1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 #include <net/ip6_checksum.h>
32 #include <linux/prefetch.h>
33 #include <linux/bitops.h>
34 #include <linux/if_vlan.h>
36 /* Intel Media SOC GbE MDIO physical base address */
37 static unsigned long ce4100_gbe_mdio_base_phy
;
38 /* Intel Media SOC GbE MDIO virtual base address */
39 void __iomem
*ce4100_gbe_mdio_base_virt
;
41 char e1000_driver_name
[] = "e1000";
42 static char e1000_driver_string
[] = "Intel(R) PRO/1000 Network Driver";
43 #define DRV_VERSION "7.3.21-k8-NAPI"
44 const char e1000_driver_version
[] = DRV_VERSION
;
45 static const char e1000_copyright
[] = "Copyright (c) 1999-2006 Intel Corporation.";
47 /* e1000_pci_tbl - PCI Device ID Table
49 * Last entry must be all 0s
52 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
54 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl
) = {
55 INTEL_E1000_ETHERNET_DEVICE(0x1000),
56 INTEL_E1000_ETHERNET_DEVICE(0x1001),
57 INTEL_E1000_ETHERNET_DEVICE(0x1004),
58 INTEL_E1000_ETHERNET_DEVICE(0x1008),
59 INTEL_E1000_ETHERNET_DEVICE(0x1009),
60 INTEL_E1000_ETHERNET_DEVICE(0x100C),
61 INTEL_E1000_ETHERNET_DEVICE(0x100D),
62 INTEL_E1000_ETHERNET_DEVICE(0x100E),
63 INTEL_E1000_ETHERNET_DEVICE(0x100F),
64 INTEL_E1000_ETHERNET_DEVICE(0x1010),
65 INTEL_E1000_ETHERNET_DEVICE(0x1011),
66 INTEL_E1000_ETHERNET_DEVICE(0x1012),
67 INTEL_E1000_ETHERNET_DEVICE(0x1013),
68 INTEL_E1000_ETHERNET_DEVICE(0x1014),
69 INTEL_E1000_ETHERNET_DEVICE(0x1015),
70 INTEL_E1000_ETHERNET_DEVICE(0x1016),
71 INTEL_E1000_ETHERNET_DEVICE(0x1017),
72 INTEL_E1000_ETHERNET_DEVICE(0x1018),
73 INTEL_E1000_ETHERNET_DEVICE(0x1019),
74 INTEL_E1000_ETHERNET_DEVICE(0x101A),
75 INTEL_E1000_ETHERNET_DEVICE(0x101D),
76 INTEL_E1000_ETHERNET_DEVICE(0x101E),
77 INTEL_E1000_ETHERNET_DEVICE(0x1026),
78 INTEL_E1000_ETHERNET_DEVICE(0x1027),
79 INTEL_E1000_ETHERNET_DEVICE(0x1028),
80 INTEL_E1000_ETHERNET_DEVICE(0x1075),
81 INTEL_E1000_ETHERNET_DEVICE(0x1076),
82 INTEL_E1000_ETHERNET_DEVICE(0x1077),
83 INTEL_E1000_ETHERNET_DEVICE(0x1078),
84 INTEL_E1000_ETHERNET_DEVICE(0x1079),
85 INTEL_E1000_ETHERNET_DEVICE(0x107A),
86 INTEL_E1000_ETHERNET_DEVICE(0x107B),
87 INTEL_E1000_ETHERNET_DEVICE(0x107C),
88 INTEL_E1000_ETHERNET_DEVICE(0x108A),
89 INTEL_E1000_ETHERNET_DEVICE(0x1099),
90 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
91 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
92 /* required last entry */
96 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
98 int e1000_up(struct e1000_adapter
*adapter
);
99 void e1000_down(struct e1000_adapter
*adapter
);
100 void e1000_reinit_locked(struct e1000_adapter
*adapter
);
101 void e1000_reset(struct e1000_adapter
*adapter
);
102 int e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
);
103 int e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
);
104 void e1000_free_all_tx_resources(struct e1000_adapter
*adapter
);
105 void e1000_free_all_rx_resources(struct e1000_adapter
*adapter
);
106 static int e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
107 struct e1000_tx_ring
*txdr
);
108 static int e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
109 struct e1000_rx_ring
*rxdr
);
110 static void e1000_free_tx_resources(struct e1000_adapter
*adapter
,
111 struct e1000_tx_ring
*tx_ring
);
112 static void e1000_free_rx_resources(struct e1000_adapter
*adapter
,
113 struct e1000_rx_ring
*rx_ring
);
114 void e1000_update_stats(struct e1000_adapter
*adapter
);
116 static int e1000_init_module(void);
117 static void e1000_exit_module(void);
118 static int e1000_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
);
119 static void __devexit
e1000_remove(struct pci_dev
*pdev
);
120 static int e1000_alloc_queues(struct e1000_adapter
*adapter
);
121 static int e1000_sw_init(struct e1000_adapter
*adapter
);
122 static int e1000_open(struct net_device
*netdev
);
123 static int e1000_close(struct net_device
*netdev
);
124 static void e1000_configure_tx(struct e1000_adapter
*adapter
);
125 static void e1000_configure_rx(struct e1000_adapter
*adapter
);
126 static void e1000_setup_rctl(struct e1000_adapter
*adapter
);
127 static void e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
);
128 static void e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
);
129 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
130 struct e1000_tx_ring
*tx_ring
);
131 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
132 struct e1000_rx_ring
*rx_ring
);
133 static void e1000_set_rx_mode(struct net_device
*netdev
);
134 static void e1000_update_phy_info(unsigned long data
);
135 static void e1000_update_phy_info_task(struct work_struct
*work
);
136 static void e1000_watchdog(unsigned long data
);
137 static void e1000_82547_tx_fifo_stall(unsigned long data
);
138 static void e1000_82547_tx_fifo_stall_task(struct work_struct
*work
);
139 static netdev_tx_t
e1000_xmit_frame(struct sk_buff
*skb
,
140 struct net_device
*netdev
);
141 static struct net_device_stats
* e1000_get_stats(struct net_device
*netdev
);
142 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
);
143 static int e1000_set_mac(struct net_device
*netdev
, void *p
);
144 static irqreturn_t
e1000_intr(int irq
, void *data
);
145 static bool e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
146 struct e1000_tx_ring
*tx_ring
);
147 static int e1000_clean(struct napi_struct
*napi
, int budget
);
148 static bool e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
149 struct e1000_rx_ring
*rx_ring
,
150 int *work_done
, int work_to_do
);
151 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter
*adapter
,
152 struct e1000_rx_ring
*rx_ring
,
153 int *work_done
, int work_to_do
);
154 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
155 struct e1000_rx_ring
*rx_ring
,
157 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter
*adapter
,
158 struct e1000_rx_ring
*rx_ring
,
160 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
);
161 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
163 static void e1000_enter_82542_rst(struct e1000_adapter
*adapter
);
164 static void e1000_leave_82542_rst(struct e1000_adapter
*adapter
);
165 static void e1000_tx_timeout(struct net_device
*dev
);
166 static void e1000_reset_task(struct work_struct
*work
);
167 static void e1000_smartspeed(struct e1000_adapter
*adapter
);
168 static int e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
,
169 struct sk_buff
*skb
);
171 static bool e1000_vlan_used(struct e1000_adapter
*adapter
);
172 static void e1000_vlan_mode(struct net_device
*netdev
, u32 features
);
173 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
);
174 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
);
175 static void e1000_restore_vlan(struct e1000_adapter
*adapter
);
178 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
);
179 static int e1000_resume(struct pci_dev
*pdev
);
181 static void e1000_shutdown(struct pci_dev
*pdev
);
183 #ifdef CONFIG_NET_POLL_CONTROLLER
184 /* for netdump / net console */
185 static void e1000_netpoll (struct net_device
*netdev
);
188 #define COPYBREAK_DEFAULT 256
189 static unsigned int copybreak __read_mostly
= COPYBREAK_DEFAULT
;
190 module_param(copybreak
, uint
, 0644);
191 MODULE_PARM_DESC(copybreak
,
192 "Maximum size of packet that is copied to a new buffer on receive");
194 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
195 pci_channel_state_t state
);
196 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
);
197 static void e1000_io_resume(struct pci_dev
*pdev
);
199 static struct pci_error_handlers e1000_err_handler
= {
200 .error_detected
= e1000_io_error_detected
,
201 .slot_reset
= e1000_io_slot_reset
,
202 .resume
= e1000_io_resume
,
205 static struct pci_driver e1000_driver
= {
206 .name
= e1000_driver_name
,
207 .id_table
= e1000_pci_tbl
,
208 .probe
= e1000_probe
,
209 .remove
= __devexit_p(e1000_remove
),
211 /* Power Management Hooks */
212 .suspend
= e1000_suspend
,
213 .resume
= e1000_resume
,
215 .shutdown
= e1000_shutdown
,
216 .err_handler
= &e1000_err_handler
219 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
220 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
221 MODULE_LICENSE("GPL");
222 MODULE_VERSION(DRV_VERSION
);
224 static int debug
= NETIF_MSG_DRV
| NETIF_MSG_PROBE
;
225 module_param(debug
, int, 0);
226 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
229 * e1000_get_hw_dev - return device
230 * used by hardware layer to print debugging information
233 struct net_device
*e1000_get_hw_dev(struct e1000_hw
*hw
)
235 struct e1000_adapter
*adapter
= hw
->back
;
236 return adapter
->netdev
;
240 * e1000_init_module - Driver Registration Routine
242 * e1000_init_module is the first routine called when the driver is
243 * loaded. All it does is register with the PCI subsystem.
246 static int __init
e1000_init_module(void)
249 pr_info("%s - version %s\n", e1000_driver_string
, e1000_driver_version
);
251 pr_info("%s\n", e1000_copyright
);
253 ret
= pci_register_driver(&e1000_driver
);
254 if (copybreak
!= COPYBREAK_DEFAULT
) {
256 pr_info("copybreak disabled\n");
258 pr_info("copybreak enabled for "
259 "packets <= %u bytes\n", copybreak
);
264 module_init(e1000_init_module
);
267 * e1000_exit_module - Driver Exit Cleanup Routine
269 * e1000_exit_module is called just before the driver is removed
273 static void __exit
e1000_exit_module(void)
275 pci_unregister_driver(&e1000_driver
);
278 module_exit(e1000_exit_module
);
280 static int e1000_request_irq(struct e1000_adapter
*adapter
)
282 struct net_device
*netdev
= adapter
->netdev
;
283 irq_handler_t handler
= e1000_intr
;
284 int irq_flags
= IRQF_SHARED
;
287 err
= request_irq(adapter
->pdev
->irq
, handler
, irq_flags
, netdev
->name
,
290 e_err(probe
, "Unable to allocate interrupt Error: %d\n", err
);
296 static void e1000_free_irq(struct e1000_adapter
*adapter
)
298 struct net_device
*netdev
= adapter
->netdev
;
300 free_irq(adapter
->pdev
->irq
, netdev
);
304 * e1000_irq_disable - Mask off interrupt generation on the NIC
305 * @adapter: board private structure
308 static void e1000_irq_disable(struct e1000_adapter
*adapter
)
310 struct e1000_hw
*hw
= &adapter
->hw
;
314 synchronize_irq(adapter
->pdev
->irq
);
318 * e1000_irq_enable - Enable default interrupt generation settings
319 * @adapter: board private structure
322 static void e1000_irq_enable(struct e1000_adapter
*adapter
)
324 struct e1000_hw
*hw
= &adapter
->hw
;
326 ew32(IMS
, IMS_ENABLE_MASK
);
330 static void e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
332 struct e1000_hw
*hw
= &adapter
->hw
;
333 struct net_device
*netdev
= adapter
->netdev
;
334 u16 vid
= hw
->mng_cookie
.vlan_id
;
335 u16 old_vid
= adapter
->mng_vlan_id
;
337 if (!e1000_vlan_used(adapter
))
340 if (!test_bit(vid
, adapter
->active_vlans
)) {
341 if (hw
->mng_cookie
.status
&
342 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) {
343 e1000_vlan_rx_add_vid(netdev
, vid
);
344 adapter
->mng_vlan_id
= vid
;
346 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
348 if ((old_vid
!= (u16
)E1000_MNG_VLAN_NONE
) &&
350 !test_bit(old_vid
, adapter
->active_vlans
))
351 e1000_vlan_rx_kill_vid(netdev
, old_vid
);
353 adapter
->mng_vlan_id
= vid
;
357 static void e1000_init_manageability(struct e1000_adapter
*adapter
)
359 struct e1000_hw
*hw
= &adapter
->hw
;
361 if (adapter
->en_mng_pt
) {
362 u32 manc
= er32(MANC
);
364 /* disable hardware interception of ARP */
365 manc
&= ~(E1000_MANC_ARP_EN
);
371 static void e1000_release_manageability(struct e1000_adapter
*adapter
)
373 struct e1000_hw
*hw
= &adapter
->hw
;
375 if (adapter
->en_mng_pt
) {
376 u32 manc
= er32(MANC
);
378 /* re-enable hardware interception of ARP */
379 manc
|= E1000_MANC_ARP_EN
;
386 * e1000_configure - configure the hardware for RX and TX
387 * @adapter = private board structure
389 static void e1000_configure(struct e1000_adapter
*adapter
)
391 struct net_device
*netdev
= adapter
->netdev
;
394 e1000_set_rx_mode(netdev
);
396 e1000_restore_vlan(adapter
);
397 e1000_init_manageability(adapter
);
399 e1000_configure_tx(adapter
);
400 e1000_setup_rctl(adapter
);
401 e1000_configure_rx(adapter
);
402 /* call E1000_DESC_UNUSED which always leaves
403 * at least 1 descriptor unused to make sure
404 * next_to_use != next_to_clean */
405 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
406 struct e1000_rx_ring
*ring
= &adapter
->rx_ring
[i
];
407 adapter
->alloc_rx_buf(adapter
, ring
,
408 E1000_DESC_UNUSED(ring
));
412 int e1000_up(struct e1000_adapter
*adapter
)
414 struct e1000_hw
*hw
= &adapter
->hw
;
416 /* hardware has been reset, we need to reload some things */
417 e1000_configure(adapter
);
419 clear_bit(__E1000_DOWN
, &adapter
->flags
);
421 napi_enable(&adapter
->napi
);
423 e1000_irq_enable(adapter
);
425 netif_wake_queue(adapter
->netdev
);
427 /* fire a link change interrupt to start the watchdog */
428 ew32(ICS
, E1000_ICS_LSC
);
433 * e1000_power_up_phy - restore link in case the phy was powered down
434 * @adapter: address of board private structure
436 * The phy may be powered down to save power and turn off link when the
437 * driver is unloaded and wake on lan is not enabled (among others)
438 * *** this routine MUST be followed by a call to e1000_reset ***
442 void e1000_power_up_phy(struct e1000_adapter
*adapter
)
444 struct e1000_hw
*hw
= &adapter
->hw
;
447 /* Just clear the power down bit to wake the phy back up */
448 if (hw
->media_type
== e1000_media_type_copper
) {
449 /* according to the manual, the phy will retain its
450 * settings across a power-down/up cycle */
451 e1000_read_phy_reg(hw
, PHY_CTRL
, &mii_reg
);
452 mii_reg
&= ~MII_CR_POWER_DOWN
;
453 e1000_write_phy_reg(hw
, PHY_CTRL
, mii_reg
);
457 static void e1000_power_down_phy(struct e1000_adapter
*adapter
)
459 struct e1000_hw
*hw
= &adapter
->hw
;
461 /* Power down the PHY so no link is implied when interface is down *
462 * The PHY cannot be powered down if any of the following is true *
465 * (c) SoL/IDER session is active */
466 if (!adapter
->wol
&& hw
->mac_type
>= e1000_82540
&&
467 hw
->media_type
== e1000_media_type_copper
) {
470 switch (hw
->mac_type
) {
473 case e1000_82545_rev_3
:
476 case e1000_82546_rev_3
:
478 case e1000_82541_rev_2
:
480 case e1000_82547_rev_2
:
481 if (er32(MANC
) & E1000_MANC_SMBUS_EN
)
487 e1000_read_phy_reg(hw
, PHY_CTRL
, &mii_reg
);
488 mii_reg
|= MII_CR_POWER_DOWN
;
489 e1000_write_phy_reg(hw
, PHY_CTRL
, mii_reg
);
496 void e1000_down(struct e1000_adapter
*adapter
)
498 struct e1000_hw
*hw
= &adapter
->hw
;
499 struct net_device
*netdev
= adapter
->netdev
;
503 /* disable receives in the hardware */
505 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
506 /* flush and sleep below */
508 netif_tx_disable(netdev
);
510 /* disable transmits in the hardware */
512 tctl
&= ~E1000_TCTL_EN
;
514 /* flush both disables and wait for them to finish */
518 napi_disable(&adapter
->napi
);
520 e1000_irq_disable(adapter
);
523 * Setting DOWN must be after irq_disable to prevent
524 * a screaming interrupt. Setting DOWN also prevents
525 * timers and tasks from rescheduling.
527 set_bit(__E1000_DOWN
, &adapter
->flags
);
529 del_timer_sync(&adapter
->tx_fifo_stall_timer
);
530 del_timer_sync(&adapter
->watchdog_timer
);
531 del_timer_sync(&adapter
->phy_info_timer
);
533 adapter
->link_speed
= 0;
534 adapter
->link_duplex
= 0;
535 netif_carrier_off(netdev
);
537 e1000_reset(adapter
);
538 e1000_clean_all_tx_rings(adapter
);
539 e1000_clean_all_rx_rings(adapter
);
542 static void e1000_reinit_safe(struct e1000_adapter
*adapter
)
544 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
550 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
553 void e1000_reinit_locked(struct e1000_adapter
*adapter
)
555 /* if rtnl_lock is not held the call path is bogus */
557 WARN_ON(in_interrupt());
558 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
562 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
565 void e1000_reset(struct e1000_adapter
*adapter
)
567 struct e1000_hw
*hw
= &adapter
->hw
;
568 u32 pba
= 0, tx_space
, min_tx_space
, min_rx_space
;
569 bool legacy_pba_adjust
= false;
572 /* Repartition Pba for greater than 9k mtu
573 * To take effect CTRL.RST is required.
