1 /*******************************************************************************
3 Intel PRO/10GbE Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * Shared functions for accessing and configuring the adapter
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
38 #include <linux/etherdevice.h>
40 /* Local function prototypes */
42 static u32
ixgb_hash_mc_addr(struct ixgb_hw
*hw
, u8
* mc_addr
);
44 static void ixgb_mta_set(struct ixgb_hw
*hw
, u32 hash_value
);
46 static void ixgb_get_bus_info(struct ixgb_hw
*hw
);
48 static bool ixgb_link_reset(struct ixgb_hw
*hw
);
50 static void ixgb_optics_reset(struct ixgb_hw
*hw
);
52 static void ixgb_optics_reset_bcm(struct ixgb_hw
*hw
);
54 static ixgb_phy_type
ixgb_identify_phy(struct ixgb_hw
*hw
);
56 static void ixgb_clear_hw_cntrs(struct ixgb_hw
*hw
);
58 static void ixgb_clear_vfta(struct ixgb_hw
*hw
);
60 static void ixgb_init_rx_addrs(struct ixgb_hw
*hw
);
62 static u16
ixgb_read_phy_reg(struct ixgb_hw
*hw
,
67 static bool ixgb_setup_fc(struct ixgb_hw
*hw
);
69 static bool mac_addr_valid(u8
*mac_addr
);
71 static u32
ixgb_mac_reset(struct ixgb_hw
*hw
)
75 ctrl_reg
= IXGB_CTRL0_RST
|
76 IXGB_CTRL0_SDP3_DIR
| /* All pins are Output=1 */
80 IXGB_CTRL0_SDP3
| /* Initial value 1101 */
85 /* Workaround for 82597EX reset errata */
86 IXGB_WRITE_REG_IO(hw
, CTRL0
, ctrl_reg
);
88 IXGB_WRITE_REG(hw
, CTRL0
, ctrl_reg
);
91 /* Delay a few ms just to allow the reset to complete */
92 msleep(IXGB_DELAY_AFTER_RESET
);
93 ctrl_reg
= IXGB_READ_REG(hw
, CTRL0
);
95 /* Make sure the self-clearing global reset bit did self clear */
96 ASSERT(!(ctrl_reg
& IXGB_CTRL0_RST
));
99 if (hw
->subsystem_vendor_id
== SUN_SUBVENDOR_ID
) {
100 ctrl_reg
= /* Enable interrupt from XFP and SerDes */
102 IXGB_CTRL1_SDP6_DIR
|
103 IXGB_CTRL1_SDP7_DIR
|
106 IXGB_WRITE_REG(hw
, CTRL1
, ctrl_reg
);
107 ixgb_optics_reset_bcm(hw
);
110 if (hw
->phy_type
== ixgb_phy_type_txn17401
)
111 ixgb_optics_reset(hw
);
116 /******************************************************************************
117 * Reset the transmit and receive units; mask and clear all interrupts.
119 * hw - Struct containing variables accessed by shared code
120 *****************************************************************************/
122 ixgb_adapter_stop(struct ixgb_hw
*hw
)
129 /* If we are stopped or resetting exit gracefully and wait to be
130 * started again before accessing the hardware.
132 if (hw
->adapter_stopped
) {
133 pr_debug("Exiting because the adapter is already stopped!!!\n");
137 /* Set the Adapter Stopped flag so other driver functions stop
138 * touching the Hardware.
140 hw
->adapter_stopped
= true;
142 /* Clear interrupt mask to stop board from generating interrupts */
143 pr_debug("Masking off all interrupts\n");
144 IXGB_WRITE_REG(hw
, IMC
, 0xFFFFFFFF);
146 /* Disable the Transmit and Receive units. Then delay to allow
147 * any pending transactions to complete before we hit the MAC with
150 IXGB_WRITE_REG(hw
, RCTL
, IXGB_READ_REG(hw
, RCTL
) & ~IXGB_RCTL_RXEN
);
151 IXGB_WRITE_REG(hw
, TCTL
, IXGB_READ_REG(hw
, TCTL
) & ~IXGB_TCTL_TXEN
);
152 IXGB_WRITE_FLUSH(hw
);
153 msleep(IXGB_DELAY_BEFORE_RESET
);
155 /* Issue a global reset to the MAC. This will reset the chip's
156 * transmit, receive, DMA, and link units. It will not effect
157 * the current PCI configuration. The global reset bit is self-
158 * clearing, and should clear within a microsecond.
