mm: remove the leftovers of noswapaccount
[linux-2.6/next.git] / mm / memcontrol.c
blobe013b8e57d25cd198c410743adcadb8446176e75
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/shmem_fs.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
54 #include <asm/uaccess.h>
56 #include <trace/events/vmscan.h>
58 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
59 #define MEM_CGROUP_RECLAIM_RETRIES 5
60 struct mem_cgroup *root_mem_cgroup __read_mostly;
62 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
63 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
64 int do_swap_account __read_mostly;
66 /* for remember boot option*/
67 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
68 static int really_do_swap_account __initdata = 1;
69 #else
70 static int really_do_swap_account __initdata = 0;
71 #endif
73 #else
74 #define do_swap_account (0)
75 #endif
79 * Statistics for memory cgroup.
81 enum mem_cgroup_stat_index {
83 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
85 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
86 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
87 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
88 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
89 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
90 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
91 MEM_CGROUP_STAT_NSTATS,
94 enum mem_cgroup_events_index {
95 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
96 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
97 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
98 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
99 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
100 MEM_CGROUP_EVENTS_NSTATS,
103 * Per memcg event counter is incremented at every pagein/pageout. With THP,
104 * it will be incremated by the number of pages. This counter is used for
105 * for trigger some periodic events. This is straightforward and better
106 * than using jiffies etc. to handle periodic memcg event.
108 enum mem_cgroup_events_target {
109 MEM_CGROUP_TARGET_THRESH,
110 MEM_CGROUP_TARGET_SOFTLIMIT,
111 MEM_CGROUP_TARGET_NUMAINFO,
112 MEM_CGROUP_NTARGETS,
114 #define THRESHOLDS_EVENTS_TARGET (128)
115 #define SOFTLIMIT_EVENTS_TARGET (1024)
116 #define NUMAINFO_EVENTS_TARGET (1024)
118 struct mem_cgroup_stat_cpu {
119 long count[MEM_CGROUP_STAT_NSTATS];
120 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
121 unsigned long targets[MEM_CGROUP_NTARGETS];
125 * per-zone information in memory controller.
127 struct mem_cgroup_per_zone {
129 * spin_lock to protect the per cgroup LRU
131 struct list_head lists[NR_LRU_LISTS];
132 unsigned long count[NR_LRU_LISTS];
134 struct zone_reclaim_stat reclaim_stat;
135 struct rb_node tree_node; /* RB tree node */
136 unsigned long long usage_in_excess;/* Set to the value by which */
137 /* the soft limit is exceeded*/
138 bool on_tree;
139 struct mem_cgroup *mem; /* Back pointer, we cannot */
140 /* use container_of */
142 /* Macro for accessing counter */
143 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
145 struct mem_cgroup_per_node {
146 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
149 struct mem_cgroup_lru_info {
150 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
154 * Cgroups above their limits are maintained in a RB-Tree, independent of
155 * their hierarchy representation
158 struct mem_cgroup_tree_per_zone {
159 struct rb_root rb_root;
160 spinlock_t lock;
163 struct mem_cgroup_tree_per_node {
164 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
167 struct mem_cgroup_tree {
168 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
171 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
173 struct mem_cgroup_threshold {
174 struct eventfd_ctx *eventfd;
175 u64 threshold;
178 /* For threshold */
179 struct mem_cgroup_threshold_ary {
180 /* An array index points to threshold just below usage. */
181 int current_threshold;
182 /* Size of entries[] */
183 unsigned int size;
184 /* Array of thresholds */
185 struct mem_cgroup_threshold entries[0];
188 struct mem_cgroup_thresholds {
189 /* Primary thresholds array */
190 struct mem_cgroup_threshold_ary *primary;
192 * Spare threshold array.
193 * This is needed to make mem_cgroup_unregister_event() "never fail".
194 * It must be able to store at least primary->size - 1 entries.
196 struct mem_cgroup_threshold_ary *spare;
199 /* for OOM */
200 struct mem_cgroup_eventfd_list {
201 struct list_head list;
202 struct eventfd_ctx *eventfd;
205 static void mem_cgroup_threshold(struct mem_cgroup *mem);
206 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
209 * The memory controller data structure. The memory controller controls both
210 * page cache and RSS per cgroup. We would eventually like to provide
211 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
212 * to help the administrator determine what knobs to tune.
214 * TODO: Add a water mark for the memory controller. Reclaim will begin when
215 * we hit the water mark. May be even add a low water mark, such that
216 * no reclaim occurs from a cgroup at it's low water mark, this is
217 * a feature that will be implemented much later in the future.
219 struct mem_cgroup {
220 struct cgroup_subsys_state css;
222 * the counter to account for memory usage
224 struct res_counter res;
226 * the counter to account for mem+swap usage.
228 struct res_counter memsw;
230 * Per cgroup active and inactive list, similar to the
231 * per zone LRU lists.
233 struct mem_cgroup_lru_info info;
235 * While reclaiming in a hierarchy, we cache the last child we
236 * reclaimed from.
238 int last_scanned_child;
239 int last_scanned_node;
240 #if MAX_NUMNODES > 1
241 nodemask_t scan_nodes;
242 atomic_t numainfo_events;
243 atomic_t numainfo_updating;
244 #endif
246 * Should the accounting and control be hierarchical, per subtree?
248 bool use_hierarchy;
249 atomic_t oom_lock;
250 atomic_t refcnt;
252 unsigned int swappiness;
253 /* OOM-Killer disable */
254 int oom_kill_disable;
256 /* set when res.limit == memsw.limit */
257 bool memsw_is_minimum;
259 /* protect arrays of thresholds */
260 struct mutex thresholds_lock;
262 /* thresholds for memory usage. RCU-protected */
263 struct mem_cgroup_thresholds thresholds;
265 /* thresholds for mem+swap usage. RCU-protected */
266 struct mem_cgroup_thresholds memsw_thresholds;
268 /* For oom notifier event fd */
269 struct list_head oom_notify;
272 * Should we move charges of a task when a task is moved into this
273 * mem_cgroup ? And what type of charges should we move ?
275 unsigned long move_charge_at_immigrate;
277 * percpu counter.
279 struct mem_cgroup_stat_cpu *stat;
281 * used when a cpu is offlined or other synchronizations
282 * See mem_cgroup_read_stat().
284 struct mem_cgroup_stat_cpu nocpu_base;
285 spinlock_t pcp_counter_lock;
288 /* Stuffs for move charges at task migration. */
290 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
291 * left-shifted bitmap of these types.
293 enum move_type {
294 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
295 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
296 NR_MOVE_TYPE,
299 /* "mc" and its members are protected by cgroup_mutex */
300 static struct move_charge_struct {
301 spinlock_t lock; /* for from, to */
302 struct mem_cgroup *from;
303 struct mem_cgroup *to;
304 unsigned long precharge;
305 unsigned long moved_charge;
306 unsigned long moved_swap;
307 struct task_struct *moving_task; /* a task moving charges */
308 wait_queue_head_t waitq; /* a waitq for other context */
309 } mc = {
310 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
311 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
314 static bool move_anon(void)
316 return test_bit(MOVE_CHARGE_TYPE_ANON,
317 &mc.to->move_charge_at_immigrate);
320 static bool move_file(void)
322 return test_bit(MOVE_CHARGE_TYPE_FILE,
323 &mc.to->move_charge_at_immigrate);
327 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
328 * limit reclaim to prevent infinite loops, if they ever occur.
330 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
331 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
333 enum charge_type {
334 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
335 MEM_CGROUP_CHARGE_TYPE_MAPPED,
336 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
337 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
338 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
339 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
340 NR_CHARGE_TYPE,
343 /* for encoding cft->private value on file */
344 #define _MEM (0)
345 #define _MEMSWAP (1)
346 #define _OOM_TYPE (2)
347 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
348 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
349 #define MEMFILE_ATTR(val) ((val) & 0xffff)
350 /* Used for OOM nofiier */
351 #define OOM_CONTROL (0)
354 * Reclaim flags for mem_cgroup_hierarchical_reclaim
356 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
357 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
358 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
359 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
360 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
361 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
363 static void mem_cgroup_get(struct mem_cgroup *mem);
364 static void mem_cgroup_put(struct mem_cgroup *mem);
365 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
366 static void drain_all_stock_async(struct mem_cgroup *mem);
368 static struct mem_cgroup_per_zone *
369 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
371 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
374 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
376 return &mem->css;
379 static struct mem_cgroup_per_zone *
380 page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
382 int nid = page_to_nid(page);
383 int zid = page_zonenum(page);
385 return mem_cgroup_zoneinfo(mem, nid, zid);
388 static struct mem_cgroup_tree_per_zone *
389 soft_limit_tree_node_zone(int nid, int zid)
391 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
394 static struct mem_cgroup_tree_per_zone *
395 soft_limit_tree_from_page(struct page *page)
397 int nid = page_to_nid(page);
398 int zid = page_zonenum(page);
400 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
403 static void
404 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
405 struct mem_cgroup_per_zone *mz,
406 struct mem_cgroup_tree_per_zone *mctz,
407 unsigned long long new_usage_in_excess)
409 struct rb_node **p = &mctz->rb_root.rb_node;
410 struct rb_node *parent = NULL;
411 struct mem_cgroup_per_zone *mz_node;
413 if (mz->on_tree)
414 return;
416 mz->usage_in_excess = new_usage_in_excess;
417 if (!mz->usage_in_excess)
418 return;
419 while (*p) {
420 parent = *p;
421 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
422 tree_node);
423 if (mz->usage_in_excess < mz_node->usage_in_excess)
424 p = &(*p)->rb_left;
426 * We can't avoid mem cgroups that are over their soft
427 * limit by the same amount
429 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
430 p = &(*p)->rb_right;
432 rb_link_node(&mz->tree_node, parent, p);
433 rb_insert_color(&mz->tree_node, &mctz->rb_root);
434 mz->on_tree = true;
437 static void
438 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
439 struct mem_cgroup_per_zone *mz,
440 struct mem_cgroup_tree_per_zone *mctz)
442 if (!mz->on_tree)
443 return;
444 rb_erase(&mz->tree_node, &mctz->rb_root);
445 mz->on_tree = false;
448 static void
449 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
450 struct mem_cgroup_per_zone *mz,
451 struct mem_cgroup_tree_per_zone *mctz)
453 spin_lock(&mctz->lock);
454 __mem_cgroup_remove_exceeded(mem, mz, mctz);
455 spin_unlock(&mctz->lock);
459 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
461 unsigned long long excess;
462 struct mem_cgroup_per_zone *mz;
463 struct mem_cgroup_tree_per_zone *mctz;
464 int nid = page_to_nid(page);
465 int zid = page_zonenum(page);
466 mctz = soft_limit_tree_from_page(page);
469 * Necessary to update all ancestors when hierarchy is used.
470 * because their event counter is not touched.
472 for (; mem; mem = parent_mem_cgroup(mem)) {
473 mz = mem_cgroup_zoneinfo(mem, nid, zid);
474 excess = res_counter_soft_limit_excess(&mem->res);
476 * We have to update the tree if mz is on RB-tree or
477 * mem is over its softlimit.
479 if (excess || mz->on_tree) {
480 spin_lock(&mctz->lock);
481 /* if on-tree, remove it */
482 if (mz->on_tree)
483 __mem_cgroup_remove_exceeded(mem, mz, mctz);
485 * Insert again. mz->usage_in_excess will be updated.
486 * If excess is 0, no tree ops.
488 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
489 spin_unlock(&mctz->lock);
494 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
496 int node, zone;
497 struct mem_cgroup_per_zone *mz;
498 struct mem_cgroup_tree_per_zone *mctz;
500 for_each_node_state(node, N_POSSIBLE) {
501 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
502 mz = mem_cgroup_zoneinfo(mem, node, zone);
503 mctz = soft_limit_tree_node_zone(node, zone);
504 mem_cgroup_remove_exceeded(mem, mz, mctz);
509 static struct mem_cgroup_per_zone *
510 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
512 struct rb_node *rightmost = NULL;
513 struct mem_cgroup_per_zone *mz;
515 retry:
516 mz = NULL;
517 rightmost = rb_last(&mctz->rb_root);
518 if (!rightmost)
519 goto done; /* Nothing to reclaim from */
521 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
523 * Remove the node now but someone else can add it back,
524 * we will to add it back at the end of reclaim to its correct
525 * position in the tree.
527 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
528 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
529 !css_tryget(&mz->mem->css))
530 goto retry;
531 done:
532 return mz;
535 static struct mem_cgroup_per_zone *
536 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
538 struct mem_cgroup_per_zone *mz;
540 spin_lock(&mctz->lock);
541 mz = __mem_cgroup_largest_soft_limit_node(mctz);
542 spin_unlock(&mctz->lock);
543 return mz;
547 * Implementation Note: reading percpu statistics for memcg.
549 * Both of vmstat[] and percpu_counter has threshold and do periodic
550 * synchronization to implement "quick" read. There are trade-off between
551 * reading cost and precision of value. Then, we may have a chance to implement
552 * a periodic synchronizion of counter in memcg's counter.
554 * But this _read() function is used for user interface now. The user accounts
555 * memory usage by memory cgroup and he _always_ requires exact value because
556 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
557 * have to visit all online cpus and make sum. So, for now, unnecessary
558 * synchronization is not implemented. (just implemented for cpu hotplug)
560 * If there are kernel internal actions which can make use of some not-exact
561 * value, and reading all cpu value can be performance bottleneck in some
562 * common workload, threashold and synchonization as vmstat[] should be
563 * implemented.
565 static long mem_cgroup_read_stat(struct mem_cgroup *mem,
566 enum mem_cgroup_stat_index idx)
568 long val = 0;
569 int cpu;
571 get_online_cpus();
572 for_each_online_cpu(cpu)
573 val += per_cpu(mem->stat->count[idx], cpu);
574 #ifdef CONFIG_HOTPLUG_CPU
575 spin_lock(&mem->pcp_counter_lock);
576 val += mem->nocpu_base.count[idx];
577 spin_unlock(&mem->pcp_counter_lock);
578 #endif
579 put_online_cpus();
580 return val;
583 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
584 bool charge)
586 int val = (charge) ? 1 : -1;
587 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
590 void mem_cgroup_pgfault(struct mem_cgroup *mem, int val)
592 this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
595 void mem_cgroup_pgmajfault(struct mem_cgroup *mem, int val)
597 this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
600 static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
601 enum mem_cgroup_events_index idx)
603 unsigned long val = 0;
604 int cpu;
606 for_each_online_cpu(cpu)
607 val += per_cpu(mem->stat->events[idx], cpu);
608 #ifdef CONFIG_HOTPLUG_CPU
609 spin_lock(&mem->pcp_counter_lock);
610 val += mem->nocpu_base.events[idx];
611 spin_unlock(&mem->pcp_counter_lock);
612 #endif
613 return val;
616 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
617 bool file, int nr_pages)
619 preempt_disable();
621 if (file)
622 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
623 else
624 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
626 /* pagein of a big page is an event. So, ignore page size */
627 if (nr_pages > 0)
628 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
629 else {
630 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
631 nr_pages = -nr_pages; /* for event */
634 __this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
636 preempt_enable();
639 static unsigned long
640 mem_cgroup_get_zonestat_node(struct mem_cgroup *mem, int nid, enum lru_list idx)
642 struct mem_cgroup_per_zone *mz;
643 u64 total = 0;
644 int zid;
646 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
647 mz = mem_cgroup_zoneinfo(mem, nid, zid);
648 total += MEM_CGROUP_ZSTAT(mz, idx);
650 return total;
652 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
653 enum lru_list idx)
655 int nid;
656 u64 total = 0;
658 for_each_online_node(nid)
659 total += mem_cgroup_get_zonestat_node(mem, nid, idx);
660 return total;
663 static bool __memcg_event_check(struct mem_cgroup *mem, int target)
665 unsigned long val, next;
667 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
668 next = this_cpu_read(mem->stat->targets[target]);
669 /* from time_after() in jiffies.h */
670 return ((long)next - (long)val < 0);
673 static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
675 unsigned long val, next;
677 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
679 switch (target) {
680 case MEM_CGROUP_TARGET_THRESH:
681 next = val + THRESHOLDS_EVENTS_TARGET;
682 break;
683 case MEM_CGROUP_TARGET_SOFTLIMIT:
684 next = val + SOFTLIMIT_EVENTS_TARGET;
685 break;
686 case MEM_CGROUP_TARGET_NUMAINFO:
687 next = val + NUMAINFO_EVENTS_TARGET;
688 break;
689 default:
690 return;
693 this_cpu_write(mem->stat->targets[target], next);
697 * Check events in order.
700 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
702 /* threshold event is triggered in finer grain than soft limit */
703 if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
704 mem_cgroup_threshold(mem);
705 __mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
706 if (unlikely(__memcg_event_check(mem,
707 MEM_CGROUP_TARGET_SOFTLIMIT))) {
708 mem_cgroup_update_tree(mem, page);
709 __mem_cgroup_target_update(mem,
710 MEM_CGROUP_TARGET_SOFTLIMIT);
712 #if MAX_NUMNODES > 1
713 if (unlikely(__memcg_event_check(mem,
714 MEM_CGROUP_TARGET_NUMAINFO))) {
715 atomic_inc(&mem->numainfo_events);
716 __mem_cgroup_target_update(mem,
717 MEM_CGROUP_TARGET_NUMAINFO);
719 #endif
723 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
725 return container_of(cgroup_subsys_state(cont,
726 mem_cgroup_subsys_id), struct mem_cgroup,
727 css);
730 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
733 * mm_update_next_owner() may clear mm->owner to NULL
734 * if it races with swapoff, page migration, etc.
735 * So this can be called with p == NULL.
737 if (unlikely(!p))
738 return NULL;
740 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
741 struct mem_cgroup, css);
744 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
746 struct mem_cgroup *mem = NULL;
748 if (!mm)
749 return NULL;
751 * Because we have no locks, mm->owner's may be being moved to other
752 * cgroup. We use css_tryget() here even if this looks
753 * pessimistic (rather than adding locks here).
