTION_MASK)
227 * Maximum previous states which need to be saved. Currently saving is
228 * only needed for page programm operation with preceeded read command
229 * (which is only valid for 512-byte pages).
231 #define NS_MAX_PREVSTATES 1
234 * The structure which describes all the internal simulator data.
237 struct mtd_partition part
;
239 uint busw
; /* flash chip bus width (8 or 16) */
240 u_char ids
[4]; /* chip's ID bytes */
241 uint32_t options
; /* chip's characteristic bits */
242 uint32_t state
; /* current chip state */
243 uint32_t nxstate
; /* next expected state */
245 uint32_t *op
; /* current operation, NULL operations isn't known yet */
246 uint32_t pstates
[NS_MAX_PREVSTATES
]; /* previous states */
247 uint16_t npstates
; /* number of previous states saved */
248 uint16_t stateidx
; /* current state index */
250 /* The simulated NAND flash image */
256 /* Internal buffer of page + OOB size bytes */
257 union internal_buffer
{
258 u_char
*byte
; /* for byte access */
259 uint16_t *word
; /* for 16-bit word access */
262 /* NAND flash "geometry" */
263 struct nandsin_geometry
{
264 uint32_t totsz
; /* total flash size, bytes */
265 uint32_t secsz
; /* flash sector (erase block) size, bytes */
266 uint pgsz
; /* NAND flash page size, bytes */
267 uint oobsz
; /* page OOB area size, bytes */
268 uint32_t totszoob
; /* total flash size including OOB, bytes */
269 uint pgszoob
; /* page size including OOB , bytes*/
270 uint secszoob
; /* sector size including OOB, bytes */
271 uint pgnum
; /* total number of pages */
272 uint pgsec
; /* number of pages per sector */
273 uint secshift
; /* bits number in sector size */
274 uint pgshift
; /* bits number in page size */
275 uint oobshift
; /* bits number in OOB size */
276 uint pgaddrbytes
; /* bytes per page address */
277 uint secaddrbytes
; /* bytes per sector address */
278 uint idbytes
; /* the number ID bytes that this chip outputs */
281 /* NAND flash internal registers */
282 struct nandsim_regs
{
283 unsigned command
; /* the command register */
284 u_char status
; /* the status register */
285 uint row
; /* the page number */
286 uint column
; /* the offset within page */
287 uint count
; /* internal counter */
288 uint num
; /* number of bytes which must be processed */
289 uint off
; /* fixed page offset */
292 /* NAND flash lines state */
293 struct ns_lines_status
{
294 int ce
; /* chip Enable */
295 int cle
; /* command Latch Enable */
296 int ale
; /* address Latch Enable */
297 int wp
; /* write Protect */
302 * Operations array. To perform any operation the simulator must pass
303 * through the correspondent states chain.
305 static struct nandsim_operations
{
306 uint32_t reqopts
; /* options which are required to perform the operation */
307 uint32_t states
[NS_OPER_STATES
]; /* operation's states */
308 } ops
[NS_OPER_NUM
] = {
309 /* Read page + OOB from the beginning */
310 {OPT_SMALLPAGE
, {STATE_CMD_READ0
| ACTION_ZEROOFF
, STATE_ADDR_PAGE
| ACTION_CPY
,
311 STATE_DATAOUT
, STATE_READY
}},
312 /* Read page + OOB from the second half */
313 {OPT_PAGE512_8BIT
, {STATE_CMD_READ1
| ACTION_HALFOFF
, STATE_ADDR_PAGE
| ACTION_CPY
,
314 STATE_DATAOUT
, STATE_READY
}},
316 {OPT_SMALLPAGE
, {STATE_CMD_READOOB
| ACTION_OOBOFF
, STATE_ADDR_PAGE
| ACTION_CPY
,
317 STATE_DATAOUT
, STATE_READY
}},
318 /* Programm page starting from the beginning */
319 {OPT_ANY
, {STATE_CMD_SEQIN
, STATE_ADDR_PAGE
, STATE_DATAIN
,
320 STATE_CMD_PAGEPROG
| ACTION_PRGPAGE
, STATE_READY
}},
321 /* Programm page starting from the beginning */
322 {OPT_SMALLPAGE
, {STATE_CMD_READ0
, STATE_CMD_SEQIN
| ACTION_ZEROOFF
, STATE_ADDR_PAGE
,
323 STATE_DATAIN
, STATE_CMD_PAGEPROG
| ACTION_PRGPAGE
, STATE_READY
}},
324 /* Programm page starting from the second half */
325 {OPT_PAGE512
, {STATE_CMD_READ1
, STATE_CMD_SEQIN
| ACTION_HALFOFF
, STATE_ADDR_PAGE
,
326 STATE_DATAIN
, STATE_CMD_PAGEPROG
| ACTION_PRGPAGE
, STATE_READY
}},
328 {OPT_SMALLPAGE
, {STATE_CMD_READOOB
, STATE_CMD_SEQIN
| ACTION_OOBOFF
, STATE_ADDR_PAGE
,
329 STATE_DATAIN
, STATE_CMD_PAGEPROG
| ACTION_PRGPAGE
, STATE_READY
}},
331 {OPT_ANY
, {STATE_CMD_ERASE1
, STATE_ADDR_SEC
, STATE_CMD_ERASE2
| ACTION_SECERASE
, STATE_READY
}},
333 {OPT_ANY
, {STATE_CMD_STATUS
, STATE_DATAOUT_STATUS
, STATE_READY
}},
334 /* Read multi-plane status */
335 {OPT_SMARTMEDIA
, {STATE_CMD_STATUS_M
, STATE_DATAOUT_STATUS_M
, STATE_READY
}},
337 {OPT_ANY
, {STATE_CMD_READID
, STATE_ADDR_ZERO
, STATE_DATAOUT_ID
, STATE_READY
}},
338 /* Large page devices read page */
339 {OPT_LARGEPAGE
, {STATE_CMD_READ0
, STATE_ADDR_PAGE
, STATE_CMD_READSTART
| ACTION_CPY
,
340 STATE_DATAOUT
, STATE_READY
}}
343 /* MTD structure for NAND controller */
344 static struct mtd_info
*nsmtd
;
346 static u_char ns_verify_buf
[NS_LARGEST_PAGE_SIZE
];
349 * Initialize the nandsim structure.