160 pr_debug("Issuing a global reset to MAC\n");
162 ctrl_reg
= ixgb_mac_reset(hw
);
164 /* Clear interrupt mask to stop board from generating interrupts */
165 pr_debug("Masking off all interrupts\n");
166 IXGB_WRITE_REG(hw
, IMC
, 0xffffffff);
168 /* Clear any pending interrupt events. */
169 icr_reg
= IXGB_READ_REG(hw
, ICR
);
171 return ctrl_reg
& IXGB_CTRL0_RST
;
175 /******************************************************************************
176 * Identifies the vendor of the optics module on the adapter. The SR adapters
177 * support two different types of XPAK optics, so it is necessary to determine
178 * which optics are present before applying any optics-specific workarounds.
180 * hw - Struct containing variables accessed by shared code.
182 * Returns: the vendor of the XPAK optics module.
183 *****************************************************************************/
184 static ixgb_xpak_vendor
185 ixgb_identify_xpak_vendor(struct ixgb_hw
*hw
)
189 ixgb_xpak_vendor xpak_vendor
;
193 /* Read the first few bytes of the vendor string from the XPAK NVR
194 * registers. These are standard XENPAK/XPAK registers, so all XPAK
195 * devices should implement them. */
196 for (i
= 0; i
< 5; i
++) {
197 vendor_name
[i
] = ixgb_read_phy_reg(hw
,
198 MDIO_PMA_PMD_XPAK_VENDOR_NAME
199 + i
, IXGB_PHY_ADDRESS
,
203 /* Determine the actual vendor */
204 if (vendor_name
[0] == 'I' &&
205 vendor_name
[1] == 'N' &&
206 vendor_name
[2] == 'T' &&
207 vendor_name
[3] == 'E' && vendor_name
[4] == 'L') {
208 xpak_vendor
= ixgb_xpak_vendor_intel
;
210 xpak_vendor
= ixgb_xpak_vendor_infineon
;
216 /******************************************************************************
217 * Determine the physical layer module on the adapter.
219 * hw - Struct containing variables accessed by shared code. The device_id
220 * field must be (correctly) populated before calling this routine.
222 * Returns: the phy type of the adapter.
223 *****************************************************************************/
225 ixgb_identify_phy(struct ixgb_hw
*hw
)
227 ixgb_phy_type phy_type
;
228 ixgb_xpak_vendor xpak_vendor
;
232 /* Infer the transceiver/phy type from the device id */
233 switch (hw
->device_id
) {
234 case IXGB_DEVICE_ID_82597EX
:
235 pr_debug("Identified TXN17401 optics\n");
236 phy_type
= ixgb_phy_type_txn17401
;
239 case IXGB_DEVICE_ID_82597EX_SR
:
240 /* The SR adapters carry two different types of XPAK optics
241 * modules; read the vendor identifier to determine the exact
243 xpak_vendor
= ixgb_identify_xpak_vendor(hw
);
244 if (xpak_vendor
== ixgb_xpak_vendor_intel
) {
245 pr_debug("Identified TXN17201 optics\n");
246 phy_type
= ixgb_phy_type_txn17201
;
248 pr_debug("Identified G6005 optics\n");
249 phy_type
= ixgb_phy_type_g6005
;
252 case IXGB_DEVICE_ID_82597EX_LR
:
253 pr_debug("Identified G6104 optics\n");
254 phy_type
= ixgb_phy_type_g6104
;
256 case IXGB_DEVICE_ID_82597EX_CX4
:
257 pr_debug("Identified CX4\n");
258 xpak_vendor
= ixgb_identify_xpak_vendor(hw
);
259 if (xpak_vendor
== ixgb_xpak_vendor_intel
) {
260 pr_debug("Identified TXN17201 optics\n");
261 phy_type
= ixgb_phy_type_txn17201
;
263 pr_debug("Identified G6005 optics\n");
264 phy_type
= ixgb_phy_type_g6005
;
268 pr_debug("Unknown physical layer module\n");
269 phy_type
= ixgb_phy_type_unknown
;
273 /* update phy type for sun specific board */
274 if (hw
->subsystem_vendor_id
== SUN_SUBVENDOR_ID
)
275 phy_type
= ixgb_phy_type_bcm
;
280 /******************************************************************************
281 * Performs basic configuration of the adapter.