755 rcu_read_lock();
756 do {
757 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
758 if (unlikely(!mem))
759 break;
760 } while (!css_tryget(&mem->css));
761 rcu_read_unlock();
762 return mem;
765 /* The caller has to guarantee "mem" exists before calling this */
766 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
768 struct cgroup_subsys_state *css;
769 int found;
771 if (!mem) /* ROOT cgroup has the smallest ID */
772 return root_mem_cgroup; /*css_put/get against root is ignored*/
773 if (!mem->use_hierarchy) {
774 if (css_tryget(&mem->css))
775 return mem;
776 return NULL;
778 rcu_read_lock();
780 * searching a memory cgroup which has the smallest ID under given
781 * ROOT cgroup. (ID >= 1)
783 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
784 if (css && css_tryget(css))
785 mem = container_of(css, struct mem_cgroup, css);
786 else
787 mem = NULL;
788 rcu_read_unlock();
789 return mem;
792 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
793 struct mem_cgroup *root,
794 bool cond)
796 int nextid = css_id(&iter->css) + 1;
797 int found;
798 int hierarchy_used;
799 struct cgroup_subsys_state *css;
801 hierarchy_used = iter->use_hierarchy;
803 css_put(&iter->css);
804 /* If no ROOT, walk all, ignore hierarchy */
805 if (!cond || (root && !hierarchy_used))
806 return NULL;
808 if (!root)
809 root = root_mem_cgroup;
811 do {
812 iter = NULL;
813 rcu_read_lock();
815 css = css_get_next(&mem_cgroup_subsys, nextid,
816 &root->css, &found);
817 if (css && css_tryget(css))
818 iter = container_of(css, struct mem_cgroup, css);
819 rcu_read_unlock();
820 /* If css is NULL, no more cgroups will be found */
821 nextid = found + 1;
822 } while (css && !iter);
824 return iter;
827 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
828 * be careful that "break" loop is not allowed. We have reference count.
829 * Instead of that modify "cond" to be false and "continue" to exit the loop.
831 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
832 for (iter = mem_cgroup_start_loop(root);\
833 iter != NULL;\
834 iter = mem_cgroup_get_next(iter, root, cond))
836 #define for_each_mem_cgroup_tree(iter, root) \
837 for_each_mem_cgroup_tree_cond(iter, root, true)
839 #define for_each_mem_cgroup_all(iter) \
840 for_each_mem_cgroup_tree_cond(iter, NULL, true)
843 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
845 return (mem == root_mem_cgroup);
848 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
850 struct mem_cgroup *mem;
852 if (!mm)
853 return;
855 rcu_read_lock();
856 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
857 if (unlikely(!mem))
858 goto out;
860 switch (idx) {
861 case PGMAJFAULT:
862 mem_cgroup_pgmajfault(mem, 1);
863 break;
864 case PGFAULT:
865 mem_cgroup_pgfault(mem, 1);
866 break;
867 default:
868 BUG();
870 out:
871 rcu_read_unlock();
873 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
876 * Following LRU functions are allowed to be used without PCG_LOCK.
877 * Operations are called by routine of global LRU independently from memcg.
878 * What we have to take care of here is validness of pc->mem_cgroup.
880 * Changes to pc->mem_cgroup happens when
881 * 1. charge
882 * 2. moving account
883 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
884 * It is added to LRU before charge.
885 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
886 * When moving account, the page is not on LRU. It's isolated.
889 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
891 struct page_cgroup *pc;
892 struct mem_cgroup_per_zone *mz;
894 if (mem_cgroup_disabled())
895 return;
896 pc = lookup_page_cgroup(page);
897 /* can happen while we handle swapcache. */
898 if (!TestClearPageCgroupAcctLRU(pc))
899 return;
900 VM_BUG_ON(!pc->mem_cgroup);
902 * We don't check PCG_USED bit. It's cleared when the "page" is finally
903 * removed from global LRU.
905 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
906 /* huge page split is done under lru_lock. so, we have no races. */
907 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
908 if (mem_cgroup_is_root(pc->mem_cgroup))
909 return;
910 VM_BUG_ON(list_empty(&pc->lru));
911 list_del_init(&pc->lru);
914 void mem_cgroup_del_lru(struct page *page)
916 mem_cgroup_del_lru_list(page, page_lru(page));
920 * Writeback is about to end against a page which has been marked for immediate
921 * reclaim. If it still appears to be reclaimable, move it to the tail of the
922 * inactive list.
924 void mem_cgroup_rotate_reclaimable_page(struct page *page)
926 struct mem_cgroup_per_zone *mz;
927 struct page_cgroup *pc;
928 enum lru_list lru = page_lru(page);
930 if (mem_cgroup_disabled())
931 return;
933 pc = lookup_page_cgroup(page);
934 /* unused or root page is not rotated. */
935 if (!PageCgroupUsed(pc))
936 return;
937 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
938 smp_rmb();
939 if (mem_cgroup_is_root(pc->mem_cgroup))
940 return;
941 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
942 list_move_tail(&pc->lru, &mz->lists[lru]);
945 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
947 struct mem_cgroup_per_zone *mz;
948 struct page_cgroup *pc;
950 if (mem_cgroup_disabled())
951 return;
953 pc = lookup_page_cgroup(page);
954 /* unused or root page is not rotated. */
955 if (!PageCgroupUsed(pc))
956 return;
957 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
958 smp_rmb();
959 if (mem_cgroup_is_root(pc->mem_cgroup))
960 return;
961 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
962 list_move(&pc->lru, &mz->lists[lru]);
965 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
967 struct page_cgroup *pc;
968 struct mem_cgroup_per_zone *mz;
970 if (mem_cgroup_disabled())
971 return;
972 pc = lookup_page_cgroup(page);
973 VM_BUG_ON(PageCgroupAcctLRU(pc));
974 if (!PageCgroupUsed(pc))
975 return;
976 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
977 smp_rmb();
978 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
979 /* huge page split is done under lru_lock. so, we have no races. */
980 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
981 SetPageCgroupAcctLRU(pc);
982 if (mem_cgroup_is_root(pc->mem_cgroup))
983 return;
984 list_add(&pc->lru, &mz->lists[lru]);
988 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
989 * while it's linked to lru because the page may be reused after it's fully
990 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
991 * It's done under lock_page and expected that zone->lru_lock isnever held.
993 static void mem_cgroup_lru_del_before_commit(struct page *page)
995 unsigned long flags;
996 struct zone *zone = page_zone(page);
997 struct page_cgroup *pc = lookup_page_cgroup(page);
1000 * Doing this check without taking ->lru_lock seems wrong but this
1001 * is safe. Because if page_cgroup's USED bit is unset, the page
1002 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1003 * set, the commit after this will fail, anyway.
1004 * This all charge/uncharge is done under some mutual execustion.
1005 * So, we don't need to taking care of changes in USED bit.
1007 if (likely(!PageLRU(page)))
1008 return;
1010 spin_lock_irqsave(&zone->lru_lock, flags);
1012 * Forget old LRU when this page_cgroup is *not* used. This Used bit
1013 * is guarded by lock_page() because the page is SwapCache.
1015 if (!PageCgroupUsed(pc))
1016 mem_cgroup_del_lru_list(page, page_lru(page));
1017 spin_unlock_irqrestore(&zone->lru_lock, flags);
1020 static void mem_cgroup_lru_add_after_commit(struct page *page)
1022 unsigned long flags;
1023 struct zone *zone = page_zone(page);
1024 struct page_cgroup *pc = lookup_page_cgroup(page);
1026 /* taking care of that the page is added to LRU while we commit it */
1027 if (likely(!PageLRU(page)))
1028 return;
1029 spin_lock_irqsave(&zone->lru_lock, flags);
1030 /* link when the page is linked to LRU but page_cgroup isn't */
1031 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1032 mem_cgroup_add_lru_list(page, page_lru(page));
1033 spin_unlock_irqrestore(&zone->lru_lock, flags);
1037 void mem_cgroup_move_lists(struct page *page,
1038 enum lru_list from, enum lru_list to)
1040 if (mem_cgroup_disabled())
1041 return;
1042 mem_cgroup_del_lru_list(page, from);
1043 mem_cgroup_add_lru_list(page, to);
1046 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
1048 int ret;
1049 struct mem_cgroup *curr = NULL;
1050 struct task_struct *p;
1052 p = find_lock_task_mm(task);
1053 if (!p)
1054 return 0;
1055 curr = try_get_mem_cgroup_from_mm(p->mm);
1056 task_unlock(p);
1057 if (!curr)
1058 return 0;
1060 * We should check use_hierarchy of "mem" not "curr". Because checking
1061 * use_hierarchy of "curr" here make this function true if hierarchy is
1062 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
1063 * hierarchy(even if use_hierarchy is disabled in "mem").
1065 if (mem->use_hierarchy)
1066 ret = css_is_ancestor(&curr->css, &mem->css);
1067 else
1068 ret = (curr == mem);
1069 css_put(&curr->css);
1070 return ret;
1073 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
1075 unsigned long active;
1076 unsigned long inactive;
1077 unsigned long gb;
1078 unsigned long inactive_ratio;
1080 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
1081 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
1083 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1084 if (gb)
1085 inactive_ratio = int_sqrt(10 * gb);
1086 else
1087 inactive_ratio = 1;
1089 if (present_pages) {
1090 present_pages[0] = inactive;
1091 present_pages[1] = active;
1094 return inactive_ratio;
1097 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
1099 unsigned long active;
1100 unsigned long inactive;
1101 unsigned long present_pages[2];
1102 unsigned long inactive_ratio;
1104 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
1106 inactive = present_pages[0];
1107 active = present_pages[1];
1109 if (inactive * inactive_ratio < active)
1110 return 1;
1112 return 0;
1115 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1117 unsigned long active;
1118 unsigned long inactive;
1120 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
1121 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
1123 return (active > inactive);
1126 unsigned long mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg,
1127 struct zone *zone,
1128 enum lru_list lru)
1130 int nid = zone_to_nid(zone);
1131 int zid = zone_idx(zone);
1132 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1134 return MEM_CGROUP_ZSTAT(mz, lru);
1137 static unsigned long mem_cgroup_node_nr_file_lru_pages(struct mem_cgroup *memcg,
1138 int nid)
1140 unsigned long ret;
1142 ret = mem_cgroup_get_zonestat_node(memcg, nid, LRU_INACTIVE_FILE) +
1143 mem_cgroup_get_zonestat_node(memcg, nid, LRU_ACTIVE_FILE);
1145 return ret;
1148 static unsigned long mem_cgroup_node_nr_anon_lru_pages(struct mem_cgroup *memcg,
1149 int nid)
1151 unsigned long ret;
1153 ret = mem_cgroup_get_zonestat_node(memcg, nid, LRU_INACTIVE_ANON) +
1154 mem_cgroup_get_zonestat_node(memcg, nid, LRU_ACTIVE_ANON);
1155 return ret;
1158 #if MAX_NUMNODES > 1
1159 static unsigned long mem_cgroup_nr_file_lru_pages(struct mem_cgroup *memcg)
1161 u64 total = 0;
1162 int nid;
1164 for_each_node_state(nid, N_HIGH_MEMORY)
1165 total += mem_cgroup_node_nr_file_lru_pages(memcg, nid);
1167 return total;
1170 static unsigned long mem_cgroup_nr_anon_lru_pages(struct mem_cgroup *memcg)
1172 u64 total = 0;
1173 int nid;
1175 for_each_node_state(nid, N_HIGH_MEMORY)
1176 total += mem_cgroup_node_nr_anon_lru_pages(memcg, nid);
1178 return total;
1181 static unsigned long
1182 mem_cgroup_node_nr_unevictable_lru_pages(struct mem_cgroup *memcg, int nid)
1184 return mem_cgroup_get_zonestat_node(memcg, nid, LRU_UNEVICTABLE);
1187 static unsigned long
1188 mem_cgroup_nr_unevictable_lru_pages(struct mem_cgroup *memcg)
1190 u64 total = 0;
1191 int nid;
1193 for_each_node_state(nid, N_HIGH_MEMORY)
1194 total += mem_cgroup_node_nr_unevictable_lru_pages(memcg, nid);
1196 return total;
1199 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
1200 int nid)
1202 enum lru_list l;
1203 u64 total = 0;
1205 for_each_lru(l)
1206 total += mem_cgroup_get_zonestat_node(memcg, nid, l);
1208 return total;
1211 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg)
1213 u64 total = 0;
1214 int nid;
1216 for_each_node_state(nid, N_HIGH_MEMORY)
1217 total += mem_cgroup_node_nr_lru_pages(memcg, nid);
1219 return total;
1221 #endif /* CONFIG_NUMA */
1223 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1224 struct zone *zone)
1226 int nid = zone_to_nid(zone);
1227 int zid = zone_idx(zone);
1228 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1230 return &mz->reclaim_stat;
1233 struct zone_reclaim_stat *
1234 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1236 struct page_cgroup *pc;
1237 struct mem_cgroup_per_zone *mz;
1239 if (mem_cgroup_disabled())
1240 return NULL;
1242 pc = lookup_page_cgroup(page);
1243 if (!PageCgroupUsed(pc))
1244 return NULL;
1245 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1246 smp_rmb();
1247 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1248 return &mz->reclaim_stat;
1251 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1252 struct list_head *dst,
1253 unsigned long *scanned, int order,
1254 int mode, struct zone *z,
1255 struct mem_cgroup *mem_cont,
1256 int active, int file)
1258 unsigned long nr_taken = 0;
1259 struct page *page;
1260 unsigned long scan;
1261 LIST_HEAD(pc_list);
1262 struct list_head *src;
1263 struct page_cgroup *pc, *tmp;
1264 int nid = zone_to_nid(z);
1265 int zid = zone_idx(z);
1266 struct mem_cgroup_per_zone *mz;
1267 int lru = LRU_FILE * file + active;
1268 int ret;
1270 BUG_ON(!mem_cont);
1271 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1272 src = &mz->lists[lru];
1274 scan = 0;
1275 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1276 if (scan >= nr_to_scan)
1277 break;
1279 if (unlikely(!PageCgroupUsed(pc)))
1280 continue;
1282 page = lookup_cgroup_page(pc);
1284 if (unlikely(!PageLRU(page)))
1285 continue;
1287 scan++;
1288 ret = __isolate_lru_page(page, mode, file);
1289 switch (ret) {
1290 case 0:
1291 list_move(&page->lru, dst);
1292 mem_cgroup_del_lru(page);
1293 nr_taken += hpage_nr_pages(page);
1294 break;
1295 case -EBUSY:
1296 /* we don't affect global LRU but rotate in our LRU */
1297 mem_cgroup_rotate_lru_list(page, page_lru(page));
1298 break;
1299 default:
1300 break;
1304 *scanned = scan;
1306 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1307 0, 0, 0, mode);
1309 return nr_taken;
1312 #define mem_cgroup_from_res_counter(counter, member) \
1313 container_of(counter, struct mem_cgroup, member)
1316 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1317 * @mem: the memory cgroup
1319 * Returns the maximum amount of memory @mem can be charged with, in
1320 * pages.
1322 static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
1324 unsigned long long margin;
1326 margin = res_counter_margin(&mem->res);
1327 if (do_swap_account)
1328 margin = min(margin, res_counter_margin(&mem->memsw));
1329 return margin >> PAGE_SHIFT;
1332 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1334 struct cgroup *cgrp = memcg->css.cgroup;
1336 /* root ? */
1337 if (cgrp->parent == NULL)
1338 return vm_swappiness;
1340 return memcg->swappiness;
1343 static void mem_cgroup_start_move(struct mem_cgroup *mem)
1345 int cpu;
1347 get_online_cpus();
1348 spin_lock(&mem->pcp_counter_lock);
1349 for_each_online_cpu(cpu)
1350 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1351 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1352 spin_unlock(&mem->pcp_counter_lock);
1353 put_online_cpus();
1355 synchronize_rcu();
1358 static void mem_cgroup_end_move(struct mem_cgroup *mem)
1360 int cpu;
1362 if (!mem)
1363 return;
1364 get_online_cpus();
1365 spin_lock(&mem->pcp_counter_lock);
1366 for_each_online_cpu(cpu)
1367 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1368 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1369 spin_unlock(&mem->pcp_counter_lock);
1370 put_online_cpus();
1373 * 2 routines for checking "mem" is under move_account() or not.
1375 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1376 * for avoiding race in accounting. If true,
1377 * pc->mem_cgroup may be overwritten.
1379 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1380 * under hierarchy of moving cgroups. This is for
1381 * waiting at hith-memory prressure caused by "move".
1384 static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1386 VM_BUG_ON(!rcu_read_lock_held());
1387 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1390 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1392 struct mem_cgroup *from;
1393 struct mem_cgroup *to;
1394 bool ret = false;
1396 * Unlike task_move routines, we access mc.to, mc.from not under
1397 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1399 spin_lock(&mc.lock);
1400 from = mc.from;
1401 to = mc.to;
1402 if (!from)
1403 goto unlock;
1404 if (from == mem || to == mem
1405 || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1406 || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1407 ret = true;
1408 unlock:
1409 spin_unlock(&mc.lock);
1410 return ret;
1413 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1415 if (mc.moving_task && current != mc.moving_task) {
1416 if (mem_cgroup_under_move(mem)) {
1417 DEFINE_WAIT(wait);
1418 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1419 /* moving charge context might have finished. */
1420 if (mc.moving_task)
1421 schedule();
1422 finish_wait(&mc.waitq, &wait);
1423 return true;
1426 return false;
1430 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1431 * @memcg: The memory cgroup that went over limit
1432 * @p: Task that is going to be killed
1434 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1435 * enabled
1437 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1439 struct cgroup *task_cgrp;
1440 struct cgroup *mem_cgrp;
1442 * Need a buffer in BSS, can't rely on allocations. The code relies
1443 * on the assumption that OOM is serialized for memory controller.
1444 * If this assumption is broken, revisit this code.
1446 static char memcg_name[PATH_MAX];
1447 int ret;
1449 if (!memcg || !p)
1450 return;
1453 rcu_read_lock();
1455 mem_cgrp = memcg->css.cgroup;
1456 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1458 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1459 if (ret < 0) {
1461 * Unfortunately, we are unable to convert to a useful name
1462 * But we'll still print out the usage information
1464 rcu_read_unlock();
1465 goto done;
1467 rcu_read_unlock();
1469 printk(KERN_INFO "Task in %s killed", memcg_name);
1471 rcu_read_lock();
1472 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1473 if (ret < 0) {
1474 rcu_read_unlock();
1475 goto done;
1477 rcu_read_unlock();
1480 * Continues from above, so we don't need an KERN_ level
1482 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1483 done:
1485 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1486 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1487 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1488 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1489 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1490 "failcnt %llu\n",
1491 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1492 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1493 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1497 * This function returns the number of memcg under hierarchy tree. Returns
1498 * 1(self count) if no children.