351 * RETURNS: 0 if success, -ERRNO if failure.
354 init_nandsim(struct mtd_info
*mtd
)
356 struct nand_chip
*chip
= (struct nand_chip
*)mtd
->priv
;
357 struct nandsim
*ns
= (struct nandsim
*)(chip
->priv
);
360 if (NS_IS_INITIALIZED(ns
)) {
361 NS_ERR("init_nandsim: nandsim is already initialized\n");
365 /* Force mtd to not do delays */
366 chip
->chip_delay
= 0;
368 /* Initialize the NAND flash parameters */
369 ns
->busw
= chip
->options
& NAND_BUSWIDTH_16
? 16 : 8;
370 ns
->geom
.totsz
= mtd
->size
;
371 ns
->geom
.pgsz
= mtd
->writesize
;
372 ns
->geom
.oobsz
= mtd
->oobsize
;
373 ns
->geom
.secsz
= mtd
->erasesize
;
374 ns
->geom
.pgszoob
= ns
->geom
.pgsz
+ ns
->geom
.oobsz
;
375 ns
->geom
.pgnum
= ns
->geom
.totsz
/ ns
->geom
.pgsz
;
376 ns
->geom
.totszoob
= ns
->geom
.totsz
+ ns
->geom
.pgnum
* ns
->geom
.oobsz
;
377 ns
->geom
.secshift
= ffs(ns
->geom
.secsz
) - 1;
378 ns
->geom
.pgshift
= chip
->page_shift
;
379 ns
->geom
.oobshift
= ffs(ns
->geom
.oobsz
) - 1;
380 ns
->geom
.pgsec
= ns
->geom
.secsz
/ ns
->geom
.pgsz
;
381 ns
->geom
.secszoob
= ns
->geom
.secsz
+ ns
->geom
.oobsz
* ns
->geom
.pgsec
;
384 if (ns
->geom
.pgsz
== 256) {
385 ns
->options
|= OPT_PAGE256
;
387 else if (ns
->geom
.pgsz
== 512) {
388 ns
->options
|= (OPT_PAGE512
| OPT_AUTOINCR
);
390 ns
->options
|= OPT_PAGE512_8BIT
;
391 } else if (ns
->geom
.pgsz
== 2048) {
392 ns
->options
|= OPT_PAGE2048
;
394 NS_ERR("init_nandsim: unknown page size %u\n", ns
->geom
.pgsz
);
398 if (ns
->options
& OPT_SMALLPAGE
) {
399 if (ns
->geom
.totsz
< (64 << 20)) {
400 ns
->geom
.pgaddrbytes
= 3;
401 ns
->geom
.secaddrbytes
= 2;
403 ns
->geom
.pgaddrbytes
= 4;
404 ns
->geom
.secaddrbytes
= 3;
407 if (ns
->geom
.totsz
<= (128 << 20)) {
408 ns
->geom
.pgaddrbytes
= 5;
409 ns
->geom
.secaddrbytes
= 2;
411 ns
->geom
.pgaddrbytes
= 5;
412 ns
->geom
.secaddrbytes
= 3;
416 /* Detect how many ID bytes the NAND chip outputs */
417 for (i
= 0; nand_flash_ids
[i
].name
!= NULL
; i
++) {
418 if (second_id_byte
!= nand_flash_ids
[i
].id
)
420 if (!(nand_flash_ids
[i
].options
& NAND_NO_AUTOINCR
))
421 ns
->options
|= OPT_AUTOINCR
;
425 NS_WARN("16-bit flashes support wasn't tested\n");
427 printk("flash size: %u MiB\n", ns
->geom
.totsz
>> 20);
428 printk("page size: %u bytes\n", ns
->geom
.pgsz
);
429 printk("OOB area size: %u bytes\n", ns
->geom
.oobsz
);
430 printk("sector size: %u KiB\n", ns
->geom
.secsz
>> 10);
431 printk("pages number: %u\n", ns
->geom
.pgnum
);
432 printk("pages per sector: %u\n", ns
->geom
.pgsec
);
433 printk("bus width: %u\n", ns
->busw
);
434 printk("bits in sector size: %u\n", ns
->geom
.secshift
);
435 printk("bits in page size: %u\n", ns
->geom
.pgshift
);
436 printk("bits in OOB size: %u\n", ns
->geom
.oobshift
);
437 printk("flash size with OOB: %u KiB\n", ns
->geom
.totszoob
>> 10);
438 printk("page address bytes: %u\n", ns
->geom
.pgaddrbytes
);
439 printk("sector address bytes: %u\n", ns
->geom
.secaddrbytes
);
440 printk("options: %#x\n", ns
->options
);
442 /* Map / allocate and initialize the flash image */
443 #ifdef CONFIG_NS_ABS_POS
444 ns
->mem
.byte
= ioremap(CONFIG_NS_ABS_POS
, ns
->geom
.totszoob
);
446 NS_ERR("init_nandsim: failed to map the NAND flash image at address %p\n",
447 (void *)CONFIG_NS_ABS_POS
);
451 ns
->mem
.byte
= vmalloc(ns
->geom
.totszoob
);
453 NS_ERR("init_nandsim: unable to allocate %u bytes for flash image\n",
457 memset(ns
->mem
.byte
, 0xFF, ns
->geom
.totszoob
);
460 /* Allocate / initialize the internal buffer */
461 ns
->buf
.byte
= kmalloc(ns
->geom
.pgszoob
, GFP_KERNEL
);
463 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
467 memset(ns
->buf
.byte
, 0xFF, ns
->geom
.pgszoob
);
469 /* Fill the partition_info structure */
470 ns
->part
.name
= "NAND simulator partition";
472 ns
->part
.size
= ns
->geom
.totsz
;
477 #ifdef CONFIG_NS_ABS_POS
478 iounmap(ns
->mem
.byte
);
487 * Free the nandsim structure.
