cris: add arch/cris/include/asm/serial.h
[linux-2.6/next.git] / drivers / net / e1000 / e1000_ethtool.c
blob5548d464261a6173fc1be5588960d858b33e8592
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* ethtool support for e1000 */
31 #include "e1000.h"
32 #include <asm/uaccess.h>
34 enum {NETDEV_STATS, E1000_STATS};
36 struct e1000_stats {
37 char stat_string[ETH_GSTRING_LEN];
38 int type;
39 int sizeof_stat;
40 int stat_offset;
43 #define E1000_STAT(m) E1000_STATS, \
44 sizeof(((struct e1000_adapter *)0)->m), \
45 offsetof(struct e1000_adapter, m)
46 #define E1000_NETDEV_STAT(m) NETDEV_STATS, \
47 sizeof(((struct net_device *)0)->m), \
48 offsetof(struct net_device, m)
50 static const struct e1000_stats e1000_gstrings_stats[] = {
51 { "rx_packets", E1000_STAT(stats.gprc) },
52 { "tx_packets", E1000_STAT(stats.gptc) },
53 { "rx_bytes", E1000_STAT(stats.gorcl) },
54 { "tx_bytes", E1000_STAT(stats.gotcl) },
55 { "rx_broadcast", E1000_STAT(stats.bprc) },
56 { "tx_broadcast", E1000_STAT(stats.bptc) },
57 { "rx_multicast", E1000_STAT(stats.mprc) },
58 { "tx_multicast", E1000_STAT(stats.mptc) },
59 { "rx_errors", E1000_STAT(stats.rxerrc) },
60 { "tx_errors", E1000_STAT(stats.txerrc) },
61 { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
62 { "multicast", E1000_STAT(stats.mprc) },
63 { "collisions", E1000_STAT(stats.colc) },
64 { "rx_length_errors", E1000_STAT(stats.rlerrc) },
65 { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
66 { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
67 { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
68 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
69 { "rx_missed_errors", E1000_STAT(stats.mpc) },
70 { "tx_aborted_errors", E1000_STAT(stats.ecol) },
71 { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
72 { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
73 { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
74 { "tx_window_errors", E1000_STAT(stats.latecol) },
75 { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
76 { "tx_deferred_ok", E1000_STAT(stats.dc) },
77 { "tx_single_coll_ok", E1000_STAT(stats.scc) },
78 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
79 { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
80 { "tx_restart_queue", E1000_STAT(restart_queue) },
81 { "rx_long_length_errors", E1000_STAT(stats.roc) },
82 { "rx_short_length_errors", E1000_STAT(stats.ruc) },
83 { "rx_align_errors", E1000_STAT(stats.algnerrc) },
84 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
85 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
86 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
87 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
88 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
89 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
90 { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
91 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
92 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
93 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
94 { "tx_smbus", E1000_STAT(stats.mgptc) },
95 { "rx_smbus", E1000_STAT(stats.mgprc) },
96 { "dropped_smbus", E1000_STAT(stats.mgpdc) },
99 #define E1000_QUEUE_STATS_LEN 0
100 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
102 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
103 "Register test (offline)", "Eeprom test (offline)",
104 "Interrupt test (offline)", "Loopback test (offline)",
105 "Link test (on/offline)"
107 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
109 static int e1000_get_settings(struct net_device *netdev,
110 struct ethtool_cmd *ecmd)
112 struct e1000_adapter *adapter = netdev_priv(netdev);
113 struct e1000_hw *hw = &adapter->hw;
115 if (hw->media_type == e1000_media_type_copper) {
117 ecmd->supported = (SUPPORTED_10baseT_Half |
118 SUPPORTED_10baseT_Full |
119 SUPPORTED_100baseT_Half |
120 SUPPORTED_100baseT_Full |
121 SUPPORTED_1000baseT_Full|
122 SUPPORTED_Autoneg |
123 SUPPORTED_TP);
124 ecmd->advertising = ADVERTISED_TP;
126 if (hw->autoneg == 1) {
127 ecmd->advertising |= ADVERTISED_Autoneg;
128 /* the e1000 autoneg seems to match ethtool nicely */
129 ecmd->advertising |= hw->autoneg_advertised;
132 ecmd->port = PORT_TP;
133 ecmd->phy_address = hw->phy_addr;
135 if (hw->mac_type == e1000_82543)
136 ecmd->transceiver = XCVR_EXTERNAL;
137 else
138 ecmd->transceiver = XCVR_INTERNAL;
140 } else {
141 ecmd->supported = (SUPPORTED_1000baseT_Full |
142 SUPPORTED_FIBRE |
143 SUPPORTED_Autoneg);
145 ecmd->advertising = (ADVERTISED_1000baseT_Full |
146 ADVERTISED_FIBRE |
147 ADVERTISED_Autoneg);
149 ecmd->port = PORT_FIBRE;
151 if (hw->mac_type >= e1000_82545)
152 ecmd->transceiver = XCVR_INTERNAL;
153 else
154 ecmd->transceiver = XCVR_EXTERNAL;
157 if (er32(STATUS) & E1000_STATUS_LU) {
159 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
160 &adapter->link_duplex);
161 ethtool_cmd_speed_set(ecmd, adapter->link_speed);
163 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
164 * and HALF_DUPLEX != DUPLEX_HALF */
166 if (adapter->link_duplex == FULL_DUPLEX)
167 ecmd->duplex = DUPLEX_FULL;
168 else
169 ecmd->duplex = DUPLEX_HALF;
170 } else {
171 ethtool_cmd_speed_set(ecmd, -1);
172 ecmd->duplex = -1;
175 ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
176 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
177 return 0;
180 static int e1000_set_settings(struct net_device *netdev,
181 struct ethtool_cmd *ecmd)
183 struct e1000_adapter *adapter = netdev_priv(netdev);
184 struct e1000_hw *hw = &adapter->hw;
186 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
187 msleep(1);
189 if (ecmd->autoneg == AUTONEG_ENABLE) {
190 hw->autoneg = 1;
191 if (hw->media_type == e1000_media_type_fiber)
192 hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
193 ADVERTISED_FIBRE |
194 ADVERTISED_Autoneg;
195 else
196 hw->autoneg_advertised = ecmd->advertising |
197 ADVERTISED_TP |
198 ADVERTISED_Autoneg;
199 ecmd->advertising = hw->autoneg_advertised;
200 } else {
201 u32 speed = ethtool_cmd_speed(ecmd);
202 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
203 clear_bit(__E1000_RESETTING, &adapter->flags);
204 return -EINVAL;
208 /* reset the link */
210 if (netif_running(adapter->netdev)) {
211 e1000_down(adapter);
212 e1000_up(adapter);
213 } else
214 e1000_reset(adapter);
216 clear_bit(__E1000_RESETTING, &adapter->flags);
217 return 0;
220 static u32 e1000_get_link(struct net_device *netdev)
222 struct e1000_adapter *adapter = netdev_priv(netdev);
225 * If the link is not reported up to netdev, interrupts are disabled,
226 * and so the physical link state may have changed since we last
227 * looked. Set get_link_status to make sure that the true link
228 * state is interrogated, rather than pulling a cached and possibly
229 * stale link state from the driver.
