1 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
3 * Copyright (C) 2004 Sun Microsystems Inc.
4 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 of the
9 * License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
21 * This driver uses the sungem driver (c) David Miller
22 * (davem@redhat.com) as its basis.
24 * The cassini chip has a number of features that distinguish it from
26 * 4 transmit descriptor rings that are used for either QoS (VLAN) or
27 * load balancing (non-VLAN mode)
28 * batching of multiple packets
29 * multiple CPU dispatching
30 * page-based RX descriptor engine with separate completion rings
31 * Gigabit support (GMII and PCS interface)
32 * MIF link up/down detection works
34 * RX is handled by page sized buffers that are attached as fragments to
35 * the skb. here's what's done:
36 * -- driver allocates pages at a time and keeps reference counts
38 * -- the upper protocol layers assume that the header is in the skb
39 * itself. as a result, cassini will copy a small amount (64 bytes)
41 * -- driver appends the rest of the data pages as frags to skbuffs
42 * and increments the reference count
43 * -- on page reclamation, the driver swaps the page with a spare page.
44 * if that page is still in use, it frees its reference to that page,
45 * and allocates a new page for use. otherwise, it just recycles the
48 * NOTE: cassini can parse the header. however, it's not worth it
49 * as long as the network stack requires a header copy.
51 * TX has 4 queues. currently these queues are used in a round-robin
52 * fashion for load balancing. They can also be used for QoS. for that
53 * to work, however, QoS information needs to be exposed down to the driver
54 * level so that subqueues get targeted to particular transmit rings.
55 * alternatively, the queues can be configured via use of the all-purpose
58 * RX DATA: the rx completion ring has all the info, but the rx desc
59 * ring has all of the data. RX can conceivably come in under multiple
60 * interrupts, but the INT# assignment needs to be set up properly by
61 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
62 * that. also, the two descriptor rings are designed to distinguish between
63 * encrypted and non-encrypted packets, but we use them for buffering
66 * by default, the selective clear mask is set up to process rx packets.
69 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
71 #include <linux/module.h>
72 #include <linux/kernel.h>
73 #include <linux/types.h>
74 #include <linux/compiler.h>
75 #include <linux/slab.h>
76 #include <linux/delay.h>
77 #include <linux/init.h>
78 #include <linux/interrupt.h>
79 #include <linux/vmalloc.h>
80 #include <linux/ioport.h>
81 #include <linux/pci.h>
83 #include <linux/highmem.h>
84 #include <linux/list.h>
85 #include <linux/dma-mapping.h>
87 #include <linux/netdevice.h>
88 #include <linux/etherdevice.h>
89 #include <linux/skbuff.h>
90 #include <linux/ethtool.h>
91 #include <linux/crc32.h>
92 #include <linux/random.h>
93 #include <linux/mii.h>
95 #include <linux/tcp.h>
96 #include <linux/mutex.h>
97 #include <linux/firmware.h>
99 #include <net/checksum.h>
101 #include <linux/atomic.h>
102 #include <asm/system.h>
104 #include <asm/byteorder.h>
105 #include <asm/uaccess.h>
107 #define cas_page_map(x) kmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
108 #define cas_page_unmap(x) kunmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
109 #define CAS_NCPUS num_online_cpus()
111 #define cas_skb_release(x) netif_rx(x)
113 /* select which firmware to use */
114 #define USE_HP_WORKAROUND
115 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
116 #define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */
120 #define USE_TX_COMPWB /* use completion writeback registers */
121 #define USE_CSMA_CD_PROTO /* standard CSMA/CD */
122 #define USE_RX_BLANK /* hw interrupt mitigation */
123 #undef USE_ENTROPY_DEV /* don't test for entropy device */
125 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
126 * also, we need to make cp->lock finer-grained.
133 #undef USE_VPD_DEBUG /* debug vpd information if defined */
135 /* rx processing options */
136 #define USE_PAGE_ORDER /* specify to allocate large rx pages */
137 #define RX_DONT_BATCH 0 /* if 1, don't batch flows */
138 #define RX_COPY_ALWAYS 0 /* if 0, use frags */
139 #define RX_COPY_MIN 64 /* copy a little to make upper layers happy */
140 #undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */
142 #define DRV_MODULE_NAME "cassini"
143 #define DRV_MODULE_VERSION "1.6"
144 #define DRV_MODULE_RELDATE "21 May 2008"
146 #define CAS_DEF_MSG_ENABLE \
156 /* length of time before we decide the hardware is borked,
157 * and dev->tx_timeout() should be called to fix the problem
159 #define CAS_TX_TIMEOUT (HZ)
160 #define CAS_LINK_TIMEOUT (22*HZ/10)
161 #define CAS_LINK_FAST_TIMEOUT (1)
163 /* timeout values for state changing. these specify the number
164 * of 10us delays to be used before giving up.
166 #define STOP_TRIES_PHY 1000
167 #define STOP_TRIES 5000
169 /* specify a minimum frame size to deal with some fifo issues
170 * max mtu == 2 * page size - ethernet header - 64 - swivel =
171 * 2 * page_size - 0x50
173 #define CAS_MIN_FRAME 97
174 #define CAS_1000MB_MIN_FRAME 255
175 #define CAS_MIN_MTU 60
176 #define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000)
180 * Eliminate these and use separate atomic counters for each, to
181 * avoid a race condition.
184 #define CAS_RESET_MTU 1
185 #define CAS_RESET_ALL 2
186 #define CAS_RESET_SPARE 3
189 static char version
[] __devinitdata
=
190 DRV_MODULE_NAME
".c:v" DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")\n";
192 static int cassini_debug
= -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */
193 static int link_mode
;
195 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
196 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
197 MODULE_LICENSE("GPL");
198 MODULE_FIRMWARE("sun/cassini.bin");
199 module_param(cassini_debug
, int, 0);
200 MODULE_PARM_DESC(cassini_debug
, "Cassini bitmapped debugging message enable value");
201 module_param(link_mode
, int, 0);
202 MODULE_PARM_DESC(link_mode
, "default link mode");
205 * Work around for a PCS bug in which the link goes down due to the chip
206 * being confused and never showing a link status of "up."
208 #define DEFAULT_LINKDOWN_TIMEOUT 5
210 * Value in seconds, for user input.
212 static int linkdown_timeout
= DEFAULT_LINKDOWN_TIMEOUT
;
213 module_param(linkdown_timeout
, int, 0);
214 MODULE_PARM_DESC(linkdown_timeout
,
215 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
218 * value in 'ticks' (units used by jiffies). Set when we init the
219 * module because 'HZ' in actually a function call on some flavors of
220 * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
222 static int link_transition_timeout
;
226 static u16 link_modes
[] __devinitdata
= {
227 BMCR_ANENABLE
, /* 0 : autoneg */
228 0, /* 1 : 10bt half duplex */
229 BMCR_SPEED100
, /* 2 : 100bt half duplex */
230 BMCR_FULLDPLX
, /* 3 : 10bt full duplex */
231 BMCR_SPEED100
|BMCR_FULLDPLX
, /* 4 : 100bt full duplex */
232 CAS_BMCR_SPEED1000
|BMCR_FULLDPLX
/* 5 : 1000bt full duplex */
235 static DEFINE_PCI_DEVICE_TABLE(cas_pci_tbl
) = {
236 { PCI_VENDOR_ID_SUN
, PCI_DEVICE_ID_SUN_CASSINI
,
237 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
238 { PCI_VENDOR_ID_NS
, PCI_DEVICE_ID_NS_SATURN
,
239 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
243 MODULE_DEVICE_TABLE(pci
, cas_pci_tbl
);
245 static void cas_set_link_modes(struct cas
*cp
);
247 static inline void cas_lock_tx(struct cas
*cp
)
251 for (i
= 0; i
< N_TX_RINGS
; i
++)
252 spin_lock(&cp
->tx_lock
[i
]);
255 static inline void cas_lock_all(struct cas
*cp
)
257 spin_lock_irq(&cp
->lock
);
261 /* WTZ: QA was finding deadlock problems with the previous
262 * versions after long test runs with multiple cards per machine.
263 * See if replacing cas_lock_all with safer versions helps. The
264 * symptoms QA is reporting match those we'd expect if interrupts
265 * aren't being properly restored, and we fixed a previous deadlock
266 * with similar symptoms by using save/restore versions in other
269 #define cas_lock_all_save(cp, flags) \
271 struct cas *xxxcp = (cp); \
272 spin_lock_irqsave(&xxxcp->lock, flags); \
273 cas_lock_tx(xxxcp); \
276 static inline void cas_unlock_tx(struct cas
*cp
)
280 for (i
= N_TX_RINGS
; i
> 0; i
--)
281 spin_unlock(&cp
->tx_lock
[i
- 1]);
284 static inline void cas_unlock_all(struct cas
*cp
)
287 spin_unlock_irq(&cp
->lock
);
290 #define cas_unlock_all_restore(cp, flags) \
292 struct cas *xxxcp = (cp); \
293 cas_unlock_tx(xxxcp); \
294 spin_unlock_irqrestore(&xxxcp->lock, flags); \
297 static void cas_disable_irq(struct cas
*cp
, const int ring
)
299 /* Make sure we won't get any more interrupts */
301 writel(0xFFFFFFFF, cp
->regs
+ REG_INTR_MASK
);
305 /* disable completion interrupts and selectively mask */
306 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
308 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
318 writel(INTRN_MASK_CLEAR_ALL
| INTRN_MASK_RX_EN
,
319 cp
->regs
+ REG_PLUS_INTRN_MASK(ring
));
323 writel(INTRN_MASK_CLEAR_ALL
, cp
->regs
+
324 REG_PLUS_INTRN_MASK(ring
));
330 static inline void cas_mask_intr(struct cas
*cp
)
334 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++)
335 cas_disable_irq(cp
, i
);
338 static void cas_enable_irq(struct cas
*cp
, const int ring
)
340 if (ring
== 0) { /* all but TX_DONE */
341 writel(INTR_TX_DONE
, cp
->regs
+ REG_INTR_MASK
);
345 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
347 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
357 writel(INTRN_MASK_RX_EN
, cp
->regs
+
358 REG_PLUS_INTRN_MASK(ring
));
367 static inline void cas_unmask_intr(struct cas
*cp
)
371 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++)
372 cas_enable_irq(cp
, i
);
375 static inline void cas_entropy_gather(struct cas
*cp
)
377 #ifdef USE_ENTROPY_DEV
378 if ((cp
->cas_flags
& CAS_FLAG_ENTROPY_DEV
) == 0)
381 batch_entropy_store(readl(cp
->regs
+ REG_ENTROPY_IV
),
382 readl(cp
->regs
+ REG_ENTROPY_IV
),
387 static inline void cas_entropy_reset(struct cas
*cp
)
389 #ifdef USE_ENTROPY_DEV
390 if ((cp
->cas_flags
& CAS_FLAG_ENTROPY_DEV
) == 0)
393 writel(BIM_LOCAL_DEV_PAD
| BIM_LOCAL_DEV_PROM
| BIM_LOCAL_DEV_EXT
,
394 cp
->regs
+ REG_BIM_LOCAL_DEV_EN
);
395 writeb(ENTROPY_RESET_STC_MODE
, cp
->regs
+ REG_ENTROPY_RESET
);
396 writeb(0x55, cp
->regs
+ REG_ENTROPY_RAND_REG
);
398 /* if we read back 0x0, we don't have an entropy device */
399 if (readb(cp
->regs
+ REG_ENTROPY_RAND_REG
) == 0)
400 cp
->cas_flags
&= ~CAS_FLAG_ENTROPY_DEV
;
404 /* access to the phy. the following assumes that we've initialized the MIF to
405 * be in frame rather than bit-bang mode
407 static u16
cas_phy_read(struct cas
*cp
, int reg
)
410 int limit
= STOP_TRIES_PHY
;
412 cmd
= MIF_FRAME_ST
| MIF_FRAME_OP_READ
;
413 cmd
|= CAS_BASE(MIF_FRAME_PHY_ADDR
, cp
->phy_addr
);
414 cmd
|= CAS_BASE(MIF_FRAME_REG_ADDR
, reg
);
415 cmd
|= MIF_FRAME_TURN_AROUND_MSB
;
416 writel(cmd
, cp
->regs
+ REG_MIF_FRAME
);
418 /* poll for completion */
419 while (limit
-- > 0) {
421 cmd
= readl(cp
->regs
+ REG_MIF_FRAME
);
422 if (cmd
& MIF_FRAME_TURN_AROUND_LSB
)
423 return cmd
& MIF_FRAME_DATA_MASK
;
425 return 0xFFFF; /* -1 */
428 static int cas_phy_write(struct cas
*cp
, int reg
, u16 val
)
430 int limit
= STOP_TRIES_PHY
;
433 cmd
= MIF_FRAME_ST
| MIF_FRAME_OP_WRITE
;
434 cmd
|= CAS_BASE(MIF_FRAME_PHY_ADDR
, cp
->phy_addr
);
435 cmd
|= CAS_BASE(MIF_FRAME_REG_ADDR
, reg
);
436 cmd
|= MIF_FRAME_TURN_AROUND_MSB
;
437 cmd
|= val
& MIF_FRAME_DATA_MASK
;
438 writel(cmd
, cp
->regs
+ REG_MIF_FRAME
);
440 /* poll for completion */
441 while (limit
-- > 0) {
443 cmd
= readl(cp
->regs
+ REG_MIF_FRAME
);
444 if (cmd
& MIF_FRAME_TURN_AROUND_LSB
)
450 static void cas_phy_powerup(struct cas
*cp
)
452 u16 ctl
= cas_phy_read(cp
, MII_BMCR
);
454 if ((ctl
& BMCR_PDOWN
) == 0)
457 cas_phy_write(cp
, MII_BMCR
, ctl
);
460 static void cas_phy_powerdown(struct cas
*cp
)
462 u16 ctl
= cas_phy_read(cp
, MII_BMCR
);
464 if (ctl
& BMCR_PDOWN
)
467 cas_phy_write(cp
, MII_BMCR
, ctl
);
470 /* cp->lock held. note: the last put_page will free the buffer */
471 static int cas_page_free(struct cas
*cp
, cas_page_t
*page
)
473 pci_unmap_page(cp
->pdev
, page
->dma_addr
, cp
->page_size
,
475 __free_pages(page
->buffer
, cp
->page_order
);
480 #ifdef RX_COUNT_BUFFERS
481 #define RX_USED_ADD(x, y) ((x)->used += (y))
482 #define RX_USED_SET(x, y) ((x)->used = (y))
484 #define RX_USED_ADD(x, y)
485 #define RX_USED_SET(x, y)
488 /* local page allocation routines for the receive buffers. jumbo pages
489 * require at least 8K contiguous and 8K aligned buffers.
491 static cas_page_t
*cas_page_alloc(struct cas
*cp
, const gfp_t flags
)
495 page
= kmalloc(sizeof(cas_page_t
), flags
);
499 INIT_LIST_HEAD(&page
->list
);
500 RX_USED_SET(page
, 0);
501 page
->buffer
= alloc_pages(flags
, cp
->page_order
);
504 page
->dma_addr
= pci_map_page(cp
->pdev
, page
->buffer
, 0,
505 cp
->page_size
, PCI_DMA_FROMDEVICE
);
513 /* initialize spare pool of rx buffers, but allocate during the open */
514 static void cas_spare_init(struct cas
*cp
)
516 spin_lock(&cp
->rx_inuse_lock
);
517 INIT_LIST_HEAD(&cp
->rx_inuse_list
);
518 spin_unlock(&cp
->rx_inuse_lock
);
520 spin_lock(&cp
->rx_spare_lock
);
521 INIT_LIST_HEAD(&cp
->rx_spare_list
);
522 cp
->rx_spares_needed
= RX_SPARE_COUNT
;
523 spin_unlock(&cp
->rx_spare_lock
);
526 /* used on close. free all the spare buffers. */
527 static void cas_spare_free(struct cas
*cp
)
529 struct list_head list
, *elem
, *tmp
;
531 /* free spare buffers */
532 INIT_LIST_HEAD(&list
);
533 spin_lock(&cp
->rx_spare_lock
);
534 list_splice_init(&cp
->rx_spare_list
, &list
);
535 spin_unlock(&cp
->rx_spare_lock
);
536 list_for_each_safe(elem
, tmp
, &list
) {
537 cas_page_free(cp
, list_entry(elem
, cas_page_t
, list
));
540 INIT_LIST_HEAD(&list
);
543 * Looks like Adrian had protected this with a different
544 * lock than used everywhere else to manipulate this list.
546 spin_lock(&cp
->rx_inuse_lock
);
547 list_splice_init(&cp
->rx_inuse_list
, &list
);
548 spin_unlock(&cp
->rx_inuse_lock
);
550 spin_lock(&cp
->rx_spare_lock
);
551 list_splice_init(&cp
->rx_inuse_list
, &list
);
552 spin_unlock(&cp
->rx_spare_lock
);
554 list_for_each_safe(elem
, tmp
, &list
) {
555 cas_page_free(cp
, list_entry(elem
, cas_page_t
, list
));
559 /* replenish spares if needed */
560 static void cas_spare_recover(struct cas
*cp
, const gfp_t flags
)
562 struct list_head list
, *elem
, *tmp
;
565 /* check inuse list. if we don't need any more free buffers,
569 /* make a local copy of the list */
570 INIT_LIST_HEAD(&list
);
571 spin_lock(&cp
->rx_inuse_lock
);
572 list_splice_init(&cp
->rx_inuse_list
, &list
);
573 spin_unlock(&cp
->rx_inuse_lock
);
575 list_for_each_safe(elem
, tmp
, &list
) {
576 cas_page_t
*page
= list_entry(elem
, cas_page_t
, list
);
579 * With the lockless pagecache, cassini buffering scheme gets
580 * slightly less accurate: we might find that a page has an
581 * elevated reference count here, due to a speculative ref,
582 * and skip it as in-use. Ideally we would be able to reclaim
583 * it. However this would be such a rare case, it doesn't
584 * matter too much as we should pick it up the next time round.
586 * Importantly, if we find that the page has a refcount of 1
587 * here (our refcount), then we know it is definitely not inuse
588 * so we can reuse it.
590 if (page_count(page
->buffer
) > 1)
594 spin_lock(&cp
->rx_spare_lock
);
595 if (cp
->rx_spares_needed
> 0) {
596 list_add(elem
, &cp
->rx_spare_list
);
597 cp
->rx_spares_needed
--;
598 spin_unlock(&cp
->rx_spare_lock
);
600 spin_unlock(&cp
->rx_spare_lock
);
601 cas_page_free(cp
, page
);
605 /* put any inuse buffers back on the list */
606 if (!list_empty(&list
)) {
607 spin_lock(&cp
->rx_inuse_lock
);
608 list_splice(&list
, &cp
->rx_inuse_list
);
609 spin_unlock(&cp
->rx_inuse_lock
);
612 spin_lock(&cp
->rx_spare_lock
);
613 needed
= cp
->rx_spares_needed
;
614 spin_unlock(&cp
->rx_spare_lock
);
618 /* we still need spares, so try to allocate some */
619 INIT_LIST_HEAD(&list
);
622 cas_page_t
*spare
= cas_page_alloc(cp
, flags
);
625 list_add(&spare
->list
, &list
);
629 spin_lock(&cp
->rx_spare_lock
);
630 list_splice(&list
, &cp
->rx_spare_list
);
631 cp
->rx_spares_needed
-= i
;
632 spin_unlock(&cp
->rx_spare_lock
);
635 /* pull a page from the list. */
636 static cas_page_t
*cas_page_dequeue(struct cas
*cp
)
638 struct list_head
*entry
;
641 spin_lock(&cp
->rx_spare_lock
);
642 if (list_empty(&cp
->rx_spare_list
)) {
643 /* try to do a quick recovery */
644 spin_unlock(&cp
->rx_spare_lock
);
645 cas_spare_recover(cp
, GFP_ATOMIC
);
646 spin_lock(&cp
->rx_spare_lock
);
647 if (list_empty(&cp
->rx_spare_list
)) {
648 netif_err(cp
, rx_err
, cp
->dev
,
649 "no spare buffers available\n");
650 spin_unlock(&cp
->rx_spare_lock
);
655 entry
= cp
->rx_spare_list
.next
;
657 recover
= ++cp
->rx_spares_needed
;
658 spin_unlock(&cp
->rx_spare_lock
);
660 /* trigger the timer to do the recovery */
661 if ((recover
& (RX_SPARE_RECOVER_VAL
- 1)) == 0) {
663 atomic_inc(&cp
->reset_task_pending
);
664 atomic_inc(&cp
->reset_task_pending_spare
);
665 schedule_work(&cp
->reset_task
);
667 atomic_set(&cp
->reset_task_pending
, CAS_RESET_SPARE
);
668 schedule_work(&cp
->reset_task
);
671 return list_entry(entry
, cas_page_t
, list
);
675 static void cas_mif_poll(struct cas
*cp
, const int enable
)
679 cfg
= readl(cp
->regs
+ REG_MIF_CFG
);
680 cfg
&= (MIF_CFG_MDIO_0
| MIF_CFG_MDIO_1
);
682 if (cp
->phy_type
& CAS_PHY_MII_MDIO1
)
683 cfg
|= MIF_CFG_PHY_SELECT
;
685 /* poll and interrupt on link status change. */
687 cfg
|= MIF_CFG_POLL_EN
;
688 cfg
|= CAS_BASE(MIF_CFG_POLL_REG
, MII_BMSR
);
689 cfg
|= CAS_BASE(MIF_CFG_POLL_PHY
, cp
->phy_addr
);
691 writel((enable
) ? ~(BMSR_LSTATUS
| BMSR_ANEGCOMPLETE
) : 0xFFFF,
692 cp
->regs
+ REG_MIF_MASK
);
693 writel(cfg
, cp
->regs
+ REG_MIF_CFG
);
696 /* Must be invoked under cp->lock */
697 static void cas_begin_auto_negotiation(struct cas
*cp
, struct ethtool_cmd
*ep
)
703 int oldstate
= cp
->lstate
;
704 int link_was_not_down
= !(oldstate
== link_down
);
706 /* Setup link parameters */
709 lcntl
= cp
->link_cntl
;
710 if (ep
->autoneg
== AUTONEG_ENABLE
)
711 cp
->link_cntl
= BMCR_ANENABLE
;
713 u32 speed
= ethtool_cmd_speed(ep
);
715 if (speed
== SPEED_100
)
716 cp
->link_cntl
|= BMCR_SPEED100
;
717 else if (speed
== SPEED_1000
)
718 cp
->link_cntl
|= CAS_BMCR_SPEED1000
;
719 if (ep
->duplex
== DUPLEX_FULL
)
720 cp
->link_cntl
|= BMCR_FULLDPLX
;
723 changed
= (lcntl
!= cp
->link_cntl
);
726 if (cp
->lstate
== link_up
) {
727 netdev_info(cp
->dev
, "PCS link down\n");
730 netdev_info(cp
->dev
, "link configuration changed\n");
733 cp
->lstate
= link_down
;
734 cp
->link_transition
= LINK_TRANSITION_LINK_DOWN
;
739 * WTZ: If the old state was link_up, we turn off the carrier
740 * to replicate everything we do elsewhere on a link-down
741 * event when we were already in a link-up state..
743 if (oldstate
== link_up
)
744 netif_carrier_off(cp
->dev
);
745 if (changed
&& link_was_not_down
) {
747 * WTZ: This branch will simply schedule a full reset after
748 * we explicitly changed link modes in an ioctl. See if this
749 * fixes the link-problems we were having for forced mode.