283 * hw - Struct containing variables accessed by shared code
285 * Resets the controller.
286 * Reads and validates the EEPROM.
287 * Initializes the receive address registers.
288 * Initializes the multicast table.
289 * Clears all on-chip counters.
290 * Calls routine to setup flow control settings.
291 * Leaves the transmit and receive units disabled and uninitialized.
294 * true if successful,
295 * false if unrecoverable problems were encountered.
296 *****************************************************************************/
298 ixgb_init_hw(struct ixgb_hw
*hw
)
306 /* Issue a global reset to the MAC. This will reset the chip's
307 * transmit, receive, DMA, and link units. It will not effect
308 * the current PCI configuration. The global reset bit is self-
309 * clearing, and should clear within a microsecond.
311 pr_debug("Issuing a global reset to MAC\n");
313 ctrl_reg
= ixgb_mac_reset(hw
);
315 pr_debug("Issuing an EE reset to MAC\n");
317 /* Workaround for 82597EX reset errata */
318 IXGB_WRITE_REG_IO(hw
, CTRL1
, IXGB_CTRL1_EE_RST
);
320 IXGB_WRITE_REG(hw
, CTRL1
, IXGB_CTRL1_EE_RST
);
323 /* Delay a few ms just to allow the reset to complete */
324 msleep(IXGB_DELAY_AFTER_EE_RESET
);
326 if (!ixgb_get_eeprom_data(hw
))
329 /* Use the device id to determine the type of phy/transceiver. */
330 hw
->device_id
= ixgb_get_ee_device_id(hw
);
331 hw
->phy_type
= ixgb_identify_phy(hw
);
333 /* Setup the receive addresses.
334 * Receive Address Registers (RARs 0 - 15).
336 ixgb_init_rx_addrs(hw
);
339 * Check that a valid MAC address has been set.
340 * If it is not valid, we fail hardware init.
342 if (!mac_addr_valid(hw
->curr_mac_addr
)) {
343 pr_debug("MAC address invalid after ixgb_init_rx_addrs\n");
347 /* tell the routines in this file they can access hardware again */
348 hw
->adapter_stopped
= false;
350 /* Fill in the bus_info structure */
351 ixgb_get_bus_info(hw
);
353 /* Zero out the Multicast HASH table */
354 pr_debug("Zeroing the MTA\n");
355 for (i
= 0; i
< IXGB_MC_TBL_SIZE
; i
++)
356 IXGB_WRITE_REG_ARRAY(hw
, MTA
, i
, 0);
358 /* Zero out the VLAN Filter Table Array */
361 /* Zero all of the hardware counters */
362 ixgb_clear_hw_cntrs(hw
);
364 /* Call a subroutine to setup flow control. */
365 status
= ixgb_setup_fc(hw
);
367 /* 82597EX errata: Call check-for-link in case lane deskew is locked */
368 ixgb_check_for_link(hw
);
373 /******************************************************************************
374 * Initializes receive address filters.
376 * hw - Struct containing variables accessed by shared code
378 * Places the MAC address in receive address register 0 and clears the rest
379 * of the receive address registers. Clears the multicast table. Assumes
380 * the receiver is in reset when the routine is called.
381 *****************************************************************************/
383 ixgb_init_rx_addrs(struct ixgb_hw
*hw
)
390 * If the current mac address is valid, assume it is a software override
391 * to the permanent address.
392 * Otherwise, use the permanent address from the eeprom.
394 if (!mac_addr_valid(hw
->curr_mac_addr
)) {
396 /* Get the MAC address from the eeprom for later reference */
397 ixgb_get_ee_mac_addr(hw
, hw
->curr_mac_addr
);
399 pr_debug("Keeping Permanent MAC Addr = %pM\n",
403 /* Setup the receive address. */
404 pr_debug("Overriding MAC Address in RAR[0]\n");
405 pr_debug("New MAC Addr = %pM\n", hw
->curr_mac_addr
);
407 ixgb_rar_set(hw
, hw
->curr_mac_addr
, 0);
410 /* Zero out the other 15 receive addresses. */
411 pr_debug("Clearing RAR[1-15]\n");
412 for (i
= 1; i
< IXGB_RAR_ENTRIES
; i
++) {
413 /* Write high reg first to disable the AV bit first */
414 IXGB_WRITE_REG_ARRAY(hw
, RA
, ((i
<< 1) + 1), 0);
415 IXGB_WRITE_REG_ARRAY(hw
, RA
, (i
<< 1), 0);
419 /******************************************************************************
420 * Updates the MAC's list of multicast addresses.
