cris: add arch/cris/include/asm/serial.h
[linux-2.6/next.git] / drivers / net / bnx2x / bnx2x_init_ops.h
blob7ec1724753ad225665e3e342298ecc1361ca8667
1 /* bnx2x_init_ops.h: Broadcom Everest network driver.
2 * Static functions needed during the initialization.
3 * This file is "included" in bnx2x_main.c.
5 * Copyright (c) 2007-2011 Broadcom Corporation
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation.
11 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
12 * Written by: Vladislav Zolotarov <vladz@broadcom.com>
15 #ifndef BNX2X_INIT_OPS_H
16 #define BNX2X_INIT_OPS_H
19 #ifndef BP_ILT
20 #define BP_ILT(bp) NULL
21 #endif
23 #ifndef BP_FUNC
24 #define BP_FUNC(bp) 0
25 #endif
27 #ifndef BP_PORT
28 #define BP_PORT(bp) 0
29 #endif
31 #ifndef BNX2X_ILT_FREE
32 #define BNX2X_ILT_FREE(x, y, sz)
33 #endif
35 #ifndef BNX2X_ILT_ZALLOC
36 #define BNX2X_ILT_ZALLOC(x, y, sz)
37 #endif
39 #ifndef ILOG2
40 #define ILOG2(x) x
41 #endif
43 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len);
44 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val);
45 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp,
46 dma_addr_t phys_addr, u32 addr,
47 u32 len);
49 static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr,
50 const u32 *data, u32 len)
52 u32 i;
54 for (i = 0; i < len; i++)
55 REG_WR(bp, addr + i*4, data[i]);
58 static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr,
59 const u32 *data, u32 len)
61 u32 i;
63 for (i = 0; i < len; i++)
64 bnx2x_reg_wr_ind(bp, addr + i*4, data[i]);
67 static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len,
68 u8 wb)
70 if (bp->dmae_ready)
71 bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len);
72 else if (wb)
74 * Wide bus registers with no dmae need to be written
75 * using indirect write.
77 bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len);
78 else
79 bnx2x_init_str_wr(bp, addr, GUNZIP_BUF(bp), len);
82 static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill,
83 u32 len, u8 wb)
85 u32 buf_len = (((len*4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len*4));
86 u32 buf_len32 = buf_len/4;
87 u32 i;
89 memset(GUNZIP_BUF(bp), (u8)fill, buf_len);
91 for (i = 0; i < len; i += buf_len32) {
92 u32 cur_len = min(buf_len32, len - i);
94 bnx2x_write_big_buf(bp, addr + i*4, cur_len, wb);
98 static void bnx2x_write_big_buf_wb(struct bnx2x *bp, u32 addr, u32 len)
100 if (bp->dmae_ready)
101 bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len);
102 else
103 bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len);
106 static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr,
107 const u32 *data, u32 len64)
109 u32 buf_len32 = FW_BUF_SIZE/4;
110 u32 len = len64*2;
111 u64 data64 = 0;
112 u32 i;
114 /* 64 bit value is in a blob: first low DWORD, then high DWORD */
115 data64 = HILO_U64((*(data + 1)), (*data));
117 len64 = min((u32)(FW_BUF_SIZE/8), len64);
118 for (i = 0; i < len64; i++) {
119 u64 *pdata = ((u64 *)(GUNZIP_BUF(bp))) + i;
121 *pdata = data64;
124 for (i = 0; i < len; i += buf_len32) {
125 u32 cur_len = min(buf_len32, len - i);
127 bnx2x_write_big_buf_wb(bp, addr + i*4, cur_len);
131 /*********************************************************
132 There are different blobs for each PRAM section.
133 In addition, each blob write operation is divided into a few operations
134 in order to decrease the amount of phys. contiguous buffer needed.
135 Thus, when we select a blob the address may be with some offset
136 from the beginning of PRAM section.