751 atomic_inc(&cp
->reset_task_pending
);
752 atomic_inc(&cp
->reset_task_pending_all
);
753 schedule_work(&cp
->reset_task
);
755 mod_timer(&cp
->link_timer
, jiffies
+ CAS_LINK_TIMEOUT
);
759 if (cp
->phy_type
& CAS_PHY_SERDES
) {
760 u32 val
= readl(cp
->regs
+ REG_PCS_MII_CTRL
);
762 if (cp
->link_cntl
& BMCR_ANENABLE
) {
763 val
|= (PCS_MII_RESTART_AUTONEG
| PCS_MII_AUTONEG_EN
);
764 cp
->lstate
= link_aneg
;
766 if (cp
->link_cntl
& BMCR_FULLDPLX
)
767 val
|= PCS_MII_CTRL_DUPLEX
;
768 val
&= ~PCS_MII_AUTONEG_EN
;
769 cp
->lstate
= link_force_ok
;
771 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
772 writel(val
, cp
->regs
+ REG_PCS_MII_CTRL
);
776 ctl
= cas_phy_read(cp
, MII_BMCR
);
777 ctl
&= ~(BMCR_FULLDPLX
| BMCR_SPEED100
|
778 CAS_BMCR_SPEED1000
| BMCR_ANENABLE
);
779 ctl
|= cp
->link_cntl
;
780 if (ctl
& BMCR_ANENABLE
) {
781 ctl
|= BMCR_ANRESTART
;
782 cp
->lstate
= link_aneg
;
784 cp
->lstate
= link_force_ok
;
786 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
787 cas_phy_write(cp
, MII_BMCR
, ctl
);
792 mod_timer(&cp
->link_timer
, jiffies
+ CAS_LINK_TIMEOUT
);
795 /* Must be invoked under cp->lock. */
796 static int cas_reset_mii_phy(struct cas
*cp
)
798 int limit
= STOP_TRIES_PHY
;
801 cas_phy_write(cp
, MII_BMCR
, BMCR_RESET
);
804 val
= cas_phy_read(cp
, MII_BMCR
);
805 if ((val
& BMCR_RESET
) == 0)
812 static int cas_saturn_firmware_init(struct cas
*cp
)
814 const struct firmware
*fw
;
815 const char fw_name
[] = "sun/cassini.bin";
818 if (PHY_NS_DP83065
!= cp
->phy_id
)
821 err
= request_firmware(&fw
, fw_name
, &cp
->pdev
->dev
);
823 pr_err("Failed to load firmware \"%s\"\n",
828 pr_err("bogus length %zu in \"%s\"\n",
833 cp
->fw_load_addr
= fw
->data
[1] << 8 | fw
->data
[0];
834 cp
->fw_size
= fw
->size
- 2;
835 cp
->fw_data
= vmalloc(cp
->fw_size
);
838 pr_err("\"%s\" Failed %d\n", fw_name
, err
);
841 memcpy(cp
->fw_data
, &fw
->data
[2], cp
->fw_size
);
843 release_firmware(fw
);
847 static void cas_saturn_firmware_load(struct cas
*cp
)
851 cas_phy_powerdown(cp
);
853 /* expanded memory access mode */
854 cas_phy_write(cp
, DP83065_MII_MEM
, 0x0);
856 /* pointer configuration for new firmware */
857 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ff9);
858 cas_phy_write(cp
, DP83065_MII_REGD
, 0xbd);
859 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ffa);
860 cas_phy_write(cp
, DP83065_MII_REGD
, 0x82);
861 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ffb);
862 cas_phy_write(cp
, DP83065_MII_REGD
, 0x0);
863 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ffc);
864 cas_phy_write(cp
, DP83065_MII_REGD
, 0x39);
866 /* download new firmware */
867 cas_phy_write(cp
, DP83065_MII_MEM
, 0x1);
868 cas_phy_write(cp
, DP83065_MII_REGE
, cp
->fw_load_addr
);
869 for (i
= 0; i
< cp
->fw_size
; i
++)
870 cas_phy_write(cp
, DP83065_MII_REGD
, cp
->fw_data
[i
]);
872 /* enable firmware */
873 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ff8);
874 cas_phy_write(cp
, DP83065_MII_REGD
, 0x1);
878 /* phy initialization */
879 static void cas_phy_init(struct cas
*cp
)
883 /* if we're in MII/GMII mode, set up phy */
884 if (CAS_PHY_MII(cp
->phy_type
)) {
885 writel(PCS_DATAPATH_MODE_MII
,
886 cp
->regs
+ REG_PCS_DATAPATH_MODE
);
889 cas_reset_mii_phy(cp
); /* take out of isolate mode */
891 if (PHY_LUCENT_B0
== cp
->phy_id
) {
892 /* workaround link up/down issue with lucent */
893 cas_phy_write(cp
, LUCENT_MII_REG
, 0x8000);
894 cas_phy_write(cp
, MII_BMCR
, 0x00f1);
895 cas_phy_write(cp
, LUCENT_MII_REG
, 0x0);
897 } else if (PHY_BROADCOM_B0
== (cp
->phy_id
& 0xFFFFFFFC)) {
898 /* workarounds for broadcom phy */
899 cas_phy_write(cp
, BROADCOM_MII_REG8
, 0x0C20);
900 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x0012);
901 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x1804);
902 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x0013);
903 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x1204);
904 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x8006);
905 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x0132);
906 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x8006);
907 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x0232);
908 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x201F);
909 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x0A20);
911 } else if (PHY_BROADCOM_5411
== cp
->phy_id
) {
912 val
= cas_phy_read(cp
, BROADCOM_MII_REG4
);
913 val
= cas_phy_read(cp
, BROADCOM_MII_REG4
);
915 /* link workaround */
916 cas_phy_write(cp
, BROADCOM_MII_REG4
,
920 } else if (cp
->cas_flags
& CAS_FLAG_SATURN
) {
921 writel((cp
->phy_type
& CAS_PHY_MII_MDIO0
) ?
922 SATURN_PCFG_FSI
: 0x0,
923 cp
->regs
+ REG_SATURN_PCFG
);
925 /* load firmware to address 10Mbps auto-negotiation
926 * issue. NOTE: this will need to be changed if the
927 * default firmware gets fixed.
929 if (PHY_NS_DP83065
== cp
->phy_id
) {
930 cas_saturn_firmware_load(cp
);
935 /* advertise capabilities */
936 val
= cas_phy_read(cp
, MII_BMCR
);
937 val
&= ~BMCR_ANENABLE
;
938 cas_phy_write(cp
, MII_BMCR
, val
);
941 cas_phy_write(cp
, MII_ADVERTISE
,
942 cas_phy_read(cp
, MII_ADVERTISE
) |
943 (ADVERTISE_10HALF
| ADVERTISE_10FULL
|
944 ADVERTISE_100HALF
| ADVERTISE_100FULL
|
945 CAS_ADVERTISE_PAUSE
|
946 CAS_ADVERTISE_ASYM_PAUSE
));
948 if (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) {
949 /* make sure that we don't advertise half
950 * duplex to avoid a chip issue
952 val
= cas_phy_read(cp
, CAS_MII_1000_CTRL
);
953 val
&= ~CAS_ADVERTISE_1000HALF
;
954 val
|= CAS_ADVERTISE_1000FULL
;
955 cas_phy_write(cp
, CAS_MII_1000_CTRL
, val
);
959 /* reset pcs for serdes */
963 writel(PCS_DATAPATH_MODE_SERDES
,
964 cp
->regs
+ REG_PCS_DATAPATH_MODE
);
966 /* enable serdes pins on saturn */
967 if (cp
->cas_flags
& CAS_FLAG_SATURN
)
968 writel(0, cp
->regs
+ REG_SATURN_PCFG
);
970 /* Reset PCS unit. */
971 val
= readl(cp
->regs
+ REG_PCS_MII_CTRL
);
972 val
|= PCS_MII_RESET
;
973 writel(val
, cp
->regs
+ REG_PCS_MII_CTRL
);
976 while (--limit
> 0) {
978 if ((readl(cp
->regs
+ REG_PCS_MII_CTRL
) &
983 netdev_warn(cp
->dev
, "PCS reset bit would not clear [%08x]\n",
984 readl(cp
->regs
+ REG_PCS_STATE_MACHINE
));
986 /* Make sure PCS is disabled while changing advertisement
989 writel(0x0, cp
->regs
+ REG_PCS_CFG
);
991 /* Advertise all capabilities except half-duplex. */
992 val
= readl(cp
->regs
+ REG_PCS_MII_ADVERT
);
993 val
&= ~PCS_MII_ADVERT_HD
;
994 val
|= (PCS_MII_ADVERT_FD
| PCS_MII_ADVERT_SYM_PAUSE
|
995 PCS_MII_ADVERT_ASYM_PAUSE
);
996 writel(val
, cp
->regs
+ REG_PCS_MII_ADVERT
);
999 writel(PCS_CFG_EN
, cp
->regs
+ REG_PCS_CFG
);
1001 /* pcs workaround: enable sync detect */
1002 writel(PCS_SERDES_CTRL_SYNCD_EN
,
1003 cp
->regs
+ REG_PCS_SERDES_CTRL
);
1008 static int cas_pcs_link_check(struct cas
*cp
)
1010 u32 stat
, state_machine
;
1013 /* The link status bit latches on zero, so you must
1014 * read it twice in such a case to see a transition
1015 * to the link being up.
1017 stat
= readl(cp
->regs
+ REG_PCS_MII_STATUS
);
1018 if ((stat
& PCS_MII_STATUS_LINK_STATUS
) == 0)
1019 stat
= readl(cp
->regs
+ REG_PCS_MII_STATUS
);
1021 /* The remote-fault indication is only valid
1022 * when autoneg has completed.
1024 if ((stat
& (PCS_MII_STATUS_AUTONEG_COMP
|
1025 PCS_MII_STATUS_REMOTE_FAULT
)) ==
1026 (PCS_MII_STATUS_AUTONEG_COMP
| PCS_MII_STATUS_REMOTE_FAULT
))
1027 netif_info(cp
, link
, cp
->dev
, "PCS RemoteFault\n");
1029 /* work around link detection issue by querying the PCS state
1032 state_machine
= readl(cp
->regs
+ REG_PCS_STATE_MACHINE
);
1033 if ((state_machine
& PCS_SM_LINK_STATE_MASK
) != SM_LINK_STATE_UP
) {
1034 stat
&= ~PCS_MII_STATUS_LINK_STATUS
;
1035 } else if (state_machine
& PCS_SM_WORD_SYNC_STATE_MASK
) {
1036 stat
|= PCS_MII_STATUS_LINK_STATUS
;
1039 if (stat
& PCS_MII_STATUS_LINK_STATUS
) {
1040 if (cp
->lstate
!= link_up
) {
1042 cp
->lstate
= link_up
;
1043 cp
->link_transition
= LINK_TRANSITION_LINK_UP
;
1045 cas_set_link_modes(cp
);
1046 netif_carrier_on(cp
->dev
);
1049 } else if (cp
->lstate
== link_up
) {
1050 cp
->lstate
= link_down
;
1051 if (link_transition_timeout
!= 0 &&
1052 cp
->link_transition
!= LINK_TRANSITION_REQUESTED_RESET
&&
1053 !cp
->link_transition_jiffies_valid
) {
1055 * force a reset, as a workaround for the
1056 * link-failure problem. May want to move this to a
1057 * point a bit earlier in the sequence. If we had
1058 * generated a reset a short time ago, we'll wait for
1059 * the link timer to check the status until a
1060 * timer expires (link_transistion_jiffies_valid is
1061 * true when the timer is running.) Instead of using
1062 * a system timer, we just do a check whenever the
1063 * link timer is running - this clears the flag after
1067 cp
->link_transition
= LINK_TRANSITION_REQUESTED_RESET
;
1068 cp
->link_transition_jiffies
= jiffies
;
1069 cp
->link_transition_jiffies_valid
= 1;
1071 cp
->link_transition
= LINK_TRANSITION_ON_FAILURE
;
1073 netif_carrier_off(cp
->dev
);
1075 netif_info(cp
, link
, cp
->dev
, "PCS link down\n");
1077 /* Cassini only: if you force a mode, there can be
1078 * sync problems on link down. to fix that, the following
1079 * things need to be checked:
1080 * 1) read serialink state register
1081 * 2) read pcs status register to verify link down.
1082 * 3) if link down and serial link == 0x03, then you need
1083 * to global reset the chip.
1085 if ((cp
->cas_flags
& CAS_FLAG_REG_PLUS
) == 0) {
1086 /* should check to see if we're in a forced mode */
1087 stat
= readl(cp
->regs
+ REG_PCS_SERDES_STATE
);
1091 } else if (cp
->lstate
== link_down
) {
1092 if (link_transition_timeout
!= 0 &&
1093 cp
->link_transition
!= LINK_TRANSITION_REQUESTED_RESET
&&
1094 !cp
->link_transition_jiffies_valid
) {
1095 /* force a reset, as a workaround for the
1096 * link-failure problem. May want to move
1097 * this to a point a bit earlier in the
1101 cp
->link_transition
= LINK_TRANSITION_REQUESTED_RESET
;
1102 cp
->link_transition_jiffies
= jiffies
;
1103 cp
->link_transition_jiffies_valid
= 1;
1105 cp
->link_transition
= LINK_TRANSITION_STILL_FAILED
;
1112 static int cas_pcs_interrupt(struct net_device
*dev
,
1113 struct cas
*cp
, u32 status
)
1115 u32 stat
= readl(cp
->regs
+ REG_PCS_INTR_STATUS
);
1117 if ((stat
& PCS_INTR_STATUS_LINK_CHANGE
) == 0)
1119 return cas_pcs_link_check(cp
);
1122 static int cas_txmac_interrupt(struct net_device
*dev
,
1123 struct cas
*cp
, u32 status
)
1125 u32 txmac_stat
= readl(cp
->regs
+ REG_MAC_TX_STATUS
);
1130 netif_printk(cp
, intr
, KERN_DEBUG
, cp
->dev
,
1131 "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat
);
1133 /* Defer timer expiration is quite normal,
1134 * don't even log the event.
1136 if ((txmac_stat
& MAC_TX_DEFER_TIMER
) &&
1137 !(txmac_stat
& ~MAC_TX_DEFER_TIMER
))
1140 spin_lock(&cp
->stat_lock
[0]);
1141 if (txmac_stat
& MAC_TX_UNDERRUN
) {
1142 netdev_err(dev
, "TX MAC xmit underrun\n");
1143 cp
->net_stats
[0].tx_fifo_errors
++;
1146 if (txmac_stat
& MAC_TX_MAX_PACKET_ERR
) {
1147 netdev_err(dev
, "TX MAC max packet size error\n");
1148 cp
->net_stats
[0].tx_errors
++;
1151 /* The rest are all cases of one of the 16-bit TX
1152 * counters expiring.
1154 if (txmac_stat
& MAC_TX_COLL_NORMAL
)
1155 cp
->net_stats
[0].collisions
+= 0x10000;
1157 if (txmac_stat
& MAC_TX_COLL_EXCESS
) {
1158 cp
->net_stats
[0].tx_aborted_errors
+= 0x10000;
1159 cp
->net_stats
[0].collisions
+= 0x10000;
1162 if (txmac_stat
& MAC_TX_COLL_LATE
) {
1163 cp
->net_stats
[0].tx_aborted_errors
+= 0x10000;
1164 cp
->net_stats
[0].collisions
+= 0x10000;
1166 spin_unlock(&cp
->stat_lock
[0]);
1168 /* We do not keep track of MAC_TX_COLL_FIRST and
1169 * MAC_TX_PEAK_ATTEMPTS events.
1174 static void cas_load_firmware(struct cas
*cp
, cas_hp_inst_t
*firmware
)
1176 cas_hp_inst_t
*inst
;
1181 while ((inst
= firmware
) && inst
->note
) {
1182 writel(i
, cp
->regs
+ REG_HP_INSTR_RAM_ADDR
);
1184 val
= CAS_BASE(HP_INSTR_RAM_HI_VAL
, inst
->val
);
1185 val
|= CAS_BASE(HP_INSTR_RAM_HI_MASK
, inst
->mask
);
1186 writel(val
, cp
->regs
+ REG_HP_INSTR_RAM_DATA_HI
);
1188 val
= CAS_BASE(HP_INSTR_RAM_MID_OUTARG
, inst
->outarg
>> 10);
1189 val
|= CAS_BASE(HP_INSTR_RAM_MID_OUTOP
, inst
->outop
);
1190 val
|= CAS_BASE(HP_INSTR_RAM_MID_FNEXT
, inst
->fnext
);
1191 val
|= CAS_BASE(HP_INSTR_RAM_MID_FOFF
, inst
->foff
);
1192 val
|= CAS_BASE(HP_INSTR_RAM_MID_SNEXT
, inst
->snext
);
1193 val
|= CAS_BASE(HP_INSTR_RAM_MID_SOFF
, inst
->soff
);
1194 val
|= CAS_BASE(HP_INSTR_RAM_MID_OP
, inst
->op
);
1195 writel(val
, cp
->regs
+ REG_HP_INSTR_RAM_DATA_MID
);
1197 val
= CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK
, inst
->outmask
);
1198 val
|= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT
, inst
->outshift
);
1199 val
|= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN
, inst
->outenab
);
1200 val
|= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG
, inst
->outarg
);
1201 writel(val
, cp
->regs
+ REG_HP_INSTR_RAM_DATA_LOW
);
1207 static void cas_init_rx_dma(struct cas
*cp
)
1209 u64 desc_dma
= cp
->block_dvma
;
1213 /* rx free descriptors */
1214 val
= CAS_BASE(RX_CFG_SWIVEL
, RX_SWIVEL_OFF_VAL
);
1215 val
|= CAS_BASE(RX_CFG_DESC_RING
, RX_DESC_RINGN_INDEX(0));
1216 val
|= CAS_BASE(RX_CFG_COMP_RING
, RX_COMP_RINGN_INDEX(0));
1217 if ((N_RX_DESC_RINGS
> 1) &&
1218 (cp
->cas_flags
& CAS_FLAG_REG_PLUS
)) /* do desc 2 */
1219 val
|= CAS_BASE(RX_CFG_DESC_RING1
, RX_DESC_RINGN_INDEX(1));
1220 writel(val
, cp
->regs
+ REG_RX_CFG
);
1222 val
= (unsigned long) cp
->init_rxds
[0] -
1223 (unsigned long) cp
->init_block
;
1224 writel((desc_dma
+ val
) >> 32, cp
->regs
+ REG_RX_DB_HI
);
1225 writel((desc_dma
+ val
) & 0xffffffff, cp
->regs
+ REG_RX_DB_LOW
);
1226 writel(RX_DESC_RINGN_SIZE(0) - 4, cp
->regs
+ REG_RX_KICK
);
1228 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
1229 /* rx desc 2 is for IPSEC packets. however,
1230 * we don't it that for that purpose.
1232 val
= (unsigned long) cp
->init_rxds
[1] -
1233 (unsigned long) cp
->init_block
;
1234 writel((desc_dma
+ val
) >> 32, cp
->regs
+ REG_PLUS_RX_DB1_HI
);
1235 writel((desc_dma
+ val
) & 0xffffffff, cp
->regs
+
1236 REG_PLUS_RX_DB1_LOW
);
1237 writel(RX_DESC_RINGN_SIZE(1) - 4, cp
->regs
+
1241 /* rx completion registers */
1242 val
= (unsigned long) cp
->init_rxcs
[0] -
1243 (unsigned long) cp
->init_block
;
1244 writel((desc_dma
+ val
) >> 32, cp
->regs
+ REG_RX_CB_HI
);
1245 writel((desc_dma
+ val
) & 0xffffffff, cp
->regs
+ REG_RX_CB_LOW
);
1247 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
1249 for (i
= 1; i
< MAX_RX_COMP_RINGS
; i
++) {
1250 val
= (unsigned long) cp
->init_rxcs
[i
] -
1251 (unsigned long) cp
->init_block
;
1252 writel((desc_dma
+ val
) >> 32, cp
->regs
+
1253 REG_PLUS_RX_CBN_HI(i
));
1254 writel((desc_dma
+ val
) & 0xffffffff, cp
->regs
+
1255 REG_PLUS_RX_CBN_LOW(i
));
1259 /* read selective clear regs to prevent spurious interrupts
1260 * on reset because complete == kick.
1261 * selective clear set up to prevent interrupts on resets
1263 readl(cp
->regs
+ REG_INTR_STATUS_ALIAS
);
1264 writel(INTR_RX_DONE
| INTR_RX_BUF_UNAVAIL
, cp
->regs
+ REG_ALIAS_CLEAR
);
1265 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
1266 for (i
= 1; i
< N_RX_COMP_RINGS
; i
++)
1267 readl(cp
->regs
+ REG_PLUS_INTRN_STATUS_ALIAS(i
));
1269 /* 2 is different from 3 and 4 */
1270 if (N_RX_COMP_RINGS
> 1)
1271 writel(INTR_RX_DONE_ALT
| INTR_RX_BUF_UNAVAIL_1
,
1272 cp
->regs
+ REG_PLUS_ALIASN_CLEAR(1));
1274 for (i
= 2; i
< N_RX_COMP_RINGS
; i
++)
1275 writel(INTR_RX_DONE_ALT
,
1276 cp
->regs
+ REG_PLUS_ALIASN_CLEAR(i
));
1279 /* set up pause thresholds */
1280 val
= CAS_BASE(RX_PAUSE_THRESH_OFF
,
1281 cp
->rx_pause_off
/ RX_PAUSE_THRESH_QUANTUM
);
1282 val
|= CAS_BASE(RX_PAUSE_THRESH_ON
,
1283 cp
->rx_pause_on
/ RX_PAUSE_THRESH_QUANTUM
);
1284 writel(val
, cp
->regs
+ REG_RX_PAUSE_THRESH
);
1286 /* zero out dma reassembly buffers */
1287 for (i
= 0; i
< 64; i
++) {
1288 writel(i
, cp
->regs
+ REG_RX_TABLE_ADDR
);
1289 writel(0x0, cp
->regs
+ REG_RX_TABLE_DATA_LOW
);
1290 writel(0x0, cp
->regs
+ REG_RX_TABLE_DATA_MID
);
1291 writel(0x0, cp
->regs
+ REG_RX_TABLE_DATA_HI
);
1294 /* make sure address register is 0 for normal operation */
1295 writel(0x0, cp
->regs
+ REG_RX_CTRL_FIFO_ADDR
);
1296 writel(0x0, cp
->regs
+ REG_RX_IPP_FIFO_ADDR
);
1298 /* interrupt mitigation */
1300 val
= CAS_BASE(RX_BLANK_INTR_TIME
, RX_BLANK_INTR_TIME_VAL
);
1301 val
|= CAS_BASE(RX_BLANK_INTR_PKT
, RX_BLANK_INTR_PKT_VAL
);
1302 writel(val
, cp
->regs
+ REG_RX_BLANK
);
1304 writel(0x0, cp
->regs
+ REG_RX_BLANK
);
1307 /* interrupt generation as a function of low water marks for
1308 * free desc and completion entries. these are used to trigger
1309 * housekeeping for rx descs. we don't use the free interrupt
1310 * as it's not very useful
1312 /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1313 val
= CAS_BASE(RX_AE_THRESH_COMP
, RX_AE_COMP_VAL
);
1314 writel(val
, cp
->regs
+ REG_RX_AE_THRESH
);
1315 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
1316 val
= CAS_BASE(RX_AE1_THRESH_FREE
, RX_AE_FREEN_VAL(1));
1317 writel(val
, cp
->regs
+ REG_PLUS_RX_AE1_THRESH
);
1320 /* Random early detect registers. useful for congestion avoidance.
1321 * this should be tunable.