490 free_nandsim(struct nandsim
*ns
)
494 #ifdef CONFIG_NS_ABS_POS
495 iounmap(ns
->mem
.byte
);
504 * Returns the string representation of 'state' state.
507 get_state_name(uint32_t state
)
509 switch (NS_STATE(state
)) {
510 case STATE_CMD_READ0
:
511 return "STATE_CMD_READ0";
512 case STATE_CMD_READ1
:
513 return "STATE_CMD_READ1";
514 case STATE_CMD_PAGEPROG
:
515 return "STATE_CMD_PAGEPROG";
516 case STATE_CMD_READOOB
:
517 return "STATE_CMD_READOOB";
518 case STATE_CMD_READSTART
:
519 return "STATE_CMD_READSTART";
520 case STATE_CMD_ERASE1
:
521 return "STATE_CMD_ERASE1";
522 case STATE_CMD_STATUS
:
523 return "STATE_CMD_STATUS";
524 case STATE_CMD_STATUS_M
:
525 return "STATE_CMD_STATUS_M";
526 case STATE_CMD_SEQIN
:
527 return "STATE_CMD_SEQIN";
528 case STATE_CMD_READID
:
529 return "STATE_CMD_READID";
530 case STATE_CMD_ERASE2
:
531 return "STATE_CMD_ERASE2";
532 case STATE_CMD_RESET
:
533 return "STATE_CMD_RESET";
534 case STATE_ADDR_PAGE
:
535 return "STATE_ADDR_PAGE";
537 return "STATE_ADDR_SEC";
538 case STATE_ADDR_ZERO
:
539 return "STATE_ADDR_ZERO";
541 return "STATE_DATAIN";
543 return "STATE_DATAOUT";
544 case STATE_DATAOUT_ID
:
545 return "STATE_DATAOUT_ID";
546 case STATE_DATAOUT_STATUS
:
547 return "STATE_DATAOUT_STATUS";
548 case STATE_DATAOUT_STATUS_M
:
549 return "STATE_DATAOUT_STATUS_M";
551 return "STATE_READY";
553 return "STATE_UNKNOWN";
556 NS_ERR("get_state_name: unknown state, BUG\n");
561 * Check if command is valid.
563 * RETURNS: 1 if wrong command, 0 if right.
566 check_command(int cmd
)
571 case NAND_CMD_READSTART
:
572 case NAND_CMD_PAGEPROG
:
573 case NAND_CMD_READOOB
:
574 case NAND_CMD_ERASE1
:
575 case NAND_CMD_STATUS
:
577 case NAND_CMD_READID
:
578 case NAND_CMD_ERASE2
:
583 case NAND_CMD_STATUS_MULTI
:
590 * Returns state after command is accepted by command number.
593 get_state_by_command(unsigned command
)
597 return STATE_CMD_READ0
;
599 return STATE_CMD_READ1
;
600 case NAND_CMD_PAGEPROG
:
601 return STATE_CMD_PAGEPROG
;
602 case NAND_CMD_READSTART
:
603 return STATE_CMD_READSTART
;
604 case NAND_CMD_READOOB
:
605 return STATE_CMD_READOOB
;
606 case NAND_CMD_ERASE1
:
607 return STATE_CMD_ERASE1
;
608 case NAND_CMD_STATUS
:
609 return STATE_CMD_STATUS
;
610 case NAND_CMD_STATUS_MULTI
:
611 return STATE_CMD_STATUS_M
;
613 return STATE_CMD_SEQIN
;
614 case NAND_CMD_READID
:
615 return STATE_CMD_READID
;
616 case NAND_CMD_ERASE2
:
617 return STATE_CMD_ERASE2
;
619 return STATE_CMD_RESET
;
622 NS_ERR("get_state_by_command: unknown command, BUG\n");
627 * Move an address byte to the correspondent internal register.