1500 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1502 int num = 0;
1503 struct mem_cgroup *iter;
1505 for_each_mem_cgroup_tree(iter, mem)
1506 num++;
1507 return num;
1511 * Return the memory (and swap, if configured) limit for a memcg.
1513 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1515 u64 limit;
1516 u64 memsw;
1518 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1519 limit += total_swap_pages << PAGE_SHIFT;
1521 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1523 * If memsw is finite and limits the amount of swap space available
1524 * to this memcg, return that limit.
1526 return min(limit, memsw);
1530 * Visit the first child (need not be the first child as per the ordering
1531 * of the cgroup list, since we track last_scanned_child) of @mem and use
1532 * that to reclaim free pages from.
1534 static struct mem_cgroup *
1535 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1537 struct mem_cgroup *ret = NULL;
1538 struct cgroup_subsys_state *css;
1539 int nextid, found;
1541 if (!root_mem->use_hierarchy) {
1542 css_get(&root_mem->css);
1543 ret = root_mem;
1546 while (!ret) {
1547 rcu_read_lock();
1548 nextid = root_mem->last_scanned_child + 1;
1549 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1550 &found);
1551 if (css && css_tryget(css))
1552 ret = container_of(css, struct mem_cgroup, css);
1554 rcu_read_unlock();
1555 /* Updates scanning parameter */
1556 if (!css) {
1557 /* this means start scan from ID:1 */
1558 root_mem->last_scanned_child = 0;
1559 } else
1560 root_mem->last_scanned_child = found;
1563 return ret;
1567 * test_mem_cgroup_node_reclaimable
1568 * @mem: the target memcg
1569 * @nid: the node ID to be checked.
1570 * @noswap : specify true here if the user wants flle only information.
1572 * This function returns whether the specified memcg contains any
1573 * reclaimable pages on a node. Returns true if there are any reclaimable
1574 * pages in the node.
1576 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *mem,
1577 int nid, bool noswap)
1579 if (mem_cgroup_node_nr_file_lru_pages(mem, nid))
1580 return true;
1581 if (noswap || !total_swap_pages)
1582 return false;
1583 if (mem_cgroup_node_nr_anon_lru_pages(mem, nid))
1584 return true;
1585 return false;
1588 #if MAX_NUMNODES > 1
1591 * Always updating the nodemask is not very good - even if we have an empty
1592 * list or the wrong list here, we can start from some node and traverse all
1593 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1596 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
1598 int nid;
1600 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1601 * pagein/pageout changes since the last update.
1603 if (!atomic_read(&mem->numainfo_events))
1604 return;
1605 if (atomic_inc_return(&mem->numainfo_updating) > 1)
1606 return;
1608 /* make a nodemask where this memcg uses memory from */
1609 mem->scan_nodes = node_states[N_HIGH_MEMORY];
1611 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1613 if (!test_mem_cgroup_node_reclaimable(mem, nid, false))
1614 node_clear(nid, mem->scan_nodes);
1617 atomic_set(&mem->numainfo_events, 0);
1618 atomic_set(&mem->numainfo_updating, 0);
1622 * Selecting a node where we start reclaim from. Because what we need is just
1623 * reducing usage counter, start from anywhere is O,K. Considering
1624 * memory reclaim from current node, there are pros. and cons.
1626 * Freeing memory from current node means freeing memory from a node which
1627 * we'll use or we've used. So, it may make LRU bad. And if several threads
1628 * hit limits, it will see a contention on a node. But freeing from remote
1629 * node means more costs for memory reclaim because of memory latency.
1631 * Now, we use round-robin. Better algorithm is welcomed.
1633 int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1635 int node;
1637 mem_cgroup_may_update_nodemask(mem);
1638 node = mem->last_scanned_node;
1640 node = next_node(node, mem->scan_nodes);
1641 if (node == MAX_NUMNODES)
1642 node = first_node(mem->scan_nodes);
1644 * We call this when we hit limit, not when pages are added to LRU.
1645 * No LRU may hold pages because all pages are UNEVICTABLE or
1646 * memcg is too small and all pages are not on LRU. In that case,
1647 * we use curret node.
1649 if (unlikely(node == MAX_NUMNODES))
1650 node = numa_node_id();
1652 mem->last_scanned_node = node;
1653 return node;
1657 * Check all nodes whether it contains reclaimable pages or not.
1658 * For quick scan, we make use of scan_nodes. This will allow us to skip
1659 * unused nodes. But scan_nodes is lazily updated and may not cotain
1660 * enough new information. We need to do double check.
1662 bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1664 int nid;
1667 * quick check...making use of scan_node.
1668 * We can skip unused nodes.
1670 if (!nodes_empty(mem->scan_nodes)) {
1671 for (nid = first_node(mem->scan_nodes);
1672 nid < MAX_NUMNODES;
1673 nid = next_node(nid, mem->scan_nodes)) {
1675 if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1676 return true;
1680 * Check rest of nodes.
1682 for_each_node_state(nid, N_HIGH_MEMORY) {
1683 if (node_isset(nid, mem->scan_nodes))
1684 continue;
1685 if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1686 return true;
1688 return false;
1691 #else
1692 int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1694 return 0;
1697 bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1699 return test_mem_cgroup_node_reclaimable(mem, 0, noswap);
1701 #endif
1704 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1705 * we reclaimed from, so that we don't end up penalizing one child extensively
1706 * based on its position in the children list.
1708 * root_mem is the original ancestor that we've been reclaim from.
1710 * We give up and return to the caller when we visit root_mem twice.
1711 * (other groups can be removed while we're walking....)
1713 * If shrink==true, for avoiding to free too much, this returns immedieately.
1715 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1716 struct zone *zone,
1717 gfp_t gfp_mask,
1718 unsigned long reclaim_options,
1719 unsigned long *total_scanned)
1721 struct mem_cgroup *victim;
1722 int ret, total = 0;
1723 int loop = 0;
1724 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1725 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1726 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1727 unsigned long excess;
1728 unsigned long nr_scanned;
1730 excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
1732 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1733 if (!check_soft && root_mem->memsw_is_minimum)
1734 noswap = true;
1736 while (1) {
1737 victim = mem_cgroup_select_victim(root_mem);
1738 if (victim == root_mem) {
1739 loop++;
1741 * We are not draining per cpu cached charges during
1742 * soft limit reclaim because global reclaim doesn't
1743 * care about charges. It tries to free some memory and
1744 * charges will not give any.
1746 if (!check_soft && loop >= 1)
1747 drain_all_stock_async(root_mem);
1748 if (loop >= 2) {
1750 * If we have not been able to reclaim
1751 * anything, it might because there are
1752 * no reclaimable pages under this hierarchy
1754 if (!check_soft || !total) {
1755 css_put(&victim->css);
1756 break;
1759 * We want to do more targeted reclaim.
1760 * excess >> 2 is not to excessive so as to
1761 * reclaim too much, nor too less that we keep
1762 * coming back to reclaim from this cgroup
1764 if (total >= (excess >> 2) ||
1765 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1766 css_put(&victim->css);
1767 break;
1771 if (!mem_cgroup_reclaimable(victim, noswap)) {
1772 /* this cgroup's local usage == 0 */
1773 css_put(&victim->css);
1774 continue;
1776 /* we use swappiness of local cgroup */
1777 if (check_soft) {
1778 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1779 noswap, get_swappiness(victim), zone,
1780 &nr_scanned);
1781 *total_scanned += nr_scanned;
1782 } else
1783 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1784 noswap, get_swappiness(victim));
1785 css_put(&victim->css);
1787 * At shrinking usage, we can't check we should stop here or
1788 * reclaim more. It's depends on callers. last_scanned_child
1789 * will work enough for keeping fairness under tree.
1791 if (shrink)
1792 return ret;
1793 total += ret;
1794 if (check_soft) {
1795 if (!res_counter_soft_limit_excess(&root_mem->res))
1796 return total;
1797 } else if (mem_cgroup_margin(root_mem))
1798 return total;
1800 return total;
1804 * Check OOM-Killer is already running under our hierarchy.
1805 * If someone is running, return false.
1807 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1809 int x, lock_count = 0;
1810 struct mem_cgroup *iter;
1812 for_each_mem_cgroup_tree(iter, mem) {
1813 x = atomic_inc_return(&iter->oom_lock);
1814 lock_count = max(x, lock_count);
1817 if (lock_count == 1)
1818 return true;
1819 return false;
1822 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1824 struct mem_cgroup *iter;
1827 * When a new child is created while the hierarchy is under oom,
1828 * mem_cgroup_oom_lock() may not be called. We have to use
1829 * atomic_add_unless() here.
1831 for_each_mem_cgroup_tree(iter, mem)
1832 atomic_add_unless(&iter->oom_lock, -1, 0);
1833 return 0;
1837 static DEFINE_MUTEX(memcg_oom_mutex);
1838 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1840 struct oom_wait_info {
1841 struct mem_cgroup *mem;
1842 wait_queue_t wait;
1845 static int memcg_oom_wake_function(wait_queue_t *wait,
1846 unsigned mode, int sync, void *arg)
1848 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1849 struct oom_wait_info *oom_wait_info;
1851 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1853 if (oom_wait_info->mem == wake_mem)
1854 goto wakeup;
1855 /* if no hierarchy, no match */
1856 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1857 return 0;
1859 * Both of oom_wait_info->mem and wake_mem are stable under us.
1860 * Then we can use css_is_ancestor without taking care of RCU.
1862 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1863 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1864 return 0;
1866 wakeup:
1867 return autoremove_wake_function(wait, mode, sync, arg);
1870 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1872 /* for filtering, pass "mem" as argument. */
1873 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1876 static void memcg_oom_recover(struct mem_cgroup *mem)
1878 if (mem && atomic_read(&mem->oom_lock))
1879 memcg_wakeup_oom(mem);
1883 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1885 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1887 struct oom_wait_info owait;
1888 bool locked, need_to_kill;
1890 owait.mem = mem;
1891 owait.wait.flags = 0;
1892 owait.wait.func = memcg_oom_wake_function;
1893 owait.wait.private = current;
1894 INIT_LIST_HEAD(&owait.wait.task_list);
1895 need_to_kill = true;
1896 /* At first, try to OOM lock hierarchy under mem.*/
1897 mutex_lock(&memcg_oom_mutex);
1898 locked = mem_cgroup_oom_lock(mem);
1900 * Even if signal_pending(), we can't quit charge() loop without
1901 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1902 * under OOM is always welcomed, use TASK_KILLABLE here.
1904 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1905 if (!locked || mem->oom_kill_disable)
1906 need_to_kill = false;
1907 if (locked)
1908 mem_cgroup_oom_notify(mem);
1909 mutex_unlock(&memcg_oom_mutex);
1911 if (need_to_kill) {
1912 finish_wait(&memcg_oom_waitq, &owait.wait);
1913 mem_cgroup_out_of_memory(mem, mask);
1914 } else {
1915 schedule();
1916 finish_wait(&memcg_oom_waitq, &owait.wait);
1918 mutex_lock(&memcg_oom_mutex);
1919 mem_cgroup_oom_unlock(mem);
1920 memcg_wakeup_oom(mem);
1921 mutex_unlock(&memcg_oom_mutex);
1923 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1924 return false;
1925 /* Give chance to dying process */
1926 schedule_timeout(1);
1927 return true;
1931 * Currently used to update mapped file statistics, but the routine can be
1932 * generalized to update other statistics as well.
1934 * Notes: Race condition
1936 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1937 * it tends to be costly. But considering some conditions, we doesn't need
1938 * to do so _always_.
1940 * Considering "charge", lock_page_cgroup() is not required because all
1941 * file-stat operations happen after a page is attached to radix-tree. There
1942 * are no race with "charge".
1944 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1945 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1946 * if there are race with "uncharge". Statistics itself is properly handled
1947 * by flags.
1949 * Considering "move", this is an only case we see a race. To make the race
1950 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1951 * possibility of race condition. If there is, we take a lock.
1954 void mem_cgroup_update_page_stat(struct page *page,
1955 enum mem_cgroup_page_stat_item idx, int val)
1957 struct mem_cgroup *mem;
1958 struct page_cgroup *pc = lookup_page_cgroup(page);
1959 bool need_unlock = false;
1960 unsigned long uninitialized_var(flags);
1962 if (unlikely(!pc))
1963 return;
1965 rcu_read_lock();
1966 mem = pc->mem_cgroup;
1967 if (unlikely(!mem || !PageCgroupUsed(pc)))
1968 goto out;
1969 /* pc->mem_cgroup is unstable ? */
1970 if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1971 /* take a lock against to access pc->mem_cgroup */
1972 move_lock_page_cgroup(pc, &flags);
1973 need_unlock = true;
1974 mem = pc->mem_cgroup;
1975 if (!mem || !PageCgroupUsed(pc))
1976 goto out;
1979 switch (idx) {
1980 case MEMCG_NR_FILE_MAPPED:
1981 if (val > 0)
1982 SetPageCgroupFileMapped(pc);
1983 else if (!page_mapped(page))
1984 ClearPageCgroupFileMapped(pc);
1985 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1986 break;
1987 default:
1988 BUG();
1991 this_cpu_add(mem->stat->count[idx], val);
1993 out:
1994 if (unlikely(need_unlock))
1995 move_unlock_page_cgroup(pc, &flags);
1996 rcu_read_unlock();
1997 return;
1999 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
2002 * size of first charge trial. "32" comes from vmscan.c's magic value.
2003 * TODO: maybe necessary to use big numbers in big irons.
2005 #define CHARGE_BATCH 32U
2006 struct memcg_stock_pcp {
2007 struct mem_cgroup *cached; /* this never be root cgroup */
2008 unsigned int nr_pages;
2009 struct work_struct work;
2010 unsigned long flags;
2011 #define FLUSHING_CACHED_CHARGE (0)
2013 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2014 static DEFINE_MUTEX(percpu_charge_mutex);
2017 * Try to consume stocked charge on this cpu. If success, one page is consumed
2018 * from local stock and true is returned. If the stock is 0 or charges from a
2019 * cgroup which is not current target, returns false. This stock will be
2020 * refilled.
2022 static bool consume_stock(struct mem_cgroup *mem)
2024 struct memcg_stock_pcp *stock;
2025 bool ret = true;
2027 stock = &get_cpu_var(memcg_stock);
2028 if (mem == stock->cached && stock->nr_pages)
2029 stock->nr_pages--;
2030 else /* need to call res_counter_charge */
2031 ret = false;
2032 put_cpu_var(memcg_stock);
2033 return ret;
2037 * Returns stocks cached in percpu to res_counter and reset cached information.
2039 static void drain_stock(struct memcg_stock_pcp *stock)
2041 struct mem_cgroup *old = stock->cached;
2043 if (stock->nr_pages) {
2044 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2046 res_counter_uncharge(&old->res, bytes);
2047 if (do_swap_account)
2048 res_counter_uncharge(&old->memsw, bytes);
2049 stock->nr_pages = 0;
2051 stock->cached = NULL;
2055 * This must be called under preempt disabled or must be called by
2056 * a thread which is pinned to local cpu.
2058 static void drain_local_stock(struct work_struct *dummy)
2060 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2061 drain_stock(stock);
2062 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2066 * Cache charges(val) which is from res_counter, to local per_cpu area.
2067 * This will be consumed by consume_stock() function, later.
2069 static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
2071 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2073 if (stock->cached != mem) { /* reset if necessary */
2074 drain_stock(stock);
2075 stock->cached = mem;
2077 stock->nr_pages += nr_pages;
2078 put_cpu_var(memcg_stock);
2082 * Tries to drain stocked charges in other cpus. This function is asynchronous
2083 * and just put a work per cpu for draining localy on each cpu. Caller can
2084 * expects some charges will be back to res_counter later but cannot wait for
2085 * it.
2087 static void drain_all_stock_async(struct mem_cgroup *root_mem)
2089 int cpu, curcpu;
2091 * If someone calls draining, avoid adding more kworker runs.
2093 if (!mutex_trylock(&percpu_charge_mutex))
2094 return;
2095 /* Notify other cpus that system-wide "drain" is running */
2096 get_online_cpus();
2098 * Get a hint for avoiding draining charges on the current cpu,
2099 * which must be exhausted by our charging. It is not required that
2100 * this be a precise check, so we use raw_smp_processor_id() instead of
2101 * getcpu()/putcpu().
2103 curcpu = raw_smp_processor_id();
2104 for_each_online_cpu(cpu) {
2105 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2106 struct mem_cgroup *mem;
2108 if (cpu == curcpu)
2109 continue;
2111 mem = stock->cached;
2112 if (!mem)
2113 continue;
2114 if (mem != root_mem) {
2115 if (!root_mem->use_hierarchy)
2116 continue;
2117 /* check whether "mem" is under tree of "root_mem" */
2118 if (!css_is_ancestor(&mem->css, &root_mem->css))
2119 continue;
2121 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2122 schedule_work_on(cpu, &stock->work);
2124 put_online_cpus();
2125 mutex_unlock(&percpu_charge_mutex);
2126 /* We don't wait for flush_work */
2129 /* This is a synchronous drain interface. */
2130 static void drain_all_stock_sync(void)
2132 /* called when force_empty is called */
2133 mutex_lock(&percpu_charge_mutex);
2134 schedule_on_each_cpu(drain_local_stock);
2135 mutex_unlock(&percpu_charge_mutex);
2139 * This function drains percpu counter value from DEAD cpu and
2140 * move it to local cpu. Note that this function can be preempted.