1323 writel(0x0, cp
->regs
+ REG_RX_RED
);
1325 /* receive page sizes. default == 2K (0x800) */
1327 if (cp
->page_size
== 0x1000)
1329 else if (cp
->page_size
== 0x2000)
1331 else if (cp
->page_size
== 0x4000)
1334 /* round mtu + offset. constrain to page size. */
1335 size
= cp
->dev
->mtu
+ 64;
1336 if (size
> cp
->page_size
)
1337 size
= cp
->page_size
;
1341 else if (size
<= 0x800)
1343 else if (size
<= 0x1000)
1348 cp
->mtu_stride
= 1 << (i
+ 10);
1349 val
= CAS_BASE(RX_PAGE_SIZE
, val
);
1350 val
|= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE
, i
);
1351 val
|= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT
, cp
->page_size
>> (i
+ 10));
1352 val
|= CAS_BASE(RX_PAGE_SIZE_MTU_OFF
, 0x1);
1353 writel(val
, cp
->regs
+ REG_RX_PAGE_SIZE
);
1355 /* enable the header parser if desired */
1356 if (CAS_HP_FIRMWARE
== cas_prog_null
)
1359 val
= CAS_BASE(HP_CFG_NUM_CPU
, CAS_NCPUS
> 63 ? 0 : CAS_NCPUS
);
1360 val
|= HP_CFG_PARSE_EN
| HP_CFG_SYN_INC_MASK
;
1361 val
|= CAS_BASE(HP_CFG_TCP_THRESH
, HP_TCP_THRESH_VAL
);
1362 writel(val
, cp
->regs
+ REG_HP_CFG
);
1365 static inline void cas_rxc_init(struct cas_rx_comp
*rxc
)
1367 memset(rxc
, 0, sizeof(*rxc
));
1368 rxc
->word4
= cpu_to_le64(RX_COMP4_ZERO
);
1371 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1372 * flipping is protected by the fact that the chip will not
1373 * hand back the same page index while it's being processed.
1375 static inline cas_page_t
*cas_page_spare(struct cas
*cp
, const int index
)
1377 cas_page_t
*page
= cp
->rx_pages
[1][index
];
1380 if (page_count(page
->buffer
) == 1)
1383 new = cas_page_dequeue(cp
);
1385 spin_lock(&cp
->rx_inuse_lock
);
1386 list_add(&page
->list
, &cp
->rx_inuse_list
);
1387 spin_unlock(&cp
->rx_inuse_lock
);
1392 /* this needs to be changed if we actually use the ENC RX DESC ring */
1393 static cas_page_t
*cas_page_swap(struct cas
*cp
, const int ring
,
1396 cas_page_t
**page0
= cp
->rx_pages
[0];
1397 cas_page_t
**page1
= cp
->rx_pages
[1];
1399 /* swap if buffer is in use */
1400 if (page_count(page0
[index
]->buffer
) > 1) {
1401 cas_page_t
*new = cas_page_spare(cp
, index
);
1403 page1
[index
] = page0
[index
];
1407 RX_USED_SET(page0
[index
], 0);
1408 return page0
[index
];
1411 static void cas_clean_rxds(struct cas
*cp
)
1413 /* only clean ring 0 as ring 1 is used for spare buffers */
1414 struct cas_rx_desc
*rxd
= cp
->init_rxds
[0];
1417 /* release all rx flows */
1418 for (i
= 0; i
< N_RX_FLOWS
; i
++) {
1419 struct sk_buff
*skb
;
1420 while ((skb
= __skb_dequeue(&cp
->rx_flows
[i
]))) {
1421 cas_skb_release(skb
);
1425 /* initialize descriptors */
1426 size
= RX_DESC_RINGN_SIZE(0);
1427 for (i
= 0; i
< size
; i
++) {
1428 cas_page_t
*page
= cas_page_swap(cp
, 0, i
);
1429 rxd
[i
].buffer
= cpu_to_le64(page
->dma_addr
);
1430 rxd
[i
].index
= cpu_to_le64(CAS_BASE(RX_INDEX_NUM
, i
) |
1431 CAS_BASE(RX_INDEX_RING
, 0));
1434 cp
->rx_old
[0] = RX_DESC_RINGN_SIZE(0) - 4;
1436 cp
->cas_flags
&= ~CAS_FLAG_RXD_POST(0);
1439 static void cas_clean_rxcs(struct cas
*cp
)
1443 /* take ownership of rx comp descriptors */
1444 memset(cp
->rx_cur
, 0, sizeof(*cp
->rx_cur
)*N_RX_COMP_RINGS
);
1445 memset(cp
->rx_new
, 0, sizeof(*cp
->rx_new
)*N_RX_COMP_RINGS
);
1446 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++) {
1447 struct cas_rx_comp
*rxc
= cp
->init_rxcs
[i
];
1448 for (j
= 0; j
< RX_COMP_RINGN_SIZE(i
); j
++) {
1449 cas_rxc_init(rxc
+ j
);
1455 /* When we get a RX fifo overflow, the RX unit is probably hung
1456 * so we do the following.
1458 * If any part of the reset goes wrong, we return 1 and that causes the
1459 * whole chip to be reset.
1461 static int cas_rxmac_reset(struct cas
*cp
)
1463 struct net_device
*dev
= cp
->dev
;
1467 /* First, reset MAC RX. */
1468 writel(cp
->mac_rx_cfg
& ~MAC_RX_CFG_EN
, cp
->regs
+ REG_MAC_RX_CFG
);
1469 for (limit
= 0; limit
< STOP_TRIES
; limit
++) {
1470 if (!(readl(cp
->regs
+ REG_MAC_RX_CFG
) & MAC_RX_CFG_EN
))
1474 if (limit
== STOP_TRIES
) {
1475 netdev_err(dev
, "RX MAC will not disable, resetting whole chip\n");
1479 /* Second, disable RX DMA. */
1480 writel(0, cp
->regs
+ REG_RX_CFG
);
1481 for (limit
= 0; limit
< STOP_TRIES
; limit
++) {
1482 if (!(readl(cp
->regs
+ REG_RX_CFG
) & RX_CFG_DMA_EN
))
1486 if (limit
== STOP_TRIES
) {
1487 netdev_err(dev
, "RX DMA will not disable, resetting whole chip\n");
1493 /* Execute RX reset command. */
1494 writel(SW_RESET_RX
, cp
->regs
+ REG_SW_RESET
);
1495 for (limit
= 0; limit
< STOP_TRIES
; limit
++) {
1496 if (!(readl(cp
->regs
+ REG_SW_RESET
) & SW_RESET_RX
))
1500 if (limit
== STOP_TRIES
) {
1501 netdev_err(dev
, "RX reset command will not execute, resetting whole chip\n");
1505 /* reset driver rx state */
1509 /* Now, reprogram the rest of RX unit. */
1510 cas_init_rx_dma(cp
);
1513 val
= readl(cp
->regs
+ REG_RX_CFG
);
1514 writel(val
| RX_CFG_DMA_EN
, cp
->regs
+ REG_RX_CFG
);
1515 writel(MAC_RX_FRAME_RECV
, cp
->regs
+ REG_MAC_RX_MASK
);
1516 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
1517 writel(val
| MAC_RX_CFG_EN
, cp
->regs
+ REG_MAC_RX_CFG
);
1522 static int cas_rxmac_interrupt(struct net_device
*dev
, struct cas
*cp
,
1525 u32 stat
= readl(cp
->regs
+ REG_MAC_RX_STATUS
);
1530 netif_dbg(cp
, intr
, cp
->dev
, "rxmac interrupt, stat: 0x%x\n", stat
);
1532 /* these are all rollovers */
1533 spin_lock(&cp
->stat_lock
[0]);
1534 if (stat
& MAC_RX_ALIGN_ERR
)
1535 cp
->net_stats
[0].rx_frame_errors
+= 0x10000;
1537 if (stat
& MAC_RX_CRC_ERR
)
1538 cp
->net_stats
[0].rx_crc_errors
+= 0x10000;
1540 if (stat
& MAC_RX_LEN_ERR
)
1541 cp
->net_stats
[0].rx_length_errors
+= 0x10000;
1543 if (stat
& MAC_RX_OVERFLOW
) {
1544 cp
->net_stats
[0].rx_over_errors
++;
1545 cp
->net_stats
[0].rx_fifo_errors
++;
1548 /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1551 spin_unlock(&cp
->stat_lock
[0]);
1555 static int cas_mac_interrupt(struct net_device
*dev
, struct cas
*cp
,
1558 u32 stat
= readl(cp
->regs
+ REG_MAC_CTRL_STATUS
);
1563 netif_printk(cp
, intr
, KERN_DEBUG
, cp
->dev
,
1564 "mac interrupt, stat: 0x%x\n", stat
);
1566 /* This interrupt is just for pause frame and pause
1567 * tracking. It is useful for diagnostics and debug
1568 * but probably by default we will mask these events.
1570 if (stat
& MAC_CTRL_PAUSE_STATE
)
1571 cp
->pause_entered
++;
1573 if (stat
& MAC_CTRL_PAUSE_RECEIVED
)
1574 cp
->pause_last_time_recvd
= (stat
>> 16);
1580 /* Must be invoked under cp->lock. */
1581 static inline int cas_mdio_link_not_up(struct cas
*cp
)
1585 switch (cp
->lstate
) {
1586 case link_force_ret
:
1587 netif_info(cp
, link
, cp
->dev
, "Autoneg failed again, keeping forced mode\n");
1588 cas_phy_write(cp
, MII_BMCR
, cp
->link_fcntl
);
1589 cp
->timer_ticks
= 5;
1590 cp
->lstate
= link_force_ok
;
1591 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
1595 val
= cas_phy_read(cp
, MII_BMCR
);
1597 /* Try forced modes. we try things in the following order:
1598 * 1000 full -> 100 full/half -> 10 half
1600 val
&= ~(BMCR_ANRESTART
| BMCR_ANENABLE
);
1601 val
|= BMCR_FULLDPLX
;
1602 val
|= (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) ?
1603 CAS_BMCR_SPEED1000
: BMCR_SPEED100
;
1604 cas_phy_write(cp
, MII_BMCR
, val
);
1605 cp
->timer_ticks
= 5;
1606 cp
->lstate
= link_force_try
;
1607 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
1610 case link_force_try
:
1611 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1612 val
= cas_phy_read(cp
, MII_BMCR
);
1613 cp
->timer_ticks
= 5;
1614 if (val
& CAS_BMCR_SPEED1000
) { /* gigabit */
1615 val
&= ~CAS_BMCR_SPEED1000
;
1616 val
|= (BMCR_SPEED100
| BMCR_FULLDPLX
);
1617 cas_phy_write(cp
, MII_BMCR
, val
);
1621 if (val
& BMCR_SPEED100
) {
1622 if (val
& BMCR_FULLDPLX
) /* fd failed */
1623 val
&= ~BMCR_FULLDPLX
;
1624 else { /* 100Mbps failed */
1625 val
&= ~BMCR_SPEED100
;
1627 cas_phy_write(cp
, MII_BMCR
, val
);
1637 /* must be invoked with cp->lock held */
1638 static int cas_mii_link_check(struct cas
*cp
, const u16 bmsr
)
1642 if (bmsr
& BMSR_LSTATUS
) {
1643 /* Ok, here we got a link. If we had it due to a forced
1644 * fallback, and we were configured for autoneg, we
1645 * retry a short autoneg pass. If you know your hub is
1646 * broken, use ethtool ;)
1648 if ((cp
->lstate
== link_force_try
) &&
1649 (cp
->link_cntl
& BMCR_ANENABLE
)) {
1650 cp
->lstate
= link_force_ret
;
1651 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
1652 cas_mif_poll(cp
, 0);
1653 cp
->link_fcntl
= cas_phy_read(cp
, MII_BMCR
);
1654 cp
->timer_ticks
= 5;
1656 netif_info(cp
, link
, cp
->dev
,
1657 "Got link after fallback, retrying autoneg once...\n");
1658 cas_phy_write(cp
, MII_BMCR
,
1659 cp
->link_fcntl
| BMCR_ANENABLE
|
1661 cas_mif_poll(cp
, 1);
1663 } else if (cp
->lstate
!= link_up
) {
1664 cp
->lstate
= link_up
;
1665 cp
->link_transition
= LINK_TRANSITION_LINK_UP
;
1668 cas_set_link_modes(cp
);
1669 netif_carrier_on(cp
->dev
);
1675 /* link not up. if the link was previously up, we restart the
1679 if (cp
->lstate
== link_up
) {
1680 cp
->lstate
= link_down
;
1681 cp
->link_transition
= LINK_TRANSITION_LINK_DOWN
;
1683 netif_carrier_off(cp
->dev
);
1685 netif_info(cp
, link
, cp
->dev
, "Link down\n");
1688 } else if (++cp
->timer_ticks
> 10)
1689 cas_mdio_link_not_up(cp
);
1694 static int cas_mif_interrupt(struct net_device
*dev
, struct cas
*cp
,
1697 u32 stat
= readl(cp
->regs
+ REG_MIF_STATUS
);
1700 /* check for a link change */
1701 if (CAS_VAL(MIF_STATUS_POLL_STATUS
, stat
) == 0)
1704 bmsr
= CAS_VAL(MIF_STATUS_POLL_DATA
, stat
);
1705 return cas_mii_link_check(cp
, bmsr
);
1708 static int cas_pci_interrupt(struct net_device
*dev
, struct cas
*cp
,
1711 u32 stat
= readl(cp
->regs
+ REG_PCI_ERR_STATUS
);
1716 netdev_err(dev
, "PCI error [%04x:%04x]",
1717 stat
, readl(cp
->regs
+ REG_BIM_DIAG
));
1719 /* cassini+ has this reserved */
1720 if ((stat
& PCI_ERR_BADACK
) &&
1721 ((cp
->cas_flags
& CAS_FLAG_REG_PLUS
) == 0))
1722 pr_cont(" <No ACK64# during ABS64 cycle>");
1724 if (stat
& PCI_ERR_DTRTO
)
1725 pr_cont(" <Delayed transaction timeout>");
1726 if (stat
& PCI_ERR_OTHER
)
1727 pr_cont(" <other>");
1728 if (stat
& PCI_ERR_BIM_DMA_WRITE
)
1729 pr_cont(" <BIM DMA 0 write req>");
1730 if (stat
& PCI_ERR_BIM_DMA_READ
)
1731 pr_cont(" <BIM DMA 0 read req>");
1734 if (stat
& PCI_ERR_OTHER
) {
1737 /* Interrogate PCI config space for the
1740 pci_read_config_word(cp
->pdev
, PCI_STATUS
, &cfg
);
1741 netdev_err(dev
, "Read PCI cfg space status [%04x]\n", cfg
);
1742 if (cfg
& PCI_STATUS_PARITY
)
1743 netdev_err(dev
, "PCI parity error detected\n");
1744 if (cfg
& PCI_STATUS_SIG_TARGET_ABORT
)
1745 netdev_err(dev
, "PCI target abort\n");
1746 if (cfg
& PCI_STATUS_REC_TARGET_ABORT
)
1747 netdev_err(dev
, "PCI master acks target abort\n");
1748 if (cfg
& PCI_STATUS_REC_MASTER_ABORT
)
1749 netdev_err(dev
, "PCI master abort\n");
1750 if (cfg
& PCI_STATUS_SIG_SYSTEM_ERROR
)
1751 netdev_err(dev
, "PCI system error SERR#\n");
1752 if (cfg
& PCI_STATUS_DETECTED_PARITY
)
1753 netdev_err(dev
, "PCI parity error\n");
1755 /* Write the error bits back to clear them. */
1756 cfg
&= (PCI_STATUS_PARITY
|
1757 PCI_STATUS_SIG_TARGET_ABORT
|
1758 PCI_STATUS_REC_TARGET_ABORT
|
1759 PCI_STATUS_REC_MASTER_ABORT
|
1760 PCI_STATUS_SIG_SYSTEM_ERROR
|
1761 PCI_STATUS_DETECTED_PARITY
);
1762 pci_write_config_word(cp
->pdev
, PCI_STATUS
, cfg
);
1765 /* For all PCI errors, we should reset the chip. */
1769 /* All non-normal interrupt conditions get serviced here.
1770 * Returns non-zero if we should just exit the interrupt
1771 * handler right now (ie. if we reset the card which invalidates
1772 * all of the other original irq status bits).
1774 static int cas_abnormal_irq(struct net_device
*dev
, struct cas
*cp
,
1777 if (status
& INTR_RX_TAG_ERROR
) {
1778 /* corrupt RX tag framing */
1779 netif_printk(cp
, rx_err
, KERN_DEBUG
, cp
->dev
,
1780 "corrupt rx tag framing\n");
1781 spin_lock(&cp
->stat_lock
[0]);
1782 cp
->net_stats
[0].rx_errors
++;
1783 spin_unlock(&cp
->stat_lock
[0]);
1787 if (status
& INTR_RX_LEN_MISMATCH
) {
1788 /* length mismatch. */
1789 netif_printk(cp
, rx_err
, KERN_DEBUG
, cp
->dev
,
1790 "length mismatch for rx frame\n");
1791 spin_lock(&cp
->stat_lock
[0]);
1792 cp
->net_stats
[0].rx_errors
++;
1793 spin_unlock(&cp
->stat_lock
[0]);
1797 if (status
& INTR_PCS_STATUS
) {
1798 if (cas_pcs_interrupt(dev
, cp
, status
))
1802 if (status
& INTR_TX_MAC_STATUS
) {
1803 if (cas_txmac_interrupt(dev
, cp
, status
))
1807 if (status
& INTR_RX_MAC_STATUS
) {
1808 if (cas_rxmac_interrupt(dev
, cp
, status
))
1812 if (status
& INTR_MAC_CTRL_STATUS
) {
1813 if (cas_mac_interrupt(dev
, cp
, status
))
1817 if (status
& INTR_MIF_STATUS
) {
1818 if (cas_mif_interrupt(dev
, cp
, status
))
1822 if (status
& INTR_PCI_ERROR_STATUS
) {
1823 if (cas_pci_interrupt(dev
, cp
, status
))
1830 atomic_inc(&cp
->reset_task_pending
);
1831 atomic_inc(&cp
->reset_task_pending_all
);
1832 netdev_err(dev
, "reset called in cas_abnormal_irq [0x%x]\n", status
);
1833 schedule_work(&cp
->reset_task
);
1835 atomic_set(&cp
->reset_task_pending
, CAS_RESET_ALL
);
1836 netdev_err(dev
, "reset called in cas_abnormal_irq\n");
1837 schedule_work(&cp
->reset_task
);
1842 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1843 * determining whether to do a netif_stop/wakeup
1845 #define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1846 #define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1847 static inline int cas_calc_tabort(struct cas
*cp
, const unsigned long addr
,
1850 unsigned long off
= addr
+ len
;
1852 if (CAS_TABORT(cp
) == 1)
1854 if ((CAS_ROUND_PAGE(off
) - off
) > TX_TARGET_ABORT_LEN
)
1856 return TX_TARGET_ABORT_LEN
;
1859 static inline void cas_tx_ringN(struct cas
*cp
, int ring
, int limit
)
1861 struct cas_tx_desc
*txds
;
1862 struct sk_buff
**skbs
;
1863 struct net_device
*dev
= cp
->dev
;
1866 spin_lock(&cp
->tx_lock
[ring
]);
1867 txds
= cp
->init_txds
[ring
];
1868 skbs
= cp
->tx_skbs
[ring
];
1869 entry
= cp
->tx_old
[ring
];
1871 count
= TX_BUFF_COUNT(ring
, entry
, limit
);
1872 while (entry
!= limit
) {
1873 struct sk_buff
*skb
= skbs
[entry
];
1879 /* this should never occur */
1880 entry
= TX_DESC_NEXT(ring
, entry
);
1884 /* however, we might get only a partial skb release. */
1885 count
-= skb_shinfo(skb
)->nr_frags
+
1886 + cp
->tx_tiny_use
[ring
][entry
].nbufs
+ 1;
1890 netif_printk(cp
, tx_done
, KERN_DEBUG
, cp
->dev
,
1891 "tx[%d] done, slot %d\n", ring
, entry
);
1894 cp
->tx_tiny_use
[ring
][entry
].nbufs
= 0;
1896 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
1897 struct cas_tx_desc
*txd
= txds
+ entry
;
1899 daddr
= le64_to_cpu(txd
->buffer
);
1900 dlen
= CAS_VAL(TX_DESC_BUFLEN
,
1901 le64_to_cpu(txd
->control
));
1902 pci_unmap_page(cp
->pdev
, daddr
, dlen
,
1904 entry
= TX_DESC_NEXT(ring
, entry
);
1906 /* tiny buffer may follow */
1907 if (cp
->tx_tiny_use
[ring
][entry
].used
) {
1908 cp
->tx_tiny_use
[ring
][entry
].used
= 0;
1909 entry
= TX_DESC_NEXT(ring
, entry
);
1913 spin_lock(&cp
->stat_lock
[ring
]);
1914 cp
->net_stats
[ring
].tx_packets
++;
1915 cp
->net_stats
[ring
].tx_bytes
+= skb
->len
;
1916 spin_unlock(&cp
->stat_lock
[ring
]);
1917 dev_kfree_skb_irq(skb
);
1919 cp
->tx_old
[ring
] = entry
;
1921 /* this is wrong for multiple tx rings. the net device needs
1922 * multiple queues for this to do the right thing. we wait
1923 * for 2*packets to be available when using tiny buffers
1925 if (netif_queue_stopped(dev
) &&
1926 (TX_BUFFS_AVAIL(cp
, ring
) > CAS_TABORT(cp
)*(MAX_SKB_FRAGS
+ 1)))
1927 netif_wake_queue(dev
);
1928 spin_unlock(&cp
->tx_lock
[ring
]);
1931 static void cas_tx(struct net_device
*dev
, struct cas
*cp
,
1935 #ifdef USE_TX_COMPWB
1936 u64 compwb
= le64_to_cpu(cp
->init_block
->tx_compwb
);
1938 netif_printk(cp
, intr
, KERN_DEBUG
, cp
->dev
,
1939 "tx interrupt, status: 0x%x, %llx\n",
1940 status
, (unsigned long long)compwb
);
1941 /* process all the rings */
1942 for (ring
= 0; ring
< N_TX_RINGS
; ring
++) {
1943 #ifdef USE_TX_COMPWB
1944 /* use the completion writeback registers */
1945 limit
= (CAS_VAL(TX_COMPWB_MSB
, compwb
) << 8) |
1946 CAS_VAL(TX_COMPWB_LSB
, compwb
);
1947 compwb
= TX_COMPWB_NEXT(compwb
);
1949 limit
= readl(cp
->regs
+ REG_TX_COMPN(ring
));
1951 if (cp
->tx_old
[ring
] != limit
)
1952 cas_tx_ringN(cp
, ring
, limit
);
1957 static int cas_rx_process_pkt(struct cas
*cp
, struct cas_rx_comp
*rxc
,
1958 int entry
, const u64
*words
,
1959 struct sk_buff
**skbref
)
1961 int dlen
, hlen
, len
, i
, alloclen
;
1962 int off
, swivel
= RX_SWIVEL_OFF_VAL
;
1963 struct cas_page
*page
;
1964 struct sk_buff
*skb
;
1965 void *addr
, *crcaddr
;
1969 hlen
= CAS_VAL(RX_COMP2_HDR_SIZE
, words
[1]);
1970 dlen
= CAS_VAL(RX_COMP1_DATA_SIZE
, words
[0]);
1973 if (RX_COPY_ALWAYS
|| (words
[2] & RX_COMP3_SMALL_PKT
))
1976 alloclen
= max(hlen
, RX_COPY_MIN
);
1978 skb
= dev_alloc_skb(alloclen
+ swivel
+ cp
->crc_size
);
1983 skb_reserve(skb
, swivel
);
1986 addr
= crcaddr
= NULL
;
1987 if (hlen
) { /* always copy header pages */
1988 i
= CAS_VAL(RX_COMP2_HDR_INDEX
, words
[1]);
1989 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
1990 off
= CAS_VAL(RX_COMP2_HDR_OFF
, words
[1]) * 0x100 +
1994 if (!dlen
) /* attach FCS */
1996 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
+ off
, i
,
1997 PCI_DMA_FROMDEVICE
);
1998 addr
= cas_page_map(page
->buffer
);
1999 memcpy(p
, addr
+ off
, i
);
2000 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
+ off
, i
,
2001 PCI_DMA_FROMDEVICE
);
2002 cas_page_unmap(addr
);
2003 RX_USED_ADD(page
, 0x100);
2009 if (alloclen
< (hlen
+ dlen
)) {
2010 skb_frag_t
*frag
= skb_shinfo(skb
)->frags
;
2012 /* normal or jumbo packets. we use frags */
2013 i
= CAS_VAL(RX_COMP1_DATA_INDEX
, words
[0]);
2014 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
2015 off
= CAS_VAL(RX_COMP1_DATA_OFF
, words
[0]) + swivel
;
2017 hlen
= min(cp
->page_size
- off
, dlen
);
2019 netif_printk(cp
, rx_err
, KERN_DEBUG
, cp
->dev
,
2020 "rx page overflow: %d\n", hlen
);
2021 dev_kfree_skb_irq(skb
);
2025 if (i
== dlen
) /* attach FCS */
2027 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
+ off
, i
,
2028 PCI_DMA_FROMDEVICE
);
2030 /* make sure we always copy a header */
2032 if (p
== (char *) skb
->data
) { /* not split */
2033 addr
= cas_page_map(page
->buffer
);
2034 memcpy(p
, addr
+ off
, RX_COPY_MIN
);
2035 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
+ off
, i
,
2036 PCI_DMA_FROMDEVICE
);
2037 cas_page_unmap(addr
);
2039 swivel
= RX_COPY_MIN
;
2040 RX_USED_ADD(page
, cp
->mtu_stride
);
2042 RX_USED_ADD(page
, hlen
);
2044 skb_put(skb
, alloclen
);
2046 skb_shinfo(skb
)->nr_frags
++;
2047 skb
->data_len
+= hlen
- swivel
;
2048 skb
->truesize
+= hlen
- swivel
;
2049 skb
->len
+= hlen
- swivel
;
2051 get_page(page
->buffer
);
2052 frag
->page
= page
->buffer
;
2053 frag
->page_offset
= off
;
2054 frag
->size
= hlen
- swivel
;
2056 /* any more data? */
2057 if ((words
[0] & RX_COMP1_SPLIT_PKT
) && ((dlen
-= hlen
) > 0)) {
2061 i
= CAS_VAL(RX_COMP2_NEXT_INDEX
, words
[1]);
2062 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
2063 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
,
2064 hlen
+ cp
->crc_size
,
2065 PCI_DMA_FROMDEVICE
);
2066 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
,
2067 hlen
+ cp
->crc_size
,
2068 PCI_DMA_FROMDEVICE
);
2070 skb_shinfo(skb
)->nr_frags
++;
2071 skb
->data_len
+= hlen
;
2075 get_page(page
->buffer
);
2076 frag
->page
= page
->buffer
;
2077 frag
->page_offset
= 0;
2079 RX_USED_ADD(page
, hlen
+ cp
->crc_size
);
2083 addr
= cas_page_map(page
->buffer
);
2084 crcaddr
= addr
+ off
+ hlen
;
2088 /* copying packet */
2092 i
= CAS_VAL(RX_COMP1_DATA_INDEX
, words
[0]);
2093 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
2094 off
= CAS_VAL(RX_COMP1_DATA_OFF
, words
[0]) + swivel
;
2095 hlen
= min(cp
->page_size
- off
, dlen
);
2097 netif_printk(cp
, rx_err
, KERN_DEBUG
, cp
->dev
,
2098 "rx page overflow: %d\n", hlen
);
2099 dev_kfree_skb_irq(skb
);
2103 if (i
== dlen
) /* attach FCS */
2105 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
+ off
, i
,
2106 PCI_DMA_FROMDEVICE
);
2107 addr
= cas_page_map(page
->buffer
);
2108 memcpy(p
, addr
+ off
, i
);
2109 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
+ off
, i
,
2110 PCI_DMA_FROMDEVICE
);
2111 cas_page_unmap(addr
);
2112 if (p
== (char *) skb
->data
) /* not split */
2113 RX_USED_ADD(page
, cp
->mtu_stride
);
2115 RX_USED_ADD(page
, i
);
2117 /* any more data? */
2118 if ((words
[0] & RX_COMP1_SPLIT_PKT
) && ((dlen
-= hlen
) > 0)) {
2120 i
= CAS_VAL(RX_COMP2_NEXT_INDEX
, words
[1]);
2121 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
2122 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
,
2123 dlen
+ cp
->crc_size
,
2124 PCI_DMA_FROMDEVICE
);
2125 addr
= cas_page_map(page
->buffer
);
2126 memcpy(p
, addr
, dlen
+ cp
->crc_size
);
2127 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
,
2128 dlen
+ cp
->crc_size
,
2129 PCI_DMA_FROMDEVICE
);
2130 cas_page_unmap(addr
);
2131 RX_USED_ADD(page
, dlen
+ cp
->crc_size
);
2136 crcaddr
= skb
->data
+ alloclen
;
2138 skb_put(skb
, alloclen
);
2141 csum
= (__force __sum16
)htons(CAS_VAL(RX_COMP4_TCP_CSUM
, words
[3]));
2143 /* checksum includes FCS. strip it out. */
2144 csum
= csum_fold(csum_partial(crcaddr
, cp
->crc_size
,
2145 csum_unfold(csum
)));
2147 cas_page_unmap(addr
);
2149 skb
->protocol
= eth_type_trans(skb
, cp
->dev
);
2150 if (skb
->protocol
== htons(ETH_P_IP
)) {
2151 skb
->csum
= csum_unfold(~csum
);
2152 skb
->ip_summed
= CHECKSUM_COMPLETE
;
2154 skb_checksum_none_assert(skb
);
2159 /* we can handle up to 64 rx flows at a time. we do the same thing
2160 * as nonreassm except that we batch up the buffers.