576 switch (hw
->mac_type
) {
577 case e1000_82542_rev2_0
:
578 case e1000_82542_rev2_1
:
583 case e1000_82541_rev_2
:
584 legacy_pba_adjust
= true;
588 case e1000_82545_rev_3
:
591 case e1000_82546_rev_3
:
595 case e1000_82547_rev_2
:
596 legacy_pba_adjust
= true;
599 case e1000_undefined
:
604 if (legacy_pba_adjust
) {
605 if (hw
->max_frame_size
> E1000_RXBUFFER_8192
)
606 pba
-= 8; /* allocate more FIFO for Tx */
608 if (hw
->mac_type
== e1000_82547
) {
609 adapter
->tx_fifo_head
= 0;
610 adapter
->tx_head_addr
= pba
<< E1000_TX_HEAD_ADDR_SHIFT
;
611 adapter
->tx_fifo_size
=
612 (E1000_PBA_40K
- pba
) << E1000_PBA_BYTES_SHIFT
;
613 atomic_set(&adapter
->tx_fifo_stall
, 0);
615 } else if (hw
->max_frame_size
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
616 /* adjust PBA for jumbo frames */
619 /* To maintain wire speed transmits, the Tx FIFO should be
620 * large enough to accommodate two full transmit packets,
621 * rounded up to the next 1KB and expressed in KB. Likewise,
622 * the Rx FIFO should be large enough to accommodate at least
623 * one full receive packet and is similarly rounded up and
624 * expressed in KB. */
626 /* upper 16 bits has Tx packet buffer allocation size in KB */
627 tx_space
= pba
>> 16;
628 /* lower 16 bits has Rx packet buffer allocation size in KB */
631 * the tx fifo also stores 16 bytes of information about the tx
632 * but don't include ethernet FCS because hardware appends it
634 min_tx_space
= (hw
->max_frame_size
+
635 sizeof(struct e1000_tx_desc
) -
637 min_tx_space
= ALIGN(min_tx_space
, 1024);
639 /* software strips receive CRC, so leave room for it */
640 min_rx_space
= hw
->max_frame_size
;
641 min_rx_space
= ALIGN(min_rx_space
, 1024);
644 /* If current Tx allocation is less than the min Tx FIFO size,
645 * and the min Tx FIFO size is less than the current Rx FIFO
646 * allocation, take space away from current Rx allocation */
647 if (tx_space
< min_tx_space
&&
648 ((min_tx_space
- tx_space
) < pba
)) {
649 pba
= pba
- (min_tx_space
- tx_space
);
651 /* PCI/PCIx hardware has PBA alignment constraints */
652 switch (hw
->mac_type
) {
653 case e1000_82545
... e1000_82546_rev_3
:
654 pba
&= ~(E1000_PBA_8K
- 1);
660 /* if short on rx space, rx wins and must trump tx
661 * adjustment or use Early Receive if available */
662 if (pba
< min_rx_space
)
670 * flow control settings:
671 * The high water mark must be low enough to fit one full frame
672 * (or the size used for early receive) above it in the Rx FIFO.
673 * Set it to the lower of:
674 * - 90% of the Rx FIFO size, and
675 * - the full Rx FIFO size minus the early receive size (for parts
676 * with ERT support assuming ERT set to E1000_ERT_2048), or
677 * - the full Rx FIFO size minus one full frame
679 hwm
= min(((pba
<< 10) * 9 / 10),
680 ((pba
<< 10) - hw
->max_frame_size
));
682 hw
->fc_high_water
= hwm
& 0xFFF8; /* 8-byte granularity */
683 hw
->fc_low_water
= hw
->fc_high_water
- 8;
684 hw
->fc_pause_time
= E1000_FC_PAUSE_TIME
;
686 hw
->fc
= hw
->original_fc
;
688 /* Allow time for pending master requests to run */
690 if (hw
->mac_type
>= e1000_82544
)
693 if (e1000_init_hw(hw
))
694 e_dev_err("Hardware Error\n");
695 e1000_update_mng_vlan(adapter
);
697 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
698 if (hw
->mac_type
>= e1000_82544
&&
700 hw
->autoneg_advertised
== ADVERTISE_1000_FULL
) {
701 u32 ctrl
= er32(CTRL
);
702 /* clear phy power management bit if we are in gig only mode,
703 * which if enabled will attempt negotiation to 100Mb, which
704 * can cause a loss of link at power off or driver unload */
705 ctrl
&= ~E1000_CTRL_SWDPIN3
;
709 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
710 ew32(VET
, ETHERNET_IEEE_VLAN_TYPE
);
712 e1000_reset_adaptive(hw
);
713 e1000_phy_get_info(hw
, &adapter
->phy_info
);
715 e1000_release_manageability(adapter
);
719 * Dump the eeprom for users having checksum issues
721 static void e1000_dump_eeprom(struct e1000_adapter
*adapter
)
723 struct net_device
*netdev
= adapter
->netdev
;
724 struct ethtool_eeprom eeprom
;
725 const struct ethtool_ops
*ops
= netdev
->ethtool_ops
;
728 u16 csum_old
, csum_new
= 0;
730 eeprom
.len
= ops
->get_eeprom_len(netdev
);
733 data
= kmalloc(eeprom
.len
, GFP_KERNEL
);
735 pr_err("Unable to allocate memory to dump EEPROM data\n");
739 ops
->get_eeprom(netdev
, &eeprom
, data
);
741 csum_old
= (data
[EEPROM_CHECKSUM_REG
* 2]) +
742 (data
[EEPROM_CHECKSUM_REG
* 2 + 1] << 8);
743 for (i
= 0; i
< EEPROM_CHECKSUM_REG
* 2; i
+= 2)
744 csum_new
+= data
[i
] + (data
[i
+ 1] << 8);
745 csum_new
= EEPROM_SUM
- csum_new
;
747 pr_err("/*********************/\n");
748 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old
);
749 pr_err("Calculated : 0x%04x\n", csum_new
);
751 pr_err("Offset Values\n");
752 pr_err("======== ======\n");
753 print_hex_dump(KERN_ERR
, "", DUMP_PREFIX_OFFSET
, 16, 1, data
, 128, 0);
755 pr_err("Include this output when contacting your support provider.\n");
756 pr_err("This is not a software error! Something bad happened to\n");
757 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
758 pr_err("result in further problems, possibly loss of data,\n");
759 pr_err("corruption or system hangs!\n");
760 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
761 pr_err("which is invalid and requires you to set the proper MAC\n");
762 pr_err("address manually before continuing to enable this network\n");
763 pr_err("device. Please inspect the EEPROM dump and report the\n");
764 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
765 pr_err("/*********************/\n");
771 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
772 * @pdev: PCI device information struct
774 * Return true if an adapter needs ioport resources
776 static int e1000_is_need_ioport(struct pci_dev
*pdev
)
778 switch (pdev
->device
) {
779 case E1000_DEV_ID_82540EM
:
780 case E1000_DEV_ID_82540EM_LOM
:
781 case E1000_DEV_ID_82540EP
:
782 case E1000_DEV_ID_82540EP_LOM
:
783 case E1000_DEV_ID_82540EP_LP
:
784 case E1000_DEV_ID_82541EI
:
785 case E1000_DEV_ID_82541EI_MOBILE
:
786 case E1000_DEV_ID_82541ER
:
787 case E1000_DEV_ID_82541ER_LOM
:
788 case E1000_DEV_ID_82541GI
:
789 case E1000_DEV_ID_82541GI_LF
:
790 case E1000_DEV_ID_82541GI_MOBILE
:
791 case E1000_DEV_ID_82544EI_COPPER
:
792 case E1000_DEV_ID_82544EI_FIBER
:
793 case E1000_DEV_ID_82544GC_COPPER
:
794 case E1000_DEV_ID_82544GC_LOM
:
795 case E1000_DEV_ID_82545EM_COPPER
:
796 case E1000_DEV_ID_82545EM_FIBER
:
797 case E1000_DEV_ID_82546EB_COPPER
:
798 case E1000_DEV_ID_82546EB_FIBER
:
799 case E1000_DEV_ID_82546EB_QUAD_COPPER
:
806 static u32
e1000_fix_features(struct net_device
*netdev
, u32 features
)
809 * Since there is no support for separate rx/tx vlan accel
810 * enable/disable make sure tx flag is always in same state as rx.
812 if (features
& NETIF_F_HW_VLAN_RX
)
813 features
|= NETIF_F_HW_VLAN_TX
;
815 features
&= ~NETIF_F_HW_VLAN_TX
;
820 static int e1000_set_features(struct net_device
*netdev
, u32 features
)
822 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
823 u32 changed
= features
^ netdev
->features
;
825 if (changed
& NETIF_F_HW_VLAN_RX
)
826 e1000_vlan_mode(netdev
, features
);
828 if (!(changed
& NETIF_F_RXCSUM
))
831 adapter
->rx_csum
= !!(features
& NETIF_F_RXCSUM
);
833 if (netif_running(netdev
))
834 e1000_reinit_locked(adapter
);
836 e1000_reset(adapter
);
841 static const struct net_device_ops e1000_netdev_ops
= {
842 .ndo_open
= e1000_open
,
843 .ndo_stop
= e1000_close
,
844 .ndo_start_xmit
= e1000_xmit_frame
,
845 .ndo_get_stats
= e1000_get_stats
,
846 .ndo_set_rx_mode
= e1000_set_rx_mode
,
847 .ndo_set_mac_address
= e1000_set_mac
,
848 .ndo_tx_timeout
= e1000_tx_timeout
,
849 .ndo_change_mtu
= e1000_change_mtu
,
850 .ndo_do_ioctl
= e1000_ioctl
,
851 .ndo_validate_addr
= eth_validate_addr
,
852 .ndo_vlan_rx_add_vid
= e1000_vlan_rx_add_vid
,
853 .ndo_vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
,
854 #ifdef CONFIG_NET_POLL_CONTROLLER
855 .ndo_poll_controller
= e1000_netpoll
,
857 .ndo_fix_features
= e1000_fix_features
,
858 .ndo_set_features
= e1000_set_features
,
862 * e1000_init_hw_struct - initialize members of hw struct
863 * @adapter: board private struct
864 * @hw: structure used by e1000_hw.c
866 * Factors out initialization of the e1000_hw struct to its own function
867 * that can be called very early at init (just after struct allocation).
868 * Fields are initialized based on PCI device information and
869 * OS network device settings (MTU size).
870 * Returns negative error codes if MAC type setup fails.
872 static int e1000_init_hw_struct(struct e1000_adapter
*adapter
,
875 struct pci_dev
*pdev
= adapter
->pdev
;
877 /* PCI config space info */
878 hw
->vendor_id
= pdev
->vendor
;
879 hw
->device_id
= pdev
->device
;
880 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
881 hw
->subsystem_id
= pdev
->subsystem_device
;
882 hw
->revision_id
= pdev
->revision
;
884 pci_read_config_word(pdev
, PCI_COMMAND
, &hw
->pci_cmd_word
);
886 hw
->max_frame_size
= adapter
->netdev
->mtu
+
887 ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
888 hw
->min_frame_size
= MINIMUM_ETHERNET_FRAME_SIZE
;
890 /* identify the MAC */
891 if (e1000_set_mac_type(hw
)) {
892 e_err(probe
, "Unknown MAC Type\n");
896 switch (hw
->mac_type
) {
901 case e1000_82541_rev_2
:
902 case e1000_82547_rev_2
:
903 hw
->phy_init_script
= 1;
907 e1000_set_media_type(hw
);
908 e1000_get_bus_info(hw
);
910 hw
->wait_autoneg_complete
= false;
911 hw
->tbi_compatibility_en
= true;
912 hw
->adaptive_ifs
= true;
916 if (hw
->media_type
== e1000_media_type_copper
) {
917 hw
->mdix
= AUTO_ALL_MODES
;
918 hw
->disable_polarity_correction
= false;
919 hw
->master_slave
= E1000_MASTER_SLAVE
;
926 * e1000_probe - Device Initialization Routine
927 * @pdev: PCI device information struct
928 * @ent: entry in e1000_pci_tbl
930 * Returns 0 on success, negative on failure
932 * e1000_probe initializes an adapter identified by a pci_dev structure.
933 * The OS initialization, configuring of the adapter private structure,
934 * and a hardware reset occur.
936 static int __devinit
e1000_probe(struct pci_dev
*pdev
,
937 const struct pci_device_id
*ent
)
939 struct net_device
*netdev
;
940 struct e1000_adapter
*adapter
;
943 static int cards_found
= 0;
944 static int global_quad_port_a
= 0; /* global ksp3 port a indication */
945 int i
, err
, pci_using_dac
;
948 u16 eeprom_apme_mask
= E1000_EEPROM_APME
;
949 int bars
, need_ioport
;
951 /* do not allocate ioport bars when not needed */
952 need_ioport
= e1000_is_need_ioport(pdev
);
954 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
| IORESOURCE_IO
);
955 err
= pci_enable_device(pdev
);
957 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
);
958 err
= pci_enable_device_mem(pdev
);
963 err
= pci_request_selected_regions(pdev
, bars
, e1000_driver_name
);
967 pci_set_master(pdev
);
968 err
= pci_save_state(pdev
);
970 goto err_alloc_etherdev
;
973 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
975 goto err_alloc_etherdev
;
977 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
979 pci_set_drvdata(pdev
, netdev
);
980 adapter
= netdev_priv(netdev
);
981 adapter
->netdev
= netdev
;
982 adapter
->pdev
= pdev
;
983 adapter
->msg_enable
= (1 << debug
) - 1;
984 adapter
->bars
= bars
;
985 adapter
->need_ioport
= need_ioport
;
991 hw
->hw_addr
= pci_ioremap_bar(pdev
, BAR_0
);
995 if (adapter
->need_ioport
) {
996 for (i
= BAR_1
; i
<= BAR_5
; i
++) {
997 if (pci_resource_len(pdev
, i
) == 0)
999 if (pci_resource_flags(pdev
, i
) & IORESOURCE_IO
) {
1000 hw
->io_base
= pci_resource_start(pdev
, i
);
1006 /* make ready for any if (hw->...) below */
1007 err
= e1000_init_hw_struct(adapter
, hw
);
1012 * there is a workaround being applied below that limits
1013 * 64-bit DMA addresses to 64-bit hardware. There are some
1014 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1017 if ((hw
->bus_type
== e1000_bus_type_pcix
) &&
1018 !dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(64))) {
1020 * according to DMA-API-HOWTO, coherent calls will always
1021 * succeed if the set call did
1023 dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(64));
1026 err
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(32));
1028 pr_err("No usable DMA config, aborting\n");
1031 dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(32));
1034 netdev
->netdev_ops
= &e1000_netdev_ops
;
1035 e1000_set_ethtool_ops(netdev
);
1036 netdev
->watchdog_timeo
= 5 * HZ
;
1037 netif_napi_add(netdev
, &adapter
->napi
, e1000_clean
, 64);
1039 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
1041 adapter
->bd_number
= cards_found
;
1043 /* setup the private structure */
1045 err
= e1000_sw_init(adapter
);
1050 if (hw
->mac_type
== e1000_ce4100
) {
1051 ce4100_gbe_mdio_base_phy
= pci_resource_start(pdev
, BAR_1
);
1052 ce4100_gbe_mdio_base_virt
= ioremap(ce4100_gbe_mdio_base_phy
,
1053 pci_resource_len(pdev
, BAR_1
));
1055 if (!ce4100_gbe_mdio_base_virt
)
1056 goto err_mdio_ioremap
;
1059 if (hw
->mac_type
>= e1000_82543
) {
1060 netdev
->hw_features
= NETIF_F_SG
|
1063 netdev
->features
= NETIF_F_HW_VLAN_TX
|
1064 NETIF_F_HW_VLAN_FILTER
;
1067 if ((hw
->mac_type
>= e1000_82544
) &&
1068 (hw
->mac_type
!= e1000_82547
))
1069 netdev
->hw_features
|= NETIF_F_TSO
;
1071 netdev
->features
|= netdev
->hw_features
;
1072 netdev
->hw_features
|= NETIF_F_RXCSUM
;
1074 if (pci_using_dac
) {
1075 netdev
->features
|= NETIF_F_HIGHDMA
;
1076 netdev
->vlan_features
|= NETIF_F_HIGHDMA
;
1079 netdev
->vlan_features
|= NETIF_F_TSO
;
1080 netdev
->vlan_features
|= NETIF_F_HW_CSUM
;
1081 netdev
->vlan_features
|= NETIF_F_SG
;
1083 adapter
->en_mng_pt
= e1000_enable_mng_pass_thru(hw
);
1085 /* initialize eeprom parameters */
1086 if (e1000_init_eeprom_params(hw
)) {
1087 e_err(probe
, "EEPROM initialization failed\n");
1091 /* before reading the EEPROM, reset the controller to
1092 * put the device in a known good starting state */
1096 /* make sure the EEPROM is good */
1097 if (e1000_validate_eeprom_checksum(hw
) < 0) {
1098 e_err(probe
, "The EEPROM Checksum Is Not Valid\n");
1099 e1000_dump_eeprom(adapter
);
1101 * set MAC address to all zeroes to invalidate and temporary
1102 * disable this device for the user. This blocks regular
1103 * traffic while still permitting ethtool ioctls from reaching
1104 * the hardware as well as allowing the user to run the
1105 * interface after manually setting a hw addr using
1108 memset(hw
->mac_addr
, 0, netdev
->addr_len
);
1110 /* copy the MAC address out of the EEPROM */
1111 if (e1000_read_mac_addr(hw
))
1112 e_err(probe
, "EEPROM Read Error\n");
1114 /* don't block initalization here due to bad MAC address */
1115 memcpy(netdev
->dev_addr
, hw
->mac_addr
, netdev
->addr_len
);
1116 memcpy(netdev
->perm_addr
, hw
->mac_addr
, netdev
->addr_len
);
1118 if (!is_valid_ether_addr(netdev
->perm_addr
))
1119 e_err(probe
, "Invalid MAC Address\n");
1121 init_timer(&adapter
->tx_fifo_stall_timer
);
1122 adapter
->tx_fifo_stall_timer
.function
= e1000_82547_tx_fifo_stall
;
1123 adapter
->tx_fifo_stall_timer
.data
= (unsigned long)adapter
;
1125 init_timer(&adapter
->watchdog_timer
);
1126 adapter
->watchdog_timer
.function
= e1000_watchdog
;
1127 adapter
->watchdog_timer
.data
= (unsigned long) adapter
;
1129 init_timer(&adapter
->phy_info_timer
);
1130 adapter
->phy_info_timer
.function
= e1000_update_phy_info
;
1131 adapter
->phy_info_timer
.data
= (unsigned long)adapter
;
1133 INIT_WORK(&adapter
->fifo_stall_task
, e1000_82547_tx_fifo_stall_task
);
1134 INIT_WORK(&adapter
->reset_task
, e1000_reset_task
);
1135 INIT_WORK(&adapter
->phy_info_task
, e1000_update_phy_info_task
);
1137 e1000_check_options(adapter
);
1139 /* Initial Wake on LAN setting
1140 * If APM wake is enabled in the EEPROM,
1141 * enable the ACPI Magic Packet filter
1144 switch (hw
->mac_type
) {
1145 case e1000_82542_rev2_0
:
1146 case e1000_82542_rev2_1
:
1150 e1000_read_eeprom(hw
,
1151 EEPROM_INIT_CONTROL2_REG
, 1, &eeprom_data
);
1152 eeprom_apme_mask
= E1000_EEPROM_82544_APM
;
1155 case e1000_82546_rev_3
:
1156 if (er32(STATUS
) & E1000_STATUS_FUNC_1
){
1157 e1000_read_eeprom(hw
,
1158 EEPROM_INIT_CONTROL3_PORT_B
, 1, &eeprom_data
);
1163 e1000_read_eeprom(hw
,
1164 EEPROM_INIT_CONTROL3_PORT_A
, 1, &eeprom_data
);
1167 if (eeprom_data
& eeprom_apme_mask
)
1168 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
1170 /* now that we have the eeprom settings, apply the special cases
1171 * where the eeprom may be wrong or the board simply won't support
1172 * wake on lan on a particular port */
1173 switch (pdev
->device
) {
1174 case E1000_DEV_ID_82546GB_PCIE
:
1175 adapter
->eeprom_wol
= 0;
1177 case E1000_DEV_ID_82546EB_FIBER
:
1178 case E1000_DEV_ID_82546GB_FIBER
:
1179 /* Wake events only supported on port A for dual fiber
1180 * regardless of eeprom setting */
1181 if (er32(STATUS
) & E1000_STATUS_FUNC_1
)
1182 adapter
->eeprom_wol
= 0;
1184 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1185 /* if quad port adapter, disable WoL on all but port A */
1186 if (global_quad_port_a
!= 0)
1187 adapter
->eeprom_wol
= 0;
1189 adapter
->quad_port_a
= 1;
1190 /* Reset for multiple quad port adapters */
1191 if (++global_quad_port_a
== 4)
1192 global_quad_port_a
= 0;
1196 /* initialize the wol settings based on the eeprom settings */
1197 adapter
->wol
= adapter
->eeprom_wol
;
1198 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
1200 /* Auto detect PHY address */
1201 if (hw
->mac_type
== e1000_ce4100
) {
1202 for (i
= 0; i
< 32; i
++) {
1204 e1000_read_phy_reg(hw
, PHY_ID2
, &tmp
);
1205 if (tmp
== 0 || tmp
== 0xFF) {
1214 /* reset the hardware with the new settings */
1215 e1000_reset(adapter
);
1217 strcpy(netdev
->name
, "eth%d");
1218 err
= register_netdev(netdev
);
1222 e1000_vlan_mode(netdev
, netdev
->features
);
1224 /* print bus type/speed/width info */
1225 e_info(probe
, "(PCI%s:%dMHz:%d-bit) %pM\n",
1226 ((hw
->bus_type
== e1000_bus_type_pcix
) ? "-X" : ""),
1227 ((hw
->bus_speed
== e1000_bus_speed_133
) ? 133 :
1228 (hw
->bus_speed
== e1000_bus_speed_120
) ? 120 :
1229 (hw
->bus_speed
== e1000_bus_speed_100
) ? 100 :
1230 (hw
->bus_speed
== e1000_bus_speed_66
) ? 66 : 33),
1231 ((hw
->bus_width
== e1000_bus_width_64
) ? 64 : 32),
1234 /* carrier off reporting is important to ethtool even BEFORE open */
1235 netif_carrier_off(netdev
);
1237 e_info(probe
, "Intel(R) PRO/1000 Network Connection\n");
1244 e1000_phy_hw_reset(hw
);
1246 if (hw
->flash_address
)
1247 iounmap(hw
->flash_address
);
1248 kfree(adapter
->tx_ring
);
1249 kfree(adapter
->rx_ring
);
1253 iounmap(ce4100_gbe_mdio_base_virt
);
1254 iounmap(hw
->hw_addr
);
1256 free_netdev(netdev
);
1258 pci_release_selected_regions(pdev
, bars
);
1260 pci_disable_device(pdev
);
1265 * e1000_remove - Device Removal Routine
1266 * @pdev: PCI device information struct
1268 * e1000_remove is called by the PCI subsystem to alert the driver
1269 * that it should release a PCI device. The could be caused by a
1270 * Hot-Plug event, or because the driver is going to be removed from
1274 static void __devexit
e1000_remove(struct pci_dev
*pdev
)
1276 struct net_device
*netdev
= pci_get_drvdata(pdev
);
1277 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1278 struct e1000_hw
*hw
= &adapter
->hw
;
1280 set_bit(__E1000_DOWN
, &adapter
->flags
);
1281 del_timer_sync(&adapter
->tx_fifo_stall_timer
);
1282 del_timer_sync(&adapter
->watchdog_timer
);
1283 del_timer_sync(&adapter
->phy_info_timer
);
1285 cancel_work_sync(&adapter
->reset_task
);
1287 e1000_release_manageability(adapter
);
1289 unregister_netdev(netdev
);
1291 e1000_phy_hw_reset(hw
);
1293 kfree(adapter
->tx_ring
);
1294 kfree(adapter
->rx_ring
);
1296 iounmap(hw
->hw_addr
);
1297 if (hw
->flash_address
)
1298 iounmap(hw
->flash_address
);
1299 pci_release_selected_regions(pdev
, adapter
->bars
);
1301 free_netdev(netdev
);
1303 pci_disable_device(pdev
);
1307 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1308 * @adapter: board private structure to initialize
1310 * e1000_sw_init initializes the Adapter private data structure.