2142 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
2144 int i;
2146 spin_lock(&mem->pcp_counter_lock);
2147 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2148 long x = per_cpu(mem->stat->count[i], cpu);
2150 per_cpu(mem->stat->count[i], cpu) = 0;
2151 mem->nocpu_base.count[i] += x;
2153 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2154 unsigned long x = per_cpu(mem->stat->events[i], cpu);
2156 per_cpu(mem->stat->events[i], cpu) = 0;
2157 mem->nocpu_base.events[i] += x;
2159 /* need to clear ON_MOVE value, works as a kind of lock. */
2160 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2161 spin_unlock(&mem->pcp_counter_lock);
2164 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
2166 int idx = MEM_CGROUP_ON_MOVE;
2168 spin_lock(&mem->pcp_counter_lock);
2169 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
2170 spin_unlock(&mem->pcp_counter_lock);
2173 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2174 unsigned long action,
2175 void *hcpu)
2177 int cpu = (unsigned long)hcpu;
2178 struct memcg_stock_pcp *stock;
2179 struct mem_cgroup *iter;
2181 if ((action == CPU_ONLINE)) {
2182 for_each_mem_cgroup_all(iter)
2183 synchronize_mem_cgroup_on_move(iter, cpu);
2184 return NOTIFY_OK;
2187 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2188 return NOTIFY_OK;
2190 for_each_mem_cgroup_all(iter)
2191 mem_cgroup_drain_pcp_counter(iter, cpu);
2193 stock = &per_cpu(memcg_stock, cpu);
2194 drain_stock(stock);
2195 return NOTIFY_OK;
2199 /* See __mem_cgroup_try_charge() for details */
2200 enum {
2201 CHARGE_OK, /* success */
2202 CHARGE_RETRY, /* need to retry but retry is not bad */
2203 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2204 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2205 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2208 static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
2209 unsigned int nr_pages, bool oom_check)
2211 unsigned long csize = nr_pages * PAGE_SIZE;
2212 struct mem_cgroup *mem_over_limit;
2213 struct res_counter *fail_res;
2214 unsigned long flags = 0;
2215 int ret;
2217 ret = res_counter_charge(&mem->res, csize, &fail_res);
2219 if (likely(!ret)) {
2220 if (!do_swap_account)
2221 return CHARGE_OK;
2222 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
2223 if (likely(!ret))
2224 return CHARGE_OK;
2226 res_counter_uncharge(&mem->res, csize);
2227 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2228 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2229 } else
2230 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2232 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2233 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2235 * Never reclaim on behalf of optional batching, retry with a
2236 * single page instead.
2238 if (nr_pages == CHARGE_BATCH)
2239 return CHARGE_RETRY;
2241 if (!(gfp_mask & __GFP_WAIT))
2242 return CHARGE_WOULDBLOCK;
2244 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2245 gfp_mask, flags, NULL);
2246 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2247 return CHARGE_RETRY;
2249 * Even though the limit is exceeded at this point, reclaim
2250 * may have been able to free some pages. Retry the charge
2251 * before killing the task.
2253 * Only for regular pages, though: huge pages are rather
2254 * unlikely to succeed so close to the limit, and we fall back
2255 * to regular pages anyway in case of failure.
2257 if (nr_pages == 1 && ret)
2258 return CHARGE_RETRY;
2261 * At task move, charge accounts can be doubly counted. So, it's
2262 * better to wait until the end of task_move if something is going on.
2264 if (mem_cgroup_wait_acct_move(mem_over_limit))
2265 return CHARGE_RETRY;
2267 /* If we don't need to call oom-killer at el, return immediately */
2268 if (!oom_check)
2269 return CHARGE_NOMEM;
2270 /* check OOM */
2271 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2272 return CHARGE_OOM_DIE;
2274 return CHARGE_RETRY;
2278 * Unlike exported interface, "oom" parameter is added. if oom==true,
2279 * oom-killer can be invoked.
2281 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2282 gfp_t gfp_mask,
2283 unsigned int nr_pages,
2284 struct mem_cgroup **memcg,
2285 bool oom)
2287 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2288 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2289 struct mem_cgroup *mem = NULL;
2290 int ret;
2293 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2294 * in system level. So, allow to go ahead dying process in addition to
2295 * MEMDIE process.
2297 if (unlikely(test_thread_flag(TIF_MEMDIE)
2298 || fatal_signal_pending(current)))
2299 goto bypass;
2302 * We always charge the cgroup the mm_struct belongs to.
2303 * The mm_struct's mem_cgroup changes on task migration if the
2304 * thread group leader migrates. It's possible that mm is not
2305 * set, if so charge the init_mm (happens for pagecache usage).
2307 if (!*memcg && !mm)
2308 goto bypass;
2309 again:
2310 if (*memcg) { /* css should be a valid one */
2311 mem = *memcg;
2312 VM_BUG_ON(css_is_removed(&mem->css));
2313 if (mem_cgroup_is_root(mem))
2314 goto done;
2315 if (nr_pages == 1 && consume_stock(mem))
2316 goto done;
2317 css_get(&mem->css);
2318 } else {
2319 struct task_struct *p;
2321 rcu_read_lock();
2322 p = rcu_dereference(mm->owner);
2324 * Because we don't have task_lock(), "p" can exit.
2325 * In that case, "mem" can point to root or p can be NULL with
2326 * race with swapoff. Then, we have small risk of mis-accouning.
2327 * But such kind of mis-account by race always happens because
2328 * we don't have cgroup_mutex(). It's overkill and we allo that
2329 * small race, here.
2330 * (*) swapoff at el will charge against mm-struct not against
2331 * task-struct. So, mm->owner can be NULL.
2333 mem = mem_cgroup_from_task(p);
2334 if (!mem || mem_cgroup_is_root(mem)) {
2335 rcu_read_unlock();
2336 goto done;
2338 if (nr_pages == 1 && consume_stock(mem)) {
2340 * It seems dagerous to access memcg without css_get().
2341 * But considering how consume_stok works, it's not
2342 * necessary. If consume_stock success, some charges
2343 * from this memcg are cached on this cpu. So, we
2344 * don't need to call css_get()/css_tryget() before
2345 * calling consume_stock().
2347 rcu_read_unlock();
2348 goto done;
2350 /* after here, we may be blocked. we need to get refcnt */
2351 if (!css_tryget(&mem->css)) {
2352 rcu_read_unlock();
2353 goto again;
2355 rcu_read_unlock();
2358 do {
2359 bool oom_check;
2361 /* If killed, bypass charge */
2362 if (fatal_signal_pending(current)) {
2363 css_put(&mem->css);
2364 goto bypass;
2367 oom_check = false;
2368 if (oom && !nr_oom_retries) {
2369 oom_check = true;
2370 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2373 ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
2374 switch (ret) {
2375 case CHARGE_OK:
2376 break;
2377 case CHARGE_RETRY: /* not in OOM situation but retry */
2378 batch = nr_pages;
2379 css_put(&mem->css);
2380 mem = NULL;
2381 goto again;
2382 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2383 css_put(&mem->css);
2384 goto nomem;
2385 case CHARGE_NOMEM: /* OOM routine works */
2386 if (!oom) {
2387 css_put(&mem->css);
2388 goto nomem;
2390 /* If oom, we never return -ENOMEM */
2391 nr_oom_retries--;
2392 break;
2393 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2394 css_put(&mem->css);
2395 goto bypass;
2397 } while (ret != CHARGE_OK);
2399 if (batch > nr_pages)
2400 refill_stock(mem, batch - nr_pages);
2401 css_put(&mem->css);
2402 done:
2403 *memcg = mem;
2404 return 0;
2405 nomem:
2406 *memcg = NULL;
2407 return -ENOMEM;
2408 bypass:
2409 *memcg = NULL;
2410 return 0;
2414 * Somemtimes we have to undo a charge we got by try_charge().
2415 * This function is for that and do uncharge, put css's refcnt.
2416 * gotten by try_charge().
2418 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2419 unsigned int nr_pages)
2421 if (!mem_cgroup_is_root(mem)) {
2422 unsigned long bytes = nr_pages * PAGE_SIZE;
2424 res_counter_uncharge(&mem->res, bytes);
2425 if (do_swap_account)
2426 res_counter_uncharge(&mem->memsw, bytes);
2431 * A helper function to get mem_cgroup from ID. must be called under
2432 * rcu_read_lock(). The caller must check css_is_removed() or some if
2433 * it's concern. (dropping refcnt from swap can be called against removed
2434 * memcg.)
2436 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2438 struct cgroup_subsys_state *css;
2440 /* ID 0 is unused ID */
2441 if (!id)
2442 return NULL;
2443 css = css_lookup(&mem_cgroup_subsys, id);
2444 if (!css)
2445 return NULL;
2446 return container_of(css, struct mem_cgroup, css);
2449 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2451 struct mem_cgroup *mem = NULL;
2452 struct page_cgroup *pc;
2453 unsigned short id;
2454 swp_entry_t ent;
2456 VM_BUG_ON(!PageLocked(page));
2458 pc = lookup_page_cgroup(page);
2459 lock_page_cgroup(pc);
2460 if (PageCgroupUsed(pc)) {
2461 mem = pc->mem_cgroup;
2462 if (mem && !css_tryget(&mem->css))
2463 mem = NULL;
2464 } else if (PageSwapCache(page)) {
2465 ent.val = page_private(page);
2466 id = lookup_swap_cgroup(ent);
2467 rcu_read_lock();
2468 mem = mem_cgroup_lookup(id);
2469 if (mem && !css_tryget(&mem->css))
2470 mem = NULL;
2471 rcu_read_unlock();
2473 unlock_page_cgroup(pc);
2474 return mem;
2477 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2478 struct page *page,
2479 unsigned int nr_pages,
2480 struct page_cgroup *pc,
2481 enum charge_type ctype)
2483 lock_page_cgroup(pc);
2484 if (unlikely(PageCgroupUsed(pc))) {
2485 unlock_page_cgroup(pc);
2486 __mem_cgroup_cancel_charge(mem, nr_pages);
2487 return;
2490 * we don't need page_cgroup_lock about tail pages, becase they are not
2491 * accessed by any other context at this point.
2493 pc->mem_cgroup = mem;
2495 * We access a page_cgroup asynchronously without lock_page_cgroup().
2496 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2497 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2498 * before USED bit, we need memory barrier here.
2499 * See mem_cgroup_add_lru_list(), etc.
2501 smp_wmb();
2502 switch (ctype) {
2503 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2504 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2505 SetPageCgroupCache(pc);
2506 SetPageCgroupUsed(pc);
2507 break;
2508 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2509 ClearPageCgroupCache(pc);
2510 SetPageCgroupUsed(pc);
2511 break;
2512 default:
2513 break;
2516 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2517 unlock_page_cgroup(pc);
2519 * "charge_statistics" updated event counter. Then, check it.
2520 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2521 * if they exceeds softlimit.
2523 memcg_check_events(mem, page);
2526 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2528 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2529 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2531 * Because tail pages are not marked as "used", set it. We're under
2532 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2534 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2536 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2537 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2538 unsigned long flags;
2540 if (mem_cgroup_disabled())
2541 return;
2543 * We have no races with charge/uncharge but will have races with
2544 * page state accounting.
2546 move_lock_page_cgroup(head_pc, &flags);
2548 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2549 smp_wmb(); /* see __commit_charge() */
2550 if (PageCgroupAcctLRU(head_pc)) {
2551 enum lru_list lru;
2552 struct mem_cgroup_per_zone *mz;
2555 * LRU flags cannot be copied because we need to add tail
2556 *.page to LRU by generic call and our hook will be called.
2557 * We hold lru_lock, then, reduce counter directly.
2559 lru = page_lru(head);
2560 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2561 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2563 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2564 move_unlock_page_cgroup(head_pc, &flags);
2566 #endif
2569 * mem_cgroup_move_account - move account of the page
2570 * @page: the page
2571 * @nr_pages: number of regular pages (>1 for huge pages)
2572 * @pc: page_cgroup of the page.
2573 * @from: mem_cgroup which the page is moved from.
2574 * @to: mem_cgroup which the page is moved to. @from != @to.
2575 * @uncharge: whether we should call uncharge and css_put against @from.
2577 * The caller must confirm following.
2578 * - page is not on LRU (isolate_page() is useful.)
2579 * - compound_lock is held when nr_pages > 1
2581 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2582 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2583 * true, this function does "uncharge" from old cgroup, but it doesn't if
2584 * @uncharge is false, so a caller should do "uncharge".
2586 static int mem_cgroup_move_account(struct page *page,
2587 unsigned int nr_pages,
2588 struct page_cgroup *pc,
2589 struct mem_cgroup *from,
2590 struct mem_cgroup *to,
2591 bool uncharge)
2593 unsigned long flags;
2594 int ret;
2596 VM_BUG_ON(from == to);
2597 VM_BUG_ON(PageLRU(page));
2599 * The page is isolated from LRU. So, collapse function
2600 * will not handle this page. But page splitting can happen.
2601 * Do this check under compound_page_lock(). The caller should
2602 * hold it.
2604 ret = -EBUSY;
2605 if (nr_pages > 1 && !PageTransHuge(page))
2606 goto out;
2608 lock_page_cgroup(pc);
2610 ret = -EINVAL;
2611 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2612 goto unlock;
2614 move_lock_page_cgroup(pc, &flags);
2616 if (PageCgroupFileMapped(pc)) {
2617 /* Update mapped_file data for mem_cgroup */
2618 preempt_disable();
2619 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2620 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2621 preempt_enable();
2623 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2624 if (uncharge)
2625 /* This is not "cancel", but cancel_charge does all we need. */
2626 __mem_cgroup_cancel_charge(from, nr_pages);
2628 /* caller should have done css_get */
2629 pc->mem_cgroup = to;
2630 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2632 * We charges against "to" which may not have any tasks. Then, "to"
2633 * can be under rmdir(). But in current implementation, caller of
2634 * this function is just force_empty() and move charge, so it's
2635 * guaranteed that "to" is never removed. So, we don't check rmdir
2636 * status here.
2638 move_unlock_page_cgroup(pc, &flags);
2639 ret = 0;
2640 unlock:
2641 unlock_page_cgroup(pc);
2643 * check events
2645 memcg_check_events(to, page);
2646 memcg_check_events(from, page);
2647 out:
2648 return ret;
2652 * move charges to its parent.
2655 static int mem_cgroup_move_parent(struct page *page,
2656 struct page_cgroup *pc,
2657 struct mem_cgroup *child,
2658 gfp_t gfp_mask)
2660 struct cgroup *cg = child->css.cgroup;
2661 struct cgroup *pcg = cg->parent;
2662 struct mem_cgroup *parent;
2663 unsigned int nr_pages;
2664 unsigned long uninitialized_var(flags);
2665 int ret;
2667 /* Is ROOT ? */
2668 if (!pcg)
2669 return -EINVAL;
2671 ret = -EBUSY;
2672 if (!get_page_unless_zero(page))
2673 goto out;
2674 if (isolate_lru_page(page))
2675 goto put;
2677 nr_pages = hpage_nr_pages(page);
2679 parent = mem_cgroup_from_cont(pcg);
2680 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2681 if (ret || !parent)
2682 goto put_back;
2684 if (nr_pages > 1)
2685 flags = compound_lock_irqsave(page);
2687 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2688 if (ret)
2689 __mem_cgroup_cancel_charge(parent, nr_pages);
2691 if (nr_pages > 1)
2692 compound_unlock_irqrestore(page, flags);
2693 put_back:
2694 putback_lru_page(page);
2695 put:
2696 put_page(page);
2697 out:
2698 return ret;
2702 * Charge the memory controller for page usage.
2703 * Return
2704 * 0 if the charge was successful
2705 * < 0 if the cgroup is over its limit
2707 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2708 gfp_t gfp_mask, enum charge_type ctype)
2710 struct mem_cgroup *mem = NULL;
2711 unsigned int nr_pages = 1;
2712 struct page_cgroup *pc;
2713 bool oom = true;
2714 int ret;
2716 if (PageTransHuge(page)) {
2717 nr_pages <<= compound_order(page);
2718 VM_BUG_ON(!PageTransHuge(page));
2720 * Never OOM-kill a process for a huge page. The
2721 * fault handler will fall back to regular pages.
2723 oom = false;
2726 pc = lookup_page_cgroup(page);
2727 BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2729 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
2730 if (ret || !mem)
2731 return ret;
2733 __mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
2734 return 0;
2737 int mem_cgroup_newpage_charge(struct page *page,
2738 struct mm_struct *mm, gfp_t gfp_mask)
2740 if (mem_cgroup_disabled())
2741 return 0;
2743 * If already mapped, we don't have to account.
2744 * If page cache, page->mapping has address_space.
2745 * But page->mapping may have out-of-use anon_vma pointer,
2746 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2747 * is NULL.
2749 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2750 return 0;
2751 if (unlikely(!mm))
2752 mm = &init_mm;
2753 return mem_cgroup_charge_common(page, mm, gfp_mask,
2754 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2757 static void
2758 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2759 enum charge_type ctype);
2761 static void
2762 __mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
2763 enum charge_type ctype)
2765 struct page_cgroup *pc = lookup_page_cgroup(page);
2767 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2768 * is already on LRU. It means the page may on some other page_cgroup's
2769 * LRU. Take care of it.
2771 mem_cgroup_lru_del_before_commit(page);
2772 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
2773 mem_cgroup_lru_add_after_commit(page);
2774 return;
2777 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2778 gfp_t gfp_mask)
2780 struct mem_cgroup *mem = NULL;
2781 int ret;
2783 if (mem_cgroup_disabled())
2784 return 0;
2785 if (PageCompound(page))
2786 return 0;
2788 * Corner case handling. This is called from add_to_page_cache()
2789 * in usual. But some FS (shmem) precharges this page before calling it
2790 * and call add_to_page_cache() with GFP_NOWAIT.
2792 * For GFP_NOWAIT case, the page may be pre-charged before calling
2793 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2794 * charge twice. (It works but has to pay a bit larger cost.)
2795 * And when the page is SwapCache, it should take swap information
2796 * into account. This is under lock_page() now.
2798 if (!(gfp_mask & __GFP_WAIT)) {
2799 struct page_cgroup *pc;
2801 pc = lookup_page_cgroup(page);
2802 if (!pc)
2803 return 0;
2804 lock_page_cgroup(pc);
2805 if (PageCgroupUsed(pc)) {
2806 unlock_page_cgroup(pc);
2807 return 0;
2809 unlock_page_cgroup(pc);
2812 if (unlikely(!mm))
2813 mm = &init_mm;
2815 if (page_is_file_cache(page)) {
2816 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
2817 if (ret || !mem)
2818 return ret;
2821 * FUSE reuses pages without going through the final
2822 * put that would remove them from the LRU list, make
2823 * sure that they get relinked properly.
2825 __mem_cgroup_commit_charge_lrucare(page, mem,
2826 MEM_CGROUP_CHARGE_TYPE_CACHE);
2827 return ret;
2829 /* shmem */
2830 if (PageSwapCache(page)) {
2831 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2832 if (!ret)
2833 __mem_cgroup_commit_charge_swapin(page, mem,
2834 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2835 } else
2836 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2837 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2839 return ret;
2843 * While swap-in, try_charge -> commit or cancel, the page is locked.