2161 * NOTE: we currently just treat each flow as a bunch of packets that
2162 * we pass up. a better way would be to coalesce the packets
2163 * into a jumbo packet. to do that, we need to do the following:
2164 * 1) the first packet will have a clean split between header and
2166 * 2) each time the next flow packet comes in, extend the
2167 * data length and merge the checksums.
2168 * 3) on flow release, fix up the header.
2169 * 4) make sure the higher layer doesn't care.
2170 * because packets get coalesced, we shouldn't run into fragment count
2173 static inline void cas_rx_flow_pkt(struct cas
*cp
, const u64
*words
,
2174 struct sk_buff
*skb
)
2176 int flowid
= CAS_VAL(RX_COMP3_FLOWID
, words
[2]) & (N_RX_FLOWS
- 1);
2177 struct sk_buff_head
*flow
= &cp
->rx_flows
[flowid
];
2179 /* this is protected at a higher layer, so no need to
2180 * do any additional locking here. stick the buffer
2183 __skb_queue_tail(flow
, skb
);
2184 if (words
[0] & RX_COMP1_RELEASE_FLOW
) {
2185 while ((skb
= __skb_dequeue(flow
))) {
2186 cas_skb_release(skb
);
2191 /* put rx descriptor back on ring. if a buffer is in use by a higher
2192 * layer, this will need to put in a replacement.
2194 static void cas_post_page(struct cas
*cp
, const int ring
, const int index
)
2199 entry
= cp
->rx_old
[ring
];
2201 new = cas_page_swap(cp
, ring
, index
);
2202 cp
->init_rxds
[ring
][entry
].buffer
= cpu_to_le64(new->dma_addr
);
2203 cp
->init_rxds
[ring
][entry
].index
=
2204 cpu_to_le64(CAS_BASE(RX_INDEX_NUM
, index
) |
2205 CAS_BASE(RX_INDEX_RING
, ring
));
2207 entry
= RX_DESC_ENTRY(ring
, entry
+ 1);
2208 cp
->rx_old
[ring
] = entry
;
2214 writel(entry
, cp
->regs
+ REG_RX_KICK
);
2215 else if ((N_RX_DESC_RINGS
> 1) &&
2216 (cp
->cas_flags
& CAS_FLAG_REG_PLUS
))
2217 writel(entry
, cp
->regs
+ REG_PLUS_RX_KICK1
);
2221 /* only when things are bad */
2222 static int cas_post_rxds_ringN(struct cas
*cp
, int ring
, int num
)
2224 unsigned int entry
, last
, count
, released
;
2226 cas_page_t
**page
= cp
->rx_pages
[ring
];
2228 entry
= cp
->rx_old
[ring
];
2230 netif_printk(cp
, intr
, KERN_DEBUG
, cp
->dev
,
2231 "rxd[%d] interrupt, done: %d\n", ring
, entry
);
2234 count
= entry
& 0x3;
2235 last
= RX_DESC_ENTRY(ring
, num
? entry
+ num
- 4: entry
- 4);
2237 while (entry
!= last
) {
2238 /* make a new buffer if it's still in use */
2239 if (page_count(page
[entry
]->buffer
) > 1) {
2240 cas_page_t
*new = cas_page_dequeue(cp
);
2242 /* let the timer know that we need to
2245 cp
->cas_flags
|= CAS_FLAG_RXD_POST(ring
);
2246 if (!timer_pending(&cp
->link_timer
))
2247 mod_timer(&cp
->link_timer
, jiffies
+
2248 CAS_LINK_FAST_TIMEOUT
);
2249 cp
->rx_old
[ring
] = entry
;
2250 cp
->rx_last
[ring
] = num
? num
- released
: 0;
2253 spin_lock(&cp
->rx_inuse_lock
);
2254 list_add(&page
[entry
]->list
, &cp
->rx_inuse_list
);
2255 spin_unlock(&cp
->rx_inuse_lock
);
2256 cp
->init_rxds
[ring
][entry
].buffer
=
2257 cpu_to_le64(new->dma_addr
);
2267 entry
= RX_DESC_ENTRY(ring
, entry
+ 1);
2269 cp
->rx_old
[ring
] = entry
;
2275 writel(cluster
, cp
->regs
+ REG_RX_KICK
);
2276 else if ((N_RX_DESC_RINGS
> 1) &&
2277 (cp
->cas_flags
& CAS_FLAG_REG_PLUS
))
2278 writel(cluster
, cp
->regs
+ REG_PLUS_RX_KICK1
);
2283 /* process a completion ring. packets are set up in three basic ways:
2284 * small packets: should be copied header + data in single buffer.
2285 * large packets: header and data in a single buffer.
2286 * split packets: header in a separate buffer from data.
2287 * data may be in multiple pages. data may be > 256
2288 * bytes but in a single page.
2290 * NOTE: RX page posting is done in this routine as well. while there's
2291 * the capability of using multiple RX completion rings, it isn't
2292 * really worthwhile due to the fact that the page posting will
2293 * force serialization on the single descriptor ring.
2295 static int cas_rx_ringN(struct cas
*cp
, int ring
, int budget
)
2297 struct cas_rx_comp
*rxcs
= cp
->init_rxcs
[ring
];
2301 netif_printk(cp
, intr
, KERN_DEBUG
, cp
->dev
,
2302 "rx[%d] interrupt, done: %d/%d\n",
2304 readl(cp
->regs
+ REG_RX_COMP_HEAD
), cp
->rx_new
[ring
]);
2306 entry
= cp
->rx_new
[ring
];
2309 struct cas_rx_comp
*rxc
= rxcs
+ entry
;
2310 struct sk_buff
*uninitialized_var(skb
);
2315 words
[0] = le64_to_cpu(rxc
->word1
);
2316 words
[1] = le64_to_cpu(rxc
->word2
);
2317 words
[2] = le64_to_cpu(rxc
->word3
);
2318 words
[3] = le64_to_cpu(rxc
->word4
);
2320 /* don't touch if still owned by hw */
2321 type
= CAS_VAL(RX_COMP1_TYPE
, words
[0]);
2325 /* hw hasn't cleared the zero bit yet */
2326 if (words
[3] & RX_COMP4_ZERO
) {
2330 /* get info on the packet */
2331 if (words
[3] & (RX_COMP4_LEN_MISMATCH
| RX_COMP4_BAD
)) {
2332 spin_lock(&cp
->stat_lock
[ring
]);
2333 cp
->net_stats
[ring
].rx_errors
++;
2334 if (words
[3] & RX_COMP4_LEN_MISMATCH
)
2335 cp
->net_stats
[ring
].rx_length_errors
++;
2336 if (words
[3] & RX_COMP4_BAD
)
2337 cp
->net_stats
[ring
].rx_crc_errors
++;
2338 spin_unlock(&cp
->stat_lock
[ring
]);
2340 /* We'll just return it to Cassini. */
2342 spin_lock(&cp
->stat_lock
[ring
]);
2343 ++cp
->net_stats
[ring
].rx_dropped
;
2344 spin_unlock(&cp
->stat_lock
[ring
]);
2348 len
= cas_rx_process_pkt(cp
, rxc
, entry
, words
, &skb
);
2354 /* see if it's a flow re-assembly or not. the driver
2355 * itself handles release back up.
2357 if (RX_DONT_BATCH
|| (type
== 0x2)) {
2358 /* non-reassm: these always get released */
2359 cas_skb_release(skb
);
2361 cas_rx_flow_pkt(cp
, words
, skb
);
2364 spin_lock(&cp
->stat_lock
[ring
]);
2365 cp
->net_stats
[ring
].rx_packets
++;
2366 cp
->net_stats
[ring
].rx_bytes
+= len
;
2367 spin_unlock(&cp
->stat_lock
[ring
]);
2372 /* should it be released? */
2373 if (words
[0] & RX_COMP1_RELEASE_HDR
) {
2374 i
= CAS_VAL(RX_COMP2_HDR_INDEX
, words
[1]);
2375 dring
= CAS_VAL(RX_INDEX_RING
, i
);
2376 i
= CAS_VAL(RX_INDEX_NUM
, i
);
2377 cas_post_page(cp
, dring
, i
);
2380 if (words
[0] & RX_COMP1_RELEASE_DATA
) {
2381 i
= CAS_VAL(RX_COMP1_DATA_INDEX
, words
[0]);
2382 dring
= CAS_VAL(RX_INDEX_RING
, i
);
2383 i
= CAS_VAL(RX_INDEX_NUM
, i
);
2384 cas_post_page(cp
, dring
, i
);
2387 if (words
[0] & RX_COMP1_RELEASE_NEXT
) {
2388 i
= CAS_VAL(RX_COMP2_NEXT_INDEX
, words
[1]);
2389 dring
= CAS_VAL(RX_INDEX_RING
, i
);
2390 i
= CAS_VAL(RX_INDEX_NUM
, i
);
2391 cas_post_page(cp
, dring
, i
);
2394 /* skip to the next entry */
2395 entry
= RX_COMP_ENTRY(ring
, entry
+ 1 +
2396 CAS_VAL(RX_COMP1_SKIP
, words
[0]));
2398 if (budget
&& (npackets
>= budget
))
2402 cp
->rx_new
[ring
] = entry
;
2405 netdev_info(cp
->dev
, "Memory squeeze, deferring packet\n");
2410 /* put completion entries back on the ring */
2411 static void cas_post_rxcs_ringN(struct net_device
*dev
,
2412 struct cas
*cp
, int ring
)
2414 struct cas_rx_comp
*rxc
= cp
->init_rxcs
[ring
];
2417 last
= cp
->rx_cur
[ring
];
2418 entry
= cp
->rx_new
[ring
];
2419 netif_printk(cp
, intr
, KERN_DEBUG
, dev
,
2420 "rxc[%d] interrupt, done: %d/%d\n",
2421 ring
, readl(cp
->regs
+ REG_RX_COMP_HEAD
), entry
);
2423 /* zero and re-mark descriptors */
2424 while (last
!= entry
) {
2425 cas_rxc_init(rxc
+ last
);
2426 last
= RX_COMP_ENTRY(ring
, last
+ 1);
2428 cp
->rx_cur
[ring
] = last
;
2431 writel(last
, cp
->regs
+ REG_RX_COMP_TAIL
);
2432 else if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
)
2433 writel(last
, cp
->regs
+ REG_PLUS_RX_COMPN_TAIL(ring
));
2438 /* cassini can use all four PCI interrupts for the completion ring.
2439 * rings 3 and 4 are identical
2441 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2442 static inline void cas_handle_irqN(struct net_device
*dev
,
2443 struct cas
*cp
, const u32 status
,
2446 if (status
& (INTR_RX_COMP_FULL_ALT
| INTR_RX_COMP_AF_ALT
))
2447 cas_post_rxcs_ringN(dev
, cp
, ring
);
2450 static irqreturn_t
cas_interruptN(int irq
, void *dev_id
)
2452 struct net_device
*dev
= dev_id
;
2453 struct cas
*cp
= netdev_priv(dev
);
2454 unsigned long flags
;
2456 u32 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(ring
));
2458 /* check for shared irq */
2462 ring
= (irq
== cp
->pci_irq_INTC
) ? 2 : 3;
2463 spin_lock_irqsave(&cp
->lock
, flags
);
2464 if (status
& INTR_RX_DONE_ALT
) { /* handle rx separately */
2467 napi_schedule(&cp
->napi
);
2469 cas_rx_ringN(cp
, ring
, 0);
2471 status
&= ~INTR_RX_DONE_ALT
;
2475 cas_handle_irqN(dev
, cp
, status
, ring
);
2476 spin_unlock_irqrestore(&cp
->lock
, flags
);
2482 /* everything but rx packets */
2483 static inline void cas_handle_irq1(struct cas
*cp
, const u32 status
)
2485 if (status
& INTR_RX_BUF_UNAVAIL_1
) {
2486 /* Frame arrived, no free RX buffers available.
2487 * NOTE: we can get this on a link transition. */
2488 cas_post_rxds_ringN(cp
, 1, 0);
2489 spin_lock(&cp
->stat_lock
[1]);
2490 cp
->net_stats
[1].rx_dropped
++;
2491 spin_unlock(&cp
->stat_lock
[1]);
2494 if (status
& INTR_RX_BUF_AE_1
)
2495 cas_post_rxds_ringN(cp
, 1, RX_DESC_RINGN_SIZE(1) -
2496 RX_AE_FREEN_VAL(1));
2498 if (status
& (INTR_RX_COMP_AF
| INTR_RX_COMP_FULL
))
2499 cas_post_rxcs_ringN(cp
, 1);
2502 /* ring 2 handles a few more events than 3 and 4 */
2503 static irqreturn_t
cas_interrupt1(int irq
, void *dev_id
)
2505 struct net_device
*dev
= dev_id
;
2506 struct cas
*cp
= netdev_priv(dev
);
2507 unsigned long flags
;
2508 u32 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(1));
2510 /* check for shared interrupt */
2514 spin_lock_irqsave(&cp
->lock
, flags
);
2515 if (status
& INTR_RX_DONE_ALT
) { /* handle rx separately */
2518 napi_schedule(&cp
->napi
);
2520 cas_rx_ringN(cp
, 1, 0);
2522 status
&= ~INTR_RX_DONE_ALT
;
2525 cas_handle_irq1(cp
, status
);
2526 spin_unlock_irqrestore(&cp
->lock
, flags
);
2531 static inline void cas_handle_irq(struct net_device
*dev
,
2532 struct cas
*cp
, const u32 status
)
2534 /* housekeeping interrupts */
2535 if (status
& INTR_ERROR_MASK
)
2536 cas_abnormal_irq(dev
, cp
, status
);
2538 if (status
& INTR_RX_BUF_UNAVAIL
) {
2539 /* Frame arrived, no free RX buffers available.
2540 * NOTE: we can get this on a link transition.