137 The same holds for the INT_TABLE sections.
138 **********************************************************/
139 #define IF_IS_INT_TABLE_ADDR(base, addr) \
140 if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
142 #define IF_IS_PRAM_ADDR(base, addr) \
143 if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
145 static const u8 *bnx2x_sel_blob(struct bnx2x *bp, u32 addr,
146 const u8 *data)
148 IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
149 data = INIT_TSEM_INT_TABLE_DATA(bp);
150 else
151 IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
152 data = INIT_CSEM_INT_TABLE_DATA(bp);
153 else
154 IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
155 data = INIT_USEM_INT_TABLE_DATA(bp);
156 else
157 IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
158 data = INIT_XSEM_INT_TABLE_DATA(bp);
159 else
160 IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
161 data = INIT_TSEM_PRAM_DATA(bp);
162 else
163 IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
164 data = INIT_CSEM_PRAM_DATA(bp);
165 else
166 IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
167 data = INIT_USEM_PRAM_DATA(bp);
168 else
169 IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
170 data = INIT_XSEM_PRAM_DATA(bp);
172 return data;
175 static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr,
176 const u32 *data, u32 len)
178 if (bp->dmae_ready)
179 VIRT_WR_DMAE_LEN(bp, data, addr, len, 0);
180 else
181 bnx2x_init_ind_wr(bp, addr, data, len);
184 static void bnx2x_wr_64(struct bnx2x *bp, u32 reg, u32 val_lo,
185 u32 val_hi)
187 u32 wb_write[2];
189 wb_write[0] = val_lo;
190 wb_write[1] = val_hi;
191 REG_WR_DMAE_LEN(bp, reg, wb_write, 2);
193 static void bnx2x_init_wr_zp(struct bnx2x *bp, u32 addr, u32 len,
194 u32 blob_off)
196 const u8 *data = NULL;
197 int rc;
198 u32 i;
200 data = bnx2x_sel_blob(bp, addr, data) + blob_off*4;
202 rc = bnx2x_gunzip(bp, data, len);
203 if (rc)
204 return;
206 /* gunzip_outlen is in dwords */
207 len = GUNZIP_OUTLEN(bp);
208 for (i = 0; i < len; i++)
209 ((u32 *)GUNZIP_BUF(bp))[i] =
210 cpu_to_le32(((u32 *)GUNZIP_BUF(bp))[i]);
212 bnx2x_write_big_buf_wb(bp, addr, len);
215 static void bnx2x_init_block(struct bnx2x *bp, u32 block, u32 stage)
217 u16 op_start =
218 INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage,
219 STAGE_START)];
220 u16 op_end =
221 INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage,
222 STAGE_END)];
223 union init_op *op;
224 u32 op_idx, op_type, addr, len;
225 const u32 *data, *data_base;
227 /* If empty block */
228 if (op_start == op_end)
229 return;
231 data_base = INIT_DATA(bp);
233 for (op_idx = op_start; op_idx < op_end; op_idx++) {
235 op = (union init_op *)&(INIT_OPS(bp)[op_idx]);
236 /* Get generic data */
237 op_type = op->raw.op;
238 addr = op->raw.offset;
239 /* Get data that's used for OP_SW, OP_WB, OP_FW, OP_ZP and
240 * OP_WR64 (we assume that op_arr_write and op_write have the
241 * same structure).
243 len = op->arr_wr.data_len;
244 data = data_base + op->arr_wr.data_off;
246 switch (op_type) {
247 case OP_RD:
248 REG_RD(bp, addr);
249 break;
250 case OP_WR:
251 REG_WR(bp, addr, op->write.val);
252 break;
253 case OP_SW:
254 bnx2x_init_str_wr(bp, addr, data, len);
255 break;
256 case OP_WB:
257 bnx2x_init_wr_wb(bp, addr, data, len);
258 break;
259 case OP_ZR:
260 bnx2x_init_fill(bp, addr, 0, op->zero.len, 0);
261 break;
262 case OP_WB_ZR:
263 bnx2x_init_fill(bp, addr, 0, op->zero.len, 1);
264 break;
265 case OP_ZP:
266 bnx2x_init_wr_zp(bp, addr, len,
267 op->arr_wr.data_off);
268 break;
269 case OP_WR_64:
270 bnx2x_init_wr_64(bp, addr, data, len);
271 break;
272 case OP_IF_MODE_AND:
273 /* if any of the flags doesn't match, skip the
274 * conditional block.
276 if ((INIT_MODE_FLAGS(bp) &
277 op->if_mode.mode_bit_map) !=
278 op->if_mode.mode_bit_map)
279 op_idx += op->if_mode.cmd_offset;
280 break;
281 case OP_IF_MODE_OR:
282 /* if all the flags don't match, skip the conditional
283 * block.