630 accept_addr_byte(struct nandsim
*ns
, u_char bt
)
632 uint byte
= (uint
)bt
;
634 if (ns
->regs
.count
< (ns
->geom
.pgaddrbytes
- ns
->geom
.secaddrbytes
))
635 ns
->regs
.column
|= (byte
<< 8 * ns
->regs
.count
);
637 ns
->regs
.row
|= (byte
<< 8 * (ns
->regs
.count
-
638 ns
->geom
.pgaddrbytes
+
639 ns
->geom
.secaddrbytes
));
646 * Switch to STATE_READY state.
649 switch_to_ready_state(struct nandsim
*ns
, u_char status
)
651 NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY
));
653 ns
->state
= STATE_READY
;
654 ns
->nxstate
= STATE_UNKNOWN
;
663 ns
->regs
.status
= status
;
667 * If the operation isn't known yet, try to find it in the global array
668 * of supported operations.
670 * Operation can be unknown because of the following.
671 * 1. New command was accepted and this is the firs call to find the
672 * correspondent states chain. In this case ns->npstates = 0;
673 * 2. There is several operations which begin with the same command(s)
674 * (for example program from the second half and read from the
675 * second half operations both begin with the READ1 command). In this
676 * case the ns->pstates[] array contains previous states.
678 * Thus, the function tries to find operation containing the following
679 * states (if the 'flag' parameter is 0):
680 * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
682 * If (one and only one) matching operation is found, it is accepted (
683 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
686 * If there are several maches, the current state is pushed to the
689 * The operation can be unknown only while commands are input to the chip.
690 * As soon as address command is accepted, the operation must be known.
691 * In such situation the function is called with 'flag' != 0, and the
692 * operation is searched using the following pattern:
693 * ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
695 * It is supposed that this pattern must either match one operation on
696 * none. There can't be ambiguity in that case.
698 * If no matches found, the functions does the following:
699 * 1. if there are saved states present, try to ignore them and search
700 * again only using the last command. If nothing was found, switch
701 * to the STATE_READY state.
702 * 2. if there are no saved states, switch to the STATE_READY state.
704 * RETURNS: -2 - no matched operations found.
705 * -1 - several matches.
706 * 0 - operation is found.
709 find_operation(struct nandsim
*ns
, uint32_t flag
)
714 for (i
= 0; i
< NS_OPER_NUM
; i
++) {
718 if (!(ns
->options
& ops
[i
].reqopts
))
719 /* Ignore operations we can't perform */
723 if (!(ops
[i
].states
[ns
->npstates
] & STATE_ADDR_MASK
))
726 if (NS_STATE(ns
->state
) != NS_STATE(ops
[i
].states
[ns
->npstates
]))
730 for (j
= 0; j
< ns
->npstates
; j
++)
731 if (NS_STATE(ops
[i
].states
[j
]) != NS_STATE(ns
->pstates
[j
])
732 && (ns
->options
& ops
[idx
].reqopts
)) {
745 ns
->op
= &ops
[idx
].states
[0];
748 * In this case the find_operation function was
749 * called when address has just began input. But it isn't
750 * yet fully input and the current state must
751 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
752 * state must be the next state (ns->nxstate).
754 ns
->stateidx
= ns
->npstates
- 1;
756 ns
->stateidx
= ns
->npstates
;
759 ns
->state
= ns
->op
[ns
->stateidx
];
760 ns
->nxstate
= ns
->op
[ns
->stateidx
+ 1];
761 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
762 idx
, get_state_name(ns
->state
), get_state_name(ns
->nxstate
));
767 /* Nothing was found. Try to ignore previous commands (if any) and search again */
768 if (ns
->npstates
!= 0) {
769 NS_DBG("find_operation: no operation found, try again with state %s\n",
770 get_state_name(ns
->state
));
772 return find_operation(ns
, 0);
775 NS_DBG("find_operation: no operations found\n");
776 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
781 /* This shouldn't happen */
782 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
786 NS_DBG("find_operation: there is still ambiguity\n");
788 ns
->pstates
[ns
->npstates
++] = ns
->state
;
794 * If state has any action bit, perform this action.
796 * RETURNS: 0 if success, -1 if error.
799 do_state_action(struct nandsim
*ns
, uint32_t action
)
802 int busdiv
= ns
->busw
== 8 ? 1 : 2;
804 action
&= ACTION_MASK
;
806 /* Check that page address input is correct */
807 if (action
!= ACTION_SECERASE
&& ns
->regs
.row
>= ns
->geom
.pgnum
) {
808 NS_WARN("do_state_action: wrong page number (%#x)\n", ns
->regs
.row
);
816 * Copy page data to the internal buffer.