422 * hw - Struct containing variables accessed by shared code
423 * mc_addr_list - the list of new multicast addresses
424 * mc_addr_count - number of addresses
425 * pad - number of bytes between addresses in the list
427 * The given list replaces any existing list. Clears the last 15 receive
428 * address registers and the multicast table. Uses receive address registers
429 * for the first 15 multicast addresses, and hashes the rest into the
431 *****************************************************************************/
433 ixgb_mc_addr_list_update(struct ixgb_hw
*hw
,
440 u32 rar_used_count
= 1; /* RAR[0] is used for our MAC address */
445 /* Set the new number of MC addresses that we are being requested to use. */
446 hw
->num_mc_addrs
= mc_addr_count
;
448 /* Clear RAR[1-15] */
449 pr_debug("Clearing RAR[1-15]\n");
450 for (i
= rar_used_count
; i
< IXGB_RAR_ENTRIES
; i
++) {
451 IXGB_WRITE_REG_ARRAY(hw
, RA
, (i
<< 1), 0);
452 IXGB_WRITE_REG_ARRAY(hw
, RA
, ((i
<< 1) + 1), 0);
456 pr_debug("Clearing MTA\n");
457 for (i
= 0; i
< IXGB_MC_TBL_SIZE
; i
++)
458 IXGB_WRITE_REG_ARRAY(hw
, MTA
, i
, 0);
460 /* Add the new addresses */
462 for (i
= 0; i
< mc_addr_count
; i
++) {
463 pr_debug("Adding the multicast addresses:\n");
464 pr_debug("MC Addr #%d = %pM\n", i
, mca
);
466 /* Place this multicast address in the RAR if there is room, *
467 * else put it in the MTA
469 if (rar_used_count
< IXGB_RAR_ENTRIES
) {
470 ixgb_rar_set(hw
, mca
, rar_used_count
);
471 pr_debug("Added a multicast address to RAR[%d]\n", i
);
474 hash_value
= ixgb_hash_mc_addr(hw
, mca
);
476 pr_debug("Hash value = 0x%03X\n", hash_value
);
478 ixgb_mta_set(hw
, hash_value
);
481 mca
+= IXGB_ETH_LENGTH_OF_ADDRESS
+ pad
;
484 pr_debug("MC Update Complete\n");
487 /******************************************************************************
488 * Hashes an address to determine its location in the multicast table
490 * hw - Struct containing variables accessed by shared code
491 * mc_addr - the multicast address to hash
495 *****************************************************************************/
497 ixgb_hash_mc_addr(struct ixgb_hw
*hw
,
504 /* The portion of the address that is used for the hash table is
505 * determined by the mc_filter_type setting.
507 switch (hw
->mc_filter_type
) {
508 /* [0] [1] [2] [3] [4] [5]
510 * LSB MSB - According to H/W docs */
512 /* [47:36] i.e. 0x563 for above example address */
514 ((mc_addr
[4] >> 4) | (((u16
) mc_addr
[5]) << 4));
516 case 1: /* [46:35] i.e. 0xAC6 for above example address */
518 ((mc_addr
[4] >> 3) | (((u16
) mc_addr
[5]) << 5));
520 case 2: /* [45:34] i.e. 0x5D8 for above example address */
522 ((mc_addr
[4] >> 2) | (((u16
) mc_addr
[5]) << 6));
524 case 3: /* [43:32] i.e. 0x634 for above example address */
525 hash_value
= ((mc_addr
[4]) | (((u16
) mc_addr
[5]) << 8));
528 /* Invalid mc_filter_type, what should we do? */
529 pr_debug("MC filter type param set incorrectly\n");
538 /******************************************************************************
539 * Sets the bit in the multicast table corresponding to the hash value.
541 * hw - Struct containing variables accessed by shared code
542 * hash_value - Multicast address hash value
543 *****************************************************************************/
545 ixgb_mta_set(struct ixgb_hw
*hw
,
548 u32 hash_bit
, hash_reg
;
551 /* The MTA is a register array of 128 32-bit registers.
552 * It is treated like an array of 4096 bits. We want to set
553 * bit BitArray[hash_value]. So we figure out what register
554 * the bit is in, read it, OR in the new bit, then write
555 * back the new value. The register is determined by the
556 * upper 7 bits of the hash value and the bit within that
557 * register are determined by the lower 5 bits of the value.