285 if ((INIT_MODE_FLAGS(bp) &
286 op->if_mode.mode_bit_map) == 0)
287 op_idx += op->if_mode.cmd_offset;
288 break;
289 default:
290 /* Should never get here! */
292 break;
298 /****************************************************************************
299 * PXP Arbiter
300 ****************************************************************************/
302 * This code configures the PCI read/write arbiter
303 * which implements a weighted round robin
304 * between the virtual queues in the chip.
306 * The values were derived for each PCI max payload and max request size.
307 * since max payload and max request size are only known at run time,
308 * this is done as a separate init stage.
311 #define NUM_WR_Q 13
312 #define NUM_RD_Q 29
313 #define MAX_RD_ORD 3
314 #define MAX_WR_ORD 2
316 /* configuration for one arbiter queue */
317 struct arb_line {
318 int l;
319 int add;
320 int ubound;
323 /* derived configuration for each read queue for each max request size */
324 static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
325 /* 1 */ { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
326 { {4, 8, 4}, {4, 8, 4}, {4, 8, 4}, {4, 8, 4} },
327 { {4, 3, 3}, {4, 3, 3}, {4, 3, 3}, {4, 3, 3} },
328 { {8, 3, 6}, {16, 3, 11}, {16, 3, 11}, {16, 3, 11} },
329 { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
330 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
331 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
332 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
333 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
334 /* 10 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
335 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
336 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
337 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
338 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
339 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
340 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
341 { {8, 64, 6}, {16, 64, 11}, {32, 64, 21}, {32, 64, 21} },
342 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
343 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
344 /* 20 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
345 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
346 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
347 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
348 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
349 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
350 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
351 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
352 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
353 { {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} }
356 /* derived configuration for each write queue for each max request size */
357 static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
358 /* 1 */ { {4, 6, 3}, {4, 6, 3}, {4, 6, 3} },
359 { {4, 2, 3}, {4, 2, 3}, {4, 2, 3} },
360 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
361 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
362 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
363 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
364 { {8, 64, 25}, {16, 64, 25}, {32, 64, 25} },
365 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
366 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
367 /* 10 */{ {8, 9, 6}, {16, 9, 11}, {32, 9, 21} },
368 { {8, 47, 19}, {16, 47, 19}, {32, 47, 21} },
369 { {8, 9, 6}, {16, 9, 11}, {16, 9, 11} },
370 { {8, 64, 25}, {16, 64, 41}, {32, 64, 81} }
373 /* register addresses for read queues */
374 static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
375 /* 1 */ {PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
376 PXP2_REG_RQ_BW_RD_UBOUND0},
377 {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
378 PXP2_REG_PSWRQ_BW_UB1},
379 {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
380 PXP2_REG_PSWRQ_BW_UB2},
381 {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
382 PXP2_REG_PSWRQ_BW_UB3},
383 {PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
384 PXP2_REG_RQ_BW_RD_UBOUND4},