231 if (!netif_carrier_ok(netdev))
232 adapter->hw.get_link_status = 1;
234 return e1000_has_link(adapter);
237 static void e1000_get_pauseparam(struct net_device *netdev,
238 struct ethtool_pauseparam *pause)
240 struct e1000_adapter *adapter = netdev_priv(netdev);
241 struct e1000_hw *hw = &adapter->hw;
243 pause->autoneg =
244 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
246 if (hw->fc == E1000_FC_RX_PAUSE)
247 pause->rx_pause = 1;
248 else if (hw->fc == E1000_FC_TX_PAUSE)
249 pause->tx_pause = 1;
250 else if (hw->fc == E1000_FC_FULL) {
251 pause->rx_pause = 1;
252 pause->tx_pause = 1;
256 static int e1000_set_pauseparam(struct net_device *netdev,
257 struct ethtool_pauseparam *pause)
259 struct e1000_adapter *adapter = netdev_priv(netdev);
260 struct e1000_hw *hw = &adapter->hw;
261 int retval = 0;
263 adapter->fc_autoneg = pause->autoneg;
265 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
266 msleep(1);
268 if (pause->rx_pause && pause->tx_pause)
269 hw->fc = E1000_FC_FULL;
270 else if (pause->rx_pause && !pause->tx_pause)
271 hw->fc = E1000_FC_RX_PAUSE;
272 else if (!pause->rx_pause && pause->tx_pause)
273 hw->fc = E1000_FC_TX_PAUSE;
274 else if (!pause->rx_pause && !pause->tx_pause)
275 hw->fc = E1000_FC_NONE;
277 hw->original_fc = hw->fc;
279 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
280 if (netif_running(adapter->netdev)) {
281 e1000_down(adapter);
282 e1000_up(adapter);
283 } else
284 e1000_reset(adapter);
285 } else
286 retval = ((hw->media_type == e1000_media_type_fiber) ?
287 e1000_setup_link(hw) : e1000_force_mac_fc(hw));
289 clear_bit(__E1000_RESETTING, &adapter->flags);
290 return retval;
293 static u32 e1000_get_msglevel(struct net_device *netdev)
295 struct e1000_adapter *adapter = netdev_priv(netdev);
296 return adapter->msg_enable;
299 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
301 struct e1000_adapter *adapter = netdev_priv(netdev);
302 adapter->msg_enable = data;
305 static int e1000_get_regs_len(struct net_device *netdev)
307 #define E1000_REGS_LEN 32
308 return E1000_REGS_LEN * sizeof(u32);
311 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
312 void *p)
314 struct e1000_adapter *adapter = netdev_priv(netdev);
315 struct e1000_hw *hw = &adapter->hw;
316 u32 *regs_buff = p;
317 u16 phy_data;
319 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
321 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
323 regs_buff[0] = er32(CTRL);
324 regs_buff[1] = er32(STATUS);
326 regs_buff[2] = er32(RCTL);
327 regs_buff[3] = er32(RDLEN);
328 regs_buff[4] = er32(RDH);
329 regs_buff[5] = er32(RDT);
330 regs_buff[6] = er32(RDTR);
332 regs_buff[7] = er32(TCTL);
333 regs_buff[8] = er32(TDLEN);
334 regs_buff[9] = er32(TDH);
335 regs_buff[10] = er32(TDT);
336 regs_buff[11] = er32(TIDV);
338 regs_buff[12] = hw->phy_type; /* PHY type (IGP=1, M88=0) */
339 if (hw->phy_type == e1000_phy_igp) {
340 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
341 IGP01E1000_PHY_AGC_A);
342 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
343 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
344 regs_buff[13] = (u32)phy_data; /* cable length */
345 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
346 IGP01E1000_PHY_AGC_B);
347 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
348 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
349 regs_buff[14] = (u32)phy_data; /* cable length */
350 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
351 IGP01E1000_PHY_AGC_C);
352 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
353 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
354 regs_buff[15] = (u32)phy_data; /* cable length */
355 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
356 IGP01E1000_PHY_AGC_D);
357 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
358 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
359 regs_buff[16] = (u32)phy_data; /* cable length */
360 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
361 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
362 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
363 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
364 regs_buff[18] = (u32)phy_data; /* cable polarity */
365 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
366 IGP01E1000_PHY_PCS_INIT_REG);
367 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
368 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
369 regs_buff[19] = (u32)phy_data; /* cable polarity */
370 regs_buff[20] = 0; /* polarity correction enabled (always) */
371 regs_buff[22] = 0; /* phy receive errors (unavailable) */
372 regs_buff[23] = regs_buff[18]; /* mdix mode */
373 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
374 } else {
375 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
376 regs_buff[13] = (u32)phy_data; /* cable length */
377 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
378 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
379 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
380 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
381 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
382 regs_buff[18] = regs_buff[13]; /* cable polarity */
383 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
384 regs_buff[20] = regs_buff[17]; /* polarity correction */
385 /* phy receive errors */
386 regs_buff[22] = adapter->phy_stats.receive_errors;
387 regs_buff[23] = regs_buff[13]; /* mdix mode */
389 regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
390 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
391 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
392 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
393 if (hw->mac_type >= e1000_82540 &&
394 hw->media_type == e1000_media_type_copper) {
395 regs_buff[26] = er32(MANC);
399 static int e1000_get_eeprom_len(struct net_device *netdev)
401 struct e1000_adapter *adapter = netdev_priv(netdev);
402 struct e1000_hw *hw = &adapter->hw;
404 return hw->eeprom.word_size * 2;
407 static int e1000_get_eeprom(struct net_device *netdev,
408 struct ethtool_eeprom *eeprom, u8 *bytes)
410 struct e1000_adapter *adapter = netdev_priv(netdev);
411 struct e1000_hw *hw = &adapter->hw;
412 u16 *eeprom_buff;
413 int first_word, last_word;
414 int ret_val = 0;
415 u16 i;
417 if (eeprom->len == 0)
418 return -EINVAL;
420 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
422 first_word = eeprom->offset >> 1;
423 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
425 eeprom_buff = kmalloc(sizeof(u16) *
426 (last_word - first_word + 1), GFP_KERNEL);
427 if (!eeprom_buff)
428 return -ENOMEM;
430 if (hw->eeprom.type == e1000_eeprom_spi)
431 ret_val = e1000_read_eeprom(hw, first_word,
432 last_word - first_word + 1,
433 eeprom_buff);
434 else {
435 for (i = 0; i < last_word - first_word + 1; i++) {
436 ret_val = e1000_read_eeprom(hw, first_word + i, 1,
437 &eeprom_buff[i]);
438 if (ret_val)
439 break;
443 /* Device's eeprom is always little-endian, word addressable */
444 for (i = 0; i < last_word - first_word + 1; i++)
445 le16_to_cpus(&eeprom_buff[i]);
447 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
448 eeprom->len);
449 kfree(eeprom_buff);
451 return ret_val;
454 static int e1000_set_eeprom(struct net_device *netdev,
455 struct ethtool_eeprom *eeprom, u8 *bytes)