2844 * And when try_charge() successfully returns, one refcnt to memcg without
2845 * struct page_cgroup is acquired. This refcnt will be consumed by
2846 * "commit()" or removed by "cancel()"
2848 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2849 struct page *page,
2850 gfp_t mask, struct mem_cgroup **ptr)
2852 struct mem_cgroup *mem;
2853 int ret;
2855 *ptr = NULL;
2857 if (mem_cgroup_disabled())
2858 return 0;
2860 if (!do_swap_account)
2861 goto charge_cur_mm;
2863 * A racing thread's fault, or swapoff, may have already updated
2864 * the pte, and even removed page from swap cache: in those cases
2865 * do_swap_page()'s pte_same() test will fail; but there's also a
2866 * KSM case which does need to charge the page.
2868 if (!PageSwapCache(page))
2869 goto charge_cur_mm;
2870 mem = try_get_mem_cgroup_from_page(page);
2871 if (!mem)
2872 goto charge_cur_mm;
2873 *ptr = mem;
2874 ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2875 css_put(&mem->css);
2876 return ret;
2877 charge_cur_mm:
2878 if (unlikely(!mm))
2879 mm = &init_mm;
2880 return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2883 static void
2884 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2885 enum charge_type ctype)
2887 if (mem_cgroup_disabled())
2888 return;
2889 if (!ptr)
2890 return;
2891 cgroup_exclude_rmdir(&ptr->css);
2893 __mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2895 * Now swap is on-memory. This means this page may be
2896 * counted both as mem and swap....double count.
2897 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2898 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2899 * may call delete_from_swap_cache() before reach here.
2901 if (do_swap_account && PageSwapCache(page)) {
2902 swp_entry_t ent = {.val = page_private(page)};
2903 unsigned short id;
2904 struct mem_cgroup *memcg;
2906 id = swap_cgroup_record(ent, 0);
2907 rcu_read_lock();
2908 memcg = mem_cgroup_lookup(id);
2909 if (memcg) {
2911 * This recorded memcg can be obsolete one. So, avoid
2912 * calling css_tryget
2914 if (!mem_cgroup_is_root(memcg))
2915 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2916 mem_cgroup_swap_statistics(memcg, false);
2917 mem_cgroup_put(memcg);
2919 rcu_read_unlock();
2922 * At swapin, we may charge account against cgroup which has no tasks.
2923 * So, rmdir()->pre_destroy() can be called while we do this charge.
2924 * In that case, we need to call pre_destroy() again. check it here.
2926 cgroup_release_and_wakeup_rmdir(&ptr->css);
2929 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2931 __mem_cgroup_commit_charge_swapin(page, ptr,
2932 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2935 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2937 if (mem_cgroup_disabled())
2938 return;
2939 if (!mem)
2940 return;
2941 __mem_cgroup_cancel_charge(mem, 1);
2944 static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
2945 unsigned int nr_pages,
2946 const enum charge_type ctype)
2948 struct memcg_batch_info *batch = NULL;
2949 bool uncharge_memsw = true;
2951 /* If swapout, usage of swap doesn't decrease */
2952 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2953 uncharge_memsw = false;
2955 batch = &current->memcg_batch;
2957 * In usual, we do css_get() when we remember memcg pointer.
2958 * But in this case, we keep res->usage until end of a series of
2959 * uncharges. Then, it's ok to ignore memcg's refcnt.
2961 if (!batch->memcg)
2962 batch->memcg = mem;
2964 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2965 * In those cases, all pages freed continuously can be expected to be in
2966 * the same cgroup and we have chance to coalesce uncharges.
2967 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2968 * because we want to do uncharge as soon as possible.
2971 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2972 goto direct_uncharge;
2974 if (nr_pages > 1)
2975 goto direct_uncharge;
2978 * In typical case, batch->memcg == mem. This means we can
2979 * merge a series of uncharges to an uncharge of res_counter.
2980 * If not, we uncharge res_counter ony by one.
2982 if (batch->memcg != mem)
2983 goto direct_uncharge;
2984 /* remember freed charge and uncharge it later */
2985 batch->nr_pages++;
2986 if (uncharge_memsw)
2987 batch->memsw_nr_pages++;
2988 return;
2989 direct_uncharge:
2990 res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
2991 if (uncharge_memsw)
2992 res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
2993 if (unlikely(batch->memcg != mem))
2994 memcg_oom_recover(mem);
2995 return;
2999 * uncharge if !page_mapped(page)
3001 static struct mem_cgroup *
3002 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
3004 struct mem_cgroup *mem = NULL;
3005 unsigned int nr_pages = 1;
3006 struct page_cgroup *pc;
3008 if (mem_cgroup_disabled())
3009 return NULL;
3011 if (PageSwapCache(page))
3012 return NULL;
3014 if (PageTransHuge(page)) {
3015 nr_pages <<= compound_order(page);
3016 VM_BUG_ON(!PageTransHuge(page));
3019 * Check if our page_cgroup is valid
3021 pc = lookup_page_cgroup(page);
3022 if (unlikely(!pc || !PageCgroupUsed(pc)))
3023 return NULL;
3025 lock_page_cgroup(pc);
3027 mem = pc->mem_cgroup;
3029 if (!PageCgroupUsed(pc))
3030 goto unlock_out;
3032 switch (ctype) {
3033 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
3034 case MEM_CGROUP_CHARGE_TYPE_DROP:
3035 /* See mem_cgroup_prepare_migration() */
3036 if (page_mapped(page) || PageCgroupMigration(pc))
3037 goto unlock_out;
3038 break;
3039 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3040 if (!PageAnon(page)) { /* Shared memory */
3041 if (page->mapping && !page_is_file_cache(page))
3042 goto unlock_out;
3043 } else if (page_mapped(page)) /* Anon */
3044 goto unlock_out;
3045 break;
3046 default:
3047 break;
3050 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
3052 ClearPageCgroupUsed(pc);
3054 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3055 * freed from LRU. This is safe because uncharged page is expected not
3056 * to be reused (freed soon). Exception is SwapCache, it's handled by
3057 * special functions.
3060 unlock_page_cgroup(pc);
3062 * even after unlock, we have mem->res.usage here and this memcg
3063 * will never be freed.
3065 memcg_check_events(mem, page);
3066 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3067 mem_cgroup_swap_statistics(mem, true);
3068 mem_cgroup_get(mem);
3070 if (!mem_cgroup_is_root(mem))
3071 mem_cgroup_do_uncharge(mem, nr_pages, ctype);
3073 return mem;
3075 unlock_out:
3076 unlock_page_cgroup(pc);
3077 return NULL;
3080 void mem_cgroup_uncharge_page(struct page *page)
3082 /* early check. */
3083 if (page_mapped(page))
3084 return;
3085 if (page->mapping && !PageAnon(page))
3086 return;
3087 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3090 void mem_cgroup_uncharge_cache_page(struct page *page)
3092 VM_BUG_ON(page_mapped(page));
3093 VM_BUG_ON(page->mapping);
3094 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3098 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3099 * In that cases, pages are freed continuously and we can expect pages
3100 * are in the same memcg. All these calls itself limits the number of
3101 * pages freed at once, then uncharge_start/end() is called properly.
3102 * This may be called prural(2) times in a context,
3105 void mem_cgroup_uncharge_start(void)
3107 current->memcg_batch.do_batch++;
3108 /* We can do nest. */
3109 if (current->memcg_batch.do_batch == 1) {
3110 current->memcg_batch.memcg = NULL;
3111 current->memcg_batch.nr_pages = 0;
3112 current->memcg_batch.memsw_nr_pages = 0;
3116 void mem_cgroup_uncharge_end(void)
3118 struct memcg_batch_info *batch = &current->memcg_batch;
3120 if (!batch->do_batch)
3121 return;
3123 batch->do_batch--;
3124 if (batch->do_batch) /* If stacked, do nothing. */
3125 return;
3127 if (!batch->memcg)
3128 return;
3130 * This "batch->memcg" is valid without any css_get/put etc...
3131 * bacause we hide charges behind us.
3133 if (batch->nr_pages)
3134 res_counter_uncharge(&batch->memcg->res,
3135 batch->nr_pages * PAGE_SIZE);
3136 if (batch->memsw_nr_pages)
3137 res_counter_uncharge(&batch->memcg->memsw,
3138 batch->memsw_nr_pages * PAGE_SIZE);
3139 memcg_oom_recover(batch->memcg);
3140 /* forget this pointer (for sanity check) */
3141 batch->memcg = NULL;
3144 #ifdef CONFIG_SWAP
3146 * called after __delete_from_swap_cache() and drop "page" account.
3147 * memcg information is recorded to swap_cgroup of "ent"
3149 void
3150 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3152 struct mem_cgroup *memcg;
3153 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3155 if (!swapout) /* this was a swap cache but the swap is unused ! */
3156 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3158 memcg = __mem_cgroup_uncharge_common(page, ctype);
3161 * record memcg information, if swapout && memcg != NULL,
3162 * mem_cgroup_get() was called in uncharge().
3164 if (do_swap_account && swapout && memcg)
3165 swap_cgroup_record(ent, css_id(&memcg->css));
3167 #endif
3169 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3171 * called from swap_entry_free(). remove record in swap_cgroup and
3172 * uncharge "memsw" account.
3174 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3176 struct mem_cgroup *memcg;
3177 unsigned short id;
3179 if (!do_swap_account)
3180 return;
3182 id = swap_cgroup_record(ent, 0);
3183 rcu_read_lock();
3184 memcg = mem_cgroup_lookup(id);
3185 if (memcg) {
3187 * We uncharge this because swap is freed.
3188 * This memcg can be obsolete one. We avoid calling css_tryget
3190 if (!mem_cgroup_is_root(memcg))
3191 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3192 mem_cgroup_swap_statistics(memcg, false);
3193 mem_cgroup_put(memcg);
3195 rcu_read_unlock();
3199 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3200 * @entry: swap entry to be moved
3201 * @from: mem_cgroup which the entry is moved from
3202 * @to: mem_cgroup which the entry is moved to
3203 * @need_fixup: whether we should fixup res_counters and refcounts.
3205 * It succeeds only when the swap_cgroup's record for this entry is the same
3206 * as the mem_cgroup's id of @from.
3208 * Returns 0 on success, -EINVAL on failure.
3210 * The caller must have charged to @to, IOW, called res_counter_charge() about
3211 * both res and memsw, and called css_get().
3213 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3214 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3216 unsigned short old_id, new_id;
3218 old_id = css_id(&from->css);
3219 new_id = css_id(&to->css);
3221 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3222 mem_cgroup_swap_statistics(from, false);
3223 mem_cgroup_swap_statistics(to, true);
3225 * This function is only called from task migration context now.
3226 * It postpones res_counter and refcount handling till the end
3227 * of task migration(mem_cgroup_clear_mc()) for performance
3228 * improvement. But we cannot postpone mem_cgroup_get(to)
3229 * because if the process that has been moved to @to does
3230 * swap-in, the refcount of @to might be decreased to 0.
3232 mem_cgroup_get(to);
3233 if (need_fixup) {
3234 if (!mem_cgroup_is_root(from))
3235 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3236 mem_cgroup_put(from);
3238 * we charged both to->res and to->memsw, so we should
3239 * uncharge to->res.
3241 if (!mem_cgroup_is_root(to))
3242 res_counter_uncharge(&to->res, PAGE_SIZE);
3244 return 0;
3246 return -EINVAL;
3248 #else
3249 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3250 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3252 return -EINVAL;
3254 #endif
3257 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3258 * page belongs to.
3260 int mem_cgroup_prepare_migration(struct page *page,
3261 struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3263 struct mem_cgroup *mem = NULL;
3264 struct page_cgroup *pc;
3265 enum charge_type ctype;
3266 int ret = 0;
3268 *ptr = NULL;
3270 VM_BUG_ON(PageTransHuge(page));
3271 if (mem_cgroup_disabled())
3272 return 0;
3274 pc = lookup_page_cgroup(page);
3275 lock_page_cgroup(pc);
3276 if (PageCgroupUsed(pc)) {
3277 mem = pc->mem_cgroup;
3278 css_get(&mem->css);
3280 * At migrating an anonymous page, its mapcount goes down
3281 * to 0 and uncharge() will be called. But, even if it's fully
3282 * unmapped, migration may fail and this page has to be
3283 * charged again. We set MIGRATION flag here and delay uncharge
3284 * until end_migration() is called
3286 * Corner Case Thinking
3287 * A)
3288 * When the old page was mapped as Anon and it's unmap-and-freed
3289 * while migration was ongoing.
3290 * If unmap finds the old page, uncharge() of it will be delayed
3291 * until end_migration(). If unmap finds a new page, it's
3292 * uncharged when it make mapcount to be 1->0. If unmap code
3293 * finds swap_migration_entry, the new page will not be mapped
3294 * and end_migration() will find it(mapcount==0).
3296 * B)
3297 * When the old page was mapped but migraion fails, the kernel
3298 * remaps it. A charge for it is kept by MIGRATION flag even
3299 * if mapcount goes down to 0. We can do remap successfully
3300 * without charging it again.
3302 * C)
3303 * The "old" page is under lock_page() until the end of
3304 * migration, so, the old page itself will not be swapped-out.
3305 * If the new page is swapped out before end_migraton, our
3306 * hook to usual swap-out path will catch the event.
3308 if (PageAnon(page))
3309 SetPageCgroupMigration(pc);
3311 unlock_page_cgroup(pc);
3313 * If the page is not charged at this point,
3314 * we return here.
3316 if (!mem)
3317 return 0;
3319 *ptr = mem;
3320 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3321 css_put(&mem->css);/* drop extra refcnt */
3322 if (ret || *ptr == NULL) {
3323 if (PageAnon(page)) {
3324 lock_page_cgroup(pc);
3325 ClearPageCgroupMigration(pc);
3326 unlock_page_cgroup(pc);
3328 * The old page may be fully unmapped while we kept it.
3330 mem_cgroup_uncharge_page(page);
3332 return -ENOMEM;
3335 * We charge new page before it's used/mapped. So, even if unlock_page()
3336 * is called before end_migration, we can catch all events on this new
3337 * page. In the case new page is migrated but not remapped, new page's
3338 * mapcount will be finally 0 and we call uncharge in end_migration().
3340 pc = lookup_page_cgroup(newpage);
3341 if (PageAnon(page))
3342 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3343 else if (page_is_file_cache(page))
3344 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3345 else
3346 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3347 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
3348 return ret;
3351 /* remove redundant charge if migration failed*/
3352 void mem_cgroup_end_migration(struct mem_cgroup *mem,
3353 struct page *oldpage, struct page *newpage, bool migration_ok)
3355 struct page *used, *unused;
3356 struct page_cgroup *pc;
3358 if (!mem)
3359 return;
3360 /* blocks rmdir() */
3361 cgroup_exclude_rmdir(&mem->css);
3362 if (!migration_ok) {
3363 used = oldpage;
3364 unused = newpage;
3365 } else {
3366 used = newpage;
3367 unused = oldpage;
3370 * We disallowed uncharge of pages under migration because mapcount
3371 * of the page goes down to zero, temporarly.
3372 * Clear the flag and check the page should be charged.
3374 pc = lookup_page_cgroup(oldpage);
3375 lock_page_cgroup(pc);
3376 ClearPageCgroupMigration(pc);
3377 unlock_page_cgroup(pc);
3379 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3382 * If a page is a file cache, radix-tree replacement is very atomic
3383 * and we can skip this check. When it was an Anon page, its mapcount
3384 * goes down to 0. But because we added MIGRATION flage, it's not
3385 * uncharged yet. There are several case but page->mapcount check
3386 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3387 * check. (see prepare_charge() also)
3389 if (PageAnon(used))
3390 mem_cgroup_uncharge_page(used);
3392 * At migration, we may charge account against cgroup which has no
3393 * tasks.
3394 * So, rmdir()->pre_destroy() can be called while we do this charge.
3395 * In that case, we need to call pre_destroy() again. check it here.
3397 cgroup_release_and_wakeup_rmdir(&mem->css);
3401 * A call to try to shrink memory usage on charge failure at shmem's swapin.
3402 * Calling hierarchical_reclaim is not enough because we should update
3403 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3404 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3405 * not from the memcg which this page would be charged to.
3406 * try_charge_swapin does all of these works properly.
3408 int mem_cgroup_shmem_charge_fallback(struct page *page,
3409 struct mm_struct *mm,
3410 gfp_t gfp_mask)
3412 struct mem_cgroup *mem;
3413 int ret;
3415 if (mem_cgroup_disabled())
3416 return 0;
3418 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3419 if (!ret)
3420 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3422 return ret;
3425 #ifdef CONFIG_DEBUG_VM
3426 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3428 struct page_cgroup *pc;
3430 pc = lookup_page_cgroup(page);
3431 if (likely(pc) && PageCgroupUsed(pc))
3432 return pc;
3433 return NULL;
3436 bool mem_cgroup_bad_page_check(struct page *page)
3438 if (mem_cgroup_disabled())
3439 return false;
3441 return lookup_page_cgroup_used(page) != NULL;
3444 void mem_cgroup_print_bad_page(struct page *page)
3446 struct page_cgroup *pc;
3448 pc = lookup_page_cgroup_used(page);
3449 if (pc) {
3450 int ret = -1;
3451 char *path;
3453 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3454 pc, pc->flags, pc->mem_cgroup);
3456 path = kmalloc(PATH_MAX, GFP_KERNEL);
3457 if (path) {
3458 rcu_read_lock();
3459 ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3460 path, PATH_MAX);
3461 rcu_read_unlock();
3464 printk(KERN_CONT "(%s)\n",
3465 (ret < 0) ? "cannot get the path" : path);
3466 kfree(path);
3469 #endif
3471 static DEFINE_MUTEX(set_limit_mutex);
3473 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3474 unsigned long long val)
3476 int retry_count;
3477 u64 memswlimit, memlimit;
3478 int ret = 0;
3479 int children = mem_cgroup_count_children(memcg);
3480 u64 curusage, oldusage;
3481 int enlarge;
3484 * For keeping hierarchical_reclaim simple, how long we should retry
3485 * is depends on callers. We set our retry-count to be function
3486 * of # of children which we should visit in this loop.
3488 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3490 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3492 enlarge = 0;
3493 while (retry_count) {
3494 if (signal_pending(current)) {
3495 ret = -EINTR;
3496 break;
3499 * Rather than hide all in some function, I do this in
3500 * open coded manner. You see what this really does.
3501 * We have to guarantee mem->res.limit < mem->memsw.limit.