2542 cas_post_rxds_ringN(cp
, 0, 0);
2543 spin_lock(&cp
->stat_lock
[0]);
2544 cp
->net_stats
[0].rx_dropped
++;
2545 spin_unlock(&cp
->stat_lock
[0]);
2546 } else if (status
& INTR_RX_BUF_AE
) {
2547 cas_post_rxds_ringN(cp
, 0, RX_DESC_RINGN_SIZE(0) -
2548 RX_AE_FREEN_VAL(0));
2551 if (status
& (INTR_RX_COMP_AF
| INTR_RX_COMP_FULL
))
2552 cas_post_rxcs_ringN(dev
, cp
, 0);
2555 static irqreturn_t
cas_interrupt(int irq
, void *dev_id
)
2557 struct net_device
*dev
= dev_id
;
2558 struct cas
*cp
= netdev_priv(dev
);
2559 unsigned long flags
;
2560 u32 status
= readl(cp
->regs
+ REG_INTR_STATUS
);
2565 spin_lock_irqsave(&cp
->lock
, flags
);
2566 if (status
& (INTR_TX_ALL
| INTR_TX_INTME
)) {
2567 cas_tx(dev
, cp
, status
);
2568 status
&= ~(INTR_TX_ALL
| INTR_TX_INTME
);
2571 if (status
& INTR_RX_DONE
) {
2574 napi_schedule(&cp
->napi
);
2576 cas_rx_ringN(cp
, 0, 0);
2578 status
&= ~INTR_RX_DONE
;
2582 cas_handle_irq(dev
, cp
, status
);
2583 spin_unlock_irqrestore(&cp
->lock
, flags
);
2589 static int cas_poll(struct napi_struct
*napi
, int budget
)
2591 struct cas
*cp
= container_of(napi
, struct cas
, napi
);
2592 struct net_device
*dev
= cp
->dev
;
2593 int i
, enable_intr
, credits
;
2594 u32 status
= readl(cp
->regs
+ REG_INTR_STATUS
);
2595 unsigned long flags
;
2597 spin_lock_irqsave(&cp
->lock
, flags
);
2598 cas_tx(dev
, cp
, status
);
2599 spin_unlock_irqrestore(&cp
->lock
, flags
);
2601 /* NAPI rx packets. we spread the credits across all of the
2604 * to make sure we're fair with the work we loop through each
2605 * ring N_RX_COMP_RING times with a request of
2606 * budget / N_RX_COMP_RINGS
2610 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++) {
2612 for (j
= 0; j
< N_RX_COMP_RINGS
; j
++) {
2613 credits
+= cas_rx_ringN(cp
, j
, budget
/ N_RX_COMP_RINGS
);
2614 if (credits
>= budget
) {
2622 /* final rx completion */
2623 spin_lock_irqsave(&cp
->lock
, flags
);
2625 cas_handle_irq(dev
, cp
, status
);
2628 if (N_RX_COMP_RINGS
> 1) {
2629 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(1));
2631 cas_handle_irq1(dev
, cp
, status
);
2636 if (N_RX_COMP_RINGS
> 2) {
2637 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(2));
2639 cas_handle_irqN(dev
, cp
, status
, 2);
2644 if (N_RX_COMP_RINGS
> 3) {
2645 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(3));
2647 cas_handle_irqN(dev
, cp
, status
, 3);
2650 spin_unlock_irqrestore(&cp
->lock
, flags
);
2652 napi_complete(napi
);
2653 cas_unmask_intr(cp
);
2659 #ifdef CONFIG_NET_POLL_CONTROLLER
2660 static void cas_netpoll(struct net_device
*dev
)
2662 struct cas
*cp
= netdev_priv(dev
);
2664 cas_disable_irq(cp
, 0);
2665 cas_interrupt(cp
->pdev
->irq
, dev
);
2666 cas_enable_irq(cp
, 0);
2669 if (N_RX_COMP_RINGS
> 1) {
2670 /* cas_interrupt1(); */
2674 if (N_RX_COMP_RINGS
> 2) {
2675 /* cas_interruptN(); */
2679 if (N_RX_COMP_RINGS
> 3) {
2680 /* cas_interruptN(); */
2686 static void cas_tx_timeout(struct net_device
*dev
)
2688 struct cas
*cp
= netdev_priv(dev
);
2690 netdev_err(dev
, "transmit timed out, resetting\n");
2691 if (!cp
->hw_running
) {
2692 netdev_err(dev
, "hrm.. hw not running!\n");
2696 netdev_err(dev
, "MIF_STATE[%08x]\n",
2697 readl(cp
->regs
+ REG_MIF_STATE_MACHINE
));
2699 netdev_err(dev
, "MAC_STATE[%08x]\n",
2700 readl(cp
->regs
+ REG_MAC_STATE_MACHINE
));
2702 netdev_err(dev
, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2703 readl(cp
->regs
+ REG_TX_CFG
),
2704 readl(cp
->regs
+ REG_MAC_TX_STATUS
),
2705 readl(cp
->regs
+ REG_MAC_TX_CFG
),
2706 readl(cp
->regs
+ REG_TX_FIFO_PKT_CNT
),
2707 readl(cp
->regs
+ REG_TX_FIFO_WRITE_PTR
),
2708 readl(cp
->regs
+ REG_TX_FIFO_READ_PTR
),
2709 readl(cp
->regs
+ REG_TX_SM_1
),
2710 readl(cp
->regs
+ REG_TX_SM_2
));
2712 netdev_err(dev
, "RX_STATE[%08x:%08x:%08x]\n",
2713 readl(cp
->regs
+ REG_RX_CFG
),
2714 readl(cp
->regs
+ REG_MAC_RX_STATUS
),
2715 readl(cp
->regs
+ REG_MAC_RX_CFG
));
2717 netdev_err(dev
, "HP_STATE[%08x:%08x:%08x:%08x]\n",
2718 readl(cp
->regs
+ REG_HP_STATE_MACHINE
),
2719 readl(cp
->regs
+ REG_HP_STATUS0
),
2720 readl(cp
->regs
+ REG_HP_STATUS1
),
2721 readl(cp
->regs
+ REG_HP_STATUS2
));
2724 atomic_inc(&cp
->reset_task_pending
);
2725 atomic_inc(&cp
->reset_task_pending_all
);
2726 schedule_work(&cp
->reset_task
);
2728 atomic_set(&cp
->reset_task_pending
, CAS_RESET_ALL
);
2729 schedule_work(&cp
->reset_task
);
2733 static inline int cas_intme(int ring
, int entry
)
2735 /* Algorithm: IRQ every 1/2 of descriptors. */
2736 if (!(entry
& ((TX_DESC_RINGN_SIZE(ring
) >> 1) - 1)))
2742 static void cas_write_txd(struct cas
*cp
, int ring
, int entry
,
2743 dma_addr_t mapping
, int len
, u64 ctrl
, int last
)
2745 struct cas_tx_desc
*txd
= cp
->init_txds
[ring
] + entry
;
2747 ctrl
|= CAS_BASE(TX_DESC_BUFLEN
, len
);
2748 if (cas_intme(ring
, entry
))
2749 ctrl
|= TX_DESC_INTME
;
2751 ctrl
|= TX_DESC_EOF
;
2752 txd
->control
= cpu_to_le64(ctrl
);
2753 txd
->buffer
= cpu_to_le64(mapping
);
2756 static inline void *tx_tiny_buf(struct cas
*cp
, const int ring
,
2759 return cp
->tx_tiny_bufs
[ring
] + TX_TINY_BUF_LEN
*entry
;
2762 static inline dma_addr_t
tx_tiny_map(struct cas
*cp
, const int ring
,
2763 const int entry
, const int tentry
)
2765 cp
->tx_tiny_use
[ring
][tentry
].nbufs
++;
2766 cp
->tx_tiny_use
[ring
][entry
].used
= 1;
2767 return cp
->tx_tiny_dvma
[ring
] + TX_TINY_BUF_LEN
*entry
;
2770 static inline int cas_xmit_tx_ringN(struct cas
*cp
, int ring
,
2771 struct sk_buff
*skb
)
2773 struct net_device
*dev
= cp
->dev
;
2774 int entry
, nr_frags
, frag
, tabort
, tentry
;
2776 unsigned long flags
;
2780 spin_lock_irqsave(&cp
->tx_lock
[ring
], flags
);
2782 /* This is a hard error, log it. */
2783 if (TX_BUFFS_AVAIL(cp
, ring
) <=
2784 CAS_TABORT(cp
)*(skb_shinfo(skb
)->nr_frags
+ 1)) {
2785 netif_stop_queue(dev
);
2786 spin_unlock_irqrestore(&cp
->tx_lock
[ring
], flags
);
2787 netdev_err(dev
, "BUG! Tx Ring full when queue awake!\n");
2792 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2793 const u64 csum_start_off
= skb_checksum_start_offset(skb
);
2794 const u64 csum_stuff_off
= csum_start_off
+ skb
->csum_offset
;
2796 ctrl
= TX_DESC_CSUM_EN
|
2797 CAS_BASE(TX_DESC_CSUM_START
, csum_start_off
) |
2798 CAS_BASE(TX_DESC_CSUM_STUFF
, csum_stuff_off
);
2801 entry
= cp
->tx_new
[ring
];
2802 cp
->tx_skbs
[ring
][entry
] = skb
;
2804 nr_frags
= skb_shinfo(skb
)->nr_frags
;
2805 len
= skb_headlen(skb
);
2806 mapping
= pci_map_page(cp
->pdev
, virt_to_page(skb
->data
),
2807 offset_in_page(skb
->data
), len
,
2811 tabort
= cas_calc_tabort(cp
, (unsigned long) skb
->data
, len
);
2812 if (unlikely(tabort
)) {
2813 /* NOTE: len is always > tabort */
2814 cas_write_txd(cp
, ring
, entry
, mapping
, len
- tabort
,
2815 ctrl
| TX_DESC_SOF
, 0);
2816 entry
= TX_DESC_NEXT(ring
, entry
);
2818 skb_copy_from_linear_data_offset(skb
, len
- tabort
,
2819 tx_tiny_buf(cp
, ring
, entry
), tabort
);
2820 mapping
= tx_tiny_map(cp
, ring
, entry
, tentry
);
2821 cas_write_txd(cp
, ring
, entry
, mapping
, tabort
, ctrl
,
2824 cas_write_txd(cp
, ring
, entry
, mapping
, len
, ctrl
|
2825 TX_DESC_SOF
, (nr_frags
== 0));
2827 entry
= TX_DESC_NEXT(ring
, entry
);
2829 for (frag
= 0; frag
< nr_frags
; frag
++) {
2830 skb_frag_t
*fragp
= &skb_shinfo(skb
)->frags
[frag
];
2833 mapping
= pci_map_page(cp
->pdev
, fragp
->page
,
2834 fragp
->page_offset
, len
,
2837 tabort
= cas_calc_tabort(cp
, fragp
->page_offset
, len
);
2838 if (unlikely(tabort
)) {
2841 /* NOTE: len is always > tabort */
2842 cas_write_txd(cp
, ring
, entry
, mapping
, len
- tabort
,
2844 entry
= TX_DESC_NEXT(ring
, entry
);
2846 addr
= cas_page_map(fragp
->page
);
2847 memcpy(tx_tiny_buf(cp
, ring
, entry
),
2848 addr
+ fragp
->page_offset
+ len
- tabort
,
2850 cas_page_unmap(addr
);
2851 mapping
= tx_tiny_map(cp
, ring
, entry
, tentry
);
2855 cas_write_txd(cp
, ring
, entry
, mapping
, len
, ctrl
,
2856 (frag
+ 1 == nr_frags
));
2857 entry
= TX_DESC_NEXT(ring
, entry
);
2860 cp
->tx_new
[ring
] = entry
;
2861 if (TX_BUFFS_AVAIL(cp
, ring
) <= CAS_TABORT(cp
)*(MAX_SKB_FRAGS
+ 1))
2862 netif_stop_queue(dev
);
2864 netif_printk(cp
, tx_queued
, KERN_DEBUG
, dev
,
2865 "tx[%d] queued, slot %d, skblen %d, avail %d\n",
2866 ring
, entry
, skb
->len
, TX_BUFFS_AVAIL(cp
, ring
));
2867 writel(entry
, cp
->regs
+ REG_TX_KICKN(ring
));
2868 spin_unlock_irqrestore(&cp
->tx_lock
[ring
], flags
);
2872 static netdev_tx_t
cas_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
2874 struct cas
*cp
= netdev_priv(dev
);
2876 /* this is only used as a load-balancing hint, so it doesn't
2877 * need to be SMP safe
2881 if (skb_padto(skb
, cp
->min_frame_size
))
2882 return NETDEV_TX_OK
;
2884 /* XXX: we need some higher-level QoS hooks to steer packets to
2885 * individual queues.
2887 if (cas_xmit_tx_ringN(cp
, ring
++ & N_TX_RINGS_MASK
, skb
))
2888 return NETDEV_TX_BUSY
;
2889 return NETDEV_TX_OK
;
2892 static void cas_init_tx_dma(struct cas
*cp
)
2894 u64 desc_dma
= cp
->block_dvma
;
2899 /* set up tx completion writeback registers. must be 8-byte aligned */
2900 #ifdef USE_TX_COMPWB
2901 off
= offsetof(struct cas_init_block
, tx_compwb
);
2902 writel((desc_dma
+ off
) >> 32, cp
->regs
+ REG_TX_COMPWB_DB_HI
);
2903 writel((desc_dma
+ off
) & 0xffffffff, cp
->regs
+ REG_TX_COMPWB_DB_LOW
);
2906 /* enable completion writebacks, enable paced mode,
2907 * disable read pipe, and disable pre-interrupt compwbs
2909 val
= TX_CFG_COMPWB_Q1
| TX_CFG_COMPWB_Q2
|
2910 TX_CFG_COMPWB_Q3
| TX_CFG_COMPWB_Q4
|
2911 TX_CFG_DMA_RDPIPE_DIS
| TX_CFG_PACED_MODE
|
2912 TX_CFG_INTR_COMPWB_DIS
;
2914 /* write out tx ring info and tx desc bases */
2915 for (i
= 0; i
< MAX_TX_RINGS
; i
++) {
2916 off
= (unsigned long) cp
->init_txds
[i
] -
2917 (unsigned long) cp
->init_block
;
2919 val
|= CAS_TX_RINGN_BASE(i
);
2920 writel((desc_dma
+ off
) >> 32, cp
->regs
+ REG_TX_DBN_HI(i
));
2921 writel((desc_dma
+ off
) & 0xffffffff, cp
->regs
+
2923 /* don't zero out the kick register here as the system
2927 writel(val
, cp
->regs
+ REG_TX_CFG
);
2929 /* program max burst sizes. these numbers should be different
2933 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_0
);
2934 writel(0x1600, cp
->regs
+ REG_TX_MAXBURST_1
);
2935 writel(0x2400, cp
->regs
+ REG_TX_MAXBURST_2
);
2936 writel(0x4800, cp
->regs
+ REG_TX_MAXBURST_3
);
2938 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_0
);
2939 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_1
);
2940 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_2
);
2941 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_3
);
2945 /* Must be invoked under cp->lock. */
2946 static inline void cas_init_dma(struct cas
*cp
)
2948 cas_init_tx_dma(cp
);
2949 cas_init_rx_dma(cp
);
2952 static void cas_process_mc_list(struct cas
*cp
)
2956 struct netdev_hw_addr
*ha
;
2959 memset(hash_table
, 0, sizeof(hash_table
));
2960 netdev_for_each_mc_addr(ha
, cp
->dev
) {
2961 if (i
<= CAS_MC_EXACT_MATCH_SIZE
) {
2962 /* use the alternate mac address registers for the
2963 * first 15 multicast addresses
2965 writel((ha
->addr
[4] << 8) | ha
->addr
[5],
2966 cp
->regs
+ REG_MAC_ADDRN(i
*3 + 0));
2967 writel((ha
->addr
[2] << 8) | ha
->addr
[3],
2968 cp
->regs
+ REG_MAC_ADDRN(i
*3 + 1));
2969 writel((ha
->addr
[0] << 8) | ha
->addr
[1],
2970 cp
->regs
+ REG_MAC_ADDRN(i
*3 + 2));
2974 /* use hw hash table for the next series of
2975 * multicast addresses
2977 crc
= ether_crc_le(ETH_ALEN
, ha
->addr
);
2979 hash_table
[crc
>> 4] |= 1 << (15 - (crc
& 0xf));
2982 for (i
= 0; i
< 16; i
++)
2983 writel(hash_table
[i
], cp
->regs
+ REG_MAC_HASH_TABLEN(i
));
2986 /* Must be invoked under cp->lock. */
2987 static u32
cas_setup_multicast(struct cas
*cp
)
2992 if (cp
->dev
->flags
& IFF_PROMISC
) {
2993 rxcfg
|= MAC_RX_CFG_PROMISC_EN
;
2995 } else if (cp
->dev
->flags
& IFF_ALLMULTI
) {
2996 for (i
=0; i
< 16; i
++)
2997 writel(0xFFFF, cp
->regs
+ REG_MAC_HASH_TABLEN(i
));
2998 rxcfg
|= MAC_RX_CFG_HASH_FILTER_EN
;
3001 cas_process_mc_list(cp
);
3002 rxcfg
|= MAC_RX_CFG_HASH_FILTER_EN
;
3008 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
3009 static void cas_clear_mac_err(struct cas
*cp
)
3011 writel(0, cp
->regs
+ REG_MAC_COLL_NORMAL
);
3012 writel(0, cp
->regs
+ REG_MAC_COLL_FIRST
);
3013 writel(0, cp
->regs
+ REG_MAC_COLL_EXCESS
);
3014 writel(0, cp
->regs
+ REG_MAC_COLL_LATE
);
3015 writel(0, cp
->regs
+ REG_MAC_TIMER_DEFER
);
3016 writel(0, cp
->regs
+ REG_MAC_ATTEMPTS_PEAK
);
3017 writel(0, cp
->regs
+ REG_MAC_RECV_FRAME
);
3018 writel(0, cp
->regs
+ REG_MAC_LEN_ERR
);
3019 writel(0, cp
->regs
+ REG_MAC_ALIGN_ERR
);
3020 writel(0, cp
->regs
+ REG_MAC_FCS_ERR
);
3021 writel(0, cp
->regs
+ REG_MAC_RX_CODE_ERR
);
3025 static void cas_mac_reset(struct cas
*cp
)
3029 /* do both TX and RX reset */
3030 writel(0x1, cp
->regs
+ REG_MAC_TX_RESET
);
3031 writel(0x1, cp
->regs
+ REG_MAC_RX_RESET
);
3036 if (readl(cp
->regs
+ REG_MAC_TX_RESET
) == 0)
3044 if (readl(cp
->regs
+ REG_MAC_RX_RESET
) == 0)
3049 if (readl(cp
->regs
+ REG_MAC_TX_RESET
) |
3050 readl(cp
->regs
+ REG_MAC_RX_RESET
))
3051 netdev_err(cp
->dev
, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
3052 readl(cp
->regs
+ REG_MAC_TX_RESET
),
3053 readl(cp
->regs
+ REG_MAC_RX_RESET
),
3054 readl(cp
->regs
+ REG_MAC_STATE_MACHINE
));
3058 /* Must be invoked under cp->lock. */
3059 static void cas_init_mac(struct cas
*cp
)
3061 unsigned char *e
= &cp
->dev
->dev_addr
[0];
3065 /* setup core arbitration weight register */
3066 writel(CAWR_RR_DIS
, cp
->regs
+ REG_CAWR
);
3068 /* XXX Use pci_dma_burst_advice() */
3069 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3070 /* set the infinite burst register for chips that don't have
3073 if ((cp
->cas_flags
& CAS_FLAG_TARGET_ABORT
) == 0)
3074 writel(INF_BURST_EN
, cp
->regs
+ REG_INF_BURST
);
3077 writel(0x1BF0, cp
->regs
+ REG_MAC_SEND_PAUSE
);
3079 writel(0x00, cp
->regs
+ REG_MAC_IPG0
);
3080 writel(0x08, cp
->regs
+ REG_MAC_IPG1
);
3081 writel(0x04, cp
->regs
+ REG_MAC_IPG2
);
3083 /* change later for 802.3z */
3084 writel(0x40, cp
->regs
+ REG_MAC_SLOT_TIME
);
3086 /* min frame + FCS */
3087 writel(ETH_ZLEN
+ 4, cp
->regs
+ REG_MAC_FRAMESIZE_MIN
);
3089 /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3090 * specify the maximum frame size to prevent RX tag errors on
3093 writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST
, 0x2000) |
3094 CAS_BASE(MAC_FRAMESIZE_MAX_FRAME
,
3095 (CAS_MAX_MTU
+ ETH_HLEN
+ 4 + 4)),
3096 cp
->regs
+ REG_MAC_FRAMESIZE_MAX
);
3098 /* NOTE: crc_size is used as a surrogate for half-duplex.
3099 * workaround saturn half-duplex issue by increasing preamble
3102 if ((cp
->cas_flags
& CAS_FLAG_SATURN
) && cp
->crc_size
)
3103 writel(0x41, cp
->regs
+ REG_MAC_PA_SIZE
);
3105 writel(0x07, cp
->regs
+ REG_MAC_PA_SIZE
);
3106 writel(0x04, cp
->regs
+ REG_MAC_JAM_SIZE
);
3107 writel(0x10, cp
->regs
+ REG_MAC_ATTEMPT_LIMIT
);
3108 writel(0x8808, cp
->regs
+ REG_MAC_CTRL_TYPE
);
3110 writel((e
[5] | (e
[4] << 8)) & 0x3ff, cp
->regs
+ REG_MAC_RANDOM_SEED
);
3112 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER0
);
3113 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER1
);
3114 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER2
);
3115 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER2_1_MASK
);
3116 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER0_MASK
);
3118 /* setup mac address in perfect filter array */
3119 for (i
= 0; i
< 45; i
++)
3120 writel(0x0, cp
->regs
+ REG_MAC_ADDRN(i
));
3122 writel((e
[4] << 8) | e
[5], cp
->regs
+ REG_MAC_ADDRN(0));
3123 writel((e
[2] << 8) | e
[3], cp
->regs
+ REG_MAC_ADDRN(1));
3124 writel((e
[0] << 8) | e
[1], cp
->regs
+ REG_MAC_ADDRN(2));
3126 writel(0x0001, cp
->regs
+ REG_MAC_ADDRN(42));
3127 writel(0xc200, cp
->regs
+ REG_MAC_ADDRN(43));
3128 writel(0x0180, cp
->regs
+ REG_MAC_ADDRN(44));
3130 cp
->mac_rx_cfg
= cas_setup_multicast(cp
);
3132 spin_lock(&cp
->stat_lock
[N_TX_RINGS
]);
3133 cas_clear_mac_err(cp
);
3134 spin_unlock(&cp
->stat_lock
[N_TX_RINGS
]);
3136 /* Setup MAC interrupts. We want to get all of the interesting
3137 * counter expiration events, but we do not want to hear about
3138 * normal rx/tx as the DMA engine tells us that.
3140 writel(MAC_TX_FRAME_XMIT
, cp
->regs
+ REG_MAC_TX_MASK
);
3141 writel(MAC_RX_FRAME_RECV
, cp
->regs
+ REG_MAC_RX_MASK
);
3143 /* Don't enable even the PAUSE interrupts for now, we
3144 * make no use of those events other than to record them.
3146 writel(0xffffffff, cp
->regs
+ REG_MAC_CTRL_MASK
);
3149 /* Must be invoked under cp->lock. */
3150 static void cas_init_pause_thresholds(struct cas
*cp
)
3152 /* Calculate pause thresholds. Setting the OFF threshold to the
3153 * full RX fifo size effectively disables PAUSE generation
3155 if (cp
->rx_fifo_size
<= (2 * 1024)) {
3156 cp
->rx_pause_off
= cp
->rx_pause_on
= cp
->rx_fifo_size
;
3158 int max_frame
= (cp
->dev
->mtu
+ ETH_HLEN
+ 4 + 4 + 64) & ~63;
3159 if (max_frame
* 3 > cp
->rx_fifo_size
) {
3160 cp
->rx_pause_off
= 7104;
3161 cp
->rx_pause_on
= 960;
3163 int off
= (cp
->rx_fifo_size
- (max_frame
* 2));
3164 int on
= off
- max_frame
;
3165 cp
->rx_pause_off
= off
;
3166 cp
->rx_pause_on
= on
;
3171 static int cas_vpd_match(const void __iomem
*p
, const char *str
)
3173 int len
= strlen(str
) + 1;
3176 for (i
= 0; i
< len
; i
++) {
3177 if (readb(p
+ i
) != str
[i
])
3184 /* get the mac address by reading the vpd information in the rom.
3185 * also get the phy type and determine if there's an entropy generator.
3186 * NOTE: this is a bit convoluted for the following reasons:
3187 * 1) vpd info has order-dependent mac addresses for multinic cards
3188 * 2) the only way to determine the nic order is to use the slot
3190 * 3) fiber cards don't have bridges, so their slot numbers don't
3192 * 4) we don't actually know we have a fiber card until after
3193 * the mac addresses are parsed.