457 struct e1000_adapter *adapter = netdev_priv(netdev);
458 struct e1000_hw *hw = &adapter->hw;
459 u16 *eeprom_buff;
460 void *ptr;
461 int max_len, first_word, last_word, ret_val = 0;
462 u16 i;
464 if (eeprom->len == 0)
465 return -EOPNOTSUPP;
467 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
468 return -EFAULT;
470 max_len = hw->eeprom.word_size * 2;
472 first_word = eeprom->offset >> 1;
473 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
474 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
475 if (!eeprom_buff)
476 return -ENOMEM;
478 ptr = (void *)eeprom_buff;
480 if (eeprom->offset & 1) {
481 /* need read/modify/write of first changed EEPROM word */
482 /* only the second byte of the word is being modified */
483 ret_val = e1000_read_eeprom(hw, first_word, 1,
484 &eeprom_buff[0]);
485 ptr++;
487 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
488 /* need read/modify/write of last changed EEPROM word */
489 /* only the first byte of the word is being modified */
490 ret_val = e1000_read_eeprom(hw, last_word, 1,
491 &eeprom_buff[last_word - first_word]);
494 /* Device's eeprom is always little-endian, word addressable */
495 for (i = 0; i < last_word - first_word + 1; i++)
496 le16_to_cpus(&eeprom_buff[i]);
498 memcpy(ptr, bytes, eeprom->len);
500 for (i = 0; i < last_word - first_word + 1; i++)
501 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
503 ret_val = e1000_write_eeprom(hw, first_word,
504 last_word - first_word + 1, eeprom_buff);
506 /* Update the checksum over the first part of the EEPROM if needed */
507 if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
508 e1000_update_eeprom_checksum(hw);
510 kfree(eeprom_buff);
511 return ret_val;
514 static void e1000_get_drvinfo(struct net_device *netdev,
515 struct ethtool_drvinfo *drvinfo)
517 struct e1000_adapter *adapter = netdev_priv(netdev);
518 char firmware_version[32];
520 strncpy(drvinfo->driver, e1000_driver_name, 32);
521 strncpy(drvinfo->version, e1000_driver_version, 32);
523 sprintf(firmware_version, "N/A");
524 strncpy(drvinfo->fw_version, firmware_version, 32);
525 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
526 drvinfo->regdump_len = e1000_get_regs_len(netdev);
527 drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
530 static void e1000_get_ringparam(struct net_device *netdev,
531 struct ethtool_ringparam *ring)
533 struct e1000_adapter *adapter = netdev_priv(netdev);
534 struct e1000_hw *hw = &adapter->hw;
535 e1000_mac_type mac_type = hw->mac_type;
536 struct e1000_tx_ring *txdr = adapter->tx_ring;
537 struct e1000_rx_ring *rxdr = adapter->rx_ring;
539 ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
540 E1000_MAX_82544_RXD;
541 ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
542 E1000_MAX_82544_TXD;
543 ring->rx_mini_max_pending = 0;
544 ring->rx_jumbo_max_pending = 0;
545 ring->rx_pending = rxdr->count;
546 ring->tx_pending = txdr->count;
547 ring->rx_mini_pending = 0;
548 ring->rx_jumbo_pending = 0;
551 static int e1000_set_ringparam(struct net_device *netdev,
552 struct ethtool_ringparam *ring)
554 struct e1000_adapter *adapter = netdev_priv(netdev);
555 struct e1000_hw *hw = &adapter->hw;
556 e1000_mac_type mac_type = hw->mac_type;
557 struct e1000_tx_ring *txdr, *tx_old;
558 struct e1000_rx_ring *rxdr, *rx_old;
559 int i, err;
561 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
562 return -EINVAL;
564 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
565 msleep(1);
567 if (netif_running(adapter->netdev))
568 e1000_down(adapter);
570 tx_old = adapter->tx_ring;
571 rx_old = adapter->rx_ring;
573 err = -ENOMEM;
574 txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL);
575 if (!txdr)
576 goto err_alloc_tx;
578 rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL);
579 if (!rxdr)
580 goto err_alloc_rx;
582 adapter->tx_ring = txdr;
583 adapter->rx_ring = rxdr;
585 rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD);
586 rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ?
587 E1000_MAX_RXD : E1000_MAX_82544_RXD));
588 rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
590 txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD);
591 txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ?
592 E1000_MAX_TXD : E1000_MAX_82544_TXD));
593 txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
595 for (i = 0; i < adapter->num_tx_queues; i++)
596 txdr[i].count = txdr->count;
597 for (i = 0; i < adapter->num_rx_queues; i++)
598 rxdr[i].count = rxdr->count;
600 if (netif_running(adapter->netdev)) {
601 /* Try to get new resources before deleting old */
602 err = e1000_setup_all_rx_resources(adapter);
603 if (err)
604 goto err_setup_rx;
605 err = e1000_setup_all_tx_resources(adapter);
606 if (err)
607 goto err_setup_tx;
609 /* save the new, restore the old in order to free it,
610 * then restore the new back again */
612 adapter->rx_ring = rx_old;
613 adapter->tx_ring = tx_old;
614 e1000_free_all_rx_resources(adapter);
615 e1000_free_all_tx_resources(adapter);
616 kfree(tx_old);
617 kfree(rx_old);
618 adapter->rx_ring = rxdr;
619 adapter->tx_ring = txdr;
620 err = e1000_up(adapter);
621 if (err)
622 goto err_setup;
625 clear_bit(__E1000_RESETTING, &adapter->flags);
626 return 0;
627 err_setup_tx:
628 e1000_free_all_rx_resources(adapter);
629 err_setup_rx:
630 adapter->rx_ring = rx_old;
631 adapter->tx_ring = tx_old;
632 kfree(rxdr);
633 err_alloc_rx:
634 kfree(txdr);
635 err_alloc_tx:
636 e1000_up(adapter);
637 err_setup:
638 clear_bit(__E1000_RESETTING, &adapter->flags);
639 return err;
642 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
643 u32 mask, u32 write)
645 struct e1000_hw *hw = &adapter->hw;
646 static const u32 test[] =
647 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
648 u8 __iomem *address = hw->hw_addr + reg;
649 u32 read;
650 int i;
652 for (i = 0; i < ARRAY_SIZE(test); i++) {
653 writel(write & test[i], address);
654 read = readl(address);
655 if (read != (write & test[i] & mask)) {
656 e_err(drv, "pattern test reg %04X failed: "
657 "got 0x%08X expected 0x%08X\n",
658 reg, read, (write & test[i] & mask));
659 *data = reg;
660 return true;
663 return false;
666 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
667 u32 mask, u32 write)
669 struct e1000_hw *hw = &adapter->hw;
670 u8 __iomem *address = hw->hw_addr + reg;
671 u32 read;
673 writel(write & mask, address);
674 read = readl(address);
675 if ((read & mask) != (write & mask)) {
676 e_err(drv, "set/check reg %04X test failed: "
677 "got 0x%08X expected 0x%08X\n",
678 reg, (read & mask), (write & mask));
679 *data = reg;
680 return true;
682 return false;
685 #define REG_PATTERN_TEST(reg, mask, write) \
686 do { \
687 if (reg_pattern_test(adapter, data, \
688 (hw->mac_type >= e1000_82543) \
689 ? E1000_##reg : E1000_82542_##reg, \
690 mask, write)) \
691 return 1; \
692 } while (0)
694 #define REG_SET_AND_CHECK(reg, mask, write) \
695 do { \
696 if (reg_set_and_check(adapter, data, \
697 (hw->mac_type >= e1000_82543) \
698 ? E1000_##reg : E1000_82542_##reg, \
699 mask, write)) \
700 return 1; \
701 } while (0)
703 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
705 u32 value, before, after;
706 u32 i, toggle;
707 struct e1000_hw *hw = &adapter->hw;
709 /* The status register is Read Only, so a write should fail.