3503 mutex_lock(&set_limit_mutex);
3504 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3505 if (memswlimit < val) {
3506 ret = -EINVAL;
3507 mutex_unlock(&set_limit_mutex);
3508 break;
3511 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3512 if (memlimit < val)
3513 enlarge = 1;
3515 ret = res_counter_set_limit(&memcg->res, val);
3516 if (!ret) {
3517 if (memswlimit == val)
3518 memcg->memsw_is_minimum = true;
3519 else
3520 memcg->memsw_is_minimum = false;
3522 mutex_unlock(&set_limit_mutex);
3524 if (!ret)
3525 break;
3527 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3528 MEM_CGROUP_RECLAIM_SHRINK,
3529 NULL);
3530 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3531 /* Usage is reduced ? */
3532 if (curusage >= oldusage)
3533 retry_count--;
3534 else
3535 oldusage = curusage;
3537 if (!ret && enlarge)
3538 memcg_oom_recover(memcg);
3540 return ret;
3543 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3544 unsigned long long val)
3546 int retry_count;
3547 u64 memlimit, memswlimit, oldusage, curusage;
3548 int children = mem_cgroup_count_children(memcg);
3549 int ret = -EBUSY;
3550 int enlarge = 0;
3552 /* see mem_cgroup_resize_res_limit */
3553 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3554 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3555 while (retry_count) {
3556 if (signal_pending(current)) {
3557 ret = -EINTR;
3558 break;
3561 * Rather than hide all in some function, I do this in
3562 * open coded manner. You see what this really does.
3563 * We have to guarantee mem->res.limit < mem->memsw.limit.
3565 mutex_lock(&set_limit_mutex);
3566 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3567 if (memlimit > val) {
3568 ret = -EINVAL;
3569 mutex_unlock(&set_limit_mutex);
3570 break;
3572 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3573 if (memswlimit < val)
3574 enlarge = 1;
3575 ret = res_counter_set_limit(&memcg->memsw, val);
3576 if (!ret) {
3577 if (memlimit == val)
3578 memcg->memsw_is_minimum = true;
3579 else
3580 memcg->memsw_is_minimum = false;
3582 mutex_unlock(&set_limit_mutex);
3584 if (!ret)
3585 break;
3587 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3588 MEM_CGROUP_RECLAIM_NOSWAP |
3589 MEM_CGROUP_RECLAIM_SHRINK,
3590 NULL);
3591 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3592 /* Usage is reduced ? */
3593 if (curusage >= oldusage)
3594 retry_count--;
3595 else
3596 oldusage = curusage;
3598 if (!ret && enlarge)
3599 memcg_oom_recover(memcg);
3600 return ret;
3603 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3604 gfp_t gfp_mask,
3605 unsigned long *total_scanned)
3607 unsigned long nr_reclaimed = 0;
3608 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3609 unsigned long reclaimed;
3610 int loop = 0;
3611 struct mem_cgroup_tree_per_zone *mctz;
3612 unsigned long long excess;
3613 unsigned long nr_scanned;
3615 if (order > 0)
3616 return 0;
3618 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3620 * This loop can run a while, specially if mem_cgroup's continuously
3621 * keep exceeding their soft limit and putting the system under
3622 * pressure
3624 do {
3625 if (next_mz)
3626 mz = next_mz;
3627 else
3628 mz = mem_cgroup_largest_soft_limit_node(mctz);
3629 if (!mz)
3630 break;
3632 nr_scanned = 0;
3633 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3634 gfp_mask,
3635 MEM_CGROUP_RECLAIM_SOFT,
3636 &nr_scanned);
3637 nr_reclaimed += reclaimed;
3638 *total_scanned += nr_scanned;
3639 spin_lock(&mctz->lock);
3642 * If we failed to reclaim anything from this memory cgroup
3643 * it is time to move on to the next cgroup
3645 next_mz = NULL;
3646 if (!reclaimed) {
3647 do {
3649 * Loop until we find yet another one.
3651 * By the time we get the soft_limit lock
3652 * again, someone might have aded the
3653 * group back on the RB tree. Iterate to
3654 * make sure we get a different mem.
3655 * mem_cgroup_largest_soft_limit_node returns
3656 * NULL if no other cgroup is present on
3657 * the tree
3659 next_mz =
3660 __mem_cgroup_largest_soft_limit_node(mctz);
3661 if (next_mz == mz)
3662 css_put(&next_mz->mem->css);
3663 else /* next_mz == NULL or other memcg */
3664 break;
3665 } while (1);
3667 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3668 excess = res_counter_soft_limit_excess(&mz->mem->res);
3670 * One school of thought says that we should not add
3671 * back the node to the tree if reclaim returns 0.
3672 * But our reclaim could return 0, simply because due
3673 * to priority we are exposing a smaller subset of
3674 * memory to reclaim from. Consider this as a longer
3675 * term TODO.
3677 /* If excess == 0, no tree ops */
3678 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3679 spin_unlock(&mctz->lock);
3680 css_put(&mz->mem->css);
3681 loop++;
3683 * Could not reclaim anything and there are no more
3684 * mem cgroups to try or we seem to be looping without
3685 * reclaiming anything.
3687 if (!nr_reclaimed &&
3688 (next_mz == NULL ||
3689 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3690 break;
3691 } while (!nr_reclaimed);
3692 if (next_mz)
3693 css_put(&next_mz->mem->css);
3694 return nr_reclaimed;
3698 * This routine traverse page_cgroup in given list and drop them all.
3699 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3701 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3702 int node, int zid, enum lru_list lru)
3704 struct zone *zone;
3705 struct mem_cgroup_per_zone *mz;
3706 struct page_cgroup *pc, *busy;
3707 unsigned long flags, loop;
3708 struct list_head *list;
3709 int ret = 0;
3711 zone = &NODE_DATA(node)->node_zones[zid];
3712 mz = mem_cgroup_zoneinfo(mem, node, zid);
3713 list = &mz->lists[lru];
3715 loop = MEM_CGROUP_ZSTAT(mz, lru);
3716 /* give some margin against EBUSY etc...*/
3717 loop += 256;
3718 busy = NULL;
3719 while (loop--) {
3720 struct page *page;
3722 ret = 0;
3723 spin_lock_irqsave(&zone->lru_lock, flags);
3724 if (list_empty(list)) {
3725 spin_unlock_irqrestore(&zone->lru_lock, flags);
3726 break;
3728 pc = list_entry(list->prev, struct page_cgroup, lru);
3729 if (busy == pc) {
3730 list_move(&pc->lru, list);
3731 busy = NULL;
3732 spin_unlock_irqrestore(&zone->lru_lock, flags);
3733 continue;
3735 spin_unlock_irqrestore(&zone->lru_lock, flags);
3737 page = lookup_cgroup_page(pc);
3739 ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3740 if (ret == -ENOMEM)
3741 break;
3743 if (ret == -EBUSY || ret == -EINVAL) {
3744 /* found lock contention or "pc" is obsolete. */
3745 busy = pc;
3746 cond_resched();
3747 } else
3748 busy = NULL;
3751 if (!ret && !list_empty(list))
3752 return -EBUSY;
3753 return ret;
3757 * make mem_cgroup's charge to be 0 if there is no task.
3758 * This enables deleting this mem_cgroup.
3760 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3762 int ret;
3763 int node, zid, shrink;
3764 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3765 struct cgroup *cgrp = mem->css.cgroup;
3767 css_get(&mem->css);
3769 shrink = 0;
3770 /* should free all ? */
3771 if (free_all)
3772 goto try_to_free;
3773 move_account:
3774 do {
3775 ret = -EBUSY;
3776 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3777 goto out;
3778 ret = -EINTR;
3779 if (signal_pending(current))
3780 goto out;
3781 /* This is for making all *used* pages to be on LRU. */
3782 lru_add_drain_all();
3783 drain_all_stock_sync();
3784 ret = 0;
3785 mem_cgroup_start_move(mem);
3786 for_each_node_state(node, N_HIGH_MEMORY) {
3787 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3788 enum lru_list l;
3789 for_each_lru(l) {
3790 ret = mem_cgroup_force_empty_list(mem,
3791 node, zid, l);
3792 if (ret)
3793 break;
3796 if (ret)
3797 break;
3799 mem_cgroup_end_move(mem);
3800 memcg_oom_recover(mem);
3801 /* it seems parent cgroup doesn't have enough mem */
3802 if (ret == -ENOMEM)
3803 goto try_to_free;
3804 cond_resched();
3805 /* "ret" should also be checked to ensure all lists are empty. */
3806 } while (mem->res.usage > 0 || ret);
3807 out:
3808 css_put(&mem->css);
3809 return ret;
3811 try_to_free:
3812 /* returns EBUSY if there is a task or if we come here twice. */
3813 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3814 ret = -EBUSY;
3815 goto out;
3817 /* we call try-to-free pages for make this cgroup empty */
3818 lru_add_drain_all();
3819 /* try to free all pages in this cgroup */
3820 shrink = 1;
3821 while (nr_retries && mem->res.usage > 0) {
3822 int progress;
3824 if (signal_pending(current)) {
3825 ret = -EINTR;
3826 goto out;
3828 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3829 false, get_swappiness(mem));
3830 if (!progress) {
3831 nr_retries--;
3832 /* maybe some writeback is necessary */
3833 congestion_wait(BLK_RW_ASYNC, HZ/10);
3837 lru_add_drain();
3838 /* try move_account...there may be some *locked* pages. */
3839 goto move_account;
3842 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3844 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3848 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3850 return mem_cgroup_from_cont(cont)->use_hierarchy;
3853 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3854 u64 val)
3856 int retval = 0;
3857 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3858 struct cgroup *parent = cont->parent;
3859 struct mem_cgroup *parent_mem = NULL;
3861 if (parent)
3862 parent_mem = mem_cgroup_from_cont(parent);
3864 cgroup_lock();
3866 * If parent's use_hierarchy is set, we can't make any modifications
3867 * in the child subtrees. If it is unset, then the change can
3868 * occur, provided the current cgroup has no children.
3870 * For the root cgroup, parent_mem is NULL, we allow value to be
3871 * set if there are no children.
3873 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3874 (val == 1 || val == 0)) {
3875 if (list_empty(&cont->children))
3876 mem->use_hierarchy = val;
3877 else
3878 retval = -EBUSY;
3879 } else
3880 retval = -EINVAL;
3881 cgroup_unlock();
3883 return retval;
3887 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
3888 enum mem_cgroup_stat_index idx)
3890 struct mem_cgroup *iter;
3891 long val = 0;
3893 /* Per-cpu values can be negative, use a signed accumulator */
3894 for_each_mem_cgroup_tree(iter, mem)
3895 val += mem_cgroup_read_stat(iter, idx);
3897 if (val < 0) /* race ? */
3898 val = 0;
3899 return val;
3902 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3904 u64 val;
3906 if (!mem_cgroup_is_root(mem)) {
3907 if (!swap)
3908 return res_counter_read_u64(&mem->res, RES_USAGE);
3909 else
3910 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3913 val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
3914 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
3916 if (swap)
3917 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3919 return val << PAGE_SHIFT;
3922 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3924 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3925 u64 val;
3926 int type, name;
3928 type = MEMFILE_TYPE(cft->private);
3929 name = MEMFILE_ATTR(cft->private);
3930 switch (type) {
3931 case _MEM:
3932 if (name == RES_USAGE)
3933 val = mem_cgroup_usage(mem, false);
3934 else
3935 val = res_counter_read_u64(&mem->res, name);
3936 break;
3937 case _MEMSWAP:
3938 if (name == RES_USAGE)
3939 val = mem_cgroup_usage(mem, true);
3940 else
3941 val = res_counter_read_u64(&mem->memsw, name);
3942 break;
3943 default:
3944 BUG();
3945 break;
3947 return val;
3950 * The user of this function is...
3951 * RES_LIMIT.
3953 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3954 const char *buffer)
3956 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3957 int type, name;
3958 unsigned long long val;
3959 int ret;
3961 type = MEMFILE_TYPE(cft->private);
3962 name = MEMFILE_ATTR(cft->private);
3963 switch (name) {
3964 case RES_LIMIT:
3965 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3966 ret = -EINVAL;
3967 break;
3969 /* This function does all necessary parse...reuse it */
3970 ret = res_counter_memparse_write_strategy(buffer, &val);
3971 if (ret)
3972 break;
3973 if (type == _MEM)
3974 ret = mem_cgroup_resize_limit(memcg, val);
3975 else
3976 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3977 break;
3978 case RES_SOFT_LIMIT:
3979 ret = res_counter_memparse_write_strategy(buffer, &val);
3980 if (ret)
3981 break;
3983 * For memsw, soft limits are hard to implement in terms
3984 * of semantics, for now, we support soft limits for
3985 * control without swap
3987 if (type == _MEM)
3988 ret = res_counter_set_soft_limit(&memcg->res, val);
3989 else
3990 ret = -EINVAL;
3991 break;
3992 default:
3993 ret = -EINVAL; /* should be BUG() ? */
3994 break;
3996 return ret;
3999 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4000 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4002 struct cgroup *cgroup;
4003 unsigned long long min_limit, min_memsw_limit, tmp;
4005 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4006 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4007 cgroup = memcg->css.cgroup;
4008 if (!memcg->use_hierarchy)
4009 goto out;
4011 while (cgroup->parent) {
4012 cgroup = cgroup->parent;
4013 memcg = mem_cgroup_from_cont(cgroup);
4014 if (!memcg->use_hierarchy)
4015 break;
4016 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4017 min_limit = min(min_limit, tmp);
4018 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4019 min_memsw_limit = min(min_memsw_limit, tmp);
4021 out:
4022 *mem_limit = min_limit;
4023 *memsw_limit = min_memsw_limit;
4024 return;
4027 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4029 struct mem_cgroup *mem;
4030 int type, name;
4032 mem = mem_cgroup_from_cont(cont);
4033 type = MEMFILE_TYPE(event);
4034 name = MEMFILE_ATTR(event);
4035 switch (name) {
4036 case RES_MAX_USAGE:
4037 if (type == _MEM)
4038 res_counter_reset_max(&mem->res);
4039 else
4040 res_counter_reset_max(&mem->memsw);
4041 break;
4042 case RES_FAILCNT:
4043 if (type == _MEM)
4044 res_counter_reset_failcnt(&mem->res);
4045 else
4046 res_counter_reset_failcnt(&mem->memsw);
4047 break;
4050 return 0;
4053 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4054 struct cftype *cft)
4056 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4059 #ifdef CONFIG_MMU
4060 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4061 struct cftype *cft, u64 val)
4063 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4065 if (val >= (1 << NR_MOVE_TYPE))
4066 return -EINVAL;
4068 * We check this value several times in both in can_attach() and
4069 * attach(), so we need cgroup lock to prevent this value from being
4070 * inconsistent.
4072 cgroup_lock();
4073 mem->move_charge_at_immigrate = val;
4074 cgroup_unlock();
4076 return 0;
4078 #else
4079 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4080 struct cftype *cft, u64 val)
4082 return -ENOSYS;
4084 #endif
4087 /* For read statistics */
4088 enum {
4089 MCS_CACHE,
4090 MCS_RSS,
4091 MCS_FILE_MAPPED,
4092 MCS_PGPGIN,
4093 MCS_PGPGOUT,
4094 MCS_SWAP,
4095 MCS_PGFAULT,
4096 MCS_PGMAJFAULT,
4097 MCS_INACTIVE_ANON,
4098 MCS_ACTIVE_ANON,
4099 MCS_INACTIVE_FILE,
4100 MCS_ACTIVE_FILE,
4101 MCS_UNEVICTABLE,
4102 NR_MCS_STAT,
4105 struct mcs_total_stat {
4106 s64 stat[NR_MCS_STAT];
4109 struct {
4110 char *local_name;
4111 char *total_name;
4112 } memcg_stat_strings[NR_MCS_STAT] = {
4113 {"cache", "total_cache"},
4114 {"rss", "total_rss"},
4115 {"mapped_file", "total_mapped_file"},
4116 {"pgpgin", "total_pgpgin"},
4117 {"pgpgout", "total_pgpgout"},
4118 {"swap", "total_swap"},
4119 {"pgfault", "total_pgfault"},
4120 {"pgmajfault", "total_pgmajfault"},
4121 {"inactive_anon", "total_inactive_anon"},
4122 {"active_anon", "total_active_anon"},
4123 {"inactive_file", "total_inactive_file"},
4124 {"active_file", "total_active_file"},
4125 {"unevictable", "total_unevictable"}
4129 static void
4130 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4132 s64 val;
4134 /* per cpu stat */
4135 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
4136 s->stat[MCS_CACHE] += val * PAGE_SIZE;
4137 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
4138 s->stat[MCS_RSS] += val * PAGE_SIZE;
4139 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
4140 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4141 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
4142 s->stat[MCS_PGPGIN] += val;
4143 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
4144 s->stat[MCS_PGPGOUT] += val;
4145 if (do_swap_account) {
4146 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
4147 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4149 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGFAULT);
4150 s->stat[MCS_PGFAULT] += val;
4151 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGMAJFAULT);
4152 s->stat[MCS_PGMAJFAULT] += val;
4154 /* per zone stat */
4155 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
4156 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4157 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
4158 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4159 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
4160 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4161 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
4162 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4163 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
4164 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4167 static void
4168 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4170 struct mem_cgroup *iter;
4172 for_each_mem_cgroup_tree(iter, mem)
4173 mem_cgroup_get_local_stat(iter, s);
4176 #ifdef CONFIG_NUMA
4177 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4179 int nid;
4180 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4181 unsigned long node_nr;
4182 struct cgroup *cont = m->private;
4183 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4185 total_nr = mem_cgroup_nr_lru_pages(mem_cont);
4186 seq_printf(m, "total=%lu", total_nr);
4187 for_each_node_state(nid, N_HIGH_MEMORY) {
4188 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid);
4189 seq_printf(m, " N%d=%lu", nid, node_nr);
4191 seq_putc(m, '\n');
4193 file_nr = mem_cgroup_nr_file_lru_pages(mem_cont);
4194 seq_printf(m, "file=%lu", file_nr);
4195 for_each_node_state(nid, N_HIGH_MEMORY) {
4196 node_nr = mem_cgroup_node_nr_file_lru_pages(mem_cont, nid);
4197 seq_printf(m, " N%d=%lu", nid, node_nr);
4199 seq_putc(m, '\n');
4201 anon_nr = mem_cgroup_nr_anon_lru_pages(mem_cont);
4202 seq_printf(m, "anon=%lu", anon_nr);
4203 for_each_node_state(nid, N_HIGH_MEMORY) {
4204 node_nr = mem_cgroup_node_nr_anon_lru_pages(mem_cont, nid);
4205 seq_printf(m, " N%d=%lu", nid, node_nr);
4207 seq_putc(m, '\n');
4209 unevictable_nr = mem_cgroup_nr_unevictable_lru_pages(mem_cont);
4210 seq_printf(m, "unevictable=%lu", unevictable_nr);
4211 for_each_node_state(nid, N_HIGH_MEMORY) {
4212 node_nr = mem_cgroup_node_nr_unevictable_lru_pages(mem_cont,
4213 nid);
4214 seq_printf(m, " N%d=%lu", nid, node_nr);
4216 seq_putc(m, '\n');
4217 return 0;
4219 #endif /* CONFIG_NUMA */
4221 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4222 struct cgroup_map_cb *cb)
4224 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4225 struct mcs_total_stat mystat;
4226 int i;
4228 memset(&mystat, 0, sizeof(mystat));
4229 mem_cgroup_get_local_stat(mem_cont, &mystat);
4232 for (i = 0; i < NR_MCS_STAT; i++) {
4233 if (i == MCS_SWAP && !do_swap_account)
4234 continue;
4235 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4238 /* Hierarchical information */
4240 unsigned long long limit, memsw_limit;
4241 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4242 cb->fill(cb, "hierarchical_memory_limit", limit);
4243 if (do_swap_account)
4244 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4247 memset(&mystat, 0, sizeof(mystat));
4248 mem_cgroup_get_total_stat(mem_cont, &mystat);
4249 for (i = 0; i < NR_MCS_STAT; i++) {
4250 if (i == MCS_SWAP && !do_swap_account)
4251 continue;
4252 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4255 #ifdef CONFIG_DEBUG_VM
4256 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
4259 int nid, zid;
4260 struct mem_cgroup_per_zone *mz;
4261 unsigned long recent_rotated[2] = {0, 0};
4262 unsigned long recent_scanned[2] = {0, 0};
4264 for_each_online_node(nid)
4265 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4266 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4268 recent_rotated[0] +=
4269 mz->reclaim_stat.recent_rotated[0];
4270 recent_rotated[1] +=
4271 mz->reclaim_stat.recent_rotated[1];
4272 recent_scanned[0] +=
4273 mz->reclaim_stat.recent_scanned[0];
4274 recent_scanned[1] +=
4275 mz->reclaim_stat.recent_scanned[1];
4277 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4278 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4279 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4280 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4282 #endif
4284 return 0;
4287 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4289 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4291 return get_swappiness(memcg);
4294 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4295 u64 val)
4297 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4298 struct mem_cgroup *parent;
4300 if (val > 100)
4301 return -EINVAL;
4303 if (cgrp->parent == NULL)
4304 return -EINVAL;
4306 parent = mem_cgroup_from_cont(cgrp->parent);
4308 cgroup_lock();
4310 /* If under hierarchy, only empty-root can set this value */
4311 if ((parent->use_hierarchy) ||
4312 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4313 cgroup_unlock();
4314 return -EINVAL;
4317 memcg->swappiness = val;
4319 cgroup_unlock();
4321 return 0;
4324 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4326 struct mem_cgroup_threshold_ary *t;
4327 u64 usage;
4328 int i;
4330 rcu_read_lock();
4331 if (!swap)
4332 t = rcu_dereference(memcg->thresholds.primary);
4333 else
4334 t = rcu_dereference(memcg->memsw_thresholds.primary);
4336 if (!t)
4337 goto unlock;
4339 usage = mem_cgroup_usage(memcg, swap);
4342 * current_threshold points to threshold just below usage.