3195 static int cas_get_vpd_info(struct cas
*cp
, unsigned char *dev_addr
,
3198 void __iomem
*p
= cp
->regs
+ REG_EXPANSION_ROM_RUN_START
;
3199 void __iomem
*base
, *kstart
;
3202 #define VPD_FOUND_MAC 0x01
3203 #define VPD_FOUND_PHY 0x02
3205 int phy_type
= CAS_PHY_MII_MDIO0
; /* default phy type */
3208 #if defined(CONFIG_SPARC)
3209 const unsigned char *addr
;
3212 /* give us access to the PROM */
3213 writel(BIM_LOCAL_DEV_PROM
| BIM_LOCAL_DEV_PAD
,
3214 cp
->regs
+ REG_BIM_LOCAL_DEV_EN
);
3216 /* check for an expansion rom */
3217 if (readb(p
) != 0x55 || readb(p
+ 1) != 0xaa)
3218 goto use_random_mac_addr
;
3220 /* search for beginning of vpd */
3222 for (i
= 2; i
< EXPANSION_ROM_SIZE
; i
++) {
3223 /* check for PCIR */
3224 if ((readb(p
+ i
+ 0) == 0x50) &&
3225 (readb(p
+ i
+ 1) == 0x43) &&
3226 (readb(p
+ i
+ 2) == 0x49) &&
3227 (readb(p
+ i
+ 3) == 0x52)) {
3228 base
= p
+ (readb(p
+ i
+ 8) |
3229 (readb(p
+ i
+ 9) << 8));
3234 if (!base
|| (readb(base
) != 0x82))
3235 goto use_random_mac_addr
;
3237 i
= (readb(base
+ 1) | (readb(base
+ 2) << 8)) + 3;
3238 while (i
< EXPANSION_ROM_SIZE
) {
3239 if (readb(base
+ i
) != 0x90) /* no vpd found */
3240 goto use_random_mac_addr
;
3242 /* found a vpd field */
3243 len
= readb(base
+ i
+ 1) | (readb(base
+ i
+ 2) << 8);
3245 /* extract keywords */
3246 kstart
= base
+ i
+ 3;
3248 while ((p
- kstart
) < len
) {
3249 int klen
= readb(p
+ 2);
3255 /* look for the following things:
3256 * -- correct length == 29
3257 * 3 (type) + 2 (size) +
3258 * 18 (strlen("local-mac-address") + 1) +
3260 * -- VPD Instance 'I'
3261 * -- VPD Type Bytes 'B'
3262 * -- VPD data length == 6
3263 * -- property string == local-mac-address
3265 * -- correct length == 24
3266 * 3 (type) + 2 (size) +
3267 * 12 (strlen("entropy-dev") + 1) +
3268 * 7 (strlen("vms110") + 1)
3269 * -- VPD Instance 'I'
3270 * -- VPD Type String 'B'
3271 * -- VPD data length == 7
3272 * -- property string == entropy-dev
3274 * -- correct length == 18
3275 * 3 (type) + 2 (size) +
3276 * 9 (strlen("phy-type") + 1) +
3277 * 4 (strlen("pcs") + 1)
3278 * -- VPD Instance 'I'
3279 * -- VPD Type String 'S'
3280 * -- VPD data length == 4
3281 * -- property string == phy-type
3283 * -- correct length == 23
3284 * 3 (type) + 2 (size) +
3285 * 14 (strlen("phy-interface") + 1) +
3286 * 4 (strlen("pcs") + 1)
3287 * -- VPD Instance 'I'
3288 * -- VPD Type String 'S'
3289 * -- VPD data length == 4
3290 * -- property string == phy-interface
3292 if (readb(p
) != 'I')
3295 /* finally, check string and length */
3296 type
= readb(p
+ 3);
3298 if ((klen
== 29) && readb(p
+ 4) == 6 &&
3299 cas_vpd_match(p
+ 5,
3300 "local-mac-address")) {
3301 if (mac_off
++ > offset
)
3304 /* set mac address */
3305 for (j
= 0; j
< 6; j
++)
3315 #ifdef USE_ENTROPY_DEV
3317 cas_vpd_match(p
+ 5, "entropy-dev") &&
3318 cas_vpd_match(p
+ 17, "vms110")) {
3319 cp
->cas_flags
|= CAS_FLAG_ENTROPY_DEV
;
3324 if (found
& VPD_FOUND_PHY
)
3327 if ((klen
== 18) && readb(p
+ 4) == 4 &&
3328 cas_vpd_match(p
+ 5, "phy-type")) {
3329 if (cas_vpd_match(p
+ 14, "pcs")) {
3330 phy_type
= CAS_PHY_SERDES
;
3335 if ((klen
== 23) && readb(p
+ 4) == 4 &&
3336 cas_vpd_match(p
+ 5, "phy-interface")) {
3337 if (cas_vpd_match(p
+ 19, "pcs")) {
3338 phy_type
= CAS_PHY_SERDES
;
3343 found
|= VPD_FOUND_MAC
;
3347 found
|= VPD_FOUND_PHY
;
3355 use_random_mac_addr
:
3356 if (found
& VPD_FOUND_MAC
)
3359 #if defined(CONFIG_SPARC)
3360 addr
= of_get_property(cp
->of_node
, "local-mac-address", NULL
);
3362 memcpy(dev_addr
, addr
, 6);
3367 /* Sun MAC prefix then 3 random bytes. */
3368 pr_info("MAC address not found in ROM VPD\n");
3372 get_random_bytes(dev_addr
+ 3, 3);
3375 writel(0, cp
->regs
+ REG_BIM_LOCAL_DEV_EN
);
3379 /* check pci invariants */
3380 static void cas_check_pci_invariants(struct cas
*cp
)
3382 struct pci_dev
*pdev
= cp
->pdev
;
3385 if ((pdev
->vendor
== PCI_VENDOR_ID_SUN
) &&
3386 (pdev
->device
== PCI_DEVICE_ID_SUN_CASSINI
)) {
3387 if (pdev
->revision
>= CAS_ID_REVPLUS
)
3388 cp
->cas_flags
|= CAS_FLAG_REG_PLUS
;
3389 if (pdev
->revision
< CAS_ID_REVPLUS02u
)
3390 cp
->cas_flags
|= CAS_FLAG_TARGET_ABORT
;
3392 /* Original Cassini supports HW CSUM, but it's not
3393 * enabled by default as it can trigger TX hangs.
3395 if (pdev
->revision
< CAS_ID_REV2
)
3396 cp
->cas_flags
|= CAS_FLAG_NO_HW_CSUM
;
3398 /* Only sun has original cassini chips. */
3399 cp
->cas_flags
|= CAS_FLAG_REG_PLUS
;
3401 /* We use a flag because the same phy might be externally
3404 if ((pdev
->vendor
== PCI_VENDOR_ID_NS
) &&
3405 (pdev
->device
== PCI_DEVICE_ID_NS_SATURN
))
3406 cp
->cas_flags
|= CAS_FLAG_SATURN
;
3411 static int cas_check_invariants(struct cas
*cp
)
3413 struct pci_dev
*pdev
= cp
->pdev
;
3417 /* get page size for rx buffers. */
3419 #ifdef USE_PAGE_ORDER
3420 if (PAGE_SHIFT
< CAS_JUMBO_PAGE_SHIFT
) {
3421 /* see if we can allocate larger pages */
3422 struct page
*page
= alloc_pages(GFP_ATOMIC
,
3423 CAS_JUMBO_PAGE_SHIFT
-
3426 __free_pages(page
, CAS_JUMBO_PAGE_SHIFT
- PAGE_SHIFT
);
3427 cp
->page_order
= CAS_JUMBO_PAGE_SHIFT
- PAGE_SHIFT
;
3429 printk("MTU limited to %d bytes\n", CAS_MAX_MTU
);
3433 cp
->page_size
= (PAGE_SIZE
<< cp
->page_order
);
3435 /* Fetch the FIFO configurations. */
3436 cp
->tx_fifo_size
= readl(cp
->regs
+ REG_TX_FIFO_SIZE
) * 64;
3437 cp
->rx_fifo_size
= RX_FIFO_SIZE
;
3439 /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3440 * they're both connected.
3442 cp
->phy_type
= cas_get_vpd_info(cp
, cp
->dev
->dev_addr
,
3443 PCI_SLOT(pdev
->devfn
));
3444 if (cp
->phy_type
& CAS_PHY_SERDES
) {
3445 cp
->cas_flags
|= CAS_FLAG_1000MB_CAP
;
3446 return 0; /* no more checking needed */
3450 cfg
= readl(cp
->regs
+ REG_MIF_CFG
);
3451 if (cfg
& MIF_CFG_MDIO_1
) {
3452 cp
->phy_type
= CAS_PHY_MII_MDIO1
;
3453 } else if (cfg
& MIF_CFG_MDIO_0
) {
3454 cp
->phy_type
= CAS_PHY_MII_MDIO0
;
3457 cas_mif_poll(cp
, 0);
3458 writel(PCS_DATAPATH_MODE_MII
, cp
->regs
+ REG_PCS_DATAPATH_MODE
);
3460 for (i
= 0; i
< 32; i
++) {
3464 for (j
= 0; j
< 3; j
++) {
3466 phy_id
= cas_phy_read(cp
, MII_PHYSID1
) << 16;
3467 phy_id
|= cas_phy_read(cp
, MII_PHYSID2
);
3468 if (phy_id
&& (phy_id
!= 0xFFFFFFFF)) {
3469 cp
->phy_id
= phy_id
;
3474 pr_err("MII phy did not respond [%08x]\n",
3475 readl(cp
->regs
+ REG_MIF_STATE_MACHINE
));
3479 /* see if we can do gigabit */
3480 cfg
= cas_phy_read(cp
, MII_BMSR
);
3481 if ((cfg
& CAS_BMSR_1000_EXTEND
) &&
3482 cas_phy_read(cp
, CAS_MII_1000_EXTEND
))
3483 cp
->cas_flags
|= CAS_FLAG_1000MB_CAP
;
3487 /* Must be invoked under cp->lock. */
3488 static inline void cas_start_dma(struct cas
*cp
)
3495 val
= readl(cp
->regs
+ REG_TX_CFG
) | TX_CFG_DMA_EN
;
3496 writel(val
, cp
->regs
+ REG_TX_CFG
);
3497 val
= readl(cp
->regs
+ REG_RX_CFG
) | RX_CFG_DMA_EN
;
3498 writel(val
, cp
->regs
+ REG_RX_CFG
);
3500 /* enable the mac */
3501 val
= readl(cp
->regs
+ REG_MAC_TX_CFG
) | MAC_TX_CFG_EN
;
3502 writel(val
, cp
->regs
+ REG_MAC_TX_CFG
);
3503 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
) | MAC_RX_CFG_EN
;
3504 writel(val
, cp
->regs
+ REG_MAC_RX_CFG
);
3508 val
= readl(cp
->regs
+ REG_MAC_TX_CFG
);
3509 if ((val
& MAC_TX_CFG_EN
))
3513 if (i
< 0) txfailed
= 1;
3516 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
3517 if ((val
& MAC_RX_CFG_EN
)) {
3520 "enabling mac failed [tx:%08x:%08x]\n",
3521 readl(cp
->regs
+ REG_MIF_STATE_MACHINE
),
3522 readl(cp
->regs
+ REG_MAC_STATE_MACHINE
));
3524 goto enable_rx_done
;
3528 netdev_err(cp
->dev
, "enabling mac failed [%s:%08x:%08x]\n",
3529 (txfailed
? "tx,rx" : "rx"),
3530 readl(cp
->regs
+ REG_MIF_STATE_MACHINE
),
3531 readl(cp
->regs
+ REG_MAC_STATE_MACHINE
));
3534 cas_unmask_intr(cp
); /* enable interrupts */
3535 writel(RX_DESC_RINGN_SIZE(0) - 4, cp
->regs
+ REG_RX_KICK
);
3536 writel(0, cp
->regs
+ REG_RX_COMP_TAIL
);
3538 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
3539 if (N_RX_DESC_RINGS
> 1)
3540 writel(RX_DESC_RINGN_SIZE(1) - 4,
3541 cp
->regs
+ REG_PLUS_RX_KICK1
);
3543 for (i
= 1; i
< N_RX_COMP_RINGS
; i
++)
3544 writel(0, cp
->regs
+ REG_PLUS_RX_COMPN_TAIL(i
));
3548 /* Must be invoked under cp->lock. */
3549 static void cas_read_pcs_link_mode(struct cas
*cp
, int *fd
, int *spd
,
3552 u32 val
= readl(cp
->regs
+ REG_PCS_MII_LPA
);
3553 *fd
= (val
& PCS_MII_LPA_FD
) ? 1 : 0;
3554 *pause
= (val
& PCS_MII_LPA_SYM_PAUSE
) ? 0x01 : 0x00;
3555 if (val
& PCS_MII_LPA_ASYM_PAUSE
)
3560 /* Must be invoked under cp->lock. */
3561 static void cas_read_mii_link_mode(struct cas
*cp
, int *fd
, int *spd
,
3570 /* use GMII registers */
3571 val
= cas_phy_read(cp
, MII_LPA
);
3572 if (val
& CAS_LPA_PAUSE
)
3575 if (val
& CAS_LPA_ASYM_PAUSE
)
3578 if (val
& LPA_DUPLEX
)
3583 if (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) {
3584 val
= cas_phy_read(cp
, CAS_MII_1000_STATUS
);
3585 if (val
& (CAS_LPA_1000FULL
| CAS_LPA_1000HALF
))
3587 if (val
& CAS_LPA_1000FULL
)
3592 /* A link-up condition has occurred, initialize and enable the
3595 * Must be invoked under cp->lock.
3597 static void cas_set_link_modes(struct cas
*cp
)
3600 int full_duplex
, speed
, pause
;
3606 if (CAS_PHY_MII(cp
->phy_type
)) {
3607 cas_mif_poll(cp
, 0);
3608 val
= cas_phy_read(cp
, MII_BMCR
);
3609 if (val
& BMCR_ANENABLE
) {
3610 cas_read_mii_link_mode(cp
, &full_duplex
, &speed
,
3613 if (val
& BMCR_FULLDPLX
)
3616 if (val
& BMCR_SPEED100
)
3618 else if (val
& CAS_BMCR_SPEED1000
)
3619 speed
= (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) ?
3622 cas_mif_poll(cp
, 1);
3625 val
= readl(cp
->regs
+ REG_PCS_MII_CTRL
);
3626 cas_read_pcs_link_mode(cp
, &full_duplex
, &speed
, &pause
);
3627 if ((val
& PCS_MII_AUTONEG_EN
) == 0) {
3628 if (val
& PCS_MII_CTRL_DUPLEX
)
3633 netif_info(cp
, link
, cp
->dev
, "Link up at %d Mbps, %s-duplex\n",
3634 speed
, full_duplex
? "full" : "half");
3636 val
= MAC_XIF_TX_MII_OUTPUT_EN
| MAC_XIF_LINK_LED
;
3637 if (CAS_PHY_MII(cp
->phy_type
)) {
3638 val
|= MAC_XIF_MII_BUFFER_OUTPUT_EN
;
3640 val
|= MAC_XIF_DISABLE_ECHO
;
3643 val
|= MAC_XIF_FDPLX_LED
;
3645 val
|= MAC_XIF_GMII_MODE
;
3646 writel(val
, cp
->regs
+ REG_MAC_XIF_CFG
);
3648 /* deal with carrier and collision detect. */
3649 val
= MAC_TX_CFG_IPG_EN
;
3651 val
|= MAC_TX_CFG_IGNORE_CARRIER
;
3652 val
|= MAC_TX_CFG_IGNORE_COLL
;
3654 #ifndef USE_CSMA_CD_PROTO
3655 val
|= MAC_TX_CFG_NEVER_GIVE_UP_EN
;
3656 val
|= MAC_TX_CFG_NEVER_GIVE_UP_LIM
;
3659 /* val now set up for REG_MAC_TX_CFG */
3661 /* If gigabit and half-duplex, enable carrier extension
3662 * mode. increase slot time to 512 bytes as well.
3663 * else, disable it and make sure slot time is 64 bytes.
3664 * also activate checksum bug workaround
3666 if ((speed
== 1000) && !full_duplex
) {
3667 writel(val
| MAC_TX_CFG_CARRIER_EXTEND
,
3668 cp
->regs
+ REG_MAC_TX_CFG
);
3670 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
3671 val
&= ~MAC_RX_CFG_STRIP_FCS
; /* checksum workaround */
3672 writel(val
| MAC_RX_CFG_CARRIER_EXTEND
,
3673 cp
->regs
+ REG_MAC_RX_CFG
);
3675 writel(0x200, cp
->regs
+ REG_MAC_SLOT_TIME
);
3678 /* minimum size gigabit frame at half duplex */
3679 cp
->min_frame_size
= CAS_1000MB_MIN_FRAME
;
3682 writel(val
, cp
->regs
+ REG_MAC_TX_CFG
);
3684 /* checksum bug workaround. don't strip FCS when in
3687 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
3689 val
|= MAC_RX_CFG_STRIP_FCS
;
3691 cp
->min_frame_size
= CAS_MIN_MTU
;
3693 val
&= ~MAC_RX_CFG_STRIP_FCS
;
3695 cp
->min_frame_size
= CAS_MIN_FRAME
;
3697 writel(val
& ~MAC_RX_CFG_CARRIER_EXTEND
,
3698 cp
->regs
+ REG_MAC_RX_CFG
);
3699 writel(0x40, cp
->regs
+ REG_MAC_SLOT_TIME
);
3702 if (netif_msg_link(cp
)) {
3704 netdev_info(cp
->dev
, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
3708 } else if (pause
& 0x10) {
3709 netdev_info(cp
->dev
, "TX pause enabled\n");
3711 netdev_info(cp
->dev
, "Pause is disabled\n");
3715 val
= readl(cp
->regs
+ REG_MAC_CTRL_CFG
);
3716 val
&= ~(MAC_CTRL_CFG_SEND_PAUSE_EN
| MAC_CTRL_CFG_RECV_PAUSE_EN
);
3717 if (pause
) { /* symmetric or asymmetric pause */
3718 val
|= MAC_CTRL_CFG_SEND_PAUSE_EN
;
3719 if (pause
& 0x01) { /* symmetric pause */
3720 val
|= MAC_CTRL_CFG_RECV_PAUSE_EN
;
3723 writel(val
, cp
->regs
+ REG_MAC_CTRL_CFG
);
3727 /* Must be invoked under cp->lock. */
3728 static void cas_init_hw(struct cas
*cp
, int restart_link
)
3733 cas_init_pause_thresholds(cp
);
3738 /* Default aneg parameters */
3739 cp
->timer_ticks
= 0;
3740 cas_begin_auto_negotiation(cp
, NULL
);
3741 } else if (cp
->lstate
== link_up
) {
3742 cas_set_link_modes(cp
);
3743 netif_carrier_on(cp
->dev
);
3747 /* Must be invoked under cp->lock. on earlier cassini boards,
3748 * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3749 * let it settle out, and then restore pci state.
3751 static void cas_hard_reset(struct cas
*cp
)
3753 writel(BIM_LOCAL_DEV_SOFT_0
, cp
->regs
+ REG_BIM_LOCAL_DEV_EN
);
3755 pci_restore_state(cp
->pdev
);
3759 static void cas_global_reset(struct cas
*cp
, int blkflag
)
3763 /* issue a global reset. don't use RSTOUT. */
3764 if (blkflag
&& !CAS_PHY_MII(cp
->phy_type
)) {
3765 /* For PCS, when the blkflag is set, we should set the
3766 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3767 * the last autonegotiation from being cleared. We'll
3768 * need some special handling if the chip is set into a
3771 writel((SW_RESET_TX
| SW_RESET_RX
| SW_RESET_BLOCK_PCS_SLINK
),
3772 cp
->regs
+ REG_SW_RESET
);
3774 writel(SW_RESET_TX
| SW_RESET_RX
, cp
->regs
+ REG_SW_RESET
);
3777 /* need to wait at least 3ms before polling register */
3781 while (limit
-- > 0) {
3782 u32 val
= readl(cp
->regs
+ REG_SW_RESET
);
3783 if ((val
& (SW_RESET_TX
| SW_RESET_RX
)) == 0)
3787 netdev_err(cp
->dev
, "sw reset failed\n");
3790 /* enable various BIM interrupts */
3791 writel(BIM_CFG_DPAR_INTR_ENABLE
| BIM_CFG_RMA_INTR_ENABLE
|
3792 BIM_CFG_RTA_INTR_ENABLE
, cp
->regs
+ REG_BIM_CFG
);
3794 /* clear out pci error status mask for handled errors.
3795 * we don't deal with DMA counter overflows as they happen
3798 writel(0xFFFFFFFFU
& ~(PCI_ERR_BADACK
| PCI_ERR_DTRTO
|
3799 PCI_ERR_OTHER
| PCI_ERR_BIM_DMA_WRITE
|
3800 PCI_ERR_BIM_DMA_READ
), cp
->regs
+
3801 REG_PCI_ERR_STATUS_MASK
);
3803 /* set up for MII by default to address mac rx reset timeout
3806 writel(PCS_DATAPATH_MODE_MII
, cp
->regs
+ REG_PCS_DATAPATH_MODE
);
3809 static void cas_reset(struct cas
*cp
, int blkflag
)
3814 cas_global_reset(cp
, blkflag
);
3816 cas_entropy_reset(cp
);
3818 /* disable dma engines. */
3819 val
= readl(cp
->regs
+ REG_TX_CFG
);
3820 val
&= ~TX_CFG_DMA_EN
;
3821 writel(val
, cp
->regs
+ REG_TX_CFG
);
3823 val
= readl(cp
->regs
+ REG_RX_CFG
);
3824 val
&= ~RX_CFG_DMA_EN
;
3825 writel(val
, cp
->regs
+ REG_RX_CFG
);
3827 /* program header parser */
3828 if ((cp
->cas_flags
& CAS_FLAG_TARGET_ABORT
) ||
3829 (CAS_HP_ALT_FIRMWARE
== cas_prog_null
)) {
3830 cas_load_firmware(cp
, CAS_HP_FIRMWARE
);
3832 cas_load_firmware(cp
, CAS_HP_ALT_FIRMWARE
);
3835 /* clear out error registers */
3836 spin_lock(&cp
->stat_lock
[N_TX_RINGS
]);
3837 cas_clear_mac_err(cp
);
3838 spin_unlock(&cp
->stat_lock
[N_TX_RINGS
]);
3841 /* Shut down the chip, must be called with pm_mutex held. */
3842 static void cas_shutdown(struct cas
*cp
)
3844 unsigned long flags
;
3846 /* Make us not-running to avoid timers respawning */
3849 del_timer_sync(&cp
->link_timer
);
3851 /* Stop the reset task */
3853 while (atomic_read(&cp
->reset_task_pending_mtu
) ||
3854 atomic_read(&cp
->reset_task_pending_spare
) ||
3855 atomic_read(&cp
->reset_task_pending_all
))
3859 while (atomic_read(&cp
->reset_task_pending
))
3862 /* Actually stop the chip */
3863 cas_lock_all_save(cp
, flags
);
3865 if (cp
->cas_flags
& CAS_FLAG_SATURN
)
3866 cas_phy_powerdown(cp
);
3867 cas_unlock_all_restore(cp
, flags
);
3870 static int cas_change_mtu(struct net_device
*dev
, int new_mtu
)
3872 struct cas
*cp
= netdev_priv(dev
);
3874 if (new_mtu
< CAS_MIN_MTU
|| new_mtu
> CAS_MAX_MTU
)
3878 if (!netif_running(dev
) || !netif_device_present(dev
))
3881 /* let the reset task handle it */
3883 atomic_inc(&cp
->reset_task_pending
);
3884 if ((cp
->phy_type
& CAS_PHY_SERDES
)) {
3885 atomic_inc(&cp
->reset_task_pending_all
);
3887 atomic_inc(&cp
->reset_task_pending_mtu
);
3889 schedule_work(&cp
->reset_task
);
3891 atomic_set(&cp
->reset_task_pending
, (cp
->phy_type
& CAS_PHY_SERDES
) ?
3892 CAS_RESET_ALL
: CAS_RESET_MTU
);
3893 pr_err("reset called in cas_change_mtu\n");
3894 schedule_work(&cp
->reset_task
);
3897 flush_work_sync(&cp
->reset_task
);
3901 static void cas_clean_txd(struct cas
*cp
, int ring
)
3903 struct cas_tx_desc
*txd
= cp
->init_txds
[ring
];
3904 struct sk_buff
*skb
, **skbs
= cp
->tx_skbs
[ring
];
3908 size
= TX_DESC_RINGN_SIZE(ring
);
3909 for (i
= 0; i
< size
; i
++) {
3912 if (skbs
[i
] == NULL
)
3918 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
3919 int ent
= i
& (size
- 1);
3921 /* first buffer is never a tiny buffer and so
3922 * needs to be unmapped.
3924 daddr
= le64_to_cpu(txd
[ent
].buffer
);
3925 dlen
= CAS_VAL(TX_DESC_BUFLEN
,
3926 le64_to_cpu(txd
[ent
].control
));
3927 pci_unmap_page(cp
->pdev
, daddr
, dlen
,
3930 if (frag
!= skb_shinfo(skb
)->nr_frags
) {
3933 /* next buffer might by a tiny buffer.