710 * Some bits that get toggled are ignored.
713 /* there are several bits on newer hardware that are r/w */
714 toggle = 0xFFFFF833;
716 before = er32(STATUS);
717 value = (er32(STATUS) & toggle);
718 ew32(STATUS, toggle);
719 after = er32(STATUS) & toggle;
720 if (value != after) {
721 e_err(drv, "failed STATUS register test got: "
722 "0x%08X expected: 0x%08X\n", after, value);
723 *data = 1;
724 return 1;
726 /* restore previous status */
727 ew32(STATUS, before);
729 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
730 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
731 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
732 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
734 REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
735 REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
736 REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
737 REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
738 REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
739 REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
740 REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
741 REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
742 REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
743 REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
745 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
747 before = 0x06DFB3FE;
748 REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
749 REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
751 if (hw->mac_type >= e1000_82543) {
753 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
754 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
755 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
756 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
757 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
758 value = E1000_RAR_ENTRIES;
759 for (i = 0; i < value; i++) {
760 REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
761 0xFFFFFFFF);
764 } else {
766 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
767 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
768 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
769 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
773 value = E1000_MC_TBL_SIZE;
774 for (i = 0; i < value; i++)
775 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
777 *data = 0;
778 return 0;
781 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
783 struct e1000_hw *hw = &adapter->hw;
784 u16 temp;
785 u16 checksum = 0;
786 u16 i;
788 *data = 0;
789 /* Read and add up the contents of the EEPROM */
790 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
791 if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
792 *data = 1;
793 break;
795 checksum += temp;
798 /* If Checksum is not Correct return error else test passed */
799 if ((checksum != (u16)EEPROM_SUM) && !(*data))
800 *data = 2;
802 return *data;
805 static irqreturn_t e1000_test_intr(int irq, void *data)
807 struct net_device *netdev = (struct net_device *)data;
808 struct e1000_adapter *adapter = netdev_priv(netdev);
809 struct e1000_hw *hw = &adapter->hw;
811 adapter->test_icr |= er32(ICR);
813 return IRQ_HANDLED;
816 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
818 struct net_device *netdev = adapter->netdev;
819 u32 mask, i = 0;
820 bool shared_int = true;
821 u32 irq = adapter->pdev->irq;
822 struct e1000_hw *hw = &adapter->hw;
824 *data = 0;
826 /* NOTE: we don't test MSI interrupts here, yet */
827 /* Hook up test interrupt handler just for this test */
828 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
829 netdev))
830 shared_int = false;
831 else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
832 netdev->name, netdev)) {
833 *data = 1;
834 return -1;
836 e_info(hw, "testing %s interrupt\n", (shared_int ?
837 "shared" : "unshared"));
839 /* Disable all the interrupts */
840 ew32(IMC, 0xFFFFFFFF);
841 E1000_WRITE_FLUSH();
842 msleep(10);
844 /* Test each interrupt */
845 for (; i < 10; i++) {
847 /* Interrupt to test */
848 mask = 1 << i;
850 if (!shared_int) {
851 /* Disable the interrupt to be reported in
852 * the cause register and then force the same
853 * interrupt and see if one gets posted. If
854 * an interrupt was posted to the bus, the
855 * test failed.
857 adapter->test_icr = 0;
858 ew32(IMC, mask);
859 ew32(ICS, mask);
860 E1000_WRITE_FLUSH();
861 msleep(10);
863 if (adapter->test_icr & mask) {
864 *data = 3;
865 break;
869 /* Enable the interrupt to be reported in
870 * the cause register and then force the same
871 * interrupt and see if one gets posted. If
872 * an interrupt was not posted to the bus, the
873 * test failed.
875 adapter->test_icr = 0;
876 ew32(IMS, mask);
877 ew32(ICS, mask);
878 E1000_WRITE_FLUSH();
879 msleep(10);
881 if (!(adapter->test_icr & mask)) {
882 *data = 4;
883 break;
886 if (!shared_int) {
887 /* Disable the other interrupts to be reported in
888 * the cause register and then force the other
889 * interrupts and see if any get posted. If
890 * an interrupt was posted to the bus, the
891 * test failed.