4343 * If it's not true, a threshold was crossed after last
4344 * call of __mem_cgroup_threshold().
4346 i = t->current_threshold;
4349 * Iterate backward over array of thresholds starting from
4350 * current_threshold and check if a threshold is crossed.
4351 * If none of thresholds below usage is crossed, we read
4352 * only one element of the array here.
4354 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4355 eventfd_signal(t->entries[i].eventfd, 1);
4357 /* i = current_threshold + 1 */
4358 i++;
4361 * Iterate forward over array of thresholds starting from
4362 * current_threshold+1 and check if a threshold is crossed.
4363 * If none of thresholds above usage is crossed, we read
4364 * only one element of the array here.
4366 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4367 eventfd_signal(t->entries[i].eventfd, 1);
4369 /* Update current_threshold */
4370 t->current_threshold = i - 1;
4371 unlock:
4372 rcu_read_unlock();
4375 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4377 while (memcg) {
4378 __mem_cgroup_threshold(memcg, false);
4379 if (do_swap_account)
4380 __mem_cgroup_threshold(memcg, true);
4382 memcg = parent_mem_cgroup(memcg);
4386 static int compare_thresholds(const void *a, const void *b)
4388 const struct mem_cgroup_threshold *_a = a;
4389 const struct mem_cgroup_threshold *_b = b;
4391 return _a->threshold - _b->threshold;
4394 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
4396 struct mem_cgroup_eventfd_list *ev;
4398 list_for_each_entry(ev, &mem->oom_notify, list)
4399 eventfd_signal(ev->eventfd, 1);
4400 return 0;
4403 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
4405 struct mem_cgroup *iter;
4407 for_each_mem_cgroup_tree(iter, mem)
4408 mem_cgroup_oom_notify_cb(iter);
4411 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4412 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4414 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4415 struct mem_cgroup_thresholds *thresholds;
4416 struct mem_cgroup_threshold_ary *new;
4417 int type = MEMFILE_TYPE(cft->private);
4418 u64 threshold, usage;
4419 int i, size, ret;
4421 ret = res_counter_memparse_write_strategy(args, &threshold);
4422 if (ret)
4423 return ret;
4425 mutex_lock(&memcg->thresholds_lock);
4427 if (type == _MEM)
4428 thresholds = &memcg->thresholds;
4429 else if (type == _MEMSWAP)
4430 thresholds = &memcg->memsw_thresholds;
4431 else
4432 BUG();
4434 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4436 /* Check if a threshold crossed before adding a new one */
4437 if (thresholds->primary)
4438 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4440 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4442 /* Allocate memory for new array of thresholds */
4443 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4444 GFP_KERNEL);
4445 if (!new) {
4446 ret = -ENOMEM;
4447 goto unlock;
4449 new->size = size;
4451 /* Copy thresholds (if any) to new array */
4452 if (thresholds->primary) {
4453 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4454 sizeof(struct mem_cgroup_threshold));
4457 /* Add new threshold */
4458 new->entries[size - 1].eventfd = eventfd;
4459 new->entries[size - 1].threshold = threshold;
4461 /* Sort thresholds. Registering of new threshold isn't time-critical */
4462 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4463 compare_thresholds, NULL);
4465 /* Find current threshold */
4466 new->current_threshold = -1;
4467 for (i = 0; i < size; i++) {
4468 if (new->entries[i].threshold < usage) {
4470 * new->current_threshold will not be used until
4471 * rcu_assign_pointer(), so it's safe to increment
4472 * it here.
4474 ++new->current_threshold;
4478 /* Free old spare buffer and save old primary buffer as spare */
4479 kfree(thresholds->spare);
4480 thresholds->spare = thresholds->primary;
4482 rcu_assign_pointer(thresholds->primary, new);
4484 /* To be sure that nobody uses thresholds */
4485 synchronize_rcu();
4487 unlock:
4488 mutex_unlock(&memcg->thresholds_lock);
4490 return ret;
4493 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4494 struct cftype *cft, struct eventfd_ctx *eventfd)
4496 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4497 struct mem_cgroup_thresholds *thresholds;
4498 struct mem_cgroup_threshold_ary *new;
4499 int type = MEMFILE_TYPE(cft->private);
4500 u64 usage;
4501 int i, j, size;
4503 mutex_lock(&memcg->thresholds_lock);
4504 if (type == _MEM)
4505 thresholds = &memcg->thresholds;
4506 else if (type == _MEMSWAP)
4507 thresholds = &memcg->memsw_thresholds;
4508 else
4509 BUG();
4512 * Something went wrong if we trying to unregister a threshold
4513 * if we don't have thresholds
4515 BUG_ON(!thresholds);
4517 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4519 /* Check if a threshold crossed before removing */
4520 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4522 /* Calculate new number of threshold */
4523 size = 0;
4524 for (i = 0; i < thresholds->primary->size; i++) {
4525 if (thresholds->primary->entries[i].eventfd != eventfd)
4526 size++;
4529 new = thresholds->spare;
4531 /* Set thresholds array to NULL if we don't have thresholds */
4532 if (!size) {
4533 kfree(new);
4534 new = NULL;
4535 goto swap_buffers;
4538 new->size = size;
4540 /* Copy thresholds and find current threshold */
4541 new->current_threshold = -1;
4542 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4543 if (thresholds->primary->entries[i].eventfd == eventfd)
4544 continue;
4546 new->entries[j] = thresholds->primary->entries[i];
4547 if (new->entries[j].threshold < usage) {
4549 * new->current_threshold will not be used
4550 * until rcu_assign_pointer(), so it's safe to increment
4551 * it here.
4553 ++new->current_threshold;
4555 j++;
4558 swap_buffers:
4559 /* Swap primary and spare array */
4560 thresholds->spare = thresholds->primary;
4561 rcu_assign_pointer(thresholds->primary, new);
4563 /* To be sure that nobody uses thresholds */
4564 synchronize_rcu();
4566 mutex_unlock(&memcg->thresholds_lock);
4569 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4570 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4572 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4573 struct mem_cgroup_eventfd_list *event;
4574 int type = MEMFILE_TYPE(cft->private);
4576 BUG_ON(type != _OOM_TYPE);
4577 event = kmalloc(sizeof(*event), GFP_KERNEL);
4578 if (!event)
4579 return -ENOMEM;
4581 mutex_lock(&memcg_oom_mutex);
4583 event->eventfd = eventfd;
4584 list_add(&event->list, &memcg->oom_notify);
4586 /* already in OOM ? */
4587 if (atomic_read(&memcg->oom_lock))
4588 eventfd_signal(eventfd, 1);
4589 mutex_unlock(&memcg_oom_mutex);
4591 return 0;
4594 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4595 struct cftype *cft, struct eventfd_ctx *eventfd)
4597 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4598 struct mem_cgroup_eventfd_list *ev, *tmp;
4599 int type = MEMFILE_TYPE(cft->private);
4601 BUG_ON(type != _OOM_TYPE);
4603 mutex_lock(&memcg_oom_mutex);
4605 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4606 if (ev->eventfd == eventfd) {
4607 list_del(&ev->list);
4608 kfree(ev);
4612 mutex_unlock(&memcg_oom_mutex);
4615 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4616 struct cftype *cft, struct cgroup_map_cb *cb)
4618 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4620 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4622 if (atomic_read(&mem->oom_lock))
4623 cb->fill(cb, "under_oom", 1);
4624 else
4625 cb->fill(cb, "under_oom", 0);
4626 return 0;
4629 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4630 struct cftype *cft, u64 val)
4632 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4633 struct mem_cgroup *parent;
4635 /* cannot set to root cgroup and only 0 and 1 are allowed */
4636 if (!cgrp->parent || !((val == 0) || (val == 1)))
4637 return -EINVAL;
4639 parent = mem_cgroup_from_cont(cgrp->parent);
4641 cgroup_lock();
4642 /* oom-kill-disable is a flag for subhierarchy. */
4643 if ((parent->use_hierarchy) ||
4644 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4645 cgroup_unlock();
4646 return -EINVAL;
4648 mem->oom_kill_disable = val;
4649 if (!val)
4650 memcg_oom_recover(mem);
4651 cgroup_unlock();
4652 return 0;
4655 #ifdef CONFIG_NUMA
4656 static const struct file_operations mem_control_numa_stat_file_operations = {
4657 .read = seq_read,
4658 .llseek = seq_lseek,
4659 .release = single_release,
4662 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4664 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4666 file->f_op = &mem_control_numa_stat_file_operations;
4667 return single_open(file, mem_control_numa_stat_show, cont);
4669 #endif /* CONFIG_NUMA */
4671 static struct cftype mem_cgroup_files[] = {
4673 .name = "usage_in_bytes",
4674 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4675 .read_u64 = mem_cgroup_read,
4676 .register_event = mem_cgroup_usage_register_event,
4677 .unregister_event = mem_cgroup_usage_unregister_event,
4680 .name = "max_usage_in_bytes",
4681 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4682 .trigger = mem_cgroup_reset,
4683 .read_u64 = mem_cgroup_read,
4686 .name = "limit_in_bytes",
4687 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4688 .write_string = mem_cgroup_write,
4689 .read_u64 = mem_cgroup_read,
4692 .name = "soft_limit_in_bytes",
4693 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4694 .write_string = mem_cgroup_write,
4695 .read_u64 = mem_cgroup_read,
4698 .name = "failcnt",
4699 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4700 .trigger = mem_cgroup_reset,
4701 .read_u64 = mem_cgroup_read,
4704 .name = "stat",
4705 .read_map = mem_control_stat_show,
4708 .name = "force_empty",
4709 .trigger = mem_cgroup_force_empty_write,
4712 .name = "use_hierarchy",
4713 .write_u64 = mem_cgroup_hierarchy_write,
4714 .read_u64 = mem_cgroup_hierarchy_read,
4717 .name = "swappiness",
4718 .read_u64 = mem_cgroup_swappiness_read,
4719 .write_u64 = mem_cgroup_swappiness_write,
4722 .name = "move_charge_at_immigrate",
4723 .read_u64 = mem_cgroup_move_charge_read,
4724 .write_u64 = mem_cgroup_move_charge_write,
4727 .name = "oom_control",
4728 .read_map = mem_cgroup_oom_control_read,
4729 .write_u64 = mem_cgroup_oom_control_write,
4730 .register_event = mem_cgroup_oom_register_event,
4731 .unregister_event = mem_cgroup_oom_unregister_event,
4732 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4734 #ifdef CONFIG_NUMA
4736 .name = "numa_stat",
4737 .open = mem_control_numa_stat_open,
4738 .mode = S_IRUGO,
4740 #endif
4743 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4744 static struct cftype memsw_cgroup_files[] = {
4746 .name = "memsw.usage_in_bytes",
4747 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4748 .read_u64 = mem_cgroup_read,
4749 .register_event = mem_cgroup_usage_register_event,
4750 .unregister_event = mem_cgroup_usage_unregister_event,
4753 .name = "memsw.max_usage_in_bytes",
4754 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4755 .trigger = mem_cgroup_reset,
4756 .read_u64 = mem_cgroup_read,
4759 .name = "memsw.limit_in_bytes",
4760 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4761 .write_string = mem_cgroup_write,
4762 .read_u64 = mem_cgroup_read,
4765 .name = "memsw.failcnt",
4766 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4767 .trigger = mem_cgroup_reset,
4768 .read_u64 = mem_cgroup_read,
4772 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4774 if (!do_swap_account)
4775 return 0;
4776 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4777 ARRAY_SIZE(memsw_cgroup_files));
4779 #else
4780 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4782 return 0;
4784 #endif
4786 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4788 struct mem_cgroup_per_node *pn;
4789 struct mem_cgroup_per_zone *mz;
4790 enum lru_list l;
4791 int zone, tmp = node;
4793 * This routine is called against possible nodes.
4794 * But it's BUG to call kmalloc() against offline node.
4796 * TODO: this routine can waste much memory for nodes which will
4797 * never be onlined. It's better to use memory hotplug callback
4798 * function.
4800 if (!node_state(node, N_NORMAL_MEMORY))
4801 tmp = -1;
4802 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4803 if (!pn)
4804 return 1;
4806 mem->info.nodeinfo[node] = pn;
4807 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4808 mz = &pn->zoneinfo[zone];
4809 for_each_lru(l)
4810 INIT_LIST_HEAD(&mz->lists[l]);
4811 mz->usage_in_excess = 0;
4812 mz->on_tree = false;
4813 mz->mem = mem;
4815 return 0;
4818 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4820 kfree(mem->info.nodeinfo[node]);
4823 static struct mem_cgroup *mem_cgroup_alloc(void)
4825 struct mem_cgroup *mem;
4826 int size = sizeof(struct mem_cgroup);
4828 /* Can be very big if MAX_NUMNODES is very big */
4829 if (size < PAGE_SIZE)
4830 mem = kzalloc(size, GFP_KERNEL);
4831 else
4832 mem = vzalloc(size);
4834 if (!mem)
4835 return NULL;
4837 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4838 if (!mem->stat)
4839 goto out_free;
4840 spin_lock_init(&mem->pcp_counter_lock);
4841 return mem;
4843 out_free:
4844 if (size < PAGE_SIZE)
4845 kfree(mem);
4846 else
4847 vfree(mem);
4848 return NULL;
4852 * At destroying mem_cgroup, references from swap_cgroup can remain.
4853 * (scanning all at force_empty is too costly...)
4855 * Instead of clearing all references at force_empty, we remember
4856 * the number of reference from swap_cgroup and free mem_cgroup when
4857 * it goes down to 0.
4859 * Removal of cgroup itself succeeds regardless of refs from swap.