1311 * e1000_init_hw_struct MUST be called before this function
1314 static int __devinit
e1000_sw_init(struct e1000_adapter
*adapter
)
1316 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
1318 adapter
->num_tx_queues
= 1;
1319 adapter
->num_rx_queues
= 1;
1321 if (e1000_alloc_queues(adapter
)) {
1322 e_err(probe
, "Unable to allocate memory for queues\n");
1326 /* Explicitly disable IRQ since the NIC can be in any state. */
1327 e1000_irq_disable(adapter
);
1329 spin_lock_init(&adapter
->stats_lock
);
1331 set_bit(__E1000_DOWN
, &adapter
->flags
);
1337 * e1000_alloc_queues - Allocate memory for all rings
1338 * @adapter: board private structure to initialize
1340 * We allocate one ring per queue at run-time since we don't know the
1341 * number of queues at compile-time.
1344 static int __devinit
e1000_alloc_queues(struct e1000_adapter
*adapter
)
1346 adapter
->tx_ring
= kcalloc(adapter
->num_tx_queues
,
1347 sizeof(struct e1000_tx_ring
), GFP_KERNEL
);
1348 if (!adapter
->tx_ring
)
1351 adapter
->rx_ring
= kcalloc(adapter
->num_rx_queues
,
1352 sizeof(struct e1000_rx_ring
), GFP_KERNEL
);
1353 if (!adapter
->rx_ring
) {
1354 kfree(adapter
->tx_ring
);
1358 return E1000_SUCCESS
;
1362 * e1000_open - Called when a network interface is made active
1363 * @netdev: network interface device structure
1365 * Returns 0 on success, negative value on failure
1367 * The open entry point is called when a network interface is made
1368 * active by the system (IFF_UP). At this point all resources needed
1369 * for transmit and receive operations are allocated, the interrupt
1370 * handler is registered with the OS, the watchdog timer is started,
1371 * and the stack is notified that the interface is ready.
1374 static int e1000_open(struct net_device
*netdev
)
1376 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1377 struct e1000_hw
*hw
= &adapter
->hw
;
1380 /* disallow open during test */
1381 if (test_bit(__E1000_TESTING
, &adapter
->flags
))
1384 netif_carrier_off(netdev
);
1386 /* allocate transmit descriptors */
1387 err
= e1000_setup_all_tx_resources(adapter
);
1391 /* allocate receive descriptors */
1392 err
= e1000_setup_all_rx_resources(adapter
);
1396 e1000_power_up_phy(adapter
);
1398 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
1399 if ((hw
->mng_cookie
.status
&
1400 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
)) {
1401 e1000_update_mng_vlan(adapter
);
1404 /* before we allocate an interrupt, we must be ready to handle it.
1405 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1406 * as soon as we call pci_request_irq, so we have to setup our
1407 * clean_rx handler before we do so. */
1408 e1000_configure(adapter
);
1410 err
= e1000_request_irq(adapter
);
1414 /* From here on the code is the same as e1000_up() */
1415 clear_bit(__E1000_DOWN
, &adapter
->flags
);
1417 napi_enable(&adapter
->napi
);
1419 e1000_irq_enable(adapter
);
1421 netif_start_queue(netdev
);
1423 /* fire a link status change interrupt to start the watchdog */
1424 ew32(ICS
, E1000_ICS_LSC
);
1426 return E1000_SUCCESS
;
1429 e1000_power_down_phy(adapter
);
1430 e1000_free_all_rx_resources(adapter
);
1432 e1000_free_all_tx_resources(adapter
);
1434 e1000_reset(adapter
);
1440 * e1000_close - Disables a network interface
1441 * @netdev: network interface device structure
1443 * Returns 0, this is not allowed to fail
1445 * The close entry point is called when an interface is de-activated
1446 * by the OS. The hardware is still under the drivers control, but
1447 * needs to be disabled. A global MAC reset is issued to stop the
1448 * hardware, and all transmit and receive resources are freed.
1451 static int e1000_close(struct net_device
*netdev
)
1453 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1454 struct e1000_hw
*hw
= &adapter
->hw
;
1456 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->flags
));
1457 e1000_down(adapter
);
1458 e1000_power_down_phy(adapter
);
1459 e1000_free_irq(adapter
);
1461 e1000_free_all_tx_resources(adapter
);
1462 e1000_free_all_rx_resources(adapter
);
1464 /* kill manageability vlan ID if supported, but not if a vlan with
1465 * the same ID is registered on the host OS (let 8021q kill it) */
1466 if ((hw
->mng_cookie
.status
&
1467 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
1468 !test_bit(adapter
->mng_vlan_id
, adapter
->active_vlans
)) {
1469 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
1476 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1477 * @adapter: address of board private structure
1478 * @start: address of beginning of memory
1479 * @len: length of memory
1481 static bool e1000_check_64k_bound(struct e1000_adapter
*adapter
, void *start
,
1484 struct e1000_hw
*hw
= &adapter
->hw
;
1485 unsigned long begin
= (unsigned long)start
;
1486 unsigned long end
= begin
+ len
;
1488 /* First rev 82545 and 82546 need to not allow any memory
1489 * write location to cross 64k boundary due to errata 23 */
1490 if (hw
->mac_type
== e1000_82545
||
1491 hw
->mac_type
== e1000_ce4100
||
1492 hw
->mac_type
== e1000_82546
) {
1493 return ((begin
^ (end
- 1)) >> 16) != 0 ? false : true;
1500 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1501 * @adapter: board private structure
1502 * @txdr: tx descriptor ring (for a specific queue) to setup
1504 * Return 0 on success, negative on failure
1507 static int e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
1508 struct e1000_tx_ring
*txdr
)
1510 struct pci_dev
*pdev
= adapter
->pdev
;
1513 size
= sizeof(struct e1000_buffer
) * txdr
->count
;
1514 txdr
->buffer_info
= vzalloc(size
);
1515 if (!txdr
->buffer_info
) {
1516 e_err(probe
, "Unable to allocate memory for the Tx descriptor "
1521 /* round up to nearest 4K */
1523 txdr
->size
= txdr
->count
* sizeof(struct e1000_tx_desc
);
1524 txdr
->size
= ALIGN(txdr
->size
, 4096);
1526 txdr
->desc
= dma_alloc_coherent(&pdev
->dev
, txdr
->size
, &txdr
->dma
,
1530 vfree(txdr
->buffer_info
);
1531 e_err(probe
, "Unable to allocate memory for the Tx descriptor "
1536 /* Fix for errata 23, can't cross 64kB boundary */
1537 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1538 void *olddesc
= txdr
->desc
;
1539 dma_addr_t olddma
= txdr
->dma
;
1540 e_err(tx_err
, "txdr align check failed: %u bytes at %p\n",
1541 txdr
->size
, txdr
->desc
);
1542 /* Try again, without freeing the previous */
1543 txdr
->desc
= dma_alloc_coherent(&pdev
->dev
, txdr
->size
,
1544 &txdr
->dma
, GFP_KERNEL
);
1545 /* Failed allocation, critical failure */
1547 dma_free_coherent(&pdev
->dev
, txdr
->size
, olddesc
,
1549 goto setup_tx_desc_die
;
1552 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1554 dma_free_coherent(&pdev
->dev
, txdr
->size
, txdr
->desc
,
1556 dma_free_coherent(&pdev
->dev
, txdr
->size
, olddesc
,
1558 e_err(probe
, "Unable to allocate aligned memory "
1559 "for the transmit descriptor ring\n");
1560 vfree(txdr
->buffer_info
);
1563 /* Free old allocation, new allocation was successful */
1564 dma_free_coherent(&pdev
->dev
, txdr
->size
, olddesc
,
1568 memset(txdr
->desc
, 0, txdr
->size
);
1570 txdr
->next_to_use
= 0;
1571 txdr
->next_to_clean
= 0;
1577 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1578 * (Descriptors) for all queues
1579 * @adapter: board private structure
1581 * Return 0 on success, negative on failure
1584 int e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
)
1588 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1589 err
= e1000_setup_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1591 e_err(probe
, "Allocation for Tx Queue %u failed\n", i
);
1592 for (i
-- ; i
>= 0; i
--)
1593 e1000_free_tx_resources(adapter
,
1594 &adapter
->tx_ring
[i
]);
1603 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1604 * @adapter: board private structure
1606 * Configure the Tx unit of the MAC after a reset.
1609 static void e1000_configure_tx(struct e1000_adapter
*adapter
)
1612 struct e1000_hw
*hw
= &adapter
->hw
;
1613 u32 tdlen
, tctl
, tipg
;
1616 /* Setup the HW Tx Head and Tail descriptor pointers */
1618 switch (adapter
->num_tx_queues
) {
1621 tdba
= adapter
->tx_ring
[0].dma
;
1622 tdlen
= adapter
->tx_ring
[0].count
*
1623 sizeof(struct e1000_tx_desc
);
1625 ew32(TDBAH
, (tdba
>> 32));
1626 ew32(TDBAL
, (tdba
& 0x00000000ffffffffULL
));
1629 adapter
->tx_ring
[0].tdh
= ((hw
->mac_type
>= e1000_82543
) ? E1000_TDH
: E1000_82542_TDH
);
1630 adapter
->tx_ring
[0].tdt
= ((hw
->mac_type
>= e1000_82543
) ? E1000_TDT
: E1000_82542_TDT
);
1634 /* Set the default values for the Tx Inter Packet Gap timer */
1635 if ((hw
->media_type
== e1000_media_type_fiber
||
1636 hw
->media_type
== e1000_media_type_internal_serdes
))
1637 tipg
= DEFAULT_82543_TIPG_IPGT_FIBER
;
1639 tipg
= DEFAULT_82543_TIPG_IPGT_COPPER
;
1641 switch (hw
->mac_type
) {
1642 case e1000_82542_rev2_0
:
1643 case e1000_82542_rev2_1
:
1644 tipg
= DEFAULT_82542_TIPG_IPGT
;
1645 ipgr1
= DEFAULT_82542_TIPG_IPGR1
;
1646 ipgr2
= DEFAULT_82542_TIPG_IPGR2
;
1649 ipgr1
= DEFAULT_82543_TIPG_IPGR1
;
1650 ipgr2
= DEFAULT_82543_TIPG_IPGR2
;
1653 tipg
|= ipgr1
<< E1000_TIPG_IPGR1_SHIFT
;
1654 tipg
|= ipgr2
<< E1000_TIPG_IPGR2_SHIFT
;
1657 /* Set the Tx Interrupt Delay register */
1659 ew32(TIDV
, adapter
->tx_int_delay
);
1660 if (hw
->mac_type
>= e1000_82540
)
1661 ew32(TADV
, adapter
->tx_abs_int_delay
);
1663 /* Program the Transmit Control Register */
1666 tctl
&= ~E1000_TCTL_CT
;
1667 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
1668 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
1670 e1000_config_collision_dist(hw
);
1672 /* Setup Transmit Descriptor Settings for eop descriptor */
1673 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_IFCS
;
1675 /* only set IDE if we are delaying interrupts using the timers */
1676 if (adapter
->tx_int_delay
)
1677 adapter
->txd_cmd
|= E1000_TXD_CMD_IDE
;
1679 if (hw
->mac_type
< e1000_82543
)
1680 adapter
->txd_cmd
|= E1000_TXD_CMD_RPS
;
1682 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
1684 /* Cache if we're 82544 running in PCI-X because we'll
1685 * need this to apply a workaround later in the send path. */
1686 if (hw
->mac_type
== e1000_82544
&&
1687 hw
->bus_type
== e1000_bus_type_pcix
)
1688 adapter
->pcix_82544
= 1;
1695 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1696 * @adapter: board private structure
1697 * @rxdr: rx descriptor ring (for a specific queue) to setup
1699 * Returns 0 on success, negative on failure
1702 static int e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
1703 struct e1000_rx_ring
*rxdr
)
1705 struct pci_dev
*pdev
= adapter
->pdev
;
1708 size
= sizeof(struct e1000_buffer
) * rxdr
->count
;
1709 rxdr
->buffer_info
= vzalloc(size
);
1710 if (!rxdr
->buffer_info
) {
1711 e_err(probe
, "Unable to allocate memory for the Rx descriptor "
1716 desc_len
= sizeof(struct e1000_rx_desc
);
1718 /* Round up to nearest 4K */
1720 rxdr
->size
= rxdr
->count
* desc_len
;
1721 rxdr
->size
= ALIGN(rxdr
->size
, 4096);
1723 rxdr
->desc
= dma_alloc_coherent(&pdev
->dev
, rxdr
->size
, &rxdr
->dma
,
1727 e_err(probe
, "Unable to allocate memory for the Rx descriptor "
1730 vfree(rxdr
->buffer_info
);
1734 /* Fix for errata 23, can't cross 64kB boundary */
1735 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1736 void *olddesc
= rxdr
->desc
;
1737 dma_addr_t olddma
= rxdr
->dma
;
1738 e_err(rx_err
, "rxdr align check failed: %u bytes at %p\n",
1739 rxdr
->size
, rxdr
->desc
);
1740 /* Try again, without freeing the previous */
1741 rxdr
->desc
= dma_alloc_coherent(&pdev
->dev
, rxdr
->size
,
1742 &rxdr
->dma
, GFP_KERNEL
);
1743 /* Failed allocation, critical failure */
1745 dma_free_coherent(&pdev
->dev
, rxdr
->size
, olddesc
,
1747 e_err(probe
, "Unable to allocate memory for the Rx "
1748 "descriptor ring\n");
1749 goto setup_rx_desc_die
;
1752 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1754 dma_free_coherent(&pdev
->dev
, rxdr
->size
, rxdr
->desc
,
1756 dma_free_coherent(&pdev
->dev
, rxdr
->size
, olddesc
,
1758 e_err(probe
, "Unable to allocate aligned memory for "
1759 "the Rx descriptor ring\n");
1760 goto setup_rx_desc_die
;
1762 /* Free old allocation, new allocation was successful */
1763 dma_free_coherent(&pdev
->dev
, rxdr
->size
, olddesc
,
1767 memset(rxdr
->desc
, 0, rxdr
->size
);
1769 rxdr
->next_to_clean
= 0;
1770 rxdr
->next_to_use
= 0;
1771 rxdr
->rx_skb_top
= NULL
;
1777 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1778 * (Descriptors) for all queues
1779 * @adapter: board private structure
1781 * Return 0 on success, negative on failure
1784 int e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
)
1788 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1789 err
= e1000_setup_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
1791 e_err(probe
, "Allocation for Rx Queue %u failed\n", i
);
1792 for (i
-- ; i
>= 0; i
--)
1793 e1000_free_rx_resources(adapter
,
1794 &adapter
->rx_ring
[i
]);
1803 * e1000_setup_rctl - configure the receive control registers
1804 * @adapter: Board private structure
1806 static void e1000_setup_rctl(struct e1000_adapter
*adapter
)
1808 struct e1000_hw
*hw
= &adapter
->hw
;
1813 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
1815 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
1816 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1817 (hw
->mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1819 if (hw
->tbi_compatibility_on
== 1)
1820 rctl
|= E1000_RCTL_SBP
;
1822 rctl
&= ~E1000_RCTL_SBP
;
1824 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
1825 rctl
&= ~E1000_RCTL_LPE
;
1827 rctl
|= E1000_RCTL_LPE
;
1829 /* Setup buffer sizes */
1830 rctl
&= ~E1000_RCTL_SZ_4096
;
1831 rctl
|= E1000_RCTL_BSEX
;
1832 switch (adapter
->rx_buffer_len
) {
1833 case E1000_RXBUFFER_2048
:
1835 rctl
|= E1000_RCTL_SZ_2048
;
1836 rctl
&= ~E1000_RCTL_BSEX
;
1838 case E1000_RXBUFFER_4096
:
1839 rctl
|= E1000_RCTL_SZ_4096
;
1841 case E1000_RXBUFFER_8192
:
1842 rctl
|= E1000_RCTL_SZ_8192
;
1844 case E1000_RXBUFFER_16384
:
1845 rctl
|= E1000_RCTL_SZ_16384
;
1853 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1854 * @adapter: board private structure
1856 * Configure the Rx unit of the MAC after a reset.