3936 ent
= i
& (size
- 1);
3937 if (cp
->tx_tiny_use
[ring
][ent
].used
)
3941 dev_kfree_skb_any(skb
);
3944 /* zero out tiny buf usage */
3945 memset(cp
->tx_tiny_use
[ring
], 0, size
*sizeof(*cp
->tx_tiny_use
[ring
]));
3948 /* freed on close */
3949 static inline void cas_free_rx_desc(struct cas
*cp
, int ring
)
3951 cas_page_t
**page
= cp
->rx_pages
[ring
];
3954 size
= RX_DESC_RINGN_SIZE(ring
);
3955 for (i
= 0; i
< size
; i
++) {
3957 cas_page_free(cp
, page
[i
]);
3963 static void cas_free_rxds(struct cas
*cp
)
3967 for (i
= 0; i
< N_RX_DESC_RINGS
; i
++)
3968 cas_free_rx_desc(cp
, i
);
3971 /* Must be invoked under cp->lock. */
3972 static void cas_clean_rings(struct cas
*cp
)
3976 /* need to clean all tx rings */
3977 memset(cp
->tx_old
, 0, sizeof(*cp
->tx_old
)*N_TX_RINGS
);
3978 memset(cp
->tx_new
, 0, sizeof(*cp
->tx_new
)*N_TX_RINGS
);
3979 for (i
= 0; i
< N_TX_RINGS
; i
++)
3980 cas_clean_txd(cp
, i
);
3982 /* zero out init block */
3983 memset(cp
->init_block
, 0, sizeof(struct cas_init_block
));
3988 /* allocated on open */
3989 static inline int cas_alloc_rx_desc(struct cas
*cp
, int ring
)
3991 cas_page_t
**page
= cp
->rx_pages
[ring
];
3994 size
= RX_DESC_RINGN_SIZE(ring
);
3995 for (i
= 0; i
< size
; i
++) {
3996 if ((page
[i
] = cas_page_alloc(cp
, GFP_KERNEL
)) == NULL
)
4002 static int cas_alloc_rxds(struct cas
*cp
)
4006 for (i
= 0; i
< N_RX_DESC_RINGS
; i
++) {
4007 if (cas_alloc_rx_desc(cp
, i
) < 0) {
4015 static void cas_reset_task(struct work_struct
*work
)
4017 struct cas
*cp
= container_of(work
, struct cas
, reset_task
);
4019 int pending
= atomic_read(&cp
->reset_task_pending
);
4021 int pending_all
= atomic_read(&cp
->reset_task_pending_all
);
4022 int pending_spare
= atomic_read(&cp
->reset_task_pending_spare
);
4023 int pending_mtu
= atomic_read(&cp
->reset_task_pending_mtu
);
4025 if (pending_all
== 0 && pending_spare
== 0 && pending_mtu
== 0) {
4026 /* We can have more tasks scheduled than actually
4029 atomic_dec(&cp
->reset_task_pending
);
4033 /* The link went down, we reset the ring, but keep
4034 * DMA stopped. Use this function for reset
4037 if (cp
->hw_running
) {
4038 unsigned long flags
;
4040 /* Make sure we don't get interrupts or tx packets */
4041 netif_device_detach(cp
->dev
);
4042 cas_lock_all_save(cp
, flags
);
4045 /* We call cas_spare_recover when we call cas_open.
4046 * but we do not initialize the lists cas_spare_recover
4047 * uses until cas_open is called.
4049 cas_spare_recover(cp
, GFP_ATOMIC
);
4052 /* test => only pending_spare set */
4053 if (!pending_all
&& !pending_mtu
)
4056 if (pending
== CAS_RESET_SPARE
)
4059 /* when pending == CAS_RESET_ALL, the following
4060 * call to cas_init_hw will restart auto negotiation.
4061 * Setting the second argument of cas_reset to
4062 * !(pending == CAS_RESET_ALL) will set this argument
4063 * to 1 (avoiding reinitializing the PHY for the normal
4064 * PCS case) when auto negotiation is not restarted.
4067 cas_reset(cp
, !(pending_all
> 0));
4069 cas_clean_rings(cp
);
4070 cas_init_hw(cp
, (pending_all
> 0));
4072 cas_reset(cp
, !(pending
== CAS_RESET_ALL
));
4074 cas_clean_rings(cp
);
4075 cas_init_hw(cp
, pending
== CAS_RESET_ALL
);
4079 cas_unlock_all_restore(cp
, flags
);
4080 netif_device_attach(cp
->dev
);
4083 atomic_sub(pending_all
, &cp
->reset_task_pending_all
);
4084 atomic_sub(pending_spare
, &cp
->reset_task_pending_spare
);
4085 atomic_sub(pending_mtu
, &cp
->reset_task_pending_mtu
);
4086 atomic_dec(&cp
->reset_task_pending
);
4088 atomic_set(&cp
->reset_task_pending
, 0);
4092 static void cas_link_timer(unsigned long data
)
4094 struct cas
*cp
= (struct cas
*) data
;
4095 int mask
, pending
= 0, reset
= 0;
4096 unsigned long flags
;
4098 if (link_transition_timeout
!= 0 &&
4099 cp
->link_transition_jiffies_valid
&&
4100 ((jiffies
- cp
->link_transition_jiffies
) >
4101 (link_transition_timeout
))) {
4102 /* One-second counter so link-down workaround doesn't
4103 * cause resets to occur so fast as to fool the switch
4104 * into thinking the link is down.
4106 cp
->link_transition_jiffies_valid
= 0;
4109 if (!cp
->hw_running
)
4112 spin_lock_irqsave(&cp
->lock
, flags
);
4114 cas_entropy_gather(cp
);
4116 /* If the link task is still pending, we just
4117 * reschedule the link timer
4120 if (atomic_read(&cp
->reset_task_pending_all
) ||
4121 atomic_read(&cp
->reset_task_pending_spare
) ||
4122 atomic_read(&cp
->reset_task_pending_mtu
))
4125 if (atomic_read(&cp
->reset_task_pending
))
4129 /* check for rx cleaning */
4130 if ((mask
= (cp
->cas_flags
& CAS_FLAG_RXD_POST_MASK
))) {
4133 for (i
= 0; i
< MAX_RX_DESC_RINGS
; i
++) {
4134 rmask
= CAS_FLAG_RXD_POST(i
);
4135 if ((mask
& rmask
) == 0)
4138 /* post_rxds will do a mod_timer */
4139 if (cas_post_rxds_ringN(cp
, i
, cp
->rx_last
[i
]) < 0) {
4143 cp
->cas_flags
&= ~rmask
;
4147 if (CAS_PHY_MII(cp
->phy_type
)) {
4149 cas_mif_poll(cp
, 0);
4150 bmsr
= cas_phy_read(cp
, MII_BMSR
);
4151 /* WTZ: Solaris driver reads this twice, but that
4152 * may be due to the PCS case and the use of a
4153 * common implementation. Read it twice here to be
4156 bmsr
= cas_phy_read(cp
, MII_BMSR
);
4157 cas_mif_poll(cp
, 1);
4158 readl(cp
->regs
+ REG_MIF_STATUS
); /* avoid dups */
4159 reset
= cas_mii_link_check(cp
, bmsr
);
4161 reset
= cas_pcs_link_check(cp
);
4167 /* check for tx state machine confusion */
4168 if ((readl(cp
->regs
+ REG_MAC_TX_STATUS
) & MAC_TX_FRAME_XMIT
) == 0) {
4169 u32 val
= readl(cp
->regs
+ REG_MAC_STATE_MACHINE
);
4171 int tlm
= CAS_VAL(MAC_SM_TLM
, val
);
4173 if (((tlm
== 0x5) || (tlm
== 0x3)) &&
4174 (CAS_VAL(MAC_SM_ENCAP_SM
, val
) == 0)) {
4175 netif_printk(cp
, tx_err
, KERN_DEBUG
, cp
->dev
,
4176 "tx err: MAC_STATE[%08x]\n", val
);
4181 val
= readl(cp
->regs
+ REG_TX_FIFO_PKT_CNT
);
4182 wptr
= readl(cp
->regs
+ REG_TX_FIFO_WRITE_PTR
);
4183 rptr
= readl(cp
->regs
+ REG_TX_FIFO_READ_PTR
);
4184 if ((val
== 0) && (wptr
!= rptr
)) {
4185 netif_printk(cp
, tx_err
, KERN_DEBUG
, cp
->dev
,
4186 "tx err: TX_FIFO[%08x:%08x:%08x]\n",
4198 atomic_inc(&cp
->reset_task_pending
);
4199 atomic_inc(&cp
->reset_task_pending_all
);
4200 schedule_work(&cp
->reset_task
);
4202 atomic_set(&cp
->reset_task_pending
, CAS_RESET_ALL
);
4203 pr_err("reset called in cas_link_timer\n");
4204 schedule_work(&cp
->reset_task
);
4209 mod_timer(&cp
->link_timer
, jiffies
+ CAS_LINK_TIMEOUT
);
4211 spin_unlock_irqrestore(&cp
->lock
, flags
);
4214 /* tiny buffers are used to avoid target abort issues with
4217 static void cas_tx_tiny_free(struct cas
*cp
)
4219 struct pci_dev
*pdev
= cp
->pdev
;
4222 for (i
= 0; i
< N_TX_RINGS
; i
++) {
4223 if (!cp
->tx_tiny_bufs
[i
])
4226 pci_free_consistent(pdev
, TX_TINY_BUF_BLOCK
,
4227 cp
->tx_tiny_bufs
[i
],
4228 cp
->tx_tiny_dvma
[i
]);
4229 cp
->tx_tiny_bufs
[i
] = NULL
;
4233 static int cas_tx_tiny_alloc(struct cas
*cp
)
4235 struct pci_dev
*pdev
= cp
->pdev
;
4238 for (i
= 0; i
< N_TX_RINGS
; i
++) {
4239 cp
->tx_tiny_bufs
[i
] =
4240 pci_alloc_consistent(pdev
, TX_TINY_BUF_BLOCK
,
4241 &cp
->tx_tiny_dvma
[i
]);
4242 if (!cp
->tx_tiny_bufs
[i
]) {
4243 cas_tx_tiny_free(cp
);
4251 static int cas_open(struct net_device
*dev
)
4253 struct cas
*cp
= netdev_priv(dev
);
4255 unsigned long flags
;
4257 mutex_lock(&cp
->pm_mutex
);
4259 hw_was_up
= cp
->hw_running
;
4261 /* The power-management mutex protects the hw_running
4262 * etc. state so it is safe to do this bit without cp->lock
4264 if (!cp
->hw_running
) {
4265 /* Reset the chip */
4266 cas_lock_all_save(cp
, flags
);
4267 /* We set the second arg to cas_reset to zero
4268 * because cas_init_hw below will have its second
4269 * argument set to non-zero, which will force
4270 * autonegotiation to start.
4274 cas_unlock_all_restore(cp
, flags
);
4278 if (cas_tx_tiny_alloc(cp
) < 0)
4281 /* alloc rx descriptors */
4282 if (cas_alloc_rxds(cp
) < 0)
4285 /* allocate spares */
4287 cas_spare_recover(cp
, GFP_KERNEL
);
4289 /* We can now request the interrupt as we know it's masked
4290 * on the controller. cassini+ has up to 4 interrupts
4291 * that can be used, but you need to do explicit pci interrupt
4292 * mapping to expose them
4294 if (request_irq(cp
->pdev
->irq
, cas_interrupt
,
4295 IRQF_SHARED
, dev
->name
, (void *) dev
)) {
4296 netdev_err(cp
->dev
, "failed to request irq !\n");
4302 napi_enable(&cp
->napi
);
4305 cas_lock_all_save(cp
, flags
);
4306 cas_clean_rings(cp
);
4307 cas_init_hw(cp
, !hw_was_up
);
4309 cas_unlock_all_restore(cp
, flags
);
4311 netif_start_queue(dev
);
4312 mutex_unlock(&cp
->pm_mutex
);
4319 cas_tx_tiny_free(cp
);
4321 mutex_unlock(&cp
->pm_mutex
);
4325 static int cas_close(struct net_device
*dev
)
4327 unsigned long flags
;
4328 struct cas
*cp
= netdev_priv(dev
);
4331 napi_disable(&cp
->napi
);
4333 /* Make sure we don't get distracted by suspend/resume */
4334 mutex_lock(&cp
->pm_mutex
);
4336 netif_stop_queue(dev
);
4338 /* Stop traffic, mark us closed */
4339 cas_lock_all_save(cp
, flags
);
4343 cas_begin_auto_negotiation(cp
, NULL
);
4344 cas_clean_rings(cp
);
4345 cas_unlock_all_restore(cp
, flags
);
4347 free_irq(cp
->pdev
->irq
, (void *) dev
);
4350 cas_tx_tiny_free(cp
);
4351 mutex_unlock(&cp
->pm_mutex
);
4356 const char name
[ETH_GSTRING_LEN
];
4357 } ethtool_cassini_statnames
[] = {
4364 {"rx_frame_errors"},
4365 {"rx_length_errors"},
4368 {"tx_aborted_errors"},
4375 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4378 const int offsets
; /* neg. values for 2nd arg to cas_read_phy */
4379 } ethtool_register_table
[] = {
4394 {REG_PCS_MII_STATUS
},
4395 {REG_PCS_STATE_MACHINE
},
4396 {REG_MAC_COLL_EXCESS
},
4399 #define CAS_REG_LEN ARRAY_SIZE(ethtool_register_table)
4400 #define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN)
4402 static void cas_read_regs(struct cas
*cp
, u8
*ptr
, int len
)
4406 unsigned long flags
;
4408 spin_lock_irqsave(&cp
->lock
, flags
);
4409 for (i
= 0, p
= ptr
; i
< len
; i
++, p
+= sizeof(u32
)) {
4412 if (ethtool_register_table
[i
].offsets
< 0) {
4413 hval
= cas_phy_read(cp
,
4414 -ethtool_register_table
[i
].offsets
);
4417 val
= readl(cp
->regs
+ethtool_register_table
[i
].offsets
);
4419 memcpy(p
, (u8
*)&val
, sizeof(u32
));
4421 spin_unlock_irqrestore(&cp
->lock
, flags
);
4424 static struct net_device_stats
*cas_get_stats(struct net_device
*dev
)
4426 struct cas
*cp
= netdev_priv(dev
);
4427 struct net_device_stats
*stats
= cp
->net_stats
;
4428 unsigned long flags
;
4432 /* we collate all of the stats into net_stats[N_TX_RING] */
4433 if (!cp
->hw_running
)
4434 return stats
+ N_TX_RINGS
;
4436 /* collect outstanding stats */
4437 /* WTZ: the Cassini spec gives these as 16 bit counters but
4438 * stored in 32-bit words. Added a mask of 0xffff to be safe,
4439 * in case the chip somehow puts any garbage in the other bits.
4440 * Also, counter usage didn't seem to mach what Adrian did
4441 * in the parts of the code that set these quantities. Made
4444 spin_lock_irqsave(&cp
->stat_lock
[N_TX_RINGS
], flags
);
4445 stats
[N_TX_RINGS
].rx_crc_errors
+=
4446 readl(cp
->regs
+ REG_MAC_FCS_ERR
) & 0xffff;
4447 stats
[N_TX_RINGS
].rx_frame_errors
+=
4448 readl(cp
->regs
+ REG_MAC_ALIGN_ERR
) &0xffff;
4449 stats
[N_TX_RINGS
].rx_length_errors
+=
4450 readl(cp
->regs
+ REG_MAC_LEN_ERR
) & 0xffff;
4452 tmp
= (readl(cp
->regs
+ REG_MAC_COLL_EXCESS
) & 0xffff) +
4453 (readl(cp
->regs
+ REG_MAC_COLL_LATE
) & 0xffff);
4454 stats
[N_TX_RINGS
].tx_aborted_errors
+= tmp
;
4455 stats
[N_TX_RINGS
].collisions
+=
4456 tmp
+ (readl(cp
->regs
+ REG_MAC_COLL_NORMAL
) & 0xffff);
4458 stats
[N_TX_RINGS
].tx_aborted_errors
+=
4459 readl(cp
->regs
+ REG_MAC_COLL_EXCESS
);
4460 stats
[N_TX_RINGS
].collisions
+= readl(cp
->regs
+ REG_MAC_COLL_EXCESS
) +
4461 readl(cp
->regs
+ REG_MAC_COLL_LATE
);
4463 cas_clear_mac_err(cp
);
4465 /* saved bits that are unique to ring 0 */
4466 spin_lock(&cp
->stat_lock
[0]);
4467 stats
[N_TX_RINGS
].collisions
+= stats
[0].collisions
;
4468 stats
[N_TX_RINGS
].rx_over_errors
+= stats
[0].rx_over_errors
;
4469 stats
[N_TX_RINGS
].rx_frame_errors
+= stats
[0].rx_frame_errors
;
4470 stats
[N_TX_RINGS
].rx_fifo_errors
+= stats
[0].rx_fifo_errors
;
4471 stats
[N_TX_RINGS
].tx_aborted_errors
+= stats
[0].tx_aborted_errors
;
4472 stats
[N_TX_RINGS
].tx_fifo_errors
+= stats
[0].tx_fifo_errors
;
4473 spin_unlock(&cp
->stat_lock
[0]);
4475 for (i
= 0; i
< N_TX_RINGS
; i
++) {
4476 spin_lock(&cp
->stat_lock
[i
]);
4477 stats
[N_TX_RINGS
].rx_length_errors
+=
4478 stats
[i
].rx_length_errors
;
4479 stats
[N_TX_RINGS
].rx_crc_errors
+= stats
[i
].rx_crc_errors
;
4480 stats
[N_TX_RINGS
].rx_packets
+= stats
[i
].rx_packets
;
4481 stats
[N_TX_RINGS
].tx_packets
+= stats
[i
].tx_packets
;
4482 stats
[N_TX_RINGS
].rx_bytes
+= stats
[i
].rx_bytes
;
4483 stats
[N_TX_RINGS
].tx_bytes
+= stats
[i
].tx_bytes
;
4484 stats
[N_TX_RINGS
].rx_errors
+= stats
[i
].rx_errors
;
4485 stats
[N_TX_RINGS
].tx_errors
+= stats
[i
].tx_errors
;
4486 stats
[N_TX_RINGS
].rx_dropped
+= stats
[i
].rx_dropped
;
4487 stats
[N_TX_RINGS
].tx_dropped
+= stats
[i
].tx_dropped
;
4488 memset(stats
+ i
, 0, sizeof(struct net_device_stats
));
4489 spin_unlock(&cp
->stat_lock
[i
]);
4491 spin_unlock_irqrestore(&cp
->stat_lock
[N_TX_RINGS
], flags
);
4492 return stats
+ N_TX_RINGS
;
4496 static void cas_set_multicast(struct net_device
*dev
)
4498 struct cas
*cp
= netdev_priv(dev
);
4499 u32 rxcfg
, rxcfg_new
;
4500 unsigned long flags
;
4501 int limit
= STOP_TRIES
;
4503 if (!cp
->hw_running
)
4506 spin_lock_irqsave(&cp
->lock
, flags
);
4507 rxcfg
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
4509 /* disable RX MAC and wait for completion */
4510 writel(rxcfg
& ~MAC_RX_CFG_EN
, cp
->regs
+ REG_MAC_RX_CFG
);
4511 while (readl(cp
->regs
+ REG_MAC_RX_CFG
) & MAC_RX_CFG_EN
) {
4517 /* disable hash filter and wait for completion */
4519 rxcfg
&= ~(MAC_RX_CFG_PROMISC_EN
| MAC_RX_CFG_HASH_FILTER_EN
);
4520 writel(rxcfg
& ~MAC_RX_CFG_EN
, cp
->regs
+ REG_MAC_RX_CFG
);
4521 while (readl(cp
->regs
+ REG_MAC_RX_CFG
) & MAC_RX_CFG_HASH_FILTER_EN
) {
4527 /* program hash filters */
4528 cp
->mac_rx_cfg
= rxcfg_new
= cas_setup_multicast(cp
);
4530 writel(rxcfg
, cp
->regs
+ REG_MAC_RX_CFG
);
4531 spin_unlock_irqrestore(&cp
->lock
, flags
);
4534 static void cas_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
4536 struct cas
*cp
= netdev_priv(dev
);
4537 strncpy(info
->driver
, DRV_MODULE_NAME
, ETHTOOL_BUSINFO_LEN
);
4538 strncpy(info
->version
, DRV_MODULE_VERSION
, ETHTOOL_BUSINFO_LEN
);
4539 info
->fw_version
[0] = '\0';
4540 strncpy(info
->bus_info
, pci_name(cp
->pdev
), ETHTOOL_BUSINFO_LEN
);
4541 info
->regdump_len
= cp
->casreg_len
< CAS_MAX_REGS
?
4542 cp
->casreg_len
: CAS_MAX_REGS
;
4543 info
->n_stats
= CAS_NUM_STAT_KEYS
;
4546 static int cas_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
4548 struct cas
*cp
= netdev_priv(dev
);
4550 int full_duplex
, speed
, pause
;
4551 unsigned long flags
;
4552 enum link_state linkstate
= link_up
;
4554 cmd
->advertising
= 0;
4555 cmd
->supported
= SUPPORTED_Autoneg
;
4556 if (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) {
4557 cmd
->supported
|= SUPPORTED_1000baseT_Full
;
4558 cmd
->advertising
|= ADVERTISED_1000baseT_Full
;
4561 /* Record PHY settings if HW is on. */
4562 spin_lock_irqsave(&cp
->lock
, flags
);
4564 linkstate
= cp
->lstate
;
4565 if (CAS_PHY_MII(cp
->phy_type
)) {
4566 cmd
->port
= PORT_MII
;
4567 cmd
->transceiver
= (cp
->cas_flags
& CAS_FLAG_SATURN
) ?
4568 XCVR_INTERNAL
: XCVR_EXTERNAL
;
4569 cmd
->phy_address
= cp
->phy_addr
;
4570 cmd
->advertising
|= ADVERTISED_TP
| ADVERTISED_MII
|
4571 ADVERTISED_10baseT_Half
|
4572 ADVERTISED_10baseT_Full
|
4573 ADVERTISED_100baseT_Half
|
4574 ADVERTISED_100baseT_Full
;
4577 (SUPPORTED_10baseT_Half
|
4578 SUPPORTED_10baseT_Full
|
4579 SUPPORTED_100baseT_Half
|
4580 SUPPORTED_100baseT_Full
|
4581 SUPPORTED_TP
| SUPPORTED_MII
);
4583 if (cp
->hw_running
) {
4584 cas_mif_poll(cp
, 0);
4585 bmcr
= cas_phy_read(cp
, MII_BMCR
);
4586 cas_read_mii_link_mode(cp
, &full_duplex
,
4588 cas_mif_poll(cp
, 1);
4592 cmd
->port
= PORT_FIBRE
;
4593 cmd
->transceiver
= XCVR_INTERNAL
;
4594 cmd
->phy_address
= 0;
4595 cmd
->supported
|= SUPPORTED_FIBRE
;
4596 cmd
->advertising
|= ADVERTISED_FIBRE
;
4598 if (cp
->hw_running
) {
4599 /* pcs uses the same bits as mii */
4600 bmcr
= readl(cp
->regs
+ REG_PCS_MII_CTRL
);
4601 cas_read_pcs_link_mode(cp
, &full_duplex
,
4605 spin_unlock_irqrestore(&cp
->lock
, flags
);
4607 if (bmcr
& BMCR_ANENABLE
) {
4608 cmd
->advertising
|= ADVERTISED_Autoneg
;
4609 cmd
->autoneg
= AUTONEG_ENABLE
;
4610 ethtool_cmd_speed_set(cmd
, ((speed
== 10) ?
4613 SPEED_1000
: SPEED_100
)));
4614 cmd
->duplex
= full_duplex
? DUPLEX_FULL
: DUPLEX_HALF
;
4616 cmd
->autoneg
= AUTONEG_DISABLE
;
4617 ethtool_cmd_speed_set(cmd
, ((bmcr
& CAS_BMCR_SPEED1000
) ?