819 /* Column shouldn't be very large */
820 if (ns
->regs
.column
>= (ns
->geom
.pgszoob
- ns
->regs
.off
)) {
821 NS_ERR("do_state_action: column number is too large\n");
824 num
= ns
->geom
.pgszoob
- ns
->regs
.off
- ns
->regs
.column
;
825 memcpy(ns
->buf
.byte
, ns
->mem
.byte
+ NS_RAW_OFFSET(ns
) + ns
->regs
.off
, num
);
827 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
828 num
, NS_RAW_OFFSET(ns
) + ns
->regs
.off
);
830 if (ns
->regs
.off
== 0)
831 NS_LOG("read page %d\n", ns
->regs
.row
);
832 else if (ns
->regs
.off
< ns
->geom
.pgsz
)
833 NS_LOG("read page %d (second half)\n", ns
->regs
.row
);
835 NS_LOG("read OOB of page %d\n", ns
->regs
.row
);
837 NS_UDELAY(access_delay
);
838 NS_UDELAY(input_cycle
* ns
->geom
.pgsz
/ 1000 / busdiv
);
842 case ACTION_SECERASE
:
848 NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
852 if (ns
->regs
.row
>= ns
->geom
.pgnum
- ns
->geom
.pgsec
853 || (ns
->regs
.row
& ~(ns
->geom
.secsz
- 1))) {
854 NS_ERR("do_state_action: wrong sector address (%#x)\n", ns
->regs
.row
);
858 ns
->regs
.row
= (ns
->regs
.row
<<
859 8 * (ns
->geom
.pgaddrbytes
- ns
->geom
.secaddrbytes
)) | ns
->regs
.column
;
862 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
863 ns
->regs
.row
, NS_RAW_OFFSET(ns
));
864 NS_LOG("erase sector %d\n", ns
->regs
.row
>> (ns
->geom
.secshift
- ns
->geom
.pgshift
));
866 memset(ns
->mem
.byte
+ NS_RAW_OFFSET(ns
), 0xFF, ns
->geom
.secszoob
);
868 NS_MDELAY(erase_delay
);
874 * Programm page - move internal buffer data to the page.
878 NS_WARN("do_state_action: device is write-protected, programm\n");
882 num
= ns
->geom
.pgszoob
- ns
->regs
.off
- ns
->regs
.column
;
883 if (num
!= ns
->regs
.count
) {
884 NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
885 ns
->regs
.count
, num
);
889 for (i
= 0; i
< num
; i
++)
890 ns
->mem
.byte
[NS_RAW_OFFSET(ns
) + ns
->regs
.off
+ i
] &= ns
->buf
.byte
[i
];
892 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
893 num
, ns
->regs
.row
, ns
->regs
.column
, NS_RAW_OFFSET(ns
) + ns
->regs
.off
);
894 NS_LOG("programm page %d\n", ns
->regs
.row
);
896 NS_UDELAY(programm_delay
);
897 NS_UDELAY(output_cycle
* ns
->geom
.pgsz
/ 1000 / busdiv
);
902 NS_DBG("do_state_action: set internal offset to 0\n");
907 if (!(ns
->options
& OPT_PAGE512_8BIT
)) {
908 NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
909 "byte page size 8x chips\n");
912 NS_DBG("do_state_action: set internal offset to %d\n", ns
->geom
.pgsz
/2);
913 ns
->regs
.off
= ns
->geom
.pgsz
/2;
917 NS_DBG("do_state_action: set internal offset to %d\n", ns
->geom
.pgsz
);
918 ns
->regs
.off
= ns
->geom
.pgsz
;
922 NS_DBG("do_state_action: BUG! unknown action\n");
929 * Switch simulator's state.
932 switch_state(struct nandsim
*ns
)
936 * The current operation have already been identified.
937 * Just follow the states chain.
941 ns
->state
= ns
->nxstate
;
942 ns
->nxstate
= ns
->op
[ns
->stateidx
+ 1];
944 NS_DBG("switch_state: operation is known, switch to the next state, "
945 "state: %s, nxstate: %s\n",
946 get_state_name(ns
->state
), get_state_name(ns
->nxstate
));
948 /* See, whether we need to do some action */
949 if ((ns
->state
& ACTION_MASK
) && do_state_action(ns
, ns
->state
) < 0) {
950 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
956 * We don't yet know which operation we perform.
957 * Try to identify it.
961 * The only event causing the switch_state function to
962 * be called with yet unknown operation is new command.
964 ns
->state
= get_state_by_command(ns
->regs
.command
);
966 NS_DBG("switch_state: operation is unknown, try to find it\n");
968 if (find_operation(ns
, 0) != 0)
971 if ((ns
->state
& ACTION_MASK
) && do_state_action(ns
, ns
->state
) < 0) {
972 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
977 /* For 16x devices column means the page offset in words */
978 if ((ns
->nxstate
& STATE_ADDR_MASK
) && ns
->busw
== 16) {
979 NS_DBG("switch_state: double the column number for 16x device\n");
980 ns
->regs
.column
<<= 1;
983 if (NS_STATE(ns
->nxstate
) == STATE_READY
) {
985 * The current state is the last. Return to STATE_READY
988 u_char status
= NS_STATUS_OK(ns
);
990 /* In case of data states, see if all bytes were input/output */
991 if ((ns
->state
& (STATE_DATAIN_MASK
| STATE_DATAOUT_MASK
))
992 && ns
->regs
.count
!= ns
->regs
.num
) {
993 NS_WARN("switch_state: not all bytes were processed, %d left\n",
994 ns
->regs
.num
- ns
->regs
.count
);
995 status
= NS_STATUS_FAILED(ns
);
998 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1000 switch_to_ready_state(ns
, status
);
1003 } else if (ns
->nxstate
& (STATE_DATAIN_MASK
| STATE_DATAOUT_MASK
)) {
1005 * If the next state is data input/output, switch to it now
1008 ns
->state
= ns
->nxstate
;
1009 ns
->nxstate
= ns
->op
[++ns
->stateidx
+ 1];
1010 ns
->regs
.num
= ns
->regs
.count
= 0;
1012 NS_DBG("switch_state: the next state is data I/O, switch, "
1013 "state: %s, nxstate: %s\n",
1014 get_state_name(ns
->state
), get_state_name(ns
->nxstate
));
1017 * Set the internal register to the count of bytes which
1018 * are expected to be input or output
1020 switch (NS_STATE(ns
->state
)) {
1023 ns
->regs
.num
= ns
->geom
.pgszoob
- ns
->regs
.off
- ns
->regs
.column
;
1026 case STATE_DATAOUT_ID
:
1027 ns
->regs
.num
= ns
->geom
.idbytes
;
1030 case STATE_DATAOUT_STATUS
:
1031 case STATE_DATAOUT_STATUS_M
:
1032 ns
->regs
.count
= ns
->regs
.num
= 0;
1036 NS_ERR("switch_state: BUG! unknown data state\n");
1039 } else if (ns
->nxstate
& STATE_ADDR_MASK
) {
1041 * If the next state is address input, set the internal
1042 * register to the number of expected address bytes
1047 switch (NS_STATE(ns
->nxstate
)) {
1048 case STATE_ADDR_PAGE
:
1049 ns
->regs
.num
= ns
->geom
.pgaddrbytes
;
1052 case STATE_ADDR_SEC
:
1053 ns
->regs
.num
= ns
->geom
.secaddrbytes
;
1056 case STATE_ADDR_ZERO
:
1061 NS_ERR("switch_state: BUG! unknown address state\n");
1065 * Just reset internal counters.