1859 static void e1000_configure_rx(struct e1000_adapter
*adapter
)
1862 struct e1000_hw
*hw
= &adapter
->hw
;
1863 u32 rdlen
, rctl
, rxcsum
;
1865 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
1866 rdlen
= adapter
->rx_ring
[0].count
*
1867 sizeof(struct e1000_rx_desc
);
1868 adapter
->clean_rx
= e1000_clean_jumbo_rx_irq
;
1869 adapter
->alloc_rx_buf
= e1000_alloc_jumbo_rx_buffers
;
1871 rdlen
= adapter
->rx_ring
[0].count
*
1872 sizeof(struct e1000_rx_desc
);
1873 adapter
->clean_rx
= e1000_clean_rx_irq
;
1874 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
1877 /* disable receives while setting up the descriptors */
1879 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1881 /* set the Receive Delay Timer Register */
1882 ew32(RDTR
, adapter
->rx_int_delay
);
1884 if (hw
->mac_type
>= e1000_82540
) {
1885 ew32(RADV
, adapter
->rx_abs_int_delay
);
1886 if (adapter
->itr_setting
!= 0)
1887 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
1890 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1891 * the Base and Length of the Rx Descriptor Ring */
1892 switch (adapter
->num_rx_queues
) {
1895 rdba
= adapter
->rx_ring
[0].dma
;
1897 ew32(RDBAH
, (rdba
>> 32));
1898 ew32(RDBAL
, (rdba
& 0x00000000ffffffffULL
));
1901 adapter
->rx_ring
[0].rdh
= ((hw
->mac_type
>= e1000_82543
) ? E1000_RDH
: E1000_82542_RDH
);
1902 adapter
->rx_ring
[0].rdt
= ((hw
->mac_type
>= e1000_82543
) ? E1000_RDT
: E1000_82542_RDT
);
1906 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1907 if (hw
->mac_type
>= e1000_82543
) {
1908 rxcsum
= er32(RXCSUM
);
1909 if (adapter
->rx_csum
)
1910 rxcsum
|= E1000_RXCSUM_TUOFL
;
1912 /* don't need to clear IPPCSE as it defaults to 0 */
1913 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
1914 ew32(RXCSUM
, rxcsum
);
1917 /* Enable Receives */
1922 * e1000_free_tx_resources - Free Tx Resources per Queue
1923 * @adapter: board private structure
1924 * @tx_ring: Tx descriptor ring for a specific queue
1926 * Free all transmit software resources
1929 static void e1000_free_tx_resources(struct e1000_adapter
*adapter
,
1930 struct e1000_tx_ring
*tx_ring
)
1932 struct pci_dev
*pdev
= adapter
->pdev
;
1934 e1000_clean_tx_ring(adapter
, tx_ring
);
1936 vfree(tx_ring
->buffer_info
);
1937 tx_ring
->buffer_info
= NULL
;
1939 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
1942 tx_ring
->desc
= NULL
;
1946 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1947 * @adapter: board private structure
1949 * Free all transmit software resources
1952 void e1000_free_all_tx_resources(struct e1000_adapter
*adapter
)
1956 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
1957 e1000_free_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1960 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter
*adapter
,
1961 struct e1000_buffer
*buffer_info
)
1963 if (buffer_info
->dma
) {
1964 if (buffer_info
->mapped_as_page
)
1965 dma_unmap_page(&adapter
->pdev
->dev
, buffer_info
->dma
,
1966 buffer_info
->length
, DMA_TO_DEVICE
);
1968 dma_unmap_single(&adapter
->pdev
->dev
, buffer_info
->dma
,
1969 buffer_info
->length
,
1971 buffer_info
->dma
= 0;
1973 if (buffer_info
->skb
) {
1974 dev_kfree_skb_any(buffer_info
->skb
);
1975 buffer_info
->skb
= NULL
;
1977 buffer_info
->time_stamp
= 0;
1978 /* buffer_info must be completely set up in the transmit path */
1982 * e1000_clean_tx_ring - Free Tx Buffers
1983 * @adapter: board private structure
1984 * @tx_ring: ring to be cleaned
1987 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
1988 struct e1000_tx_ring
*tx_ring
)
1990 struct e1000_hw
*hw
= &adapter
->hw
;
1991 struct e1000_buffer
*buffer_info
;
1995 /* Free all the Tx ring sk_buffs */
1997 for (i
= 0; i
< tx_ring
->count
; i
++) {
1998 buffer_info
= &tx_ring
->buffer_info
[i
];
1999 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
2002 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
2003 memset(tx_ring
->buffer_info
, 0, size
);
2005 /* Zero out the descriptor ring */
2007 memset(tx_ring
->desc
, 0, tx_ring
->size
);
2009 tx_ring
->next_to_use
= 0;
2010 tx_ring
->next_to_clean
= 0;
2011 tx_ring
->last_tx_tso
= 0;
2013 writel(0, hw
->hw_addr
+ tx_ring
->tdh
);
2014 writel(0, hw
->hw_addr
+ tx_ring
->tdt
);
2018 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2019 * @adapter: board private structure
2022 static void e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
)
2026 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
2027 e1000_clean_tx_ring(adapter
, &adapter
->tx_ring
[i
]);
2031 * e1000_free_rx_resources - Free Rx Resources
2032 * @adapter: board private structure
2033 * @rx_ring: ring to clean the resources from
2035 * Free all receive software resources
2038 static void e1000_free_rx_resources(struct e1000_adapter
*adapter
,
2039 struct e1000_rx_ring
*rx_ring
)
2041 struct pci_dev
*pdev
= adapter
->pdev
;
2043 e1000_clean_rx_ring(adapter
, rx_ring
);
2045 vfree(rx_ring
->buffer_info
);
2046 rx_ring
->buffer_info
= NULL
;
2048 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
2051 rx_ring
->desc
= NULL
;
2055 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2056 * @adapter: board private structure
2058 * Free all receive software resources
2061 void e1000_free_all_rx_resources(struct e1000_adapter
*adapter
)
2065 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2066 e1000_free_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
2070 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2071 * @adapter: board private structure
2072 * @rx_ring: ring to free buffers from
2075 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
2076 struct e1000_rx_ring
*rx_ring
)
2078 struct e1000_hw
*hw
= &adapter
->hw
;
2079 struct e1000_buffer
*buffer_info
;
2080 struct pci_dev
*pdev
= adapter
->pdev
;
2084 /* Free all the Rx ring sk_buffs */
2085 for (i
= 0; i
< rx_ring
->count
; i
++) {
2086 buffer_info
= &rx_ring
->buffer_info
[i
];
2087 if (buffer_info
->dma
&&
2088 adapter
->clean_rx
== e1000_clean_rx_irq
) {
2089 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
2090 buffer_info
->length
,
2092 } else if (buffer_info
->dma
&&
2093 adapter
->clean_rx
== e1000_clean_jumbo_rx_irq
) {
2094 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
,
2095 buffer_info
->length
,
2099 buffer_info
->dma
= 0;
2100 if (buffer_info
->page
) {
2101 put_page(buffer_info
->page
);
2102 buffer_info
->page
= NULL
;
2104 if (buffer_info
->skb
) {
2105 dev_kfree_skb(buffer_info
->skb
);
2106 buffer_info
->skb
= NULL
;
2110 /* there also may be some cached data from a chained receive */
2111 if (rx_ring
->rx_skb_top
) {
2112 dev_kfree_skb(rx_ring
->rx_skb_top
);
2113 rx_ring
->rx_skb_top
= NULL
;
2116 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
2117 memset(rx_ring
->buffer_info
, 0, size
);
2119 /* Zero out the descriptor ring */
2120 memset(rx_ring
->desc
, 0, rx_ring
->size
);
2122 rx_ring
->next_to_clean
= 0;
2123 rx_ring
->next_to_use
= 0;
2125 writel(0, hw
->hw_addr
+ rx_ring
->rdh
);
2126 writel(0, hw
->hw_addr
+ rx_ring
->rdt
);
2130 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2131 * @adapter: board private structure
2134 static void e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
)
2138 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2139 e1000_clean_rx_ring(adapter
, &adapter
->rx_ring
[i
]);
2142 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2143 * and memory write and invalidate disabled for certain operations
2145 static void e1000_enter_82542_rst(struct e1000_adapter
*adapter
)
2147 struct e1000_hw
*hw
= &adapter
->hw
;
2148 struct net_device
*netdev
= adapter
->netdev
;
2151 e1000_pci_clear_mwi(hw
);
2154 rctl
|= E1000_RCTL_RST
;
2156 E1000_WRITE_FLUSH();
2159 if (netif_running(netdev
))
2160 e1000_clean_all_rx_rings(adapter
);
2163 static void e1000_leave_82542_rst(struct e1000_adapter
*adapter
)
2165 struct e1000_hw
*hw
= &adapter
->hw
;
2166 struct net_device
*netdev
= adapter
->netdev
;
2170 rctl
&= ~E1000_RCTL_RST
;
2172 E1000_WRITE_FLUSH();
2175 if (hw
->pci_cmd_word
& PCI_COMMAND_INVALIDATE
)
2176 e1000_pci_set_mwi(hw
);
2178 if (netif_running(netdev
)) {
2179 /* No need to loop, because 82542 supports only 1 queue */
2180 struct e1000_rx_ring
*ring
= &adapter
->rx_ring
[0];
2181 e1000_configure_rx(adapter
);
2182 adapter
->alloc_rx_buf(adapter
, ring
, E1000_DESC_UNUSED(ring
));
2187 * e1000_set_mac - Change the Ethernet Address of the NIC
2188 * @netdev: network interface device structure
2189 * @p: pointer to an address structure
2191 * Returns 0 on success, negative on failure
2194 static int e1000_set_mac(struct net_device
*netdev
, void *p
)
2196 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2197 struct e1000_hw
*hw
= &adapter
->hw
;
2198 struct sockaddr
*addr
= p
;
2200 if (!is_valid_ether_addr(addr
->sa_data
))
2201 return -EADDRNOTAVAIL
;
2203 /* 82542 2.0 needs to be in reset to write receive address registers */
2205 if (hw
->mac_type
== e1000_82542_rev2_0
)
2206 e1000_enter_82542_rst(adapter
);
2208 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
2209 memcpy(hw
->mac_addr
, addr
->sa_data
, netdev
->addr_len
);
2211 e1000_rar_set(hw
, hw
->mac_addr
, 0);
2213 if (hw
->mac_type
== e1000_82542_rev2_0
)
2214 e1000_leave_82542_rst(adapter
);
2220 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2221 * @netdev: network interface device structure
2223 * The set_rx_mode entry point is called whenever the unicast or multicast
2224 * address lists or the network interface flags are updated. This routine is
2225 * responsible for configuring the hardware for proper unicast, multicast,
2226 * promiscuous mode, and all-multi behavior.
2229 static void e1000_set_rx_mode(struct net_device
*netdev
)
2231 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2232 struct e1000_hw
*hw
= &adapter
->hw
;
2233 struct netdev_hw_addr
*ha
;
2234 bool use_uc
= false;
2237 int i
, rar_entries
= E1000_RAR_ENTRIES
;
2238 int mta_reg_count
= E1000_NUM_MTA_REGISTERS
;
2239 u32
*mcarray
= kcalloc(mta_reg_count
, sizeof(u32
), GFP_ATOMIC
);
2242 e_err(probe
, "memory allocation failed\n");
2246 /* Check for Promiscuous and All Multicast modes */
2250 if (netdev
->flags
& IFF_PROMISC
) {
2251 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2252 rctl
&= ~E1000_RCTL_VFE
;
2254 if (netdev
->flags
& IFF_ALLMULTI
)
2255 rctl
|= E1000_RCTL_MPE
;
2257 rctl
&= ~E1000_RCTL_MPE
;
2258 /* Enable VLAN filter if there is a VLAN */
2259 if (e1000_vlan_used(adapter
))
2260 rctl
|= E1000_RCTL_VFE
;
2263 if (netdev_uc_count(netdev
) > rar_entries
- 1) {
2264 rctl
|= E1000_RCTL_UPE
;
2265 } else if (!(netdev
->flags
& IFF_PROMISC
)) {
2266 rctl
&= ~E1000_RCTL_UPE
;
2272 /* 82542 2.0 needs to be in reset to write receive address registers */
2274 if (hw
->mac_type
== e1000_82542_rev2_0
)
2275 e1000_enter_82542_rst(adapter
);
2277 /* load the first 14 addresses into the exact filters 1-14. Unicast
2278 * addresses take precedence to avoid disabling unicast filtering
2281 * RAR 0 is used for the station MAC address
2282 * if there are not 14 addresses, go ahead and clear the filters
2286 netdev_for_each_uc_addr(ha
, netdev
) {
2287 if (i
== rar_entries
)
2289 e1000_rar_set(hw
, ha
->addr
, i
++);
2292 netdev_for_each_mc_addr(ha
, netdev
) {
2293 if (i
== rar_entries
) {
2294 /* load any remaining addresses into the hash table */
2295 u32 hash_reg
, hash_bit
, mta
;
2296 hash_value
= e1000_hash_mc_addr(hw
, ha
->addr
);
2297 hash_reg
= (hash_value
>> 5) & 0x7F;
2298 hash_bit
= hash_value
& 0x1F;
2299 mta
= (1 << hash_bit
);
2300 mcarray
[hash_reg
] |= mta
;
2302 e1000_rar_set(hw
, ha
->addr
, i
++);
2306 for (; i
< rar_entries
; i
++) {
2307 E1000_WRITE_REG_ARRAY(hw
, RA
, i
<< 1, 0);
2308 E1000_WRITE_FLUSH();
2309 E1000_WRITE_REG_ARRAY(hw
, RA
, (i
<< 1) + 1, 0);
2310 E1000_WRITE_FLUSH();
2313 /* write the hash table completely, write from bottom to avoid
2314 * both stupid write combining chipsets, and flushing each write */
2315 for (i
= mta_reg_count
- 1; i
>= 0 ; i
--) {
2317 * If we are on an 82544 has an errata where writing odd
2318 * offsets overwrites the previous even offset, but writing
2319 * backwards over the range solves the issue by always
2320 * writing the odd offset first
2322 E1000_WRITE_REG_ARRAY(hw
, MTA
, i
, mcarray
[i
]);
2324 E1000_WRITE_FLUSH();
2326 if (hw
->mac_type
== e1000_82542_rev2_0
)
2327 e1000_leave_82542_rst(adapter
);
2332 /* Need to wait a few seconds after link up to get diagnostic information from
2335 static void e1000_update_phy_info(unsigned long data
)
2337 struct e1000_adapter
*adapter
= (struct e1000_adapter
*)data
;
2338 schedule_work(&adapter
->phy_info_task
);
2341 static void e1000_update_phy_info_task(struct work_struct
*work
)
2343 struct e1000_adapter
*adapter
= container_of(work
,
2344 struct e1000_adapter
,
2346 struct e1000_hw
*hw
= &adapter
->hw
;
2349 e1000_phy_get_info(hw
, &adapter
->phy_info
);
2354 * e1000_82547_tx_fifo_stall - Timer Call-back
2355 * @data: pointer to adapter cast into an unsigned long
2357 static void e1000_82547_tx_fifo_stall(unsigned long data
)
2359 struct e1000_adapter
*adapter
= (struct e1000_adapter
*)data
;
2360 schedule_work(&adapter
->fifo_stall_task
);
2364 * e1000_82547_tx_fifo_stall_task - task to complete work
2365 * @work: work struct contained inside adapter struct
2367 static void e1000_82547_tx_fifo_stall_task(struct work_struct
*work
)
2369 struct e1000_adapter
*adapter
= container_of(work
,
2370 struct e1000_adapter
,
2372 struct e1000_hw
*hw
= &adapter
->hw
;
2373 struct net_device
*netdev
= adapter
->netdev
;
2377 if (atomic_read(&adapter
->tx_fifo_stall
)) {
2378 if ((er32(TDT
) == er32(TDH
)) &&
2379 (er32(TDFT
) == er32(TDFH
)) &&
2380 (er32(TDFTS
) == er32(TDFHS
))) {
2382 ew32(TCTL
, tctl
& ~E1000_TCTL_EN
);
2383 ew32(TDFT
, adapter
->tx_head_addr
);
2384 ew32(TDFH
, adapter
->tx_head_addr
);
2385 ew32(TDFTS
, adapter
->tx_head_addr
);
2386 ew32(TDFHS
, adapter
->tx_head_addr
);
2388 E1000_WRITE_FLUSH();
2390 adapter
->tx_fifo_head
= 0;
2391 atomic_set(&adapter
->tx_fifo_stall
, 0);
2392 netif_wake_queue(netdev
);
2393 } else if (!test_bit(__E1000_DOWN
, &adapter
->flags
)) {
2394 mod_timer(&adapter
->tx_fifo_stall_timer
, jiffies
+ 1);
2400 bool e1000_has_link(struct e1000_adapter
*adapter
)
2402 struct e1000_hw
*hw
= &adapter
->hw
;
2403 bool link_active
= false;
2405 /* get_link_status is set on LSC (link status) interrupt or rx
2406 * sequence error interrupt (except on intel ce4100).
2407 * get_link_status will stay false until the
2408 * e1000_check_for_link establishes link for copper adapters
2411 switch (hw
->media_type
) {
2412 case e1000_media_type_copper
:
2413 if (hw
->mac_type
== e1000_ce4100
)
2414 hw
->get_link_status
= 1;
2415 if (hw
->get_link_status
) {
2416 e1000_check_for_link(hw
);
2417 link_active
= !hw
->get_link_status
;
2422 case e1000_media_type_fiber
:
2423 e1000_check_for_link(hw
);
2424 link_active
= !!(er32(STATUS
) & E1000_STATUS_LU
);
2426 case e1000_media_type_internal_serdes
:
2427 e1000_check_for_link(hw
);
2428 link_active
= hw
->serdes_has_link
;
2438 * e1000_watchdog - Timer Call-back
2439 * @data: pointer to adapter cast into an unsigned long
2441 static void e1000_watchdog(unsigned long data
)
2443 struct e1000_adapter
*adapter
= (struct e1000_adapter
*)data
;
2444 struct e1000_hw
*hw
= &adapter
->hw
;
2445 struct net_device
*netdev
= adapter
->netdev
;
2446 struct e1000_tx_ring
*txdr
= adapter
->tx_ring
;
2449 link
= e1000_has_link(adapter
);
2450 if ((netif_carrier_ok(netdev
)) && link
)
2454 if (!netif_carrier_ok(netdev
)) {
2457 /* update snapshot of PHY registers on LSC */
2458 e1000_get_speed_and_duplex(hw
,
2459 &adapter
->link_speed
,
2460 &adapter
->link_duplex
);
2463 pr_info("%s NIC Link is Up %d Mbps %s, "
2464 "Flow Control: %s\n",
2466 adapter
->link_speed
,
2467 adapter
->link_duplex
== FULL_DUPLEX
?