385 {PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
386 PXP2_REG_RQ_BW_RD_UBOUND5},
387 {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
388 PXP2_REG_PSWRQ_BW_UB6},
389 {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
390 PXP2_REG_PSWRQ_BW_UB7},
391 {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
392 PXP2_REG_PSWRQ_BW_UB8},
393 /* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
394 PXP2_REG_PSWRQ_BW_UB9},
395 {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
396 PXP2_REG_PSWRQ_BW_UB10},
397 {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
398 PXP2_REG_PSWRQ_BW_UB11},
399 {PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
400 PXP2_REG_RQ_BW_RD_UBOUND12},
401 {PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
402 PXP2_REG_RQ_BW_RD_UBOUND13},
403 {PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
404 PXP2_REG_RQ_BW_RD_UBOUND14},
405 {PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
406 PXP2_REG_RQ_BW_RD_UBOUND15},
407 {PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
408 PXP2_REG_RQ_BW_RD_UBOUND16},
409 {PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
410 PXP2_REG_RQ_BW_RD_UBOUND17},
411 {PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
412 PXP2_REG_RQ_BW_RD_UBOUND18},
413 /* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
414 PXP2_REG_RQ_BW_RD_UBOUND19},
415 {PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
416 PXP2_REG_RQ_BW_RD_UBOUND20},
417 {PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
418 PXP2_REG_RQ_BW_RD_UBOUND22},
419 {PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
420 PXP2_REG_RQ_BW_RD_UBOUND23},
421 {PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
422 PXP2_REG_RQ_BW_RD_UBOUND24},
423 {PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
424 PXP2_REG_RQ_BW_RD_UBOUND25},
425 {PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
426 PXP2_REG_RQ_BW_RD_UBOUND26},
427 {PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
428 PXP2_REG_RQ_BW_RD_UBOUND27},
429 {PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
430 PXP2_REG_PSWRQ_BW_UB28}
433 /* register addresses for write queues */
434 static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
435 /* 1 */ {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
436 PXP2_REG_PSWRQ_BW_UB1},
437 {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
438 PXP2_REG_PSWRQ_BW_UB2},
439 {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
440 PXP2_REG_PSWRQ_BW_UB3},
441 {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
442 PXP2_REG_PSWRQ_BW_UB6},
443 {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
444 PXP2_REG_PSWRQ_BW_UB7},
445 {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
446 PXP2_REG_PSWRQ_BW_UB8},
447 {PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
448 PXP2_REG_PSWRQ_BW_UB9},
449 {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
450 PXP2_REG_PSWRQ_BW_UB10},
451 {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
452 PXP2_REG_PSWRQ_BW_UB11},
453 /* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
454 PXP2_REG_PSWRQ_BW_UB28},
455 {PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
456 PXP2_REG_RQ_BW_WR_UBOUND29},
457 {PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
458 PXP2_REG_RQ_BW_WR_UBOUND30}
461 static void bnx2x_init_pxp_arb(struct bnx2x *bp, int r_order,
462 int w_order)
464 u32 val, i;
466 if (r_order > MAX_RD_ORD) {
467 DP(NETIF_MSG_HW, "read order of %d order adjusted to %d\n",
468 r_order, MAX_RD_ORD);
469 r_order = MAX_RD_ORD;
471 if (w_order > MAX_WR_ORD) {
472 DP(NETIF_MSG_HW, "write order of %d order adjusted to %d\n",
473 w_order, MAX_WR_ORD);
474 w_order = MAX_WR_ORD;
476 if (CHIP_REV_IS_FPGA(bp)) {
477 DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n");
478 w_order = 0;
480 DP(NETIF_MSG_HW, "read order %d write order %d\n", r_order, w_order);
482 for (i = 0; i < NUM_RD_Q-1; i++) {
483 REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l);
484 REG_WR(bp, read_arb_addr[i].add,
485 read_arb_data[i][r_order].add);
486 REG_WR(bp, read_arb_addr[i].ubound,
487 read_arb_data[i][r_order].ubound);