1074 ns_nand_read_byte(struct mtd_info
*mtd
)
1076 struct nandsim
*ns
= (struct nandsim
*)((struct nand_chip
*)mtd
->priv
)->priv
;
1079 /* Sanity and correctness checks */
1080 if (!ns
->lines
.ce
) {
1081 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint
)outb
);
1084 if (ns
->lines
.ale
|| ns
->lines
.cle
) {
1085 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint
)outb
);
1088 if (!(ns
->state
& STATE_DATAOUT_MASK
)) {
1089 NS_WARN("read_byte: unexpected data output cycle, state is %s "
1090 "return %#x\n", get_state_name(ns
->state
), (uint
)outb
);
1094 /* Status register may be read as many times as it is wanted */
1095 if (NS_STATE(ns
->state
) == STATE_DATAOUT_STATUS
) {
1096 NS_DBG("read_byte: return %#x status\n", ns
->regs
.status
);
1097 return ns
->regs
.status
;
1100 /* Check if there is any data in the internal buffer which may be read */
1101 if (ns
->regs
.count
== ns
->regs
.num
) {
1102 NS_WARN("read_byte: no more data to output, return %#x\n", (uint
)outb
);
1106 switch (NS_STATE(ns
->state
)) {
1108 if (ns
->busw
== 8) {
1109 outb
= ns
->buf
.byte
[ns
->regs
.count
];
1110 ns
->regs
.count
+= 1;
1112 outb
= (u_char
)cpu_to_le16(ns
->buf
.word
[ns
->regs
.count
>> 1]);
1113 ns
->regs
.count
+= 2;
1116 case STATE_DATAOUT_ID
:
1117 NS_DBG("read_byte: read ID byte %d, total = %d\n", ns
->regs
.count
, ns
->regs
.num
);
1118 outb
= ns
->ids
[ns
->regs
.count
];
1119 ns
->regs
.count
+= 1;
1125 if (ns
->regs
.count
== ns
->regs
.num
) {
1126 NS_DBG("read_byte: all bytes were read\n");
1129 * The OPT_AUTOINCR allows to read next conseqitive pages without
1130 * new read operation cycle.
1132 if ((ns
->options
& OPT_AUTOINCR
) && NS_STATE(ns
->state
) == STATE_DATAOUT
) {
1134 if (ns
->regs
.row
+ 1 < ns
->geom
.pgnum
)
1136 NS_DBG("read_byte: switch to the next page (%#x)\n", ns
->regs
.row
);
1137 do_state_action(ns
, ACTION_CPY
);
1139 else if (NS_STATE(ns
->nxstate
) == STATE_READY
)
1148 ns_nand_write_byte(struct mtd_info
*mtd
, u_char byte
)
1150 struct nandsim
*ns
= (struct nandsim
*)((struct nand_chip
*)mtd
->priv
)->priv
;
1152 /* Sanity and correctness checks */
1153 if (!ns
->lines
.ce
) {
1154 NS_ERR("write_byte: chip is disabled, ignore write\n");
1157 if (ns
->lines
.ale
&& ns
->lines
.cle
) {
1158 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1162 if (ns
->lines
.cle
== 1) {
1164 * The byte written is a command.
1167 if (byte
== NAND_CMD_RESET
) {
1168 NS_LOG("reset chip\n");
1169 switch_to_ready_state(ns
, NS_STATUS_OK(ns
));
1174 * Chip might still be in STATE_DATAOUT
1175 * (if OPT_AUTOINCR feature is supported), STATE_DATAOUT_STATUS or
1176 * STATE_DATAOUT_STATUS_M state. If so, switch state.
1178 if (NS_STATE(ns
->state
) == STATE_DATAOUT_STATUS
1179 || NS_STATE(ns
->state
) == STATE_DATAOUT_STATUS_M
1180 || ((ns
->options
& OPT_AUTOINCR
) && NS_STATE(ns
->state
) == STATE_DATAOUT
))
1183 /* Check if chip is expecting command */
1184 if (NS_STATE(ns
->nxstate
) != STATE_UNKNOWN
&& !(ns
->nxstate
& STATE_CMD_MASK
)) {
1186 * We are in situation when something else (not command)
1187 * was expected but command was input. In this case ignore
1188 * previous command(s)/state(s) and accept the last one.