893 adapter->test_icr = 0;
894 ew32(IMC, ~mask & 0x00007FFF);
895 ew32(ICS, ~mask & 0x00007FFF);
896 E1000_WRITE_FLUSH();
897 msleep(10);
899 if (adapter->test_icr) {
900 *data = 5;
901 break;
906 /* Disable all the interrupts */
907 ew32(IMC, 0xFFFFFFFF);
908 E1000_WRITE_FLUSH();
909 msleep(10);
911 /* Unhook test interrupt handler */
912 free_irq(irq, netdev);
914 return *data;
917 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
919 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
920 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
921 struct pci_dev *pdev = adapter->pdev;
922 int i;
924 if (txdr->desc && txdr->buffer_info) {
925 for (i = 0; i < txdr->count; i++) {
926 if (txdr->buffer_info[i].dma)
927 dma_unmap_single(&pdev->dev,
928 txdr->buffer_info[i].dma,
929 txdr->buffer_info[i].length,
930 DMA_TO_DEVICE);
931 if (txdr->buffer_info[i].skb)
932 dev_kfree_skb(txdr->buffer_info[i].skb);
936 if (rxdr->desc && rxdr->buffer_info) {
937 for (i = 0; i < rxdr->count; i++) {
938 if (rxdr->buffer_info[i].dma)
939 dma_unmap_single(&pdev->dev,
940 rxdr->buffer_info[i].dma,
941 rxdr->buffer_info[i].length,
942 DMA_FROM_DEVICE);
943 if (rxdr->buffer_info[i].skb)
944 dev_kfree_skb(rxdr->buffer_info[i].skb);
948 if (txdr->desc) {
949 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
950 txdr->dma);
951 txdr->desc = NULL;
953 if (rxdr->desc) {
954 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
955 rxdr->dma);
956 rxdr->desc = NULL;
959 kfree(txdr->buffer_info);
960 txdr->buffer_info = NULL;
961 kfree(rxdr->buffer_info);
962 rxdr->buffer_info = NULL;
965 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
967 struct e1000_hw *hw = &adapter->hw;
968 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
969 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
970 struct pci_dev *pdev = adapter->pdev;
971 u32 rctl;
972 int i, ret_val;
974 /* Setup Tx descriptor ring and Tx buffers */
976 if (!txdr->count)
977 txdr->count = E1000_DEFAULT_TXD;
979 txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_buffer),
980 GFP_KERNEL);
981 if (!txdr->buffer_info) {
982 ret_val = 1;
983 goto err_nomem;
986 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
987 txdr->size = ALIGN(txdr->size, 4096);
988 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
989 GFP_KERNEL);
990 if (!txdr->desc) {
991 ret_val = 2;
992 goto err_nomem;
994 memset(txdr->desc, 0, txdr->size);
995 txdr->next_to_use = txdr->next_to_clean = 0;
997 ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
998 ew32(TDBAH, ((u64)txdr->dma >> 32));
999 ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1000 ew32(TDH, 0);
1001 ew32(TDT, 0);
1002 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1003 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1004 E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1006 for (i = 0; i < txdr->count; i++) {
1007 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1008 struct sk_buff *skb;
1009 unsigned int size = 1024;
1011 skb = alloc_skb(size, GFP_KERNEL);
1012 if (!skb) {
1013 ret_val = 3;
1014 goto err_nomem;
1016 skb_put(skb, size);
1017 txdr->buffer_info[i].skb = skb;
1018 txdr->buffer_info[i].length = skb->len;
1019 txdr->buffer_info[i].dma =
1020 dma_map_single(&pdev->dev, skb->data, skb->len,
1021 DMA_TO_DEVICE);
1022 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1023 tx_desc->lower.data = cpu_to_le32(skb->len);
1024 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1025 E1000_TXD_CMD_IFCS |
1026 E1000_TXD_CMD_RPS);
1027 tx_desc->upper.data = 0;
1030 /* Setup Rx descriptor ring and Rx buffers */
1032 if (!rxdr->count)
1033 rxdr->count = E1000_DEFAULT_RXD;
1035 rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_buffer),
1036 GFP_KERNEL);
1037 if (!rxdr->buffer_info) {
1038 ret_val = 4;
1039 goto err_nomem;
1042 rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1043 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1044 GFP_KERNEL);
1045 if (!rxdr->desc) {
1046 ret_val = 5;
1047 goto err_nomem;
1049 memset(rxdr->desc, 0, rxdr->size);
1050 rxdr->next_to_use = rxdr->next_to_clean = 0;
1052 rctl = er32(RCTL);
1053 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1054 ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1055 ew32(RDBAH, ((u64)rxdr->dma >> 32));
1056 ew32(RDLEN, rxdr->size);
1057 ew32(RDH, 0);
1058 ew32(RDT, 0);
1059 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1060 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1061 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1062 ew32(RCTL, rctl);
1064 for (i = 0; i < rxdr->count; i++) {
1065 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1066 struct sk_buff *skb;
1068 skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, GFP_KERNEL);
1069 if (!skb) {
1070 ret_val = 6;
1071 goto err_nomem;
1073 skb_reserve(skb, NET_IP_ALIGN);
1074 rxdr->buffer_info[i].skb = skb;
1075 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1076 rxdr->buffer_info[i].dma =
1077 dma_map_single(&pdev->dev, skb->data,
1078 E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1079 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1080 memset(skb->data, 0x00, skb->len);
1083 return 0;
1085 err_nomem:
1086 e1000_free_desc_rings(adapter);
1087 return ret_val;
1090 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1092 struct e1000_hw *hw = &adapter->hw;
1094 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1095 e1000_write_phy_reg(hw, 29, 0x001F);
1096 e1000_write_phy_reg(hw, 30, 0x8FFC);
1097 e1000_write_phy_reg(hw, 29, 0x001A);
1098 e1000_write_phy_reg(hw, 30, 0x8FF0);
1101 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1103 struct e1000_hw *hw = &adapter->hw;
1104 u16 phy_reg;
1106 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1107 * Extended PHY Specific Control Register to 25MHz clock. This
1108 * value defaults back to a 2.5MHz clock when the PHY is reset.
1110 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1111 phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1112 e1000_write_phy_reg(hw,
1113 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1115 /* In addition, because of the s/w reset above, we need to enable
1116 * CRS on TX. This must be set for both full and half duplex
1117 * operation.
1119 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1120 phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1121 e1000_write_phy_reg(hw,
1122 M88E1000_PHY_SPEC_CTRL, phy_reg);
1125 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1127 struct e1000_hw *hw = &adapter->hw;
1128 u32 ctrl_reg;
1129 u16 phy_reg;
1131 /* Setup the Device Control Register for PHY loopback test. */
1133 ctrl_reg = er32(CTRL);
1134 ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */
1135 E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1136 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1137 E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
1138 E1000_CTRL_FD); /* Force Duplex to FULL */
1140 ew32(CTRL, ctrl_reg);
1142 /* Read the PHY Specific Control Register (0x10) */
1143 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1145 /* Clear Auto-Crossover bits in PHY Specific Control Register
1146 * (bits 6:5).