490 for (i = 0; i < NUM_WR_Q-1; i++) {
491 if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
492 (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
494 REG_WR(bp, write_arb_addr[i].l,
495 write_arb_data[i][w_order].l);
497 REG_WR(bp, write_arb_addr[i].add,
498 write_arb_data[i][w_order].add);
500 REG_WR(bp, write_arb_addr[i].ubound,
501 write_arb_data[i][w_order].ubound);
502 } else {
504 val = REG_RD(bp, write_arb_addr[i].l);
505 REG_WR(bp, write_arb_addr[i].l,
506 val | (write_arb_data[i][w_order].l << 10));
508 val = REG_RD(bp, write_arb_addr[i].add);
509 REG_WR(bp, write_arb_addr[i].add,
510 val | (write_arb_data[i][w_order].add << 10));
512 val = REG_RD(bp, write_arb_addr[i].ubound);
513 REG_WR(bp, write_arb_addr[i].ubound,
514 val | (write_arb_data[i][w_order].ubound << 7));
518 val = write_arb_data[NUM_WR_Q-1][w_order].add;
519 val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
520 val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
521 REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val);
523 val = read_arb_data[NUM_RD_Q-1][r_order].add;
524 val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
525 val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
526 REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val);
528 REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order);
529 REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order);
530 REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order);
531 REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order);
533 if ((CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) && (r_order == MAX_RD_ORD))
534 REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
536 if (CHIP_IS_E3(bp))
537 REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x4 << w_order));
538 else if (CHIP_IS_E2(bp))
539 REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x8 << w_order));
540 else
541 REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
543 if (!CHIP_IS_E1(bp)) {
544 /* MPS w_order optimal TH presently TH
545 * 128 0 0 2
546 * 256 1 1 3
547 * >=512 2 2 3
549 /* DMAE is special */
550 if (!CHIP_IS_E1H(bp)) {
551 /* E2 can use optimal TH */
552 val = w_order;
553 REG_WR(bp, PXP2_REG_WR_DMAE_MPS, val);
554 } else {
555 val = ((w_order == 0) ? 2 : 3);
556 REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2);
559 REG_WR(bp, PXP2_REG_WR_HC_MPS, val);
560 REG_WR(bp, PXP2_REG_WR_USDM_MPS, val);
561 REG_WR(bp, PXP2_REG_WR_CSDM_MPS, val);
562 REG_WR(bp, PXP2_REG_WR_TSDM_MPS, val);
563 REG_WR(bp, PXP2_REG_WR_XSDM_MPS, val);
564 REG_WR(bp, PXP2_REG_WR_QM_MPS, val);
565 REG_WR(bp, PXP2_REG_WR_TM_MPS, val);
566 REG_WR(bp, PXP2_REG_WR_SRC_MPS, val);
567 REG_WR(bp, PXP2_REG_WR_DBG_MPS, val);
568 REG_WR(bp, PXP2_REG_WR_CDU_MPS, val);
571 /* Validate number of tags suppoted by device */
572 #define PCIE_REG_PCIER_TL_HDR_FC_ST 0x2980
573 val = REG_RD(bp, PCIE_REG_PCIER_TL_HDR_FC_ST);
574 val &= 0xFF;
575 if (val <= 0x20)
576 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x20);
579 /****************************************************************************
580 * ILT management
581 ****************************************************************************/
583 * This codes hides the low level HW interaction for ILT management and
584 * configuration. The API consists of a shadow ILT table which is set by the
585 * driver and a set of routines to use it to configure the HW.
589 /* ILT HW init operations */
591 /* ILT memory management operations */
592 #define ILT_MEMOP_ALLOC 0
593 #define ILT_MEMOP_FREE 1
595 /* the phys address is shifted right 12 bits and has an added
596 * 1=valid bit added to the 53rd bit
597 * then since this is a wide register(TM)
598 * we split it into two 32 bit writes
600 #define ILT_ADDR1(x) ((u32)(((u64)x >> 12) & 0xFFFFFFFF))
601 #define ILT_ADDR2(x) ((u32)((1 << 20) | ((u64)x >> 44)))
602 #define ILT_RANGE(f, l) (((l) << 10) | f)
604 static int bnx2x_ilt_line_mem_op(struct bnx2x *bp,
605 struct ilt_line *line, u32 size, u8 memop)
607 if (memop == ILT_MEMOP_FREE) {
608 BNX2X_ILT_FREE(line->page, line->page_mapping, line->size);