4619 ((bmcr
& BMCR_SPEED100
) ?
4620 SPEED_100
: SPEED_10
)));
4622 (bmcr
& BMCR_FULLDPLX
) ?
4623 DUPLEX_FULL
: DUPLEX_HALF
;
4625 if (linkstate
!= link_up
) {
4626 /* Force these to "unknown" if the link is not up and
4627 * autonogotiation in enabled. We can set the link
4628 * speed to 0, but not cmd->duplex,
4629 * because its legal values are 0 and 1. Ethtool will
4630 * print the value reported in parentheses after the
4631 * word "Unknown" for unrecognized values.
4633 * If in forced mode, we report the speed and duplex
4634 * settings that we configured.
4636 if (cp
->link_cntl
& BMCR_ANENABLE
) {
4637 ethtool_cmd_speed_set(cmd
, 0);
4640 ethtool_cmd_speed_set(cmd
, SPEED_10
);
4641 if (cp
->link_cntl
& BMCR_SPEED100
) {
4642 ethtool_cmd_speed_set(cmd
, SPEED_100
);
4643 } else if (cp
->link_cntl
& CAS_BMCR_SPEED1000
) {
4644 ethtool_cmd_speed_set(cmd
, SPEED_1000
);
4646 cmd
->duplex
= (cp
->link_cntl
& BMCR_FULLDPLX
)?
4647 DUPLEX_FULL
: DUPLEX_HALF
;
4653 static int cas_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
4655 struct cas
*cp
= netdev_priv(dev
);
4656 unsigned long flags
;
4657 u32 speed
= ethtool_cmd_speed(cmd
);
4659 /* Verify the settings we care about. */
4660 if (cmd
->autoneg
!= AUTONEG_ENABLE
&&
4661 cmd
->autoneg
!= AUTONEG_DISABLE
)
4664 if (cmd
->autoneg
== AUTONEG_DISABLE
&&
4665 ((speed
!= SPEED_1000
&&
4666 speed
!= SPEED_100
&&
4667 speed
!= SPEED_10
) ||
4668 (cmd
->duplex
!= DUPLEX_HALF
&&
4669 cmd
->duplex
!= DUPLEX_FULL
)))
4672 /* Apply settings and restart link process. */
4673 spin_lock_irqsave(&cp
->lock
, flags
);
4674 cas_begin_auto_negotiation(cp
, cmd
);
4675 spin_unlock_irqrestore(&cp
->lock
, flags
);
4679 static int cas_nway_reset(struct net_device
*dev
)
4681 struct cas
*cp
= netdev_priv(dev
);
4682 unsigned long flags
;
4684 if ((cp
->link_cntl
& BMCR_ANENABLE
) == 0)
4687 /* Restart link process. */
4688 spin_lock_irqsave(&cp
->lock
, flags
);
4689 cas_begin_auto_negotiation(cp
, NULL
);
4690 spin_unlock_irqrestore(&cp
->lock
, flags
);
4695 static u32
cas_get_link(struct net_device
*dev
)
4697 struct cas
*cp
= netdev_priv(dev
);
4698 return cp
->lstate
== link_up
;
4701 static u32
cas_get_msglevel(struct net_device
*dev
)
4703 struct cas
*cp
= netdev_priv(dev
);
4704 return cp
->msg_enable
;
4707 static void cas_set_msglevel(struct net_device
*dev
, u32 value
)
4709 struct cas
*cp
= netdev_priv(dev
);
4710 cp
->msg_enable
= value
;
4713 static int cas_get_regs_len(struct net_device
*dev
)
4715 struct cas
*cp
= netdev_priv(dev
);
4716 return cp
->casreg_len
< CAS_MAX_REGS
? cp
->casreg_len
: CAS_MAX_REGS
;
4719 static void cas_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
,
4722 struct cas
*cp
= netdev_priv(dev
);
4724 /* cas_read_regs handles locks (cp->lock). */
4725 cas_read_regs(cp
, p
, regs
->len
/ sizeof(u32
));
4728 static int cas_get_sset_count(struct net_device
*dev
, int sset
)
4732 return CAS_NUM_STAT_KEYS
;
4738 static void cas_get_strings(struct net_device
*dev
, u32 stringset
, u8
*data
)
4740 memcpy(data
, ðtool_cassini_statnames
,
4741 CAS_NUM_STAT_KEYS
* ETH_GSTRING_LEN
);
4744 static void cas_get_ethtool_stats(struct net_device
*dev
,
4745 struct ethtool_stats
*estats
, u64
*data
)
4747 struct cas
*cp
= netdev_priv(dev
);
4748 struct net_device_stats
*stats
= cas_get_stats(cp
->dev
);
4750 data
[i
++] = stats
->collisions
;
4751 data
[i
++] = stats
->rx_bytes
;
4752 data
[i
++] = stats
->rx_crc_errors
;
4753 data
[i
++] = stats
->rx_dropped
;
4754 data
[i
++] = stats
->rx_errors
;
4755 data
[i
++] = stats
->rx_fifo_errors
;
4756 data
[i
++] = stats
->rx_frame_errors
;
4757 data
[i
++] = stats
->rx_length_errors
;
4758 data
[i
++] = stats
->rx_over_errors
;
4759 data
[i
++] = stats
->rx_packets
;
4760 data
[i
++] = stats
->tx_aborted_errors
;
4761 data
[i
++] = stats
->tx_bytes
;
4762 data
[i
++] = stats
->tx_dropped
;
4763 data
[i
++] = stats
->tx_errors
;
4764 data
[i
++] = stats
->tx_fifo_errors
;
4765 data
[i
++] = stats
->tx_packets
;
4766 BUG_ON(i
!= CAS_NUM_STAT_KEYS
);
4769 static const struct ethtool_ops cas_ethtool_ops
= {
4770 .get_drvinfo
= cas_get_drvinfo
,
4771 .get_settings
= cas_get_settings
,
4772 .set_settings
= cas_set_settings
,
4773 .nway_reset
= cas_nway_reset
,
4774 .get_link
= cas_get_link
,
4775 .get_msglevel
= cas_get_msglevel
,
4776 .set_msglevel
= cas_set_msglevel
,
4777 .get_regs_len
= cas_get_regs_len
,
4778 .get_regs
= cas_get_regs
,
4779 .get_sset_count
= cas_get_sset_count
,
4780 .get_strings
= cas_get_strings
,
4781 .get_ethtool_stats
= cas_get_ethtool_stats
,
4784 static int cas_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
4786 struct cas
*cp
= netdev_priv(dev
);
4787 struct mii_ioctl_data
*data
= if_mii(ifr
);
4788 unsigned long flags
;
4789 int rc
= -EOPNOTSUPP
;
4791 /* Hold the PM mutex while doing ioctl's or we may collide
4792 * with open/close and power management and oops.
4794 mutex_lock(&cp
->pm_mutex
);
4796 case SIOCGMIIPHY
: /* Get address of MII PHY in use. */
4797 data
->phy_id
= cp
->phy_addr
;
4798 /* Fallthrough... */
4800 case SIOCGMIIREG
: /* Read MII PHY register. */
4801 spin_lock_irqsave(&cp
->lock
, flags
);
4802 cas_mif_poll(cp
, 0);
4803 data
->val_out
= cas_phy_read(cp
, data
->reg_num
& 0x1f);
4804 cas_mif_poll(cp
, 1);
4805 spin_unlock_irqrestore(&cp
->lock
, flags
);
4809 case SIOCSMIIREG
: /* Write MII PHY register. */
4810 spin_lock_irqsave(&cp
->lock
, flags
);
4811 cas_mif_poll(cp
, 0);
4812 rc
= cas_phy_write(cp
, data
->reg_num
& 0x1f, data
->val_in
);
4813 cas_mif_poll(cp
, 1);
4814 spin_unlock_irqrestore(&cp
->lock
, flags
);
4820 mutex_unlock(&cp
->pm_mutex
);
4824 /* When this chip sits underneath an Intel 31154 bridge, it is the
4825 * only subordinate device and we can tweak the bridge settings to
4826 * reflect that fact.
4828 static void __devinit
cas_program_bridge(struct pci_dev
*cas_pdev
)
4830 struct pci_dev
*pdev
= cas_pdev
->bus
->self
;
4836 if (pdev
->vendor
!= 0x8086 || pdev
->device
!= 0x537c)
4839 /* Clear bit 10 (Bus Parking Control) in the Secondary
4840 * Arbiter Control/Status Register which lives at offset
4841 * 0x41. Using a 32-bit word read/modify/write at 0x40
4842 * is much simpler so that's how we do this.
4844 pci_read_config_dword(pdev
, 0x40, &val
);
4846 pci_write_config_dword(pdev
, 0x40, val
);
4848 /* Max out the Multi-Transaction Timer settings since
4849 * Cassini is the only device present.
4851 * The register is 16-bit and lives at 0x50. When the
4852 * settings are enabled, it extends the GRANT# signal
4853 * for a requestor after a transaction is complete. This
4854 * allows the next request to run without first needing
4855 * to negotiate the GRANT# signal back.
4857 * Bits 12:10 define the grant duration:
4865 * All other values are illegal.
4867 * Bits 09:00 define which REQ/GNT signal pairs get the
4868 * GRANT# signal treatment. We set them all.
4870 pci_write_config_word(pdev
, 0x50, (5 << 10) | 0x3ff);
4872 /* The Read Prefecth Policy register is 16-bit and sits at
4873 * offset 0x52. It enables a "smart" pre-fetch policy. We
4874 * enable it and max out all of the settings since only one
4875 * device is sitting underneath and thus bandwidth sharing is
4878 * The register has several 3 bit fields, which indicates a
4879 * multiplier applied to the base amount of prefetching the
4880 * chip would do. These fields are at:
4882 * 15:13 --- ReRead Primary Bus
4883 * 12:10 --- FirstRead Primary Bus
4884 * 09:07 --- ReRead Secondary Bus
4885 * 06:04 --- FirstRead Secondary Bus
4887 * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4888 * get enabled on. Bit 3 is a grouped enabler which controls
4889 * all of the REQ/GNT pairs from [8:3]. Bits 2 to 0 control
4890 * the individual REQ/GNT pairs [2:0].
4892 pci_write_config_word(pdev
, 0x52,
4899 /* Force cacheline size to 0x8 */
4900 pci_write_config_byte(pdev
, PCI_CACHE_LINE_SIZE
, 0x08);
4902 /* Force latency timer to maximum setting so Cassini can
4903 * sit on the bus as long as it likes.
4905 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, 0xff);
4908 static const struct net_device_ops cas_netdev_ops
= {
4909 .ndo_open
= cas_open
,
4910 .ndo_stop
= cas_close
,
4911 .ndo_start_xmit
= cas_start_xmit
,
4912 .ndo_get_stats
= cas_get_stats
,
4913 .ndo_set_multicast_list
= cas_set_multicast
,
4914 .ndo_do_ioctl
= cas_ioctl
,
4915 .ndo_tx_timeout
= cas_tx_timeout
,
4916 .ndo_change_mtu
= cas_change_mtu
,
4917 .ndo_set_mac_address
= eth_mac_addr
,
4918 .ndo_validate_addr
= eth_validate_addr
,
4919 #ifdef CONFIG_NET_POLL_CONTROLLER
4920 .ndo_poll_controller
= cas_netpoll
,
4924 static int __devinit
cas_init_one(struct pci_dev
*pdev
,
4925 const struct pci_device_id
*ent
)
4927 static int cas_version_printed
= 0;
4928 unsigned long casreg_len
;
4929 struct net_device
*dev
;
4931 int i
, err
, pci_using_dac
;
4933 u8 orig_cacheline_size
= 0, cas_cacheline_size
= 0;
4935 if (cas_version_printed
++ == 0)
4936 pr_info("%s", version
);
4938 err
= pci_enable_device(pdev
);
4940 dev_err(&pdev
->dev
, "Cannot enable PCI device, aborting\n");
4944 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
4945 dev_err(&pdev
->dev
, "Cannot find proper PCI device "
4946 "base address, aborting\n");
4948 goto err_out_disable_pdev
;
4951 dev
= alloc_etherdev(sizeof(*cp
));
4953 dev_err(&pdev
->dev
, "Etherdev alloc failed, aborting\n");
4955 goto err_out_disable_pdev
;
4957 SET_NETDEV_DEV(dev
, &pdev
->dev
);
4959 err
= pci_request_regions(pdev
, dev
->name
);
4961 dev_err(&pdev
->dev
, "Cannot obtain PCI resources, aborting\n");
4962 goto err_out_free_netdev
;
4964 pci_set_master(pdev
);
4966 /* we must always turn on parity response or else parity
4967 * doesn't get generated properly. disable SERR/PERR as well.
4968 * in addition, we want to turn MWI on.
4970 pci_read_config_word(pdev
, PCI_COMMAND
, &pci_cmd
);
4971 pci_cmd
&= ~PCI_COMMAND_SERR
;
4972 pci_cmd
|= PCI_COMMAND_PARITY
;
4973 pci_write_config_word(pdev
, PCI_COMMAND
, pci_cmd
);
4974 if (pci_try_set_mwi(pdev
))
4975 pr_warning("Could not enable MWI for %s\n", pci_name(pdev
));
4977 cas_program_bridge(pdev
);
4980 * On some architectures, the default cache line size set
4981 * by pci_try_set_mwi reduces perforamnce. We have to increase
4982 * it for this case. To start, we'll print some configuration
4986 pci_read_config_byte(pdev
, PCI_CACHE_LINE_SIZE
,
4987 &orig_cacheline_size
);
4988 if (orig_cacheline_size
< CAS_PREF_CACHELINE_SIZE
) {
4989 cas_cacheline_size
=
4990 (CAS_PREF_CACHELINE_SIZE
< SMP_CACHE_BYTES
) ?
4991 CAS_PREF_CACHELINE_SIZE
: SMP_CACHE_BYTES
;
4992 if (pci_write_config_byte(pdev
,
4993 PCI_CACHE_LINE_SIZE
,
4994 cas_cacheline_size
)) {
4995 dev_err(&pdev
->dev
, "Could not set PCI cache "
4997 goto err_write_cacheline
;
5003 /* Configure DMA attributes. */
5004 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
5006 err
= pci_set_consistent_dma_mask(pdev
,
5009 dev_err(&pdev
->dev
, "Unable to obtain 64-bit DMA "
5010 "for consistent allocations\n");
5011 goto err_out_free_res
;
5015 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
5017 dev_err(&pdev
->dev
, "No usable DMA configuration, "
5019 goto err_out_free_res
;
5024 casreg_len
= pci_resource_len(pdev
, 0);
5026 cp
= netdev_priv(dev
);
5029 /* A value of 0 indicates we never explicitly set it */
5030 cp
->orig_cacheline_size
= cas_cacheline_size
? orig_cacheline_size
: 0;
5033 cp
->msg_enable
= (cassini_debug
< 0) ? CAS_DEF_MSG_ENABLE
:
5036 #if defined(CONFIG_SPARC)
5037 cp
->of_node
= pci_device_to_OF_node(pdev
);
5040 cp
->link_transition
= LINK_TRANSITION_UNKNOWN
;
5041 cp
->link_transition_jiffies_valid
= 0;
5043 spin_lock_init(&cp
->lock
);
5044 spin_lock_init(&cp
->rx_inuse_lock
);
5045 spin_lock_init(&cp
->rx_spare_lock
);
5046 for (i
= 0; i
< N_TX_RINGS
; i
++) {
5047 spin_lock_init(&cp
->stat_lock
[i
]);
5048 spin_lock_init(&cp
->tx_lock
[i
]);
5050 spin_lock_init(&cp
->stat_lock
[N_TX_RINGS
]);
5051 mutex_init(&cp
->pm_mutex
);
5053 init_timer(&cp
->link_timer
);
5054 cp
->link_timer
.function
= cas_link_timer
;
5055 cp
->link_timer
.data
= (unsigned long) cp
;
5058 /* Just in case the implementation of atomic operations
5059 * change so that an explicit initialization is necessary.
5061 atomic_set(&cp
->reset_task_pending
, 0);
5062 atomic_set(&cp
->reset_task_pending_all
, 0);
5063 atomic_set(&cp
->reset_task_pending_spare
, 0);
5064 atomic_set(&cp
->reset_task_pending_mtu
, 0);
5066 INIT_WORK(&cp
->reset_task
, cas_reset_task
);
5068 /* Default link parameters */
5069 if (link_mode
>= 0 && link_mode
< 6)
5070 cp
->link_cntl
= link_modes
[link_mode
];
5072 cp
->link_cntl
= BMCR_ANENABLE
;
5073 cp
->lstate
= link_down
;
5074 cp
->link_transition
= LINK_TRANSITION_LINK_DOWN
;
5075 netif_carrier_off(cp
->dev
);
5076 cp
->timer_ticks
= 0;
5078 /* give us access to cassini registers */
5079 cp
->regs
= pci_iomap(pdev
, 0, casreg_len
);
5081 dev_err(&pdev
->dev
, "Cannot map device registers, aborting\n");
5082 goto err_out_free_res
;
5084 cp
->casreg_len
= casreg_len
;
5086 pci_save_state(pdev
);
5087 cas_check_pci_invariants(cp
);
5090 if (cas_check_invariants(cp
))
5091 goto err_out_iounmap
;
5092 if (cp
->cas_flags
& CAS_FLAG_SATURN
)
5093 if (cas_saturn_firmware_init(cp
))
5094 goto err_out_iounmap
;
5096 cp
->init_block
= (struct cas_init_block
*)
5097 pci_alloc_consistent(pdev
, sizeof(struct cas_init_block
),
5099 if (!cp
->init_block
) {
5100 dev_err(&pdev
->dev
, "Cannot allocate init block, aborting\n");
5101 goto err_out_iounmap
;
5104 for (i
= 0; i
< N_TX_RINGS
; i
++)
5105 cp
->init_txds
[i
] = cp
->init_block
->txds
[i
];
5107 for (i
= 0; i
< N_RX_DESC_RINGS
; i
++)
5108 cp
->init_rxds
[i
] = cp
->init_block
->rxds
[i
];
5110 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++)
5111 cp
->init_rxcs
[i
] = cp
->init_block
->rxcs
[i
];
5113 for (i
= 0; i
< N_RX_FLOWS
; i
++)
5114 skb_queue_head_init(&cp
->rx_flows
[i
]);
5116 dev
->netdev_ops
= &cas_netdev_ops
;
5117 dev
->ethtool_ops
= &cas_ethtool_ops
;
5118 dev
->watchdog_timeo
= CAS_TX_TIMEOUT
;
5121 netif_napi_add(dev
, &cp
->napi
, cas_poll
, 64);
5123 dev
->irq
= pdev
->irq
;
5126 /* Cassini features. */
5127 if ((cp
->cas_flags
& CAS_FLAG_NO_HW_CSUM
) == 0)
5128 dev
->features
|= NETIF_F_HW_CSUM
| NETIF_F_SG
;
5131 dev
->features
|= NETIF_F_HIGHDMA
;
5133 if (register_netdev(dev
)) {
5134 dev_err(&pdev
->dev
, "Cannot register net device, aborting\n");
5135 goto err_out_free_consistent
;
5138 i
= readl(cp
->regs
+ REG_BIM_CFG
);
5139 netdev_info(dev
, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
5140 (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) ? "+" : "",
5141 (i
& BIM_CFG_32BIT
) ? "32" : "64",
5142 (i
& BIM_CFG_66MHZ
) ? "66" : "33",
5143 (cp
->phy_type
== CAS_PHY_SERDES
) ? "Fi" : "Cu", pdev
->irq
,
5146 pci_set_drvdata(pdev
, dev
);
5148 cas_entropy_reset(cp
);
5150 cas_begin_auto_negotiation(cp
, NULL
);
5153 err_out_free_consistent
:
5154 pci_free_consistent(pdev
, sizeof(struct cas_init_block
),
5155 cp
->init_block
, cp
->block_dvma
);
5158 mutex_lock(&cp
->pm_mutex
);
5161 mutex_unlock(&cp
->pm_mutex
);
5163 pci_iounmap(pdev
, cp
->regs
);
5167 pci_release_regions(pdev
);
5169 err_write_cacheline
:
5170 /* Try to restore it in case the error occurred after we
5173 pci_write_config_byte(pdev
, PCI_CACHE_LINE_SIZE
, orig_cacheline_size
);
5175 err_out_free_netdev
:
5178 err_out_disable_pdev
:
5179 pci_disable_device(pdev
);
5180 pci_set_drvdata(pdev
, NULL
);
5184 static void __devexit
cas_remove_one(struct pci_dev
*pdev
)
5186 struct net_device
*dev
= pci_get_drvdata(pdev
);
5191 cp
= netdev_priv(dev
);
5192 unregister_netdev(dev
);
5197 mutex_lock(&cp
->pm_mutex
);
5198 cancel_work_sync(&cp
->reset_task
);
5201 mutex_unlock(&cp
->pm_mutex
);
5204 if (cp
->orig_cacheline_size
) {
5205 /* Restore the cache line size if we had modified
5208 pci_write_config_byte(pdev
, PCI_CACHE_LINE_SIZE
,
5209 cp
->orig_cacheline_size
);
5212 pci_free_consistent(pdev
, sizeof(struct cas_init_block
),
5213 cp
->init_block
, cp
->block_dvma
);
5214 pci_iounmap(pdev
, cp
->regs
);
5216 pci_release_regions(pdev
);
5217 pci_disable_device(pdev
);
5218 pci_set_drvdata(pdev
, NULL
);
5222 static int cas_suspend(struct pci_dev
*pdev
, pm_message_t state
)
5224 struct net_device
*dev
= pci_get_drvdata(pdev
);
5225 struct cas
*cp
= netdev_priv(dev
);
5226 unsigned long flags
;
5228 mutex_lock(&cp
->pm_mutex
);
5230 /* If the driver is opened, we stop the DMA */
5232 netif_device_detach(dev
);
5234 cas_lock_all_save(cp
, flags
);
5236 /* We can set the second arg of cas_reset to 0
5237 * because on resume, we'll call cas_init_hw with
5238 * its second arg set so that autonegotiation is
5242 cas_clean_rings(cp
);
5243 cas_unlock_all_restore(cp
, flags
);
5248 mutex_unlock(&cp
->pm_mutex
);
5253 static int cas_resume(struct pci_dev
*pdev
)
5255 struct net_device
*dev
= pci_get_drvdata(pdev
);
5256 struct cas
*cp
= netdev_priv(dev
);
5258 netdev_info(dev
, "resuming\n");
5260 mutex_lock(&cp
->pm_mutex
);
5263 unsigned long flags
;
5264 cas_lock_all_save(cp
, flags
);
5267 cas_clean_rings(cp
);
5269 cas_unlock_all_restore(cp
, flags
);
5271 netif_device_attach(dev
);
5273 mutex_unlock(&cp
->pm_mutex
);
5276 #endif /* CONFIG_PM */
5278 static struct pci_driver cas_driver
= {
5279 .name
= DRV_MODULE_NAME
,
5280 .id_table
= cas_pci_tbl
,
5281 .probe
= cas_init_one
,
5282 .remove
= __devexit_p(cas_remove_one
),
5284 .suspend
= cas_suspend
,
5285 .resume
= cas_resume
5289 static int __init
cas_init(void)
5291 if (linkdown_timeout
> 0)
5292 link_transition_timeout
= linkdown_timeout
* HZ
;
5294 link_transition_timeout
= 0;
5296 return pci_register_driver(&cas_driver
);
5299 static void __exit
cas_cleanup(void)
5301 pci_unregister_driver(&cas_driver
);
5304 module_init(cas_init
);
5305 module_exit(cas_cleanup
);