1148 phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1149 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1151 /* Perform software reset on the PHY */
1152 e1000_phy_reset(hw);
1154 /* Have to setup TX_CLK and TX_CRS after software reset */
1155 e1000_phy_reset_clk_and_crs(adapter);
1157 e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1159 /* Wait for reset to complete. */
1160 udelay(500);
1162 /* Have to setup TX_CLK and TX_CRS after software reset */
1163 e1000_phy_reset_clk_and_crs(adapter);
1165 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1166 e1000_phy_disable_receiver(adapter);
1168 /* Set the loopback bit in the PHY control register. */
1169 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1170 phy_reg |= MII_CR_LOOPBACK;
1171 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1173 /* Setup TX_CLK and TX_CRS one more time. */
1174 e1000_phy_reset_clk_and_crs(adapter);
1176 /* Check Phy Configuration */
1177 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1178 if (phy_reg != 0x4100)
1179 return 9;
1181 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1182 if (phy_reg != 0x0070)
1183 return 10;
1185 e1000_read_phy_reg(hw, 29, &phy_reg);
1186 if (phy_reg != 0x001A)
1187 return 11;
1189 return 0;
1192 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1194 struct e1000_hw *hw = &adapter->hw;
1195 u32 ctrl_reg = 0;
1196 u32 stat_reg = 0;
1198 hw->autoneg = false;
1200 if (hw->phy_type == e1000_phy_m88) {
1201 /* Auto-MDI/MDIX Off */
1202 e1000_write_phy_reg(hw,
1203 M88E1000_PHY_SPEC_CTRL, 0x0808);
1204 /* reset to update Auto-MDI/MDIX */
1205 e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1206 /* autoneg off */
1207 e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1210 ctrl_reg = er32(CTRL);
1212 /* force 1000, set loopback */
1213 e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1215 /* Now set up the MAC to the same speed/duplex as the PHY. */
1216 ctrl_reg = er32(CTRL);
1217 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1218 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1219 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1220 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1221 E1000_CTRL_FD); /* Force Duplex to FULL */
1223 if (hw->media_type == e1000_media_type_copper &&
1224 hw->phy_type == e1000_phy_m88)
1225 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1226 else {
1227 /* Set the ILOS bit on the fiber Nic is half
1228 * duplex link is detected. */
1229 stat_reg = er32(STATUS);
1230 if ((stat_reg & E1000_STATUS_FD) == 0)
1231 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1234 ew32(CTRL, ctrl_reg);
1236 /* Disable the receiver on the PHY so when a cable is plugged in, the
1237 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1239 if (hw->phy_type == e1000_phy_m88)
1240 e1000_phy_disable_receiver(adapter);
1242 udelay(500);
1244 return 0;
1247 static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1249 struct e1000_hw *hw = &adapter->hw;
1250 u16 phy_reg = 0;
1251 u16 count = 0;
1253 switch (hw->mac_type) {
1254 case e1000_82543:
1255 if (hw->media_type == e1000_media_type_copper) {
1256 /* Attempt to setup Loopback mode on Non-integrated PHY.
1257 * Some PHY registers get corrupted at random, so
1258 * attempt this 10 times.
1260 while (e1000_nonintegrated_phy_loopback(adapter) &&
1261 count++ < 10);
1262 if (count < 11)
1263 return 0;
1265 break;
1267 case e1000_82544:
1268 case e1000_82540:
1269 case e1000_82545:
1270 case e1000_82545_rev_3:
1271 case e1000_82546:
1272 case e1000_82546_rev_3:
1273 case e1000_82541:
1274 case e1000_82541_rev_2:
1275 case e1000_82547:
1276 case e1000_82547_rev_2:
1277 return e1000_integrated_phy_loopback(adapter);
1278 break;
1279 default:
1280 /* Default PHY loopback work is to read the MII
1281 * control register and assert bit 14 (loopback mode).
1283 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1284 phy_reg |= MII_CR_LOOPBACK;
1285 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1286 return 0;
1287 break;
1290 return 8;
1293 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1295 struct e1000_hw *hw = &adapter->hw;
1296 u32 rctl;
1298 if (hw->media_type == e1000_media_type_fiber ||
1299 hw->media_type == e1000_media_type_internal_serdes) {
1300 switch (hw->mac_type) {
1301 case e1000_82545:
1302 case e1000_82546:
1303 case e1000_82545_rev_3:
1304 case e1000_82546_rev_3:
1305 return e1000_set_phy_loopback(adapter);
1306 break;
1307 default:
1308 rctl = er32(RCTL);
1309 rctl |= E1000_RCTL_LBM_TCVR;
1310 ew32(RCTL, rctl);
1311 return 0;
1313 } else if (hw->media_type == e1000_media_type_copper)
1314 return e1000_set_phy_loopback(adapter);
1316 return 7;
1319 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1321 struct e1000_hw *hw = &adapter->hw;
1322 u32 rctl;
1323 u16 phy_reg;
1325 rctl = er32(RCTL);
1326 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1327 ew32(RCTL, rctl);
1329 switch (hw->mac_type) {
1330 case e1000_82545:
1331 case e1000_82546:
1332 case e1000_82545_rev_3:
1333 case e1000_82546_rev_3:
1334 default:
1335 hw->autoneg = true;
1336 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1337 if (phy_reg & MII_CR_LOOPBACK) {
1338 phy_reg &= ~MII_CR_LOOPBACK;
1339 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1340 e1000_phy_reset(hw);
1342 break;
1346 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1347 unsigned int frame_size)
1349 memset(skb->data, 0xFF, frame_size);
1350 frame_size &= ~1;
1351 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1352 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1353 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1356 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1357 unsigned int frame_size)
1359 frame_size &= ~1;
1360 if (*(skb->data + 3) == 0xFF) {
1361 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1362 (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1363 return 0;
1366 return 13;
1369 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1371 struct e1000_hw *hw = &adapter->hw;
1372 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1373 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1374 struct pci_dev *pdev = adapter->pdev;
1375 int i, j, k, l, lc, good_cnt, ret_val=0;
1376 unsigned long time;
1378 ew32(RDT, rxdr->count - 1);
1380 /* Calculate the loop count based on the largest descriptor ring
1381 * The idea is to wrap the largest ring a number of times using 64
1382 * send/receive pairs during each loop
1385 if (rxdr->count <= txdr->count)