609 return 0;
611 BNX2X_ILT_ZALLOC(line->page, &line->page_mapping, size);
612 if (!line->page)
613 return -1;
614 line->size = size;
615 return 0;
619 static int bnx2x_ilt_client_mem_op(struct bnx2x *bp, int cli_num,
620 u8 memop)
622 int i, rc;
623 struct bnx2x_ilt *ilt = BP_ILT(bp);
624 struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
626 if (!ilt || !ilt->lines)
627 return -1;
629 if (ilt_cli->flags & (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM))
630 return 0;
632 for (rc = 0, i = ilt_cli->start; i <= ilt_cli->end && !rc; i++) {
633 rc = bnx2x_ilt_line_mem_op(bp, &ilt->lines[i],
634 ilt_cli->page_size, memop);
636 return rc;
639 static int bnx2x_ilt_mem_op(struct bnx2x *bp, u8 memop)
641 int rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_CDU, memop);
642 if (!rc)
643 rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_QM, memop);
644 if (!rc)
645 rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_SRC, memop);
646 if (!rc)
647 rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_TM, memop);
649 return rc;
652 static void bnx2x_ilt_line_wr(struct bnx2x *bp, int abs_idx,
653 dma_addr_t page_mapping)
655 u32 reg;
657 if (CHIP_IS_E1(bp))
658 reg = PXP2_REG_RQ_ONCHIP_AT + abs_idx*8;
659 else
660 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + abs_idx*8;
662 bnx2x_wr_64(bp, reg, ILT_ADDR1(page_mapping), ILT_ADDR2(page_mapping));
665 static void bnx2x_ilt_line_init_op(struct bnx2x *bp,
666 struct bnx2x_ilt *ilt, int idx, u8 initop)
668 dma_addr_t null_mapping;
669 int abs_idx = ilt->start_line + idx;
672 switch (initop) {
673 case INITOP_INIT:
674 /* set in the init-value array */
675 case INITOP_SET:
676 bnx2x_ilt_line_wr(bp, abs_idx, ilt->lines[idx].page_mapping);
677 break;
678 case INITOP_CLEAR:
679 null_mapping = 0;
680 bnx2x_ilt_line_wr(bp, abs_idx, null_mapping);
681 break;
685 static void bnx2x_ilt_boundry_init_op(struct bnx2x *bp,
686 struct ilt_client_info *ilt_cli,
687 u32 ilt_start, u8 initop)
689 u32 start_reg = 0;
690 u32 end_reg = 0;
692 /* The boundary is either SET or INIT,
693 CLEAR => SET and for now SET ~~ INIT */
695 /* find the appropriate regs */
696 if (CHIP_IS_E1(bp)) {
697 switch (ilt_cli->client_num) {
698 case ILT_CLIENT_CDU:
699 start_reg = PXP2_REG_PSWRQ_CDU0_L2P;
700 break;
701 case ILT_CLIENT_QM:
702 start_reg = PXP2_REG_PSWRQ_QM0_L2P;
703 break;
704 case ILT_CLIENT_SRC:
705 start_reg = PXP2_REG_PSWRQ_SRC0_L2P;
706 break;
707 case ILT_CLIENT_TM:
708 start_reg = PXP2_REG_PSWRQ_TM0_L2P;
709 break;
711 REG_WR(bp, start_reg + BP_FUNC(bp)*4,
712 ILT_RANGE((ilt_start + ilt_cli->start),
713 (ilt_start + ilt_cli->end)));
714 } else {
715 switch (ilt_cli->client_num) {
716 case ILT_CLIENT_CDU:
717 start_reg = PXP2_REG_RQ_CDU_FIRST_ILT;
718 end_reg = PXP2_REG_RQ_CDU_LAST_ILT;
719 break;
720 case ILT_CLIENT_QM:
721 start_reg = PXP2_REG_RQ_QM_FIRST_ILT;
722 end_reg = PXP2_REG_RQ_QM_LAST_ILT;
723 break;
724 case ILT_CLIENT_SRC:
725 start_reg = PXP2_REG_RQ_SRC_FIRST_ILT;
726 end_reg = PXP2_REG_RQ_SRC_LAST_ILT;
727 break;
728 case ILT_CLIENT_TM:
729 start_reg = PXP2_REG_RQ_TM_FIRST_ILT;
730 end_reg = PXP2_REG_RQ_TM_LAST_ILT;
731 break;
733 REG_WR(bp, start_reg, (ilt_start + ilt_cli->start));
734 REG_WR(bp, end_reg, (ilt_start + ilt_cli->end));
738 static void bnx2x_ilt_client_init_op_ilt(struct bnx2x *bp,
739 struct bnx2x_ilt *ilt,
740 struct ilt_client_info *ilt_cli,
741 u8 initop)
743 int i;
745 if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
746 return;
748 for (i = ilt_cli->start; i <= ilt_cli->end; i++)
749 bnx2x_ilt_line_init_op(bp, ilt, i, initop);
751 /* init/clear the ILT boundries */
752 bnx2x_ilt_boundry_init_op(bp, ilt_cli, ilt->start_line, initop);
755 static void bnx2x_ilt_client_init_op(struct bnx2x *bp,
756 struct ilt_client_info *ilt_cli, u8 initop)
758 struct bnx2x_ilt *ilt = BP_ILT(bp);
760 bnx2x_ilt_client_init_op_ilt(bp, ilt, ilt_cli, initop);
763 static void bnx2x_ilt_client_id_init_op(struct bnx2x *bp,
764 int cli_num, u8 initop)
766 struct bnx2x_ilt *ilt = BP_ILT(bp);
767 struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