2468 "Full Duplex" : "Half Duplex",
2469 ((ctrl
& E1000_CTRL_TFCE
) && (ctrl
&
2470 E1000_CTRL_RFCE
)) ? "RX/TX" : ((ctrl
&
2471 E1000_CTRL_RFCE
) ? "RX" : ((ctrl
&
2472 E1000_CTRL_TFCE
) ? "TX" : "None")));
2474 /* adjust timeout factor according to speed/duplex */
2475 adapter
->tx_timeout_factor
= 1;
2476 switch (adapter
->link_speed
) {
2479 adapter
->tx_timeout_factor
= 16;
2483 /* maybe add some timeout factor ? */
2487 /* enable transmits in the hardware */
2489 tctl
|= E1000_TCTL_EN
;
2492 netif_carrier_on(netdev
);
2493 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
2494 mod_timer(&adapter
->phy_info_timer
,
2495 round_jiffies(jiffies
+ 2 * HZ
));
2496 adapter
->smartspeed
= 0;
2499 if (netif_carrier_ok(netdev
)) {
2500 adapter
->link_speed
= 0;
2501 adapter
->link_duplex
= 0;
2502 pr_info("%s NIC Link is Down\n",
2504 netif_carrier_off(netdev
);
2506 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
2507 mod_timer(&adapter
->phy_info_timer
,
2508 round_jiffies(jiffies
+ 2 * HZ
));
2511 e1000_smartspeed(adapter
);
2515 e1000_update_stats(adapter
);
2517 hw
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
2518 adapter
->tpt_old
= adapter
->stats
.tpt
;
2519 hw
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
2520 adapter
->colc_old
= adapter
->stats
.colc
;
2522 adapter
->gorcl
= adapter
->stats
.gorcl
- adapter
->gorcl_old
;
2523 adapter
->gorcl_old
= adapter
->stats
.gorcl
;
2524 adapter
->gotcl
= adapter
->stats
.gotcl
- adapter
->gotcl_old
;
2525 adapter
->gotcl_old
= adapter
->stats
.gotcl
;
2527 e1000_update_adaptive(hw
);
2529 if (!netif_carrier_ok(netdev
)) {
2530 if (E1000_DESC_UNUSED(txdr
) + 1 < txdr
->count
) {
2531 /* We've lost link, so the controller stops DMA,
2532 * but we've got queued Tx work that's never going
2533 * to get done, so reset controller to flush Tx.
2534 * (Do the reset outside of interrupt context). */
2535 adapter
->tx_timeout_count
++;
2536 schedule_work(&adapter
->reset_task
);
2537 /* return immediately since reset is imminent */
2542 /* Simple mode for Interrupt Throttle Rate (ITR) */
2543 if (hw
->mac_type
>= e1000_82540
&& adapter
->itr_setting
== 4) {
2545 * Symmetric Tx/Rx gets a reduced ITR=2000;
2546 * Total asymmetrical Tx or Rx gets ITR=8000;
2547 * everyone else is between 2000-8000.
2549 u32 goc
= (adapter
->gotcl
+ adapter
->gorcl
) / 10000;
2550 u32 dif
= (adapter
->gotcl
> adapter
->gorcl
?
2551 adapter
->gotcl
- adapter
->gorcl
:
2552 adapter
->gorcl
- adapter
->gotcl
) / 10000;
2553 u32 itr
= goc
> 0 ? (dif
* 6000 / goc
+ 2000) : 8000;
2555 ew32(ITR
, 1000000000 / (itr
* 256));
2558 /* Cause software interrupt to ensure rx ring is cleaned */
2559 ew32(ICS
, E1000_ICS_RXDMT0
);
2561 /* Force detection of hung controller every watchdog period */
2562 adapter
->detect_tx_hung
= true;
2564 /* Reset the timer */
2565 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
2566 mod_timer(&adapter
->watchdog_timer
,
2567 round_jiffies(jiffies
+ 2 * HZ
));
2570 enum latency_range
{
2574 latency_invalid
= 255
2578 * e1000_update_itr - update the dynamic ITR value based on statistics
2579 * @adapter: pointer to adapter
2580 * @itr_setting: current adapter->itr
2581 * @packets: the number of packets during this measurement interval
2582 * @bytes: the number of bytes during this measurement interval
2584 * Stores a new ITR value based on packets and byte
2585 * counts during the last interrupt. The advantage of per interrupt
2586 * computation is faster updates and more accurate ITR for the current
2587 * traffic pattern. Constants in this function were computed
2588 * based on theoretical maximum wire speed and thresholds were set based
2589 * on testing data as well as attempting to minimize response time
2590 * while increasing bulk throughput.
2591 * this functionality is controlled by the InterruptThrottleRate module
2592 * parameter (see e1000_param.c)
2594 static unsigned int e1000_update_itr(struct e1000_adapter
*adapter
,
2595 u16 itr_setting
, int packets
, int bytes
)
2597 unsigned int retval
= itr_setting
;
2598 struct e1000_hw
*hw
= &adapter
->hw
;
2600 if (unlikely(hw
->mac_type
< e1000_82540
))
2601 goto update_itr_done
;
2604 goto update_itr_done
;
2606 switch (itr_setting
) {
2607 case lowest_latency
:
2608 /* jumbo frames get bulk treatment*/
2609 if (bytes
/packets
> 8000)
2610 retval
= bulk_latency
;
2611 else if ((packets
< 5) && (bytes
> 512))
2612 retval
= low_latency
;
2614 case low_latency
: /* 50 usec aka 20000 ints/s */
2615 if (bytes
> 10000) {
2616 /* jumbo frames need bulk latency setting */
2617 if (bytes
/packets
> 8000)
2618 retval
= bulk_latency
;
2619 else if ((packets
< 10) || ((bytes
/packets
) > 1200))
2620 retval
= bulk_latency
;
2621 else if ((packets
> 35))
2622 retval
= lowest_latency
;
2623 } else if (bytes
/packets
> 2000)
2624 retval
= bulk_latency
;
2625 else if (packets
<= 2 && bytes
< 512)
2626 retval
= lowest_latency
;
2628 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2629 if (bytes
> 25000) {
2631 retval
= low_latency
;
2632 } else if (bytes
< 6000) {
2633 retval
= low_latency
;
2642 static void e1000_set_itr(struct e1000_adapter
*adapter
)
2644 struct e1000_hw
*hw
= &adapter
->hw
;
2646 u32 new_itr
= adapter
->itr
;
2648 if (unlikely(hw
->mac_type
< e1000_82540
))
2651 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2652 if (unlikely(adapter
->link_speed
!= SPEED_1000
)) {
2658 adapter
->tx_itr
= e1000_update_itr(adapter
,
2660 adapter
->total_tx_packets
,
2661 adapter
->total_tx_bytes
);
2662 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2663 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
2664 adapter
->tx_itr
= low_latency
;
2666 adapter
->rx_itr
= e1000_update_itr(adapter
,
2668 adapter
->total_rx_packets
,
2669 adapter
->total_rx_bytes
);
2670 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2671 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
2672 adapter
->rx_itr
= low_latency
;
2674 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
2676 switch (current_itr
) {
2677 /* counts and packets in update_itr are dependent on these numbers */
2678 case lowest_latency
:
2682 new_itr
= 20000; /* aka hwitr = ~200 */
2692 if (new_itr
!= adapter
->itr
) {
2693 /* this attempts to bias the interrupt rate towards Bulk
2694 * by adding intermediate steps when interrupt rate is
2696 new_itr
= new_itr
> adapter
->itr
?
2697 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
2699 adapter
->itr
= new_itr
;
2700 ew32(ITR
, 1000000000 / (new_itr
* 256));
2704 #define E1000_TX_FLAGS_CSUM 0x00000001
2705 #define E1000_TX_FLAGS_VLAN 0x00000002
2706 #define E1000_TX_FLAGS_TSO 0x00000004
2707 #define E1000_TX_FLAGS_IPV4 0x00000008
2708 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2709 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2711 static int e1000_tso(struct e1000_adapter
*adapter
,
2712 struct e1000_tx_ring
*tx_ring
, struct sk_buff
*skb
)
2714 struct e1000_context_desc
*context_desc
;
2715 struct e1000_buffer
*buffer_info
;
2718 u16 ipcse
= 0, tucse
, mss
;
2719 u8 ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
2722 if (skb_is_gso(skb
)) {
2723 if (skb_header_cloned(skb
)) {
2724 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2729 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
2730 mss
= skb_shinfo(skb
)->gso_size
;
2731 if (skb
->protocol
== htons(ETH_P_IP
)) {
2732 struct iphdr
*iph
= ip_hdr(skb
);
2735 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
2739 cmd_length
= E1000_TXD_CMD_IP
;
2740 ipcse
= skb_transport_offset(skb
) - 1;
2741 } else if (skb
->protocol
== htons(ETH_P_IPV6
)) {
2742 ipv6_hdr(skb
)->payload_len
= 0;
2743 tcp_hdr(skb
)->check
=
2744 ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
2745 &ipv6_hdr(skb
)->daddr
,
2749 ipcss
= skb_network_offset(skb
);
2750 ipcso
= (void *)&(ip_hdr(skb
)->check
) - (void *)skb
->data
;
2751 tucss
= skb_transport_offset(skb
);
2752 tucso
= (void *)&(tcp_hdr(skb
)->check
) - (void *)skb
->data
;
2755 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
2756 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
2758 i
= tx_ring
->next_to_use
;
2759 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2760 buffer_info
= &tx_ring
->buffer_info
[i
];
2762 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
2763 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
2764 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
2765 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
2766 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
2767 context_desc
->upper_setup
.tcp_fields
.tucse
= cpu_to_le16(tucse
);
2768 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
2769 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
2770 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
2772 buffer_info
->time_stamp
= jiffies
;
2773 buffer_info
->next_to_watch
= i
;
2775 if (++i
== tx_ring
->count
) i
= 0;
2776 tx_ring
->next_to_use
= i
;
2783 static bool e1000_tx_csum(struct e1000_adapter
*adapter
,
2784 struct e1000_tx_ring
*tx_ring
, struct sk_buff
*skb
)
2786 struct e1000_context_desc
*context_desc
;
2787 struct e1000_buffer
*buffer_info
;
2790 u32 cmd_len
= E1000_TXD_CMD_DEXT
;
2792 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
2795 switch (skb
->protocol
) {
2796 case cpu_to_be16(ETH_P_IP
):
2797 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
2798 cmd_len
|= E1000_TXD_CMD_TCP
;
2800 case cpu_to_be16(ETH_P_IPV6
):
2801 /* XXX not handling all IPV6 headers */
2802 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
2803 cmd_len
|= E1000_TXD_CMD_TCP
;
2806 if (unlikely(net_ratelimit()))
2807 e_warn(drv
, "checksum_partial proto=%x!\n",
2812 css
= skb_checksum_start_offset(skb
);
2814 i
= tx_ring
->next_to_use
;
2815 buffer_info
= &tx_ring
->buffer_info
[i
];
2816 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2818 context_desc
->lower_setup
.ip_config
= 0;
2819 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
2820 context_desc
->upper_setup
.tcp_fields
.tucso
=
2821 css
+ skb
->csum_offset
;
2822 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
2823 context_desc
->tcp_seg_setup
.data
= 0;
2824 context_desc
->cmd_and_length
= cpu_to_le32(cmd_len
);
2826 buffer_info
->time_stamp
= jiffies
;
2827 buffer_info
->next_to_watch
= i
;
2829 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
2830 tx_ring
->next_to_use
= i
;
2835 #define E1000_MAX_TXD_PWR 12
2836 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2838 static int e1000_tx_map(struct e1000_adapter
*adapter
,
2839 struct e1000_tx_ring
*tx_ring
,
2840 struct sk_buff
*skb
, unsigned int first
,
2841 unsigned int max_per_txd
, unsigned int nr_frags
,
2844 struct e1000_hw
*hw
= &adapter
->hw
;
2845 struct pci_dev
*pdev
= adapter
->pdev
;
2846 struct e1000_buffer
*buffer_info
;
2847 unsigned int len
= skb_headlen(skb
);
2848 unsigned int offset
= 0, size
, count
= 0, i
;
2851 i
= tx_ring
->next_to_use
;
2854 buffer_info
= &tx_ring
->buffer_info
[i
];
2855 size
= min(len
, max_per_txd
);
2856 /* Workaround for Controller erratum --
2857 * descriptor for non-tso packet in a linear SKB that follows a
2858 * tso gets written back prematurely before the data is fully
2859 * DMA'd to the controller */
2860 if (!skb
->data_len
&& tx_ring
->last_tx_tso
&&
2862 tx_ring
->last_tx_tso
= 0;
2866 /* Workaround for premature desc write-backs
2867 * in TSO mode. Append 4-byte sentinel desc */
2868 if (unlikely(mss
&& !nr_frags
&& size
== len
&& size
> 8))
2870 /* work-around for errata 10 and it applies
2871 * to all controllers in PCI-X mode
2872 * The fix is to make sure that the first descriptor of a
2873 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2875 if (unlikely((hw
->bus_type
== e1000_bus_type_pcix
) &&
2876 (size
> 2015) && count
== 0))
2879 /* Workaround for potential 82544 hang in PCI-X. Avoid
2880 * terminating buffers within evenly-aligned dwords. */
2881 if (unlikely(adapter
->pcix_82544
&&
2882 !((unsigned long)(skb
->data
+ offset
+ size
- 1) & 4) &&
2886 buffer_info
->length
= size
;
2887 /* set time_stamp *before* dma to help avoid a possible race */
2888 buffer_info
->time_stamp
= jiffies
;
2889 buffer_info
->mapped_as_page
= false;
2890 buffer_info
->dma
= dma_map_single(&pdev
->dev
,
2892 size
, DMA_TO_DEVICE
);
2893 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
2895 buffer_info
->next_to_watch
= i
;
2902 if (unlikely(i
== tx_ring
->count
))
2907 for (f
= 0; f
< nr_frags
; f
++) {
2908 struct skb_frag_struct
*frag
;
2910 frag
= &skb_shinfo(skb
)->frags
[f
];
2912 offset
= frag
->page_offset
;
2916 if (unlikely(i
== tx_ring
->count
))
2919 buffer_info
= &tx_ring
->buffer_info
[i
];
2920 size
= min(len
, max_per_txd
);
2921 /* Workaround for premature desc write-backs
2922 * in TSO mode. Append 4-byte sentinel desc */
2923 if (unlikely(mss
&& f
== (nr_frags
-1) && size
== len
&& size
> 8))
2925 /* Workaround for potential 82544 hang in PCI-X.
2926 * Avoid terminating buffers within evenly-aligned
2928 if (unlikely(adapter
->pcix_82544
&&
2929 !((unsigned long)(page_to_phys(frag
->page
) + offset
2934 buffer_info
->length
= size
;
2935 buffer_info
->time_stamp
= jiffies
;
2936 buffer_info
->mapped_as_page
= true;
2937 buffer_info
->dma
= dma_map_page(&pdev
->dev
, frag
->page
,
2940 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
2942 buffer_info
->next_to_watch
= i
;
2950 tx_ring
->buffer_info
[i
].skb
= skb
;
2951 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
2956 dev_err(&pdev
->dev
, "TX DMA map failed\n");
2957 buffer_info
->dma
= 0;
2963 i
+= tx_ring
->count
;
2965 buffer_info
= &tx_ring
->buffer_info
[i
];
2966 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
2972 static void e1000_tx_queue(struct e1000_adapter
*adapter
,
2973 struct e1000_tx_ring
*tx_ring
, int tx_flags
,
2976 struct e1000_hw
*hw
= &adapter
->hw
;
2977 struct e1000_tx_desc
*tx_desc
= NULL
;
2978 struct e1000_buffer
*buffer_info
;
2979 u32 txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
2982 if (likely(tx_flags
& E1000_TX_FLAGS_TSO
)) {
2983 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
2985 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
2987 if (likely(tx_flags
& E1000_TX_FLAGS_IPV4
))
2988 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
2991 if (likely(tx_flags
& E1000_TX_FLAGS_CSUM
)) {
2992 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
2993 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
2996 if (unlikely(tx_flags
& E1000_TX_FLAGS_VLAN
)) {
2997 txd_lower
|= E1000_TXD_CMD_VLE
;
2998 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
3001 i
= tx_ring
->next_to_use
;
3004 buffer_info
= &tx_ring
->buffer_info
[i
];
3005 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3006 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
3007 tx_desc
->lower
.data
=
3008 cpu_to_le32(txd_lower
| buffer_info
->length
);
3009 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
3010 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
3013 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
3015 /* Force memory writes to complete before letting h/w
3016 * know there are new descriptors to fetch. (Only
3017 * applicable for weak-ordered memory model archs,
3018 * such as IA-64). */
3021 tx_ring
->next_to_use
= i
;
3022 writel(i
, hw
->hw_addr
+ tx_ring
->tdt
);
3023 /* we need this if more than one processor can write to our tail
3024 * at a time, it syncronizes IO on IA64/Altix systems */
3029 * 82547 workaround to avoid controller hang in half-duplex environment.
3030 * The workaround is to avoid queuing a large packet that would span
3031 * the internal Tx FIFO ring boundary by notifying the stack to resend
3032 * the packet at a later time. This gives the Tx FIFO an opportunity to
3033 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3034 * to the beginning of the Tx FIFO.