1386 lc = ((txdr->count / 64) * 2) + 1;
1387 else
1388 lc = ((rxdr->count / 64) * 2) + 1;
1390 k = l = 0;
1391 for (j = 0; j <= lc; j++) { /* loop count loop */
1392 for (i = 0; i < 64; i++) { /* send the packets */
1393 e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1394 1024);
1395 dma_sync_single_for_device(&pdev->dev,
1396 txdr->buffer_info[k].dma,
1397 txdr->buffer_info[k].length,
1398 DMA_TO_DEVICE);
1399 if (unlikely(++k == txdr->count)) k = 0;
1401 ew32(TDT, k);
1402 E1000_WRITE_FLUSH();
1403 msleep(200);
1404 time = jiffies; /* set the start time for the receive */
1405 good_cnt = 0;
1406 do { /* receive the sent packets */
1407 dma_sync_single_for_cpu(&pdev->dev,
1408 rxdr->buffer_info[l].dma,
1409 rxdr->buffer_info[l].length,
1410 DMA_FROM_DEVICE);
1412 ret_val = e1000_check_lbtest_frame(
1413 rxdr->buffer_info[l].skb,
1414 1024);
1415 if (!ret_val)
1416 good_cnt++;
1417 if (unlikely(++l == rxdr->count)) l = 0;
1418 /* time + 20 msecs (200 msecs on 2.4) is more than
1419 * enough time to complete the receives, if it's
1420 * exceeded, break and error off
1422 } while (good_cnt < 64 && jiffies < (time + 20));
1423 if (good_cnt != 64) {
1424 ret_val = 13; /* ret_val is the same as mis-compare */
1425 break;
1427 if (jiffies >= (time + 2)) {
1428 ret_val = 14; /* error code for time out error */
1429 break;
1431 } /* end loop count loop */
1432 return ret_val;
1435 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1437 *data = e1000_setup_desc_rings(adapter);
1438 if (*data)
1439 goto out;
1440 *data = e1000_setup_loopback_test(adapter);
1441 if (*data)
1442 goto err_loopback;
1443 *data = e1000_run_loopback_test(adapter);
1444 e1000_loopback_cleanup(adapter);
1446 err_loopback:
1447 e1000_free_desc_rings(adapter);
1448 out:
1449 return *data;
1452 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1454 struct e1000_hw *hw = &adapter->hw;
1455 *data = 0;
1456 if (hw->media_type == e1000_media_type_internal_serdes) {
1457 int i = 0;
1458 hw->serdes_has_link = false;
1460 /* On some blade server designs, link establishment
1461 * could take as long as 2-3 minutes */
1462 do {
1463 e1000_check_for_link(hw);
1464 if (hw->serdes_has_link)
1465 return *data;
1466 msleep(20);
1467 } while (i++ < 3750);
1469 *data = 1;
1470 } else {
1471 e1000_check_for_link(hw);
1472 if (hw->autoneg) /* if auto_neg is set wait for it */
1473 msleep(4000);
1475 if (!(er32(STATUS) & E1000_STATUS_LU)) {
1476 *data = 1;
1479 return *data;
1482 static int e1000_get_sset_count(struct net_device *netdev, int sset)
1484 switch (sset) {
1485 case ETH_SS_TEST:
1486 return E1000_TEST_LEN;
1487 case ETH_SS_STATS:
1488 return E1000_STATS_LEN;
1489 default:
1490 return -EOPNOTSUPP;
1494 static void e1000_diag_test(struct net_device *netdev,
1495 struct ethtool_test *eth_test, u64 *data)
1497 struct e1000_adapter *adapter = netdev_priv(netdev);
1498 struct e1000_hw *hw = &adapter->hw;
1499 bool if_running = netif_running(netdev);
1501 set_bit(__E1000_TESTING, &adapter->flags);
1502 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1503 /* Offline tests */
1505 /* save speed, duplex, autoneg settings */
1506 u16 autoneg_advertised = hw->autoneg_advertised;
1507 u8 forced_speed_duplex = hw->forced_speed_duplex;
1508 u8 autoneg = hw->autoneg;
1510 e_info(hw, "offline testing starting\n");
1512 /* Link test performed before hardware reset so autoneg doesn't
1513 * interfere with test result */
1514 if (e1000_link_test(adapter, &data[4]))
1515 eth_test->flags |= ETH_TEST_FL_FAILED;
1517 if (if_running)
1518 /* indicate we're in test mode */
1519 dev_close(netdev);
1520 else
1521 e1000_reset(adapter);
1523 if (e1000_reg_test(adapter, &data[0]))
1524 eth_test->flags |= ETH_TEST_FL_FAILED;
1526 e1000_reset(adapter);
1527 if (e1000_eeprom_test(adapter, &data[1]))
1528 eth_test->flags |= ETH_TEST_FL_FAILED;
1530 e1000_reset(adapter);
1531 if (e1000_intr_test(adapter, &data[2]))
1532 eth_test->flags |= ETH_TEST_FL_FAILED;
1534 e1000_reset(adapter);
1535 /* make sure the phy is powered up */
1536 e1000_power_up_phy(adapter);
1537 if (e1000_loopback_test(adapter, &data[3]))
1538 eth_test->flags |= ETH_TEST_FL_FAILED;
1540 /* restore speed, duplex, autoneg settings */
1541 hw->autoneg_advertised = autoneg_advertised;
1542 hw->forced_speed_duplex = forced_speed_duplex;
1543 hw->autoneg = autoneg;
1545 e1000_reset(adapter);
1546 clear_bit(__E1000_TESTING, &adapter->flags);
1547 if (if_running)
1548 dev_open(netdev);
1549 } else {
1550 e_info(hw, "online testing starting\n");
1551 /* Online tests */
1552 if (e1000_link_test(adapter, &data[4]))
1553 eth_test->flags |= ETH_TEST_FL_FAILED;
1555 /* Online tests aren't run; pass by default */
1556 data[0] = 0;
1557 data[1] = 0;
1558 data[2] = 0;
1559 data[3] = 0;
1561 clear_bit(__E1000_TESTING, &adapter->flags);
1563 msleep_interruptible(4 * 1000);
1566 static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1567 struct ethtool_wolinfo *wol)
1569 struct e1000_hw *hw = &adapter->hw;
1570 int retval = 1; /* fail by default */
1572 switch (hw->device_id) {
1573 case E1000_DEV_ID_82542:
1574 case E1000_DEV_ID_82543GC_FIBER:
1575 case E1000_DEV_ID_82543GC_COPPER:
1576 case E1000_DEV_ID_82544EI_FIBER:
1577 case E1000_DEV_ID_82546EB_QUAD_COPPER:
1578 case E1000_DEV_ID_82545EM_FIBER:
1579 case E1000_DEV_ID_82545EM_COPPER:
1580 case E1000_DEV_ID_82546GB_QUAD_COPPER:
1581 case E1000_DEV_ID_82546GB_PCIE:
1582 /* these don't support WoL at all */
1583 wol->supported = 0;
1584 break;
1585 case E1000_DEV_ID_82546EB_FIBER:
1586 case E1000_DEV_ID_82546GB_FIBER:
1587 /* Wake events not supported on port B */
1588 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1589 wol->supported = 0;
1590 break;
1592 /* return success for non excluded adapter ports */
1593 retval = 0;
1594 break;
1595 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1596 /* quad port adapters only support WoL on port A */
1597 if (!adapter->quad_port_a) {
1598 wol->supported = 0;
1599 break;
1601 /* return success for non excluded adapter ports */
1602 retval = 0;
1603 break;
1604 default:
1605 /* dual port cards only support WoL on port A from now on
1606 * unless it was enabled in the eeprom for port B
1607 * so exclude FUNC_1 ports from having WoL enabled */
1608 if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1609 !adapter->eeprom_wol) {
1610 wol->supported = 0;
1611 break;
1614 retval = 0;
1617 return retval;
1620 static void e1000_get_wol(struct net_device *netdev,
1621 struct ethtool_wolinfo *wol)
1623 struct e1000_adapter *adapter = netdev_priv(netdev);