4862 static void __mem_cgroup_free(struct mem_cgroup *mem)
4864 int node;
4866 mem_cgroup_remove_from_trees(mem);
4867 free_css_id(&mem_cgroup_subsys, &mem->css);
4869 for_each_node_state(node, N_POSSIBLE)
4870 free_mem_cgroup_per_zone_info(mem, node);
4872 free_percpu(mem->stat);
4873 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4874 kfree(mem);
4875 else
4876 vfree(mem);
4879 static void mem_cgroup_get(struct mem_cgroup *mem)
4881 atomic_inc(&mem->refcnt);
4884 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4886 if (atomic_sub_and_test(count, &mem->refcnt)) {
4887 struct mem_cgroup *parent = parent_mem_cgroup(mem);
4888 __mem_cgroup_free(mem);
4889 if (parent)
4890 mem_cgroup_put(parent);
4894 static void mem_cgroup_put(struct mem_cgroup *mem)
4896 __mem_cgroup_put(mem, 1);
4900 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4902 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4904 if (!mem->res.parent)
4905 return NULL;
4906 return mem_cgroup_from_res_counter(mem->res.parent, res);
4909 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4910 static void __init enable_swap_cgroup(void)
4912 if (!mem_cgroup_disabled() && really_do_swap_account)
4913 do_swap_account = 1;
4915 #else
4916 static void __init enable_swap_cgroup(void)
4919 #endif
4921 static int mem_cgroup_soft_limit_tree_init(void)
4923 struct mem_cgroup_tree_per_node *rtpn;
4924 struct mem_cgroup_tree_per_zone *rtpz;
4925 int tmp, node, zone;
4927 for_each_node_state(node, N_POSSIBLE) {
4928 tmp = node;
4929 if (!node_state(node, N_NORMAL_MEMORY))
4930 tmp = -1;
4931 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4932 if (!rtpn)
4933 return 1;
4935 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4937 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4938 rtpz = &rtpn->rb_tree_per_zone[zone];
4939 rtpz->rb_root = RB_ROOT;
4940 spin_lock_init(&rtpz->lock);
4943 return 0;
4946 static struct cgroup_subsys_state * __ref
4947 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4949 struct mem_cgroup *mem, *parent;
4950 long error = -ENOMEM;
4951 int node;
4953 mem = mem_cgroup_alloc();
4954 if (!mem)
4955 return ERR_PTR(error);
4957 for_each_node_state(node, N_POSSIBLE)
4958 if (alloc_mem_cgroup_per_zone_info(mem, node))
4959 goto free_out;
4961 /* root ? */
4962 if (cont->parent == NULL) {
4963 int cpu;
4964 enable_swap_cgroup();
4965 parent = NULL;
4966 root_mem_cgroup = mem;
4967 if (mem_cgroup_soft_limit_tree_init())
4968 goto free_out;
4969 for_each_possible_cpu(cpu) {
4970 struct memcg_stock_pcp *stock =
4971 &per_cpu(memcg_stock, cpu);
4972 INIT_WORK(&stock->work, drain_local_stock);
4974 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4975 } else {
4976 parent = mem_cgroup_from_cont(cont->parent);
4977 mem->use_hierarchy = parent->use_hierarchy;
4978 mem->oom_kill_disable = parent->oom_kill_disable;
4981 if (parent && parent->use_hierarchy) {
4982 res_counter_init(&mem->res, &parent->res);
4983 res_counter_init(&mem->memsw, &parent->memsw);
4985 * We increment refcnt of the parent to ensure that we can
4986 * safely access it on res_counter_charge/uncharge.
4987 * This refcnt will be decremented when freeing this
4988 * mem_cgroup(see mem_cgroup_put).
4990 mem_cgroup_get(parent);
4991 } else {
4992 res_counter_init(&mem->res, NULL);
4993 res_counter_init(&mem->memsw, NULL);
4995 mem->last_scanned_child = 0;
4996 mem->last_scanned_node = MAX_NUMNODES;
4997 INIT_LIST_HEAD(&mem->oom_notify);
4999 if (parent)
5000 mem->swappiness = get_swappiness(parent);
5001 atomic_set(&mem->refcnt, 1);
5002 mem->move_charge_at_immigrate = 0;
5003 mutex_init(&mem->thresholds_lock);
5004 return &mem->css;
5005 free_out:
5006 __mem_cgroup_free(mem);
5007 root_mem_cgroup = NULL;
5008 return ERR_PTR(error);
5011 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
5012 struct cgroup *cont)
5014 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
5016 return mem_cgroup_force_empty(mem, false);
5019 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
5020 struct cgroup *cont)
5022 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
5024 mem_cgroup_put(mem);
5027 static int mem_cgroup_populate(struct cgroup_subsys *ss,
5028 struct cgroup *cont)
5030 int ret;
5032 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5033 ARRAY_SIZE(mem_cgroup_files));
5035 if (!ret)
5036 ret = register_memsw_files(cont, ss);
5037 return ret;
5040 #ifdef CONFIG_MMU
5041 /* Handlers for move charge at task migration. */
5042 #define PRECHARGE_COUNT_AT_ONCE 256
5043 static int mem_cgroup_do_precharge(unsigned long count)
5045 int ret = 0;
5046 int batch_count = PRECHARGE_COUNT_AT_ONCE;
5047 struct mem_cgroup *mem = mc.to;
5049 if (mem_cgroup_is_root(mem)) {
5050 mc.precharge += count;
5051 /* we don't need css_get for root */
5052 return ret;
5054 /* try to charge at once */
5055 if (count > 1) {
5056 struct res_counter *dummy;
5058 * "mem" cannot be under rmdir() because we've already checked
5059 * by cgroup_lock_live_cgroup() that it is not removed and we
5060 * are still under the same cgroup_mutex. So we can postpone
5061 * css_get().
5063 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
5064 goto one_by_one;
5065 if (do_swap_account && res_counter_charge(&mem->memsw,
5066 PAGE_SIZE * count, &dummy)) {
5067 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
5068 goto one_by_one;
5070 mc.precharge += count;
5071 return ret;
5073 one_by_one:
5074 /* fall back to one by one charge */
5075 while (count--) {
5076 if (signal_pending(current)) {
5077 ret = -EINTR;
5078 break;
5080 if (!batch_count--) {
5081 batch_count = PRECHARGE_COUNT_AT_ONCE;
5082 cond_resched();
5084 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
5085 if (ret || !mem)
5086 /* mem_cgroup_clear_mc() will do uncharge later */
5087 return -ENOMEM;
5088 mc.precharge++;
5090 return ret;
5094 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5095 * @vma: the vma the pte to be checked belongs
5096 * @addr: the address corresponding to the pte to be checked
5097 * @ptent: the pte to be checked
5098 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5100 * Returns
5101 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5102 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5103 * move charge. if @target is not NULL, the page is stored in target->page
5104 * with extra refcnt got(Callers should handle it).
5105 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5106 * target for charge migration. if @target is not NULL, the entry is stored
5107 * in target->ent.
5109 * Called with pte lock held.
5111 union mc_target {
5112 struct page *page;
5113 swp_entry_t ent;
5116 enum mc_target_type {
5117 MC_TARGET_NONE, /* not used */
5118 MC_TARGET_PAGE,
5119 MC_TARGET_SWAP,
5122 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5123 unsigned long addr, pte_t ptent)
5125 struct page *page = vm_normal_page(vma, addr, ptent);
5127 if (!page || !page_mapped(page))
5128 return NULL;
5129 if (PageAnon(page)) {
5130 /* we don't move shared anon */
5131 if (!move_anon() || page_mapcount(page) > 2)
5132 return NULL;
5133 } else if (!move_file())
5134 /* we ignore mapcount for file pages */
5135 return NULL;
5136 if (!get_page_unless_zero(page))
5137 return NULL;
5139 return page;
5142 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5143 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5145 int usage_count;
5146 struct page *page = NULL;
5147 swp_entry_t ent = pte_to_swp_entry(ptent);
5149 if (!move_anon() || non_swap_entry(ent))
5150 return NULL;
5151 usage_count = mem_cgroup_count_swap_user(ent, &page);
5152 if (usage_count > 1) { /* we don't move shared anon */
5153 if (page)
5154 put_page(page);
5155 return NULL;
5157 if (do_swap_account)
5158 entry->val = ent.val;
5160 return page;
5163 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5164 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5166 struct page *page = NULL;
5167 struct inode *inode;
5168 struct address_space *mapping;
5169 pgoff_t pgoff;
5171 if (!vma->vm_file) /* anonymous vma */
5172 return NULL;
5173 if (!move_file())
5174 return NULL;
5176 inode = vma->vm_file->f_path.dentry->d_inode;
5177 mapping = vma->vm_file->f_mapping;
5178 if (pte_none(ptent))
5179 pgoff = linear_page_index(vma, addr);
5180 else /* pte_file(ptent) is true */
5181 pgoff = pte_to_pgoff(ptent);
5183 /* page is moved even if it's not RSS of this task(page-faulted). */
5184 if (!mapping_cap_swap_backed(mapping)) { /* normal file */
5185 page = find_get_page(mapping, pgoff);
5186 } else { /* shmem/tmpfs file. we should take account of swap too. */
5187 swp_entry_t ent;
5188 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
5189 if (do_swap_account)
5190 entry->val = ent.val;
5193 return page;
5196 static int is_target_pte_for_mc(struct vm_area_struct *vma,
5197 unsigned long addr, pte_t ptent, union mc_target *target)
5199 struct page *page = NULL;
5200 struct page_cgroup *pc;
5201 int ret = 0;
5202 swp_entry_t ent = { .val = 0 };
5204 if (pte_present(ptent))
5205 page = mc_handle_present_pte(vma, addr, ptent);
5206 else if (is_swap_pte(ptent))
5207 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5208 else if (pte_none(ptent) || pte_file(ptent))
5209 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5211 if (!page && !ent.val)
5212 return 0;
5213 if (page) {
5214 pc = lookup_page_cgroup(page);
5216 * Do only loose check w/o page_cgroup lock.
5217 * mem_cgroup_move_account() checks the pc is valid or not under
5218 * the lock.
5220 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5221 ret = MC_TARGET_PAGE;
5222 if (target)
5223 target->page = page;
5225 if (!ret || !target)
5226 put_page(page);
5228 /* There is a swap entry and a page doesn't exist or isn't charged */
5229 if (ent.val && !ret &&
5230 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5231 ret = MC_TARGET_SWAP;
5232 if (target)
5233 target->ent = ent;
5235 return ret;
5238 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5239 unsigned long addr, unsigned long end,
5240 struct mm_walk *walk)
5242 struct vm_area_struct *vma = walk->private;
5243 pte_t *pte;
5244 spinlock_t *ptl;
5246 split_huge_page_pmd(walk->mm, pmd);
5248 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5249 for (; addr != end; pte++, addr += PAGE_SIZE)
5250 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5251 mc.precharge++; /* increment precharge temporarily */
5252 pte_unmap_unlock(pte - 1, ptl);
5253 cond_resched();
5255 return 0;
5258 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5260 unsigned long precharge;
5261 struct vm_area_struct *vma;
5263 down_read(&mm->mmap_sem);
5264 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5265 struct mm_walk mem_cgroup_count_precharge_walk = {
5266 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5267 .mm = mm,
5268 .private = vma,
5270 if (is_vm_hugetlb_page(vma))
5271 continue;
5272 walk_page_range(vma->vm_start, vma->vm_end,
5273 &mem_cgroup_count_precharge_walk);
5275 up_read(&mm->mmap_sem);
5277 precharge = mc.precharge;
5278 mc.precharge = 0;
5280 return precharge;
5283 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5285 unsigned long precharge = mem_cgroup_count_precharge(mm);
5287 VM_BUG_ON(mc.moving_task);
5288 mc.moving_task = current;
5289 return mem_cgroup_do_precharge(precharge);
5292 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5293 static void __mem_cgroup_clear_mc(void)
5295 struct mem_cgroup *from = mc.from;
5296 struct mem_cgroup *to = mc.to;
5298 /* we must uncharge all the leftover precharges from mc.to */
5299 if (mc.precharge) {
5300 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5301 mc.precharge = 0;
5304 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5305 * we must uncharge here.
5307 if (mc.moved_charge) {
5308 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5309 mc.moved_charge = 0;
5311 /* we must fixup refcnts and charges */
5312 if (mc.moved_swap) {
5313 /* uncharge swap account from the old cgroup */
5314 if (!mem_cgroup_is_root(mc.from))
5315 res_counter_uncharge(&mc.from->memsw,
5316 PAGE_SIZE * mc.moved_swap);
5317 __mem_cgroup_put(mc.from, mc.moved_swap);
5319 if (!mem_cgroup_is_root(mc.to)) {
5321 * we charged both to->res and to->memsw, so we should
5322 * uncharge to->res.
5324 res_counter_uncharge(&mc.to->res,
5325 PAGE_SIZE * mc.moved_swap);
5327 /* we've already done mem_cgroup_get(mc.to) */
5328 mc.moved_swap = 0;
5330 memcg_oom_recover(from);
5331 memcg_oom_recover(to);
5332 wake_up_all(&mc.waitq);
5335 static void mem_cgroup_clear_mc(void)
5337 struct mem_cgroup *from = mc.from;
5340 * we must clear moving_task before waking up waiters at the end of
5341 * task migration.
5343 mc.moving_task = NULL;
5344 __mem_cgroup_clear_mc();
5345 spin_lock(&mc.lock);
5346 mc.from = NULL;
5347 mc.to = NULL;
5348 spin_unlock(&mc.lock);
5349 mem_cgroup_end_move(from);
5352 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5353 struct cgroup *cgroup,
5354 struct task_struct *p)
5356 int ret = 0;
5357 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
5359 if (mem->move_charge_at_immigrate) {
5360 struct mm_struct *mm;
5361 struct mem_cgroup *from = mem_cgroup_from_task(p);
5363 VM_BUG_ON(from == mem);
5365 mm = get_task_mm(p);
5366 if (!mm)
5367 return 0;
5368 /* We move charges only when we move a owner of the mm */
5369 if (mm->owner == p) {
5370 VM_BUG_ON(mc.from);
5371 VM_BUG_ON(mc.to);
5372 VM_BUG_ON(mc.precharge);
5373 VM_BUG_ON(mc.moved_charge);
5374 VM_BUG_ON(mc.moved_swap);
5375 mem_cgroup_start_move(from);
5376 spin_lock(&mc.lock);
5377 mc.from = from;
5378 mc.to = mem;
5379 spin_unlock(&mc.lock);
5380 /* We set mc.moving_task later */
5382 ret = mem_cgroup_precharge_mc(mm);
5383 if (ret)
5384 mem_cgroup_clear_mc();
5386 mmput(mm);
5388 return ret;
5391 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5392 struct cgroup *cgroup,
5393 struct task_struct *p)
5395 mem_cgroup_clear_mc();
5398 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5399 unsigned long addr, unsigned long end,
5400 struct mm_walk *walk)
5402 int ret = 0;
5403 struct vm_area_struct *vma = walk->private;
5404 pte_t *pte;
5405 spinlock_t *ptl;
5407 split_huge_page_pmd(walk->mm, pmd);
5408 retry:
5409 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5410 for (; addr != end; addr += PAGE_SIZE) {
5411 pte_t ptent = *(pte++);
5412 union mc_target target;
5413 int type;
5414 struct page *page;
5415 struct page_cgroup *pc;
5416 swp_entry_t ent;
5418 if (!mc.precharge)
5419 break;
5421 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5422 switch (type) {
5423 case MC_TARGET_PAGE:
5424 page = target.page;
5425 if (isolate_lru_page(page))
5426 goto put;
5427 pc = lookup_page_cgroup(page);
5428 if (!mem_cgroup_move_account(page, 1, pc,
5429 mc.from, mc.to, false)) {
5430 mc.precharge--;
5431 /* we uncharge from mc.from later. */
5432 mc.moved_charge++;
5434 putback_lru_page(page);
5435 put: /* is_target_pte_for_mc() gets the page */
5436 put_page(page);
5437 break;
5438 case MC_TARGET_SWAP:
5439 ent = target.ent;
5440 if (!mem_cgroup_move_swap_account(ent,
5441 mc.from, mc.to, false)) {
5442 mc.precharge--;
5443 /* we fixup refcnts and charges later. */
5444 mc.moved_swap++;
5446 break;
5447 default:
5448 break;
5451 pte_unmap_unlock(pte - 1, ptl);
5452 cond_resched();
5454 if (addr != end) {
5456 * We have consumed all precharges we got in can_attach().
5457 * We try charge one by one, but don't do any additional
5458 * charges to mc.to if we have failed in charge once in attach()
5459 * phase.
5461 ret = mem_cgroup_do_precharge(1);
5462 if (!ret)
5463 goto retry;
5466 return ret;
5469 static void mem_cgroup_move_charge(struct mm_struct *mm)
5471 struct vm_area_struct *vma;
5473 lru_add_drain_all();
5474 retry:
5475 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5477 * Someone who are holding the mmap_sem might be waiting in
5478 * waitq. So we cancel all extra charges, wake up all waiters,
5479 * and retry. Because we cancel precharges, we might not be able
5480 * to move enough charges, but moving charge is a best-effort
5481 * feature anyway, so it wouldn't be a big problem.
5483 __mem_cgroup_clear_mc();
5484 cond_resched();
5485 goto retry;
5487 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5488 int ret;
5489 struct mm_walk mem_cgroup_move_charge_walk = {
5490 .pmd_entry = mem_cgroup_move_charge_pte_range,
5491 .mm = mm,
5492 .private = vma,
5494 if (is_vm_hugetlb_page(vma))
5495 continue;
5496 ret = walk_page_range(vma->vm_start, vma->vm_end,
5497 &mem_cgroup_move_charge_walk);
5498 if (ret)
5500 * means we have consumed all precharges and failed in
5501 * doing additional charge. Just abandon here.
5503 break;
5505 up_read(&mm->mmap_sem);
5508 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5509 struct cgroup *cont,
5510 struct cgroup *old_cont,
5511 struct task_struct *p)
5513 struct mm_struct *mm = get_task_mm(p);
5515 if (mm) {
5516 if (mc.to)
5517 mem_cgroup_move_charge(mm);
5518 put_swap_token(mm);
5519 mmput(mm);
5521 if (mc.to)
5522 mem_cgroup_clear_mc();
5524 #else /* !CONFIG_MMU */
5525 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5526 struct cgroup *cgroup,
5527 struct task_struct *p)
5529 return 0;
5531 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5532 struct cgroup *cgroup,
5533 struct task_struct *p)
5536 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5537 struct cgroup *cont,
5538 struct cgroup *old_cont,
5539 struct task_struct *p)
5542 #endif
5544 struct cgroup_subsys mem_cgroup_subsys = {
5545 .name = "memory",
5546 .subsys_id = mem_cgroup_subsys_id,
5547 .create = mem_cgroup_create,
5548 .pre_destroy = mem_cgroup_pre_destroy,
5549 .destroy = mem_cgroup_destroy,
5550 .populate = mem_cgroup_populate,
5551 .can_attach = mem_cgroup_can_attach,
5552 .cancel_attach = mem_cgroup_cancel_attach,
5553 .attach = mem_cgroup_move_task,
5554 .early_init = 0,
5555 .use_id = 1,
5558 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5559 static int __init enable_swap_account(char *s)
5561 /* consider enabled if no parameter or 1 is given */
5562 if (!strcmp(s, "1"))
5563 really_do_swap_account = 1;
5564 else if (!strcmp(s, "0"))
5565 really_do_swap_account = 0;
5566 return 1;
5568 __setup("swapaccount=", enable_swap_account);
5570 #endif