3037 #define E1000_FIFO_HDR 0x10
3038 #define E1000_82547_PAD_LEN 0x3E0
3040 static int e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
,
3041 struct sk_buff
*skb
)
3043 u32 fifo_space
= adapter
->tx_fifo_size
- adapter
->tx_fifo_head
;
3044 u32 skb_fifo_len
= skb
->len
+ E1000_FIFO_HDR
;
3046 skb_fifo_len
= ALIGN(skb_fifo_len
, E1000_FIFO_HDR
);
3048 if (adapter
->link_duplex
!= HALF_DUPLEX
)
3049 goto no_fifo_stall_required
;
3051 if (atomic_read(&adapter
->tx_fifo_stall
))
3054 if (skb_fifo_len
>= (E1000_82547_PAD_LEN
+ fifo_space
)) {
3055 atomic_set(&adapter
->tx_fifo_stall
, 1);
3059 no_fifo_stall_required
:
3060 adapter
->tx_fifo_head
+= skb_fifo_len
;
3061 if (adapter
->tx_fifo_head
>= adapter
->tx_fifo_size
)
3062 adapter
->tx_fifo_head
-= adapter
->tx_fifo_size
;
3066 static int __e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
3068 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3069 struct e1000_tx_ring
*tx_ring
= adapter
->tx_ring
;
3071 netif_stop_queue(netdev
);
3072 /* Herbert's original patch had:
3073 * smp_mb__after_netif_stop_queue();
3074 * but since that doesn't exist yet, just open code it. */
3077 /* We need to check again in a case another CPU has just
3078 * made room available. */
3079 if (likely(E1000_DESC_UNUSED(tx_ring
) < size
))
3083 netif_start_queue(netdev
);
3084 ++adapter
->restart_queue
;
3088 static int e1000_maybe_stop_tx(struct net_device
*netdev
,
3089 struct e1000_tx_ring
*tx_ring
, int size
)
3091 if (likely(E1000_DESC_UNUSED(tx_ring
) >= size
))
3093 return __e1000_maybe_stop_tx(netdev
, size
);
3096 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3097 static netdev_tx_t
e1000_xmit_frame(struct sk_buff
*skb
,
3098 struct net_device
*netdev
)
3100 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3101 struct e1000_hw
*hw
= &adapter
->hw
;
3102 struct e1000_tx_ring
*tx_ring
;
3103 unsigned int first
, max_per_txd
= E1000_MAX_DATA_PER_TXD
;
3104 unsigned int max_txd_pwr
= E1000_MAX_TXD_PWR
;
3105 unsigned int tx_flags
= 0;
3106 unsigned int len
= skb_headlen(skb
);
3107 unsigned int nr_frags
;
3113 /* This goes back to the question of how to logically map a tx queue
3114 * to a flow. Right now, performance is impacted slightly negatively
3115 * if using multiple tx queues. If the stack breaks away from a
3116 * single qdisc implementation, we can look at this again. */
3117 tx_ring
= adapter
->tx_ring
;
3119 if (unlikely(skb
->len
<= 0)) {
3120 dev_kfree_skb_any(skb
);
3121 return NETDEV_TX_OK
;
3124 mss
= skb_shinfo(skb
)->gso_size
;
3125 /* The controller does a simple calculation to
3126 * make sure there is enough room in the FIFO before
3127 * initiating the DMA for each buffer. The calc is:
3128 * 4 = ceil(buffer len/mss). To make sure we don't
3129 * overrun the FIFO, adjust the max buffer len if mss
3133 max_per_txd
= min(mss
<< 2, max_per_txd
);
3134 max_txd_pwr
= fls(max_per_txd
) - 1;
3136 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
3137 if (skb
->data_len
&& hdr_len
== len
) {
3138 switch (hw
->mac_type
) {
3139 unsigned int pull_size
;
3141 /* Make sure we have room to chop off 4 bytes,
3142 * and that the end alignment will work out to
3143 * this hardware's requirements
3144 * NOTE: this is a TSO only workaround
3145 * if end byte alignment not correct move us
3146 * into the next dword */
3147 if ((unsigned long)(skb_tail_pointer(skb
) - 1) & 4)
3150 pull_size
= min((unsigned int)4, skb
->data_len
);
3151 if (!__pskb_pull_tail(skb
, pull_size
)) {
3152 e_err(drv
, "__pskb_pull_tail "
3154 dev_kfree_skb_any(skb
);
3155 return NETDEV_TX_OK
;
3157 len
= skb_headlen(skb
);
3166 /* reserve a descriptor for the offload context */
3167 if ((mss
) || (skb
->ip_summed
== CHECKSUM_PARTIAL
))
3171 /* Controller Erratum workaround */
3172 if (!skb
->data_len
&& tx_ring
->last_tx_tso
&& !skb_is_gso(skb
))
3175 count
+= TXD_USE_COUNT(len
, max_txd_pwr
);
3177 if (adapter
->pcix_82544
)
3180 /* work-around for errata 10 and it applies to all controllers
3181 * in PCI-X mode, so add one more descriptor to the count
3183 if (unlikely((hw
->bus_type
== e1000_bus_type_pcix
) &&
3187 nr_frags
= skb_shinfo(skb
)->nr_frags
;
3188 for (f
= 0; f
< nr_frags
; f
++)
3189 count
+= TXD_USE_COUNT(skb_shinfo(skb
)->frags
[f
].size
,
3191 if (adapter
->pcix_82544
)
3194 /* need: count + 2 desc gap to keep tail from touching
3195 * head, otherwise try next time */
3196 if (unlikely(e1000_maybe_stop_tx(netdev
, tx_ring
, count
+ 2)))
3197 return NETDEV_TX_BUSY
;
3199 if (unlikely(hw
->mac_type
== e1000_82547
)) {
3200 if (unlikely(e1000_82547_fifo_workaround(adapter
, skb
))) {
3201 netif_stop_queue(netdev
);
3202 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3203 mod_timer(&adapter
->tx_fifo_stall_timer
,
3205 return NETDEV_TX_BUSY
;
3209 if (vlan_tx_tag_present(skb
)) {
3210 tx_flags
|= E1000_TX_FLAGS_VLAN
;
3211 tx_flags
|= (vlan_tx_tag_get(skb
) << E1000_TX_FLAGS_VLAN_SHIFT
);
3214 first
= tx_ring
->next_to_use
;
3216 tso
= e1000_tso(adapter
, tx_ring
, skb
);
3218 dev_kfree_skb_any(skb
);
3219 return NETDEV_TX_OK
;
3223 if (likely(hw
->mac_type
!= e1000_82544
))
3224 tx_ring
->last_tx_tso
= 1;
3225 tx_flags
|= E1000_TX_FLAGS_TSO
;
3226 } else if (likely(e1000_tx_csum(adapter
, tx_ring
, skb
)))
3227 tx_flags
|= E1000_TX_FLAGS_CSUM
;
3229 if (likely(skb
->protocol
== htons(ETH_P_IP
)))
3230 tx_flags
|= E1000_TX_FLAGS_IPV4
;
3232 count
= e1000_tx_map(adapter
, tx_ring
, skb
, first
, max_per_txd
,
3236 e1000_tx_queue(adapter
, tx_ring
, tx_flags
, count
);
3237 /* Make sure there is space in the ring for the next send. */
3238 e1000_maybe_stop_tx(netdev
, tx_ring
, MAX_SKB_FRAGS
+ 2);
3241 dev_kfree_skb_any(skb
);
3242 tx_ring
->buffer_info
[first
].time_stamp
= 0;
3243 tx_ring
->next_to_use
= first
;
3246 return NETDEV_TX_OK
;
3250 * e1000_tx_timeout - Respond to a Tx Hang
3251 * @netdev: network interface device structure
3254 static void e1000_tx_timeout(struct net_device
*netdev
)
3256 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3258 /* Do the reset outside of interrupt context */
3259 adapter
->tx_timeout_count
++;
3260 schedule_work(&adapter
->reset_task
);
3263 static void e1000_reset_task(struct work_struct
*work
)
3265 struct e1000_adapter
*adapter
=
3266 container_of(work
, struct e1000_adapter
, reset_task
);
3268 e1000_reinit_safe(adapter
);
3272 * e1000_get_stats - Get System Network Statistics
3273 * @netdev: network interface device structure
3275 * Returns the address of the device statistics structure.
3276 * The statistics are actually updated from the timer callback.
3279 static struct net_device_stats
*e1000_get_stats(struct net_device
*netdev
)
3281 /* only return the current stats */
3282 return &netdev
->stats
;
3286 * e1000_change_mtu - Change the Maximum Transfer Unit
3287 * @netdev: network interface device structure
3288 * @new_mtu: new value for maximum frame size
3290 * Returns 0 on success, negative on failure
3293 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
3295 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3296 struct e1000_hw
*hw
= &adapter
->hw
;
3297 int max_frame
= new_mtu
+ ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
3299 if ((max_frame
< MINIMUM_ETHERNET_FRAME_SIZE
) ||
3300 (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
3301 e_err(probe
, "Invalid MTU setting\n");
3305 /* Adapter-specific max frame size limits. */
3306 switch (hw
->mac_type
) {
3307 case e1000_undefined
... e1000_82542_rev2_1
:
3308 if (max_frame
> (ETH_FRAME_LEN
+ ETH_FCS_LEN
)) {
3309 e_err(probe
, "Jumbo Frames not supported.\n");
3314 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3318 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
3320 /* e1000_down has a dependency on max_frame_size */
3321 hw
->max_frame_size
= max_frame
;
3322 if (netif_running(netdev
))
3323 e1000_down(adapter
);
3325 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3326 * means we reserve 2 more, this pushes us to allocate from the next
3328 * i.e. RXBUFFER_2048 --> size-4096 slab
3329 * however with the new *_jumbo_rx* routines, jumbo receives will use
3330 * fragmented skbs */
3332 if (max_frame
<= E1000_RXBUFFER_2048
)
3333 adapter
->rx_buffer_len
= E1000_RXBUFFER_2048
;
3335 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3336 adapter
->rx_buffer_len
= E1000_RXBUFFER_16384
;
3337 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3338 adapter
->rx_buffer_len
= PAGE_SIZE
;
3341 /* adjust allocation if LPE protects us, and we aren't using SBP */
3342 if (!hw
->tbi_compatibility_on
&&
3343 ((max_frame
== (ETH_FRAME_LEN
+ ETH_FCS_LEN
)) ||
3344 (max_frame
== MAXIMUM_ETHERNET_VLAN_SIZE
)))
3345 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
3347 pr_info("%s changing MTU from %d to %d\n",
3348 netdev
->name
, netdev
->mtu
, new_mtu
);
3349 netdev
->mtu
= new_mtu
;
3351 if (netif_running(netdev
))
3354 e1000_reset(adapter
);
3356 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
3362 * e1000_update_stats - Update the board statistics counters
3363 * @adapter: board private structure
3366 void e1000_update_stats(struct e1000_adapter
*adapter
)
3368 struct net_device
*netdev
= adapter
->netdev
;
3369 struct e1000_hw
*hw
= &adapter
->hw
;
3370 struct pci_dev
*pdev
= adapter
->pdev
;
3371 unsigned long flags
;
3374 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3377 * Prevent stats update while adapter is being reset, or if the pci
3378 * connection is down.
3380 if (adapter
->link_speed
== 0)
3382 if (pci_channel_offline(pdev
))
3385 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
3387 /* these counters are modified from e1000_tbi_adjust_stats,
3388 * called from the interrupt context, so they must only
3389 * be written while holding adapter->stats_lock
3392 adapter
->stats
.crcerrs
+= er32(CRCERRS
);
3393 adapter
->stats
.gprc
+= er32(GPRC
);
3394 adapter
->stats
.gorcl
+= er32(GORCL
);
3395 adapter
->stats
.gorch
+= er32(GORCH
);
3396 adapter
->stats
.bprc
+= er32(BPRC
);
3397 adapter
->stats
.mprc
+= er32(MPRC
);
3398 adapter
->stats
.roc
+= er32(ROC
);
3400 adapter
->stats
.prc64
+= er32(PRC64
);
3401 adapter
->stats
.prc127
+= er32(PRC127
);
3402 adapter
->stats
.prc255
+= er32(PRC255
);
3403 adapter
->stats
.prc511
+= er32(PRC511
);
3404 adapter
->stats
.prc1023
+= er32(PRC1023
);
3405 adapter
->stats
.prc1522
+= er32(PRC1522
);
3407 adapter
->stats
.symerrs
+= er32(SYMERRS
);
3408 adapter
->stats
.mpc
+= er32(MPC
);
3409 adapter
->stats
.scc
+= er32(SCC
);
3410 adapter
->stats
.ecol
+= er32(ECOL
);
3411 adapter
->stats
.mcc
+= er32(MCC
);
3412 adapter
->stats
.latecol
+= er32(LATECOL
);
3413 adapter
->stats
.dc
+= er32(DC
);
3414 adapter
->stats
.sec
+= er32(SEC
);
3415 adapter
->stats
.rlec
+= er32(RLEC
);
3416 adapter
->stats
.xonrxc
+= er32(XONRXC
);
3417 adapter
->stats
.xontxc
+= er32(XONTXC
);
3418 adapter
->stats
.xoffrxc
+= er32(XOFFRXC
);
3419 adapter
->stats
.xofftxc
+= er32(XOFFTXC
);
3420 adapter
->stats
.fcruc
+= er32(FCRUC
);
3421 adapter
->stats
.gptc
+= er32(GPTC
);
3422 adapter
->stats
.gotcl
+= er32(GOTCL
);
3423 adapter
->stats
.gotch
+= er32(GOTCH
);
3424 adapter
->stats
.rnbc
+= er32(RNBC
);
3425 adapter
->stats
.ruc
+= er32(RUC
);
3426 adapter
->stats
.rfc
+= er32(RFC
);
3427 adapter
->stats
.rjc
+= er32(RJC
);
3428 adapter
->stats
.torl
+= er32(TORL
);
3429 adapter
->stats
.torh
+= er32(TORH
);
3430 adapter
->stats
.totl
+= er32(TOTL
);
3431 adapter
->stats
.toth
+= er32(TOTH
);
3432 adapter
->stats
.tpr
+= er32(TPR
);
3434 adapter
->stats
.ptc64
+= er32(PTC64
);
3435 adapter
->stats
.ptc127
+= er32(PTC127
);
3436 adapter
->stats
.ptc255
+= er32(PTC255
);
3437 adapter
->stats
.ptc511
+= er32(PTC511
);
3438 adapter
->stats
.ptc1023
+= er32(PTC1023
);
3439 adapter
->stats
.ptc1522
+= er32(PTC1522
);
3441 adapter
->stats
.mptc
+= er32(MPTC
);
3442 adapter
->stats
.bptc
+= er32(BPTC
);
3444 /* used for adaptive IFS */
3446 hw
->tx_packet_delta
= er32(TPT
);
3447 adapter
->stats
.tpt
+= hw
->tx_packet_delta
;
3448 hw
->collision_delta
= er32(COLC
);
3449 adapter
->stats
.colc
+= hw
->collision_delta
;
3451 if (hw
->mac_type
>= e1000_82543
) {
3452 adapter
->stats
.algnerrc
+= er32(ALGNERRC
);
3453 adapter
->stats
.rxerrc
+= er32(RXERRC
);
3454 adapter
->stats
.tncrs
+= er32(TNCRS
);
3455 adapter
->stats
.cexterr
+= er32(CEXTERR
);
3456 adapter
->stats
.tsctc
+= er32(TSCTC
);
3457 adapter
->stats
.tsctfc
+= er32(TSCTFC
);
3460 /* Fill out the OS statistics structure */
3461 netdev
->stats
.multicast
= adapter
->stats
.mprc
;
3462 netdev
->stats
.collisions
= adapter
->stats
.colc
;
3466 /* RLEC on some newer hardware can be incorrect so build
3467 * our own version based on RUC and ROC */
3468 netdev
->stats
.rx_errors
= adapter
->stats
.rxerrc
+
3469 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
3470 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
3471 adapter
->stats
.cexterr
;
3472 adapter
->stats
.rlerrc
= adapter
->stats
.ruc
+ adapter
->stats
.roc
;
3473 netdev
->stats
.rx_length_errors
= adapter
->stats
.rlerrc
;
3474 netdev
->stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
3475 netdev
->stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
3476 netdev
->stats
.rx_missed_errors
= adapter
->stats
.mpc
;
3479 adapter
->stats
.txerrc
= adapter
->stats
.ecol
+ adapter
->stats
.latecol
;
3480 netdev
->stats
.tx_errors
= adapter
->stats
.txerrc
;
3481 netdev
->stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
3482 netdev
->stats
.tx_window_errors
= adapter
->stats
.latecol
;
3483 netdev
->stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
3484 if (hw
->bad_tx_carr_stats_fd
&&
3485 adapter
->link_duplex
== FULL_DUPLEX
) {
3486 netdev
->stats
.tx_carrier_errors
= 0;
3487 adapter
->stats
.tncrs
= 0;
3490 /* Tx Dropped needs to be maintained elsewhere */
3493 if (hw
->media_type
== e1000_media_type_copper
) {
3494 if ((adapter
->link_speed
== SPEED_1000
) &&
3495 (!e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_tmp
))) {
3496 phy_tmp
&= PHY_IDLE_ERROR_COUNT_MASK
;
3497 adapter
->phy_stats
.idle_errors
+= phy_tmp
;
3500 if ((hw
->mac_type
<= e1000_82546
) &&
3501 (hw
->phy_type
== e1000_phy_m88
) &&
3502 !e1000_read_phy_reg(hw
, M88E1000_RX_ERR_CNTR
, &phy_tmp
))
3503 adapter
->phy_stats
.receive_errors
+= phy_tmp
;
3506 /* Management Stats */
3507 if (hw
->has_smbus
) {
3508 adapter
->stats
.mgptc
+= er32(MGTPTC
);
3509 adapter
->stats
.mgprc
+= er32(MGTPRC
);
3510 adapter
->stats
.mgpdc
+= er32(MGTPDC
);
3513 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
3517 * e1000_intr - Interrupt Handler
3518 * @irq: interrupt number
3519 * @data: pointer to a network interface device structure
3522 static irqreturn_t
e1000_intr(int irq
, void *data
)
3524 struct net_device
*netdev
= data
;
3525 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3526 struct e1000_hw
*hw
= &adapter
->hw
;
3527 u32 icr
= er32(ICR
);
3529 if (unlikely((!icr
)))
3530 return IRQ_NONE
; /* Not our interrupt */
3533 * we might have caused the interrupt, but the above
3534 * read cleared it, and just in case the driver is
3535 * down there is nothing to do so return handled
3537 if (unlikely(test_bit(__E1000_DOWN
, &adapter
->flags
)))
3540 if (unlikely(icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
))) {
3541 hw
->get_link_status
= 1;
3542 /* guard against interrupt when we're going down */
3543 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3544 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3547 /* disable interrupts, without the synchronize_irq bit */
3549 E1000_WRITE_FLUSH();
3551 if (likely(napi_schedule_prep(&adapter
->napi
))) {
3552 adapter
->total_tx_bytes
= 0;
3553 adapter
->total_tx_packets
= 0;
3554 adapter
->total_rx_bytes
= 0;
3555 adapter
->total_rx_packets
= 0;
3556 __napi_schedule(&adapter
->napi
);
3558 /* this really should not happen! if it does it is basically a
3559 * bug, but not a hard error, so enable ints and continue */
3560 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3561 e1000_irq_enable(adapter
);
3568 * e1000_clean - NAPI Rx polling callback
3569 * @adapter: board private structure
3571 static int e1000_clean(struct napi_struct
*napi
, int budget
)
3573 struct e1000_adapter
*adapter
= container_of(napi
, struct e1000_adapter
, napi
);
3574 int tx_clean_complete
= 0, work_done
= 0;
3576 tx_clean_complete
= e1000_clean_tx_irq(adapter
, &adapter
->tx_ring
[0]);
3578 adapter
->clean_rx(adapter
, &adapter
->rx_ring
[0], &work_done
, budget
);
3580 if (!tx_clean_complete
)
3583 /* If budget not fully consumed, exit the polling mode */
3584 if (work_done
< budget
) {
3585 if (likely(adapter
->itr_setting
& 3))
3586 e1000_set_itr(adapter
);
3587 napi_complete(napi
);
3588 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3589 e1000_irq_enable(adapter
);
3596 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3597 * @adapter: board private structure
3599 static bool e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
3600 struct e1000_tx_ring
*tx_ring
)
3602 struct e1000_hw
*hw
= &adapter
->hw
;
3603 struct net_device
*netdev
= adapter
->netdev
;
3604 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
3605 struct e1000_buffer
*buffer_info
;
3606 unsigned int i
, eop
;
3607 unsigned int count
= 0;
3608 unsigned int total_tx_bytes
=0, total_tx_packets
=0;
3610 i
= tx_ring
->next_to_clean
;
3611 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3612 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
3614 while ((eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
3615 (count
< tx_ring
->count
)) {
3616 bool cleaned
= false;
3617 rmb(); /* read buffer_info after eop_desc */
3618 for ( ; !cleaned
; count
++) {
3619 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3620 buffer_info
= &tx_ring
->buffer_info
[i
];
3621 cleaned
= (i
== eop
);
3624 struct sk_buff
*skb
= buffer_info
->skb
;
3625 unsigned int segs
, bytecount
;
3626 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
3627 /* multiply data chunks by size of headers */
3628 bytecount
= ((segs
- 1) * skb_headlen(skb
)) +
3630 total_tx_packets
+= segs
;
3631 total_tx_bytes
+= bytecount
;
3633 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
3634 tx_desc
->upper
.data
= 0;
3636 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
3639 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3640 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
3643 tx_ring
->next_to_clean
= i
;
3645 #define TX_WAKE_THRESHOLD 32
3646 if (unlikely(count
&& netif_carrier_ok(netdev
) &&
3647 E1000_DESC_UNUSED(tx_ring
) >= TX_WAKE_THRESHOLD
)) {
3648 /* Make sure that anybody stopping the queue after this
3649 * sees the new next_to_clean.