1624 struct e1000_hw *hw = &adapter->hw;
1626 wol->supported = WAKE_UCAST | WAKE_MCAST |
1627 WAKE_BCAST | WAKE_MAGIC;
1628 wol->wolopts = 0;
1630 /* this function will set ->supported = 0 and return 1 if wol is not
1631 * supported by this hardware */
1632 if (e1000_wol_exclusion(adapter, wol) ||
1633 !device_can_wakeup(&adapter->pdev->dev))
1634 return;
1636 /* apply any specific unsupported masks here */
1637 switch (hw->device_id) {
1638 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1639 /* KSP3 does not suppport UCAST wake-ups */
1640 wol->supported &= ~WAKE_UCAST;
1642 if (adapter->wol & E1000_WUFC_EX)
1643 e_err(drv, "Interface does not support directed "
1644 "(unicast) frame wake-up packets\n");
1645 break;
1646 default:
1647 break;
1650 if (adapter->wol & E1000_WUFC_EX)
1651 wol->wolopts |= WAKE_UCAST;
1652 if (adapter->wol & E1000_WUFC_MC)
1653 wol->wolopts |= WAKE_MCAST;
1654 if (adapter->wol & E1000_WUFC_BC)
1655 wol->wolopts |= WAKE_BCAST;
1656 if (adapter->wol & E1000_WUFC_MAG)
1657 wol->wolopts |= WAKE_MAGIC;
1660 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1662 struct e1000_adapter *adapter = netdev_priv(netdev);
1663 struct e1000_hw *hw = &adapter->hw;
1665 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1666 return -EOPNOTSUPP;
1668 if (e1000_wol_exclusion(adapter, wol) ||
1669 !device_can_wakeup(&adapter->pdev->dev))
1670 return wol->wolopts ? -EOPNOTSUPP : 0;
1672 switch (hw->device_id) {
1673 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1674 if (wol->wolopts & WAKE_UCAST) {
1675 e_err(drv, "Interface does not support directed "
1676 "(unicast) frame wake-up packets\n");
1677 return -EOPNOTSUPP;
1679 break;
1680 default:
1681 break;
1684 /* these settings will always override what we currently have */
1685 adapter->wol = 0;
1687 if (wol->wolopts & WAKE_UCAST)
1688 adapter->wol |= E1000_WUFC_EX;
1689 if (wol->wolopts & WAKE_MCAST)
1690 adapter->wol |= E1000_WUFC_MC;
1691 if (wol->wolopts & WAKE_BCAST)
1692 adapter->wol |= E1000_WUFC_BC;
1693 if (wol->wolopts & WAKE_MAGIC)
1694 adapter->wol |= E1000_WUFC_MAG;
1696 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1698 return 0;
1701 static int e1000_set_phys_id(struct net_device *netdev,
1702 enum ethtool_phys_id_state state)
1704 struct e1000_adapter *adapter = netdev_priv(netdev);
1705 struct e1000_hw *hw = &adapter->hw;
1707 switch (state) {
1708 case ETHTOOL_ID_ACTIVE:
1709 e1000_setup_led(hw);
1710 return 2;
1712 case ETHTOOL_ID_ON:
1713 e1000_led_on(hw);
1714 break;
1716 case ETHTOOL_ID_OFF:
1717 e1000_led_off(hw);
1718 break;
1720 case ETHTOOL_ID_INACTIVE:
1721 e1000_cleanup_led(hw);
1724 return 0;
1727 static int e1000_get_coalesce(struct net_device *netdev,
1728 struct ethtool_coalesce *ec)
1730 struct e1000_adapter *adapter = netdev_priv(netdev);
1732 if (adapter->hw.mac_type < e1000_82545)
1733 return -EOPNOTSUPP;
1735 if (adapter->itr_setting <= 4)
1736 ec->rx_coalesce_usecs = adapter->itr_setting;
1737 else
1738 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1740 return 0;
1743 static int e1000_set_coalesce(struct net_device *netdev,
1744 struct ethtool_coalesce *ec)
1746 struct e1000_adapter *adapter = netdev_priv(netdev);
1747 struct e1000_hw *hw = &adapter->hw;
1749 if (hw->mac_type < e1000_82545)
1750 return -EOPNOTSUPP;
1752 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1753 ((ec->rx_coalesce_usecs > 4) &&
1754 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1755 (ec->rx_coalesce_usecs == 2))
1756 return -EINVAL;
1758 if (ec->rx_coalesce_usecs == 4) {
1759 adapter->itr = adapter->itr_setting = 4;
1760 } else if (ec->rx_coalesce_usecs <= 3) {
1761 adapter->itr = 20000;
1762 adapter->itr_setting = ec->rx_coalesce_usecs;
1763 } else {
1764 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1765 adapter->itr_setting = adapter->itr & ~3;
1768 if (adapter->itr_setting != 0)
1769 ew32(ITR, 1000000000 / (adapter->itr * 256));
1770 else
1771 ew32(ITR, 0);
1773 return 0;
1776 static int e1000_nway_reset(struct net_device *netdev)
1778 struct e1000_adapter *adapter = netdev_priv(netdev);
1779 if (netif_running(netdev))
1780 e1000_reinit_locked(adapter);
1781 return 0;
1784 static void e1000_get_ethtool_stats(struct net_device *netdev,
1785 struct ethtool_stats *stats, u64 *data)
1787 struct e1000_adapter *adapter = netdev_priv(netdev);
1788 int i;
1789 char *p = NULL;
1791 e1000_update_stats(adapter);
1792 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1793 switch (e1000_gstrings_stats[i].type) {
1794 case NETDEV_STATS:
1795 p = (char *) netdev +
1796 e1000_gstrings_stats[i].stat_offset;
1797 break;
1798 case E1000_STATS:
1799 p = (char *) adapter +
1800 e1000_gstrings_stats[i].stat_offset;
1801 break;
1804 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1805 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1807 /* BUG_ON(i != E1000_STATS_LEN); */
1810 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1811 u8 *data)
1813 u8 *p = data;
1814 int i;
1816 switch (stringset) {
1817 case ETH_SS_TEST:
1818 memcpy(data, *e1000_gstrings_test,
1819 sizeof(e1000_gstrings_test));
1820 break;
1821 case ETH_SS_STATS:
1822 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1823 memcpy(p, e1000_gstrings_stats[i].stat_string,
1824 ETH_GSTRING_LEN);
1825 p += ETH_GSTRING_LEN;
1827 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1828 break;
1832 static const struct ethtool_ops e1000_ethtool_ops = {
1833 .get_settings = e1000_get_settings,
1834 .set_settings = e1000_set_settings,
1835 .get_drvinfo = e1000_get_drvinfo,
1836 .get_regs_len = e1000_get_regs_len,
1837 .get_regs = e1000_get_regs,
1838 .get_wol = e1000_get_wol,
1839 .set_wol = e1000_set_wol,
1840 .get_msglevel = e1000_get_msglevel,
1841 .set_msglevel = e1000_set_msglevel,
1842 .nway_reset = e1000_nway_reset,
1843 .get_link = e1000_get_link,
1844 .get_eeprom_len = e1000_get_eeprom_len,
1845 .get_eeprom = e1000_get_eeprom,
1846 .set_eeprom = e1000_set_eeprom,
1847 .get_ringparam = e1000_get_ringparam,
1848 .set_ringparam = e1000_set_ringparam,
1849 .get_pauseparam = e1000_get_pauseparam,
1850 .set_pauseparam = e1000_set_pauseparam,
1851 .self_test = e1000_diag_test,
1852 .get_strings = e1000_get_strings,
1853 .set_phys_id = e1000_set_phys_id,
1854 .get_ethtool_stats = e1000_get_ethtool_stats,
1855 .get_sset_count = e1000_get_sset_count,
1856 .get_coalesce = e1000_get_coalesce,
1857 .set_coalesce = e1000_set_coalesce,
1860 void e1000_set_ethtool_ops(struct net_device *netdev)
1862 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);