1190 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
1191 "ignore previous states\n", (uint
)byte
, get_state_name(ns
->nxstate
));
1192 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1195 /* Check that the command byte is correct */
1196 if (check_command(byte
)) {
1197 NS_ERR("write_byte: unknown command %#x\n", (uint
)byte
);
1201 NS_DBG("command byte corresponding to %s state accepted\n",
1202 get_state_name(get_state_by_command(byte
)));
1203 ns
->regs
.command
= byte
;
1206 } else if (ns
->lines
.ale
== 1) {
1208 * The byte written is an address.
1211 if (NS_STATE(ns
->nxstate
) == STATE_UNKNOWN
) {
1213 NS_DBG("write_byte: operation isn't known yet, identify it\n");
1215 if (find_operation(ns
, 1) < 0)
1218 if ((ns
->state
& ACTION_MASK
) && do_state_action(ns
, ns
->state
) < 0) {
1219 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1224 switch (NS_STATE(ns
->nxstate
)) {
1225 case STATE_ADDR_PAGE
:
1226 ns
->regs
.num
= ns
->geom
.pgaddrbytes
;
1228 case STATE_ADDR_SEC
:
1229 ns
->regs
.num
= ns
->geom
.secaddrbytes
;
1231 case STATE_ADDR_ZERO
:
1239 /* Check that chip is expecting address */
1240 if (!(ns
->nxstate
& STATE_ADDR_MASK
)) {
1241 NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
1242 "switch to STATE_READY\n", (uint
)byte
, get_state_name(ns
->nxstate
));
1243 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1247 /* Check if this is expected byte */
1248 if (ns
->regs
.count
== ns
->regs
.num
) {
1249 NS_ERR("write_byte: no more address bytes expected\n");
1250 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1254 accept_addr_byte(ns
, byte
);
1256 ns
->regs
.count
+= 1;
1258 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
1259 (uint
)byte
, ns
->regs
.count
, ns
->regs
.num
);
1261 if (ns
->regs
.count
== ns
->regs
.num
) {
1262 NS_DBG("address (%#x, %#x) is accepted\n", ns
->regs
.row
, ns
->regs
.column
);
1268 * The byte written is an input data.
1271 /* Check that chip is expecting data input */
1272 if (!(ns
->state
& STATE_DATAIN_MASK
)) {
1273 NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
1274 "switch to %s\n", (uint
)byte
,
1275 get_state_name(ns
->state
), get_state_name(STATE_READY
));
1276 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1280 /* Check if this is expected byte */
1281 if (ns
->regs
.count
== ns
->regs
.num
) {
1282 NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
1287 if (ns
->busw
== 8) {
1288 ns
->buf
.byte
[ns
->regs
.count
] = byte
;
1289 ns
->regs
.count
+= 1;
1291 ns
->buf
.word
[ns
->regs
.count
>> 1] = cpu_to_le16((uint16_t)byte
);
1292 ns
->regs
.count
+= 2;
1299 static void ns_hwcontrol(struct mtd_info
*mtd
, int cmd
, unsigned int bitmask
)
1301 struct nandsim
*ns
= ((struct nand_chip
*)mtd
->priv
)->priv
;
1303 ns
->lines
.cle
= bitmask
& NAND_CLE
? 1 : 0;
1304 ns
->lines
.ale
= bitmask
& NAND_ALE
? 1 : 0;
1305 ns
->lines
.ce
= bitmask
& NAND_NCE
? 1 : 0;
1307 if (cmd
!= NAND_CMD_NONE
)
1308 ns_nand_write_byte(mtd
, cmd
);
1312 ns_device_ready(struct mtd_info
*mtd
)
1314 NS_DBG("device_ready\n");
1319 ns_nand_read_word(struct mtd_info
*mtd
)
1321 struct nand_chip
*chip
= (struct nand_chip
*)mtd
->priv
;
1323 NS_DBG("read_word\n");
1325 return chip
->read_byte(mtd
) | (chip
->read_byte(mtd
) << 8);
1329 ns_nand_write_buf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
1331 struct nandsim
*ns
= (struct nandsim
*)((struct nand_chip
*)mtd
->priv
)->priv
;
1333 /* Check that chip is expecting data input */
1334 if (!(ns
->state
& STATE_DATAIN_MASK
)) {
1335 NS_ERR("write_buf: data input isn't expected, state is %s, "
1336 "switch to STATE_READY\n", get_state_name(ns
->state
));
1337 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1341 /* Check if these are expected bytes */
1342 if (ns
->regs
.count
+ len
> ns
->regs
.num
) {
1343 NS_ERR("write_buf: too many input bytes\n");
1344 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1348 memcpy(ns
->buf
.byte
+ ns
->regs
.count
, buf
, len
);
1349 ns
->regs
.count
+= len
;
1351 if (ns
->regs
.count
== ns
->regs
.num
) {
1352 NS_DBG("write_buf: %d bytes were written\n", ns
->regs
.count
);
1357 ns_nand_read_buf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
1359 struct nandsim
*ns