3653 if (netif_queue_stopped(netdev
) &&
3654 !(test_bit(__E1000_DOWN
, &adapter
->flags
))) {
3655 netif_wake_queue(netdev
);
3656 ++adapter
->restart_queue
;
3660 if (adapter
->detect_tx_hung
) {
3661 /* Detect a transmit hang in hardware, this serializes the
3662 * check with the clearing of time_stamp and movement of i */
3663 adapter
->detect_tx_hung
= false;
3664 if (tx_ring
->buffer_info
[eop
].time_stamp
&&
3665 time_after(jiffies
, tx_ring
->buffer_info
[eop
].time_stamp
+
3666 (adapter
->tx_timeout_factor
* HZ
)) &&
3667 !(er32(STATUS
) & E1000_STATUS_TXOFF
)) {
3669 /* detected Tx unit hang */
3670 e_err(drv
, "Detected Tx Unit Hang\n"
3674 " next_to_use <%x>\n"
3675 " next_to_clean <%x>\n"
3676 "buffer_info[next_to_clean]\n"
3677 " time_stamp <%lx>\n"
3678 " next_to_watch <%x>\n"
3680 " next_to_watch.status <%x>\n",
3681 (unsigned long)((tx_ring
- adapter
->tx_ring
) /
3682 sizeof(struct e1000_tx_ring
)),
3683 readl(hw
->hw_addr
+ tx_ring
->tdh
),
3684 readl(hw
->hw_addr
+ tx_ring
->tdt
),
3685 tx_ring
->next_to_use
,
3686 tx_ring
->next_to_clean
,
3687 tx_ring
->buffer_info
[eop
].time_stamp
,
3690 eop_desc
->upper
.fields
.status
);
3691 netif_stop_queue(netdev
);
3694 adapter
->total_tx_bytes
+= total_tx_bytes
;
3695 adapter
->total_tx_packets
+= total_tx_packets
;
3696 netdev
->stats
.tx_bytes
+= total_tx_bytes
;
3697 netdev
->stats
.tx_packets
+= total_tx_packets
;
3698 return count
< tx_ring
->count
;
3702 * e1000_rx_checksum - Receive Checksum Offload for 82543
3703 * @adapter: board private structure
3704 * @status_err: receive descriptor status and error fields
3705 * @csum: receive descriptor csum field
3706 * @sk_buff: socket buffer with received data
3709 static void e1000_rx_checksum(struct e1000_adapter
*adapter
, u32 status_err
,
3710 u32 csum
, struct sk_buff
*skb
)
3712 struct e1000_hw
*hw
= &adapter
->hw
;
3713 u16 status
= (u16
)status_err
;
3714 u8 errors
= (u8
)(status_err
>> 24);
3716 skb_checksum_none_assert(skb
);
3718 /* 82543 or newer only */
3719 if (unlikely(hw
->mac_type
< e1000_82543
)) return;
3720 /* Ignore Checksum bit is set */
3721 if (unlikely(status
& E1000_RXD_STAT_IXSM
)) return;
3722 /* TCP/UDP checksum error bit is set */
3723 if (unlikely(errors
& E1000_RXD_ERR_TCPE
)) {
3724 /* let the stack verify checksum errors */
3725 adapter
->hw_csum_err
++;
3728 /* TCP/UDP Checksum has not been calculated */
3729 if (!(status
& E1000_RXD_STAT_TCPCS
))
3732 /* It must be a TCP or UDP packet with a valid checksum */
3733 if (likely(status
& E1000_RXD_STAT_TCPCS
)) {
3734 /* TCP checksum is good */
3735 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3737 adapter
->hw_csum_good
++;
3741 * e1000_consume_page - helper function
3743 static void e1000_consume_page(struct e1000_buffer
*bi
, struct sk_buff
*skb
,
3748 skb
->data_len
+= length
;
3749 skb
->truesize
+= length
;
3753 * e1000_receive_skb - helper function to handle rx indications
3754 * @adapter: board private structure
3755 * @status: descriptor status field as written by hardware
3756 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3757 * @skb: pointer to sk_buff to be indicated to stack
3759 static void e1000_receive_skb(struct e1000_adapter
*adapter
, u8 status
,
3760 __le16 vlan
, struct sk_buff
*skb
)
3762 skb
->protocol
= eth_type_trans(skb
, adapter
->netdev
);
3764 if (status
& E1000_RXD_STAT_VP
) {
3765 u16 vid
= le16_to_cpu(vlan
) & E1000_RXD_SPC_VLAN_MASK
;
3767 __vlan_hwaccel_put_tag(skb
, vid
);
3769 napi_gro_receive(&adapter
->napi
, skb
);
3773 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
3774 * @adapter: board private structure
3775 * @rx_ring: ring to clean
3776 * @work_done: amount of napi work completed this call
3777 * @work_to_do: max amount of work allowed for this call to do
3779 * the return value indicates whether actual cleaning was done, there
3780 * is no guarantee that everything was cleaned
3782 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter
*adapter
,
3783 struct e1000_rx_ring
*rx_ring
,
3784 int *work_done
, int work_to_do
)
3786 struct e1000_hw
*hw
= &adapter
->hw
;
3787 struct net_device
*netdev
= adapter
->netdev
;
3788 struct pci_dev
*pdev
= adapter
->pdev
;
3789 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
3790 struct e1000_buffer
*buffer_info
, *next_buffer
;
3791 unsigned long irq_flags
;
3794 int cleaned_count
= 0;
3795 bool cleaned
= false;
3796 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
3798 i
= rx_ring
->next_to_clean
;
3799 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
3800 buffer_info
= &rx_ring
->buffer_info
[i
];
3802 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
3803 struct sk_buff
*skb
;
3806 if (*work_done
>= work_to_do
)
3809 rmb(); /* read descriptor and rx_buffer_info after status DD */
3811 status
= rx_desc
->status
;
3812 skb
= buffer_info
->skb
;
3813 buffer_info
->skb
= NULL
;
3815 if (++i
== rx_ring
->count
) i
= 0;
3816 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
3819 next_buffer
= &rx_ring
->buffer_info
[i
];
3823 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
,
3824 buffer_info
->length
, DMA_FROM_DEVICE
);
3825 buffer_info
->dma
= 0;
3827 length
= le16_to_cpu(rx_desc
->length
);
3829 /* errors is only valid for DD + EOP descriptors */
3830 if (unlikely((status
& E1000_RXD_STAT_EOP
) &&
3831 (rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
))) {
3832 u8 last_byte
= *(skb
->data
+ length
- 1);
3833 if (TBI_ACCEPT(hw
, status
, rx_desc
->errors
, length
,
3835 spin_lock_irqsave(&adapter
->stats_lock
,
3837 e1000_tbi_adjust_stats(hw
, &adapter
->stats
,
3839 spin_unlock_irqrestore(&adapter
->stats_lock
,
3843 /* recycle both page and skb */
3844 buffer_info
->skb
= skb
;
3845 /* an error means any chain goes out the window
3847 if (rx_ring
->rx_skb_top
)
3848 dev_kfree_skb(rx_ring
->rx_skb_top
);
3849 rx_ring
->rx_skb_top
= NULL
;
3854 #define rxtop rx_ring->rx_skb_top
3855 if (!(status
& E1000_RXD_STAT_EOP
)) {
3856 /* this descriptor is only the beginning (or middle) */
3858 /* this is the beginning of a chain */
3860 skb_fill_page_desc(rxtop
, 0, buffer_info
->page
,
3863 /* this is the middle of a chain */
3864 skb_fill_page_desc(rxtop
,
3865 skb_shinfo(rxtop
)->nr_frags
,
3866 buffer_info
->page
, 0, length
);
3867 /* re-use the skb, only consumed the page */
3868 buffer_info
->skb
= skb
;
3870 e1000_consume_page(buffer_info
, rxtop
, length
);
3874 /* end of the chain */
3875 skb_fill_page_desc(rxtop
,
3876 skb_shinfo(rxtop
)->nr_frags
,
3877 buffer_info
->page
, 0, length
);
3878 /* re-use the current skb, we only consumed the
3880 buffer_info
->skb
= skb
;
3883 e1000_consume_page(buffer_info
, skb
, length
);
3885 /* no chain, got EOP, this buf is the packet
3886 * copybreak to save the put_page/alloc_page */
3887 if (length
<= copybreak
&&
3888 skb_tailroom(skb
) >= length
) {
3890 vaddr
= kmap_atomic(buffer_info
->page
,
3891 KM_SKB_DATA_SOFTIRQ
);
3892 memcpy(skb_tail_pointer(skb
), vaddr
, length
);
3893 kunmap_atomic(vaddr
,
3894 KM_SKB_DATA_SOFTIRQ
);
3895 /* re-use the page, so don't erase
3896 * buffer_info->page */
3897 skb_put(skb
, length
);
3899 skb_fill_page_desc(skb
, 0,
3900 buffer_info
->page
, 0,
3902 e1000_consume_page(buffer_info
, skb
,
3908 /* Receive Checksum Offload XXX recompute due to CRC strip? */
3909 e1000_rx_checksum(adapter
,
3911 ((u32
)(rx_desc
->errors
) << 24),
3912 le16_to_cpu(rx_desc
->csum
), skb
);
3914 pskb_trim(skb
, skb
->len
- 4);
3916 /* probably a little skewed due to removing CRC */
3917 total_rx_bytes
+= skb
->len
;
3920 /* eth type trans needs skb->data to point to something */
3921 if (!pskb_may_pull(skb
, ETH_HLEN
)) {
3922 e_err(drv
, "pskb_may_pull failed.\n");
3927 e1000_receive_skb(adapter
, status
, rx_desc
->special
, skb
);
3930 rx_desc
->status
= 0;
3932 /* return some buffers to hardware, one at a time is too slow */
3933 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
3934 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
3938 /* use prefetched values */
3940 buffer_info
= next_buffer
;
3942 rx_ring
->next_to_clean
= i
;
3944 cleaned_count
= E1000_DESC_UNUSED(rx_ring
);
3946 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
3948 adapter
->total_rx_packets
+= total_rx_packets
;
3949 adapter
->total_rx_bytes
+= total_rx_bytes
;
3950 netdev
->stats
.rx_bytes
+= total_rx_bytes
;
3951 netdev
->stats
.rx_packets
+= total_rx_packets
;
3956 * this should improve performance for small packets with large amounts
3957 * of reassembly being done in the stack
3959 static void e1000_check_copybreak(struct net_device
*netdev
,
3960 struct e1000_buffer
*buffer_info
,
3961 u32 length
, struct sk_buff
**skb
)
3963 struct sk_buff
*new_skb
;
3965 if (length
> copybreak
)
3968 new_skb
= netdev_alloc_skb_ip_align(netdev
, length
);
3972 skb_copy_to_linear_data_offset(new_skb
, -NET_IP_ALIGN
,
3973 (*skb
)->data
- NET_IP_ALIGN
,
3974 length
+ NET_IP_ALIGN
);
3975 /* save the skb in buffer_info as good */
3976 buffer_info
->skb
= *skb
;
3981 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3982 * @adapter: board private structure
3983 * @rx_ring: ring to clean
3984 * @work_done: amount of napi work completed this call
3985 * @work_to_do: max amount of work allowed for this call to do
3987 static bool e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
3988 struct e1000_rx_ring
*rx_ring
,
3989 int *work_done
, int work_to_do
)
3991 struct e1000_hw
*hw
= &adapter
->hw
;
3992 struct net_device
*netdev
= adapter
->netdev
;
3993 struct pci_dev
*pdev
= adapter
->pdev
;
3994 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
3995 struct e1000_buffer
*buffer_info
, *next_buffer
;
3996 unsigned long flags
;
3999 int cleaned_count
= 0;
4000 bool cleaned
= false;
4001 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
4003 i
= rx_ring
->next_to_clean
;
4004 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4005 buffer_info
= &rx_ring
->buffer_info
[i
];
4007 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
4008 struct sk_buff
*skb
;
4011 if (*work_done
>= work_to_do
)
4014 rmb(); /* read descriptor and rx_buffer_info after status DD */
4016 status
= rx_desc
->status
;
4017 skb
= buffer_info
->skb
;
4018 buffer_info
->skb
= NULL
;
4020 prefetch(skb
->data
- NET_IP_ALIGN
);
4022 if (++i
== rx_ring
->count
) i
= 0;
4023 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
4026 next_buffer
= &rx_ring
->buffer_info
[i
];
4030 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
4031 buffer_info
->length
, DMA_FROM_DEVICE
);
4032 buffer_info
->dma
= 0;
4034 length
= le16_to_cpu(rx_desc
->length
);
4035 /* !EOP means multiple descriptors were used to store a single
4036 * packet, if thats the case we need to toss it. In fact, we
4037 * to toss every packet with the EOP bit clear and the next
4038 * frame that _does_ have the EOP bit set, as it is by
4039 * definition only a frame fragment
4041 if (unlikely(!(status
& E1000_RXD_STAT_EOP
)))
4042 adapter
->discarding
= true;
4044 if (adapter
->discarding
) {
4045 /* All receives must fit into a single buffer */
4046 e_dbg("Receive packet consumed multiple buffers\n");
4048 buffer_info
->skb
= skb
;
4049 if (status
& E1000_RXD_STAT_EOP
)
4050 adapter
->discarding
= false;
4054 if (unlikely(rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
)) {
4055 u8 last_byte
= *(skb
->data
+ length
- 1);
4056 if (TBI_ACCEPT(hw
, status
, rx_desc
->errors
, length
,
4058 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4059 e1000_tbi_adjust_stats(hw
, &adapter
->stats
,
4061 spin_unlock_irqrestore(&adapter
->stats_lock
,
4066 buffer_info
->skb
= skb
;
4071 /* adjust length to remove Ethernet CRC, this must be
4072 * done after the TBI_ACCEPT workaround above */
4075 /* probably a little skewed due to removing CRC */
4076 total_rx_bytes
+= length
;
4079 e1000_check_copybreak(netdev
, buffer_info
, length
, &skb
);
4081 skb_put(skb
, length
);
4083 /* Receive Checksum Offload */
4084 e1000_rx_checksum(adapter
,
4086 ((u32
)(rx_desc
->errors
) << 24),
4087 le16_to_cpu(rx_desc
->csum
), skb
);
4089 e1000_receive_skb(adapter
, status
, rx_desc
->special
, skb
);
4092 rx_desc
->status
= 0;
4094 /* return some buffers to hardware, one at a time is too slow */
4095 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
4096 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4100 /* use prefetched values */
4102 buffer_info
= next_buffer
;
4104 rx_ring
->next_to_clean
= i
;
4106 cleaned_count
= E1000_DESC_UNUSED(rx_ring
);
4108 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4110 adapter
->total_rx_packets
+= total_rx_packets
;
4111 adapter
->total_rx_bytes
+= total_rx_bytes
;
4112 netdev
->stats
.rx_bytes
+= total_rx_bytes
;
4113 netdev
->stats
.rx_packets
+= total_rx_packets
;
4118 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4119 * @adapter: address of board private structure
4120 * @rx_ring: pointer to receive ring structure
4121 * @cleaned_count: number of buffers to allocate this pass
4125 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter
*adapter
,
4126 struct e1000_rx_ring
*rx_ring
, int cleaned_count
)
4128 struct net_device
*netdev
= adapter
->netdev
;
4129 struct pci_dev
*pdev
= adapter
->pdev
;
4130 struct e1000_rx_desc
*rx_desc
;
4131 struct e1000_buffer
*buffer_info
;
4132 struct sk_buff
*skb
;
4134 unsigned int bufsz
= 256 - 16 /*for skb_reserve */ ;
4136 i
= rx_ring
->next_to_use
;
4137 buffer_info
= &rx_ring
->buffer_info
[i
];
4139 while (cleaned_count
--) {
4140 skb
= buffer_info
->skb
;
4146 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
4147 if (unlikely(!skb
)) {
4148 /* Better luck next round */
4149 adapter
->alloc_rx_buff_failed
++;
4153 /* Fix for errata 23, can't cross 64kB boundary */
4154 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4155 struct sk_buff
*oldskb
= skb
;
4156 e_err(rx_err
, "skb align check failed: %u bytes at "
4157 "%p\n", bufsz
, skb
->data
);
4158 /* Try again, without freeing the previous */
4159 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
4160 /* Failed allocation, critical failure */
4162 dev_kfree_skb(oldskb
);
4163 adapter
->alloc_rx_buff_failed
++;
4167 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4170 dev_kfree_skb(oldskb
);
4171 break; /* while (cleaned_count--) */
4174 /* Use new allocation */
4175 dev_kfree_skb(oldskb
);
4177 buffer_info
->skb
= skb
;
4178 buffer_info
->length
= adapter
->rx_buffer_len
;
4180 /* allocate a new page if necessary */
4181 if (!buffer_info
->page
) {
4182 buffer_info
->page
= alloc_page(GFP_ATOMIC
);
4183 if (unlikely(!buffer_info
->page
)) {
4184 adapter
->alloc_rx_buff_failed
++;
4189 if (!buffer_info
->dma
) {
4190 buffer_info
->dma
= dma_map_page(&pdev
->dev
,
4191 buffer_info
->page
, 0,
4192 buffer_info
->length
,
4194 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
4195 put_page(buffer_info
->page
);
4197 buffer_info
->page
= NULL
;
4198 buffer_info
->skb
= NULL
;
4199 buffer_info
->dma
= 0;
4200 adapter
->alloc_rx_buff_failed
++;
4201 break; /* while !buffer_info->skb */
4205 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4206 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
4208 if (unlikely(++i
== rx_ring
->count
))
4210 buffer_info
= &rx_ring
->buffer_info
[i
];
4213 if (likely(rx_ring
->next_to_use
!= i
)) {
4214 rx_ring
->next_to_use
= i
;
4215 if (unlikely(i
-- == 0))
4216 i
= (rx_ring
->count
- 1);
4218 /* Force memory writes to complete before letting h/w
4219 * know there are new descriptors to fetch. (Only
4220 * applicable for weak-ordered memory model archs,
4221 * such as IA-64). */
4223 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->rdt
);
4228 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4229 * @adapter: address of board private structure
4232 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
4233 struct e1000_rx_ring
*rx_ring
,
4236 struct e1000_hw
*hw
= &adapter
->hw
;
4237 struct net_device
*netdev
= adapter
->netdev
;
4238 struct pci_dev
*pdev
= adapter
->pdev
;
4239 struct e1000_rx_desc
*rx_desc
;
4240 struct e1000_buffer
*buffer_info
;
4241 struct sk_buff
*skb
;
4243 unsigned int bufsz
= adapter
->rx_buffer_len
;
4245 i
= rx_ring
->next_to_use
;
4246 buffer_info
= &rx_ring
->buffer_info
[i
];
4248 while (cleaned_count