769 bnx2x_ilt_client_init_op(bp, ilt_cli, initop);
772 static void bnx2x_ilt_init_op(struct bnx2x *bp, u8 initop)
774 bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_CDU, initop);
775 bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_QM, initop);
776 bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_SRC, initop);
777 bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_TM, initop);
780 static void bnx2x_ilt_init_client_psz(struct bnx2x *bp, int cli_num,
781 u32 psz_reg, u8 initop)
783 struct bnx2x_ilt *ilt = BP_ILT(bp);
784 struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
786 if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
787 return;
789 switch (initop) {
790 case INITOP_INIT:
791 /* set in the init-value array */
792 case INITOP_SET:
793 REG_WR(bp, psz_reg, ILOG2(ilt_cli->page_size >> 12));
794 break;
795 case INITOP_CLEAR:
796 break;
801 * called during init common stage, ilt clients should be initialized
802 * prioir to calling this function
804 static void bnx2x_ilt_init_page_size(struct bnx2x *bp, u8 initop)
806 bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_CDU,
807 PXP2_REG_RQ_CDU_P_SIZE, initop);
808 bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_QM,
809 PXP2_REG_RQ_QM_P_SIZE, initop);
810 bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_SRC,
811 PXP2_REG_RQ_SRC_P_SIZE, initop);
812 bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_TM,
813 PXP2_REG_RQ_TM_P_SIZE, initop);
816 /****************************************************************************
817 * QM initializations
818 ****************************************************************************/
819 #define QM_QUEUES_PER_FUNC 16 /* E1 has 32, but only 16 are used */
820 #define QM_INIT_MIN_CID_COUNT 31
821 #define QM_INIT(cid_cnt) (cid_cnt > QM_INIT_MIN_CID_COUNT)
823 /* called during init port stage */
824 static void bnx2x_qm_init_cid_count(struct bnx2x *bp, int qm_cid_count,
825 u8 initop)
827 int port = BP_PORT(bp);
829 if (QM_INIT(qm_cid_count)) {
830 switch (initop) {
831 case INITOP_INIT:
832 /* set in the init-value array */
833 case INITOP_SET:
834 REG_WR(bp, QM_REG_CONNNUM_0 + port*4,
835 qm_cid_count/16 - 1);
836 break;
837 case INITOP_CLEAR:
838 break;
843 static void bnx2x_qm_set_ptr_table(struct bnx2x *bp, int qm_cid_count)
845 int i;
846 u32 wb_data[2];
848 wb_data[0] = wb_data[1] = 0;
850 for (i = 0; i < 4 * QM_QUEUES_PER_FUNC; i++) {
851 REG_WR(bp, QM_REG_BASEADDR + i*4,
852 qm_cid_count * 4 * (i % QM_QUEUES_PER_FUNC));
853 bnx2x_init_ind_wr(bp, QM_REG_PTRTBL + i*8,
854 wb_data, 2);
856 if (CHIP_IS_E1H(bp)) {
857 REG_WR(bp, QM_REG_BASEADDR_EXT_A + i*4,
858 qm_cid_count * 4 * (i % QM_QUEUES_PER_FUNC));
859 bnx2x_init_ind_wr(bp, QM_REG_PTRTBL_EXT_A + i*8,
860 wb_data, 2);
865 /* called during init common stage */
866 static void bnx2x_qm_init_ptr_table(struct bnx2x *bp, int qm_cid_count,
867 u8 initop)
869 if (!QM_INIT(qm_cid_count))
870 return;
872 switch (initop) {
873 case INITOP_INIT:
874 /* set in the init-value array */
875 case INITOP_SET:
876 bnx2x_qm_set_ptr_table(bp, qm_cid_count);
877 break;
878 case INITOP_CLEAR:
879 break;
883 /****************************************************************************
884 * SRC initializations
885 ****************************************************************************/
886 #ifdef BCM_CNIC
887 /* called during init func stage */
888 static void bnx2x_src_init_t2(struct bnx2x *bp, struct src_ent *t2,
889 dma_addr_t t2_mapping, int src_cid_count)
891 int i;
892 int port = BP_PORT(bp);
894 /* Initialize T2 */
895 for (i = 0; i < src_cid_count-1; i++)
896 t2[i].next = (u64)(t2_mapping +
897 (i+1)*sizeof(struct src_ent));
899 /* tell the searcher where the T2 table is */
900 REG_WR(bp, SRC_REG_COUNTFREE0 + port*4, src_cid_count);
902 bnx2x_wr_64(bp, SRC_REG_FIRSTFREE0 + port*16,
903 U64_LO(t2_mapping), U64_HI(t2_mapping));
905 bnx2x_wr_64(bp, SRC_REG_LASTFREE0 + port*16,
906 U64_LO((u64)t2_mapping +
907 (src_cid_count-1) * sizeof(struct src_ent)),
908 U64_HI((u64)t2_mapping +
909 (src_cid_count-1) * sizeof(struct src_ent)));
911 #endif
912 #endif /* BNX2X_INIT_OPS_H */