= (struct nandsim
*)((struct nand_chip
*)mtd
->priv
)->priv
;
1361 /* Sanity and correctness checks */
1362 if (!ns
->lines
.ce
) {
1363 NS_ERR("read_buf: chip is disabled\n");
1366 if (ns
->lines
.ale
|| ns
->lines
.cle
) {
1367 NS_ERR("read_buf: ALE or CLE pin is high\n");
1370 if (!(ns
->state
& STATE_DATAOUT_MASK
)) {
1371 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
1372 get_state_name(ns
->state
));
1376 if (NS_STATE(ns
->state
) != STATE_DATAOUT
) {
1379 for (i
= 0; i
< len
; i
++)
1380 buf
[i
] = ((struct nand_chip
*)mtd
->priv
)->read_byte(mtd
);
1385 /* Check if these are expected bytes */
1386 if (ns
->regs
.count
+ len
> ns
->regs
.num
) {
1387 NS_ERR("read_buf: too many bytes to read\n");
1388 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1392 memcpy(buf
, ns
->buf
.byte
+ ns
->regs
.count
, len
);
1393 ns
->regs
.count
+= len
;
1395 if (ns
->regs
.count
== ns
->regs
.num
) {
1396 if ((ns
->options
& OPT_AUTOINCR
) && NS_STATE(ns
->state
) == STATE_DATAOUT
) {
1398 if (ns
->regs
.row
+ 1 < ns
->geom
.pgnum
)
1400 NS_DBG("read_buf: switch to the next page (%#x)\n", ns
->regs
.row
);
1401 do_state_action(ns
, ACTION_CPY
);
1403 else if (NS_STATE(ns
->nxstate
) == STATE_READY
)
1411 ns_nand_verify_buf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
1413 ns_nand_read_buf(mtd
, (u_char
*)&ns_verify_buf
[0], len
);
1415 if (!memcmp(buf
, &ns_verify_buf
[0], len
)) {
1416 NS_DBG("verify_buf: the buffer is OK\n");
1419 NS_DBG("verify_buf: the buffer is wrong\n");
1425 * Module initialization function
1427 static int __init
ns_init_module(void)
1429 struct nand_chip
*chip
;
1430 struct nandsim
*nand
;
1431 int retval
= -ENOMEM
;
1433 if (bus_width
!= 8 && bus_width
!= 16) {
1434 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width
);
1438 /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
1439 nsmtd
= kmalloc(sizeof(struct mtd_info
) + sizeof(struct nand_chip
)
1440 + sizeof(struct nandsim
), GFP_KERNEL
);
1442 NS_ERR("unable to allocate core structures.\n");
1445 memset(nsmtd
, 0, sizeof(struct mtd_info
) + sizeof(struct nand_chip
) +
1446 sizeof(struct nandsim
));
1447 chip
= (struct nand_chip
*)(nsmtd
+ 1);
1448 nsmtd
->priv
= (void *)chip
;
1449 nand
= (struct nandsim
*)(chip
+ 1);
1450 chip
->priv
= (void *)nand
;
1453 * Register simulator's callbacks.
1455 chip
->cmd_ctrl
= ns_hwcontrol
;
1456 chip
->read_byte
= ns_nand_read_byte
;
1457 chip
->dev_ready
= ns_device_ready
;
1458 chip
->write_buf
= ns_nand_write_buf
;
1459 chip
->read_buf
= ns_nand_read_buf
;
1460 chip
->verify_buf
= ns_nand_verify_buf
;
1461 chip
->read_word
= ns_nand_read_word
;
1462 chip
->ecc
.mode
= NAND_ECC_SOFT
;
1463 chip
->options
|= NAND_SKIP_BBTSCAN
;
1466 * Perform minimum nandsim structure initialization to handle
1467 * the initial ID read command correctly
1469 if (third_id_byte
!= 0xFF || fourth_id_byte
!= 0xFF)
1470 nand
->geom
.idbytes
= 4;
1472 nand
->geom
.idbytes
= 2;
1473 nand
->regs
.status
= NS_STATUS_OK(nand
);
1474 nand
->nxstate
= STATE_UNKNOWN
;
1475 nand
->options
|= OPT_PAGE256
; /* temporary value */
1476 nand
->ids
[0] = first_id_byte
;
1477 nand
->ids
[1] = second_id_byte
;
1478 nand
->ids
[2] = third_id_byte
;
1479 nand
->ids
[3] = fourth_id_byte
;
1480 if (bus_width
== 16) {
1482 chip
->options
|= NAND_BUSWIDTH_16
;
1485 nsmtd
->owner
= THIS_MODULE
;
1487 if ((retval
= nand_scan(nsmtd
, 1)) != 0) {
1488 NS_ERR("can't register NAND Simulator\n");
1494 if ((retval
= init_nandsim(nsmtd
)) != 0) {
1495 NS_ERR("scan_bbt: can't initialize the nandsim structure\n");
1499 if ((retval
= nand_default_bbt(nsmtd
)) != 0) {
1504 /* Register NAND as one big partition */
1505 add_mtd_partitions(nsmtd
, &nand
->part
, 1);
1515 module_init(ns_init_module
);
1518 * Module clean-up function
1520 static void __exit
ns_cleanup_module(void)
1522 struct nandsim
*ns
= (struct nandsim
*)(((struct nand_chip
*)nsmtd
->priv
)->priv
);
1524 free_nandsim(ns
); /* Free nandsim private resources */
1525 nand_release(nsmtd
); /* Unregisterd drived */
1526 kfree(nsmtd
); /* Free other structures */
1529 module_exit(ns_cleanup_module
);
1531 MODULE_LICENSE ("GPL");
1532 MODULE_AUTHOR ("Artem B. Bityuckiy");
1533 MODULE_DESCRIPTION ("The NAND flash simulator");