--) {
4249 skb
= buffer_info
->skb
;
4255 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
4256 if (unlikely(!skb
)) {
4257 /* Better luck next round */
4258 adapter
->alloc_rx_buff_failed
++;
4262 /* Fix for errata 23, can't cross 64kB boundary */
4263 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4264 struct sk_buff
*oldskb
= skb
;
4265 e_err(rx_err
, "skb align check failed: %u bytes at "
4266 "%p\n", bufsz
, skb
->data
);
4267 /* Try again, without freeing the previous */
4268 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
4269 /* Failed allocation, critical failure */
4271 dev_kfree_skb(oldskb
);
4272 adapter
->alloc_rx_buff_failed
++;
4276 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4279 dev_kfree_skb(oldskb
);
4280 adapter
->alloc_rx_buff_failed
++;
4281 break; /* while !buffer_info->skb */
4284 /* Use new allocation */
4285 dev_kfree_skb(oldskb
);
4287 buffer_info
->skb
= skb
;
4288 buffer_info
->length
= adapter
->rx_buffer_len
;
4290 buffer_info
->dma
= dma_map_single(&pdev
->dev
,
4292 buffer_info
->length
,
4294 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
4296 buffer_info
->skb
= NULL
;
4297 buffer_info
->dma
= 0;
4298 adapter
->alloc_rx_buff_failed
++;
4299 break; /* while !buffer_info->skb */
4303 * XXX if it was allocated cleanly it will never map to a
4307 /* Fix for errata 23, can't cross 64kB boundary */
4308 if (!e1000_check_64k_bound(adapter
,
4309 (void *)(unsigned long)buffer_info
->dma
,
4310 adapter
->rx_buffer_len
)) {
4311 e_err(rx_err
, "dma align check failed: %u bytes at "
4312 "%p\n", adapter
->rx_buffer_len
,
4313 (void *)(unsigned long)buffer_info
->dma
);
4315 buffer_info
->skb
= NULL
;
4317 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
4318 adapter
->rx_buffer_len
,
4320 buffer_info
->dma
= 0;
4322 adapter
->alloc_rx_buff_failed
++;
4323 break; /* while !buffer_info->skb */
4325 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4326 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
4328 if (unlikely(++i
== rx_ring
->count
))
4330 buffer_info
= &rx_ring
->buffer_info
[i
];
4333 if (likely(rx_ring
->next_to_use
!= i
)) {
4334 rx_ring
->next_to_use
= i
;
4335 if (unlikely(i
-- == 0))
4336 i
= (rx_ring
->count
- 1);
4338 /* Force memory writes to complete before letting h/w
4339 * know there are new descriptors to fetch. (Only
4340 * applicable for weak-ordered memory model archs,
4341 * such as IA-64). */
4343 writel(i
, hw
->hw_addr
+ rx_ring
->rdt
);
4348 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4352 static void e1000_smartspeed(struct e1000_adapter
*adapter
)
4354 struct e1000_hw
*hw
= &adapter
->hw
;
4358 if ((hw
->phy_type
!= e1000_phy_igp
) || !hw
->autoneg
||
4359 !(hw
->autoneg_advertised
& ADVERTISE_1000_FULL
))
4362 if (adapter
->smartspeed
== 0) {
4363 /* If Master/Slave config fault is asserted twice,
4364 * we assume back-to-back */
4365 e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_status
);
4366 if (!(phy_status
& SR_1000T_MS_CONFIG_FAULT
)) return;
4367 e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_status
);
4368 if (!(phy_status
& SR_1000T_MS_CONFIG_FAULT
)) return;
4369 e1000_read_phy_reg(hw
, PHY_1000T_CTRL
, &phy_ctrl
);
4370 if (phy_ctrl
& CR_1000T_MS_ENABLE
) {
4371 phy_ctrl
&= ~CR_1000T_MS_ENABLE
;
4372 e1000_write_phy_reg(hw
, PHY_1000T_CTRL
,
4374 adapter
->smartspeed
++;
4375 if (!e1000_phy_setup_autoneg(hw
) &&
4376 !e1000_read_phy_reg(hw
, PHY_CTRL
,
4378 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
4379 MII_CR_RESTART_AUTO_NEG
);
4380 e1000_write_phy_reg(hw
, PHY_CTRL
,
4385 } else if (adapter
->smartspeed
== E1000_SMARTSPEED_DOWNSHIFT
) {
4386 /* If still no link, perhaps using 2/3 pair cable */
4387 e1000_read_phy_reg(hw
, PHY_1000T_CTRL
, &phy_ctrl
);
4388 phy_ctrl
|= CR_1000T_MS_ENABLE
;
4389 e1000_write_phy_reg(hw
, PHY_1000T_CTRL
, phy_ctrl
);
4390 if (!e1000_phy_setup_autoneg(hw
) &&
4391 !e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_ctrl
)) {
4392 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
4393 MII_CR_RESTART_AUTO_NEG
);
4394 e1000_write_phy_reg(hw
, PHY_CTRL
, phy_ctrl
);
4397 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4398 if (adapter
->smartspeed
++ == E1000_SMARTSPEED_MAX
)
4399 adapter
->smartspeed
= 0;
4409 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4415 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
4428 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
4431 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4432 struct e1000_hw
*hw
= &adapter
->hw
;
4433 struct mii_ioctl_data
*data
= if_mii(ifr
);
4436 unsigned long flags
;
4438 if (hw
->media_type
!= e1000_media_type_copper
)
4443 data
->phy_id
= hw
->phy_addr
;
4446 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4447 if (e1000_read_phy_reg(hw
, data
->reg_num
& 0x1F,
4449 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4452 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4455 if (data
->reg_num
& ~(0x1F))
4457 mii_reg
= data
->val_in
;
4458 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4459 if (e1000_write_phy_reg(hw
, data
->reg_num
,
4461 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4464 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4465 if (hw
->media_type
== e1000_media_type_copper
) {
4466 switch (data
->reg_num
) {
4468 if (mii_reg
& MII_CR_POWER_DOWN
)
4470 if (mii_reg
& MII_CR_AUTO_NEG_EN
) {
4472 hw
->autoneg_advertised
= 0x2F;
4477 else if (mii_reg
& 0x2000)
4481 retval
= e1000_set_spd_dplx(
4489 if (netif_running(adapter
->netdev
))
4490 e1000_reinit_locked(adapter
);
4492 e1000_reset(adapter
);
4494 case M88E1000_PHY_SPEC_CTRL
:
4495 case M88E1000_EXT_PHY_SPEC_CTRL
:
4496 if (e1000_phy_reset(hw
))
4501 switch (data
->reg_num
) {
4503 if (mii_reg
& MII_CR_POWER_DOWN
)
4505 if (netif_running(adapter
->netdev
))
4506 e1000_reinit_locked(adapter
);
4508 e1000_reset(adapter
);
4516 return E1000_SUCCESS
;
4519 void e1000_pci_set_mwi(struct e1000_hw
*hw
)
4521 struct e1000_adapter
*adapter
= hw
->back
;
4522 int ret_val
= pci_set_mwi(adapter
->pdev
);
4525 e_err(probe
, "Error in setting MWI\n");
4528 void e1000_pci_clear_mwi(struct e1000_hw
*hw
)
4530 struct e1000_adapter
*adapter
= hw
->back
;
4532 pci_clear_mwi(adapter
->pdev
);
4535 int e1000_pcix_get_mmrbc(struct e1000_hw
*hw
)
4537 struct e1000_adapter
*adapter
= hw
->back
;
4538 return pcix_get_mmrbc(adapter
->pdev
);
4541 void e1000_pcix_set_mmrbc(struct e1000_hw
*hw
, int mmrbc
)
4543 struct e1000_adapter
*adapter
= hw
->back
;
4544 pcix_set_mmrbc(adapter
->pdev
, mmrbc
);
4547 void e1000_io_write(struct e1000_hw
*hw
, unsigned long port
, u32 value
)
4552 static bool e1000_vlan_used(struct e1000_adapter
*adapter
)
4556 for_each_set_bit(vid
, adapter
->active_vlans
, VLAN_N_VID
)
4561 static void e1000_vlan_filter_on_off(struct e1000_adapter
*adapter
,
4564 struct e1000_hw
*hw
= &adapter
->hw
;
4567 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4568 e1000_irq_disable(adapter
);
4571 /* enable VLAN receive filtering */
4573 rctl
&= ~E1000_RCTL_CFIEN
;
4574 if (!(adapter
->netdev
->flags
& IFF_PROMISC
))
4575 rctl
|= E1000_RCTL_VFE
;
4577 e1000_update_mng_vlan(adapter
);
4579 /* disable VLAN receive filtering */
4581 rctl
&= ~E1000_RCTL_VFE
;
4585 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4586 e1000_irq_enable(adapter
);
4589 static void e1000_vlan_mode(struct net_device
*netdev
, u32 features
)
4591 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4592 struct e1000_hw
*hw
= &adapter
->hw
;
4595 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4596 e1000_irq_disable(adapter
);
4599 if (features
& NETIF_F_HW_VLAN_RX
) {
4600 /* enable VLAN tag insert/strip */
4601 ctrl
|= E1000_CTRL_VME
;
4603 /* disable VLAN tag insert/strip */
4604 ctrl
&= ~E1000_CTRL_VME
;
4608 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4609 e1000_irq_enable(adapter
);
4612 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
4614 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4615 struct e1000_hw
*hw
= &adapter
->hw
;
4618 if ((hw
->mng_cookie
.status
&
4619 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
4620 (vid
== adapter
->mng_vlan_id
))
4623 if (!e1000_vlan_used(adapter
))
4624 e1000_vlan_filter_on_off(adapter
, true);
4626 /* add VID to filter table */
4627 index
= (vid
>> 5) & 0x7F;
4628 vfta
= E1000_READ_REG_ARRAY(hw
, VFTA
, index
);
4629 vfta
|= (1 << (vid
& 0x1F));
4630 e1000_write_vfta(hw
, index
, vfta
);
4632 set_bit(vid
, adapter
->active_vlans
);
4635 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
4637 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4638 struct e1000_hw
*hw
= &adapter
->hw
;
4641 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4642 e1000_irq_disable(adapter
);
4643 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4644 e1000_irq_enable(adapter
);
4646 /* remove VID from filter table */
4647 index
= (vid
>> 5) & 0x7F;
4648 vfta
= E1000_READ_REG_ARRAY(hw
, VFTA
, index
);
4649 vfta
&= ~(1 << (vid
& 0x1F));
4650 e1000_write_vfta(hw
, index
, vfta
);
4652 clear_bit(vid
, adapter
->active_vlans
);
4654 if (!e1000_vlan_used(adapter
))
4655 e1000_vlan_filter_on_off(adapter
, false);
4658 static void e1000_restore_vlan(struct e1000_adapter
*adapter
)
4662 if (!e1000_vlan_used(adapter
))
4665 e1000_vlan_filter_on_off(adapter
, true);
4666 for_each_set_bit(vid
, adapter
->active_vlans
, VLAN_N_VID
)
4667 e1000_vlan_rx_add_vid(adapter
->netdev
, vid
);
4670 int e1000_set_spd_dplx(struct e1000_adapter
*adapter
, u32 spd
, u8 dplx
)
4672 struct e1000_hw
*hw
= &adapter
->hw
;
4676 /* Make sure dplx is at most 1 bit and lsb of speed is not set
4677 * for the switch() below to work */
4678 if ((spd
& 1) || (dplx
& ~1))
4681 /* Fiber NICs only allow 1000 gbps Full duplex */
4682 if ((hw
->media_type
== e1000_media_type_fiber
) &&
4683 spd
!= SPEED_1000
&&
4684 dplx
!= DUPLEX_FULL
)
4687 switch (spd
+ dplx
) {
4688 case SPEED_10
+ DUPLEX_HALF
:
4689 hw
->forced_speed_duplex
= e1000_10_half
;
4691 case SPEED_10
+ DUPLEX_FULL
:
4692 hw
->forced_speed_duplex
= e1000_10_full
;
4694 case SPEED_100
+ DUPLEX_HALF
:
4695 hw
->forced_speed_duplex
= e1000_100_half
;
4697 case SPEED_100
+ DUPLEX_FULL
:
4698 hw
->forced_speed_duplex
= e1000_100_full
;
4700 case SPEED_1000
+ DUPLEX_FULL
:
4702 hw
->autoneg_advertised
= ADVERTISE_1000_FULL
;
4704 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
4711 e_err(probe
, "Unsupported Speed/Duplex configuration\n");
4715 static int __e1000_shutdown(struct pci_dev
*pdev
, bool *enable_wake
)
4717 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4718 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4719 struct e1000_hw
*hw
= &adapter
->hw
;
4720 u32 ctrl
, ctrl_ext
, rctl
, status
;
4721 u32 wufc
= adapter
->wol
;
4726 netif_device_detach(netdev
);
4728 if (netif_running(netdev
)) {
4729 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->flags
));
4730 e1000_down(adapter
);
4734 retval
= pci_save_state(pdev
);
4739 status
= er32(STATUS
);
4740 if (status
& E1000_STATUS_LU
)
4741 wufc
&= ~E1000_WUFC_LNKC
;
4744 e1000_setup_rctl(adapter
);
4745 e1000_set_rx_mode(netdev
);
4747 /* turn on all-multi mode if wake on multicast is enabled */
4748 if (wufc
& E1000_WUFC_MC
) {
4750 rctl
|= E1000_RCTL_MPE
;
4754 if (hw
->mac_type
>= e1000_82540
) {
4756 /* advertise wake from D3Cold */
4757 #define E1000_CTRL_ADVD3WUC 0x00100000
4758 /* phy power management enable */
4759 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4760 ctrl
|= E1000_CTRL_ADVD3WUC
|
4761 E1000_CTRL_EN_PHY_PWR_MGMT
;
4765 if (hw
->media_type
== e1000_media_type_fiber
||
4766 hw
->media_type
== e1000_media_type_internal_serdes
) {
4767 /* keep the laser running in D3 */
4768 ctrl_ext
= er32(CTRL_EXT
);
4769 ctrl_ext
|= E1000_CTRL_EXT_SDP7_DATA
;
4770 ew32(CTRL_EXT
, ctrl_ext
);
4773 ew32(WUC
, E1000_WUC_PME_EN
);
4780 e1000_release_manageability(adapter
);
4782 *enable_wake
= !!wufc
;
4784 /* make sure adapter isn't asleep if manageability is enabled */
4785 if (adapter
->en_mng_pt
)
4786 *enable_wake
= true;
4788 if (netif_running(netdev
))
4789 e1000_free_irq(adapter
);
4791 pci_disable_device(pdev
);
4797 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
)
4802 retval
= __e1000_shutdown(pdev
, &wake
);
4807 pci_prepare_to_sleep(pdev
);
4809 pci_wake_from_d3(pdev
, false);
4810 pci_set_power_state(pdev
, PCI_D3hot
);
4816 static int e1000_resume(struct pci_dev
*pdev
)
4818 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4819 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4820 struct e1000_hw
*hw
= &adapter
->hw
;
4823 pci_set_power_state(pdev
, PCI_D0
);
4824 pci_restore_state(pdev
);
4825 pci_save_state(pdev
);
4827 if (adapter
->need_ioport
)
4828 err
= pci_enable_device(pdev
);
4830 err
= pci_enable_device_mem(pdev
);
4832 pr_err("Cannot enable PCI device from suspend\n");
4835 pci_set_master(pdev
);
4837 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4838 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4840 if (netif_running(netdev
)) {
4841 err
= e1000_request_irq(adapter
);
4846 e1000_power_up_phy(adapter
);
4847 e1000_reset(adapter
);
4850 e1000_init_manageability(adapter
);
4852 if (netif_running(netdev
))
4855 netif_device_attach(netdev
);
4861 static void e1000_shutdown(struct pci_dev
*pdev
)
4865 __e1000_shutdown(pdev
, &wake
);
4867 if (system_state
== SYSTEM_POWER_OFF
) {
4868 pci_wake_from_d3(pdev
, wake
);
4869 pci_set_power_state(pdev
, PCI_D3hot
);
4873 #ifdef CONFIG_NET_POLL_CONTROLLER
4875 * Polling 'interrupt' - used by things like netconsole to send skbs
4876 * without having to re-enable interrupts. It's not called while
4877 * the interrupt routine is executing.
4879 static void e1000_netpoll(struct net_device
*netdev
)
4881 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4883 disable_irq(adapter
->pdev
->irq
);
4884 e1000_intr(adapter
->pdev
->irq
, netdev
);
4885 enable_irq(adapter
->pdev
->irq
);
4890 * e1000_io_error_detected - called when PCI error is detected
4891 * @pdev: Pointer to PCI device
4892 * @state: The current pci connection state
4894 * This function is called after a PCI bus error affecting
4895 * this device has been detected.
4897 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
4898 pci_channel_state_t state
)
4900 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4901 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4903 netif_device_detach(netdev
);
4905 if (state
== pci_channel_io_perm_failure
)
4906 return PCI_ERS_RESULT_DISCONNECT
;
4908 if (netif_running(netdev
))
4909 e1000_down(adapter
);
4910 pci_disable_device(pdev
);
4912 /* Request a slot slot reset. */
4913 return PCI_ERS_RESULT_NEED_RESET
;
4917 * e1000_io_slot_reset - called after the pci bus has been reset.
4918 * @pdev: Pointer to PCI device
4920 * Restart the card from scratch, as if from a cold-boot. Implementation
4921 * resembles the first-half of the e1000_resume routine.
4923 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
)
4925 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4926 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4927 struct e1000_hw
*hw
= &adapter
->hw
;
4930 if (adapter
->need_ioport
)
4931 err
= pci_enable_device(pdev
);
4933 err
= pci_enable_device_mem(pdev
);
4935 pr_err("Cannot re-enable PCI device after reset.\n");
4936 return PCI_ERS_RESULT_DISCONNECT
;
4938 pci_set_master(pdev
);
4940 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4941 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4943 e1000_reset(adapter
);
4946 return PCI_ERS_RESULT_RECOVERED
;
4950 * e1000_io_resume - called when traffic can start flowing again.
4951 * @pdev: Pointer to PCI device
4953 * This callback is called when the error recovery driver tells us that
4954 * its OK to resume normal operation. Implementation resembles the
4955 * second-half of the e1000_resume routine.
4957 static void e1000_io_resume(struct pci_dev
*pdev
)
4959 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4960 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4962 e1000_init_manageability(adapter
);
4964 if (netif_running(netdev
)) {
4965 if (e1000_up(adapter
)) {
4966 pr_info("can't bring device back up after reset\n");
4971 netif_device_attach(netdev
);