559 hash_reg
= (hash_value
>> 5) & 0x7F;
560 hash_bit
= hash_value
& 0x1F;
562 mta_reg
= IXGB_READ_REG_ARRAY(hw
, MTA
, hash_reg
);
564 mta_reg
|= (1 << hash_bit
);
566 IXGB_WRITE_REG_ARRAY(hw
, MTA
, hash_reg
, mta_reg
);
569 /******************************************************************************
570 * Puts an ethernet address into a receive address register.
572 * hw - Struct containing variables accessed by shared code
573 * addr - Address to put into receive address register
574 * index - Receive address register to write
575 *****************************************************************************/
577 ixgb_rar_set(struct ixgb_hw
*hw
,
581 u32 rar_low
, rar_high
;
585 /* HW expects these in little endian so we reverse the byte order
586 * from network order (big endian) to little endian
588 rar_low
= ((u32
) addr
[0] |
589 ((u32
)addr
[1] << 8) |
590 ((u32
)addr
[2] << 16) |
591 ((u32
)addr
[3] << 24));
593 rar_high
= ((u32
) addr
[4] |
594 ((u32
)addr
[5] << 8) |
597 IXGB_WRITE_REG_ARRAY(hw
, RA
, (index
<< 1), rar_low
);
598 IXGB_WRITE_REG_ARRAY(hw
, RA
, ((index
<< 1) + 1), rar_high
);
601 /******************************************************************************
602 * Writes a value to the specified offset in the VLAN filter table.
604 * hw - Struct containing variables accessed by shared code
605 * offset - Offset in VLAN filer table to write
606 * value - Value to write into VLAN filter table
607 *****************************************************************************/
609 ixgb_write_vfta(struct ixgb_hw
*hw
,
613 IXGB_WRITE_REG_ARRAY(hw
, VFTA
, offset
, value
);
616 /******************************************************************************
617 * Clears the VLAN filer table
619 * hw - Struct containing variables accessed by shared code
620 *****************************************************************************/
622 ixgb_clear_vfta(struct ixgb_hw
*hw
)
626 for (offset
= 0; offset
< IXGB_VLAN_FILTER_TBL_SIZE
; offset
++)
627 IXGB_WRITE_REG_ARRAY(hw
, VFTA
, offset
, 0);
630 /******************************************************************************
631 * Configures the flow control settings based on SW configuration.
633 * hw - Struct containing variables accessed by shared code
634 *****************************************************************************/
637 ixgb_setup_fc(struct ixgb_hw
*hw
)
640 u32 pap_reg
= 0; /* by default, assume no pause time */
645 /* Get the current control reg 0 settings */
646 ctrl_reg
= IXGB_READ_REG(hw
, CTRL0
);
648 /* Clear the Receive Pause Enable and Transmit Pause Enable bits */
649 ctrl_reg
&= ~(IXGB_CTRL0_RPE
| IXGB_CTRL0_TPE
);
651 /* The possible values of the "flow_control" parameter are:
652 * 0: Flow control is completely disabled
653 * 1: Rx flow control is enabled (we can receive pause frames
654 * but not send pause frames).
655 * 2: Tx flow control is enabled (we can send pause frames
656 * but we do not support receiving pause frames).
657 * 3: Both Rx and TX flow control (symmetric) are enabled.
660 switch (hw
->fc
.type
) {
661 case ixgb_fc_none
: /* 0 */
662 /* Set CMDC bit to disable Rx Flow control */
663 ctrl_reg
|= (IXGB_CTRL0_CMDC
);
665 case ixgb_fc_rx_pause
: /* 1 */
666 /* RX Flow control is enabled, and TX Flow control is
669 ctrl_reg
|= (IXGB_CTRL0_RPE
);
671 case ixgb_fc_tx_pause
: /* 2 */
672 /* TX Flow control is enabled, and RX Flow control is
673 * disabled, by a software over-ride.
675 ctrl_reg
|= (IXGB_CTRL0_TPE
);
676 pap_reg
= hw
->fc
.pause_time
;
678 case ixgb_fc_full
: /* 3 */
679 /* Flow control (both RX and TX) is enabled by a software
682 ctrl_reg
|= (IXGB_CTRL0_RPE
| IXGB_CTRL0_TPE
);
683 pap_reg
= hw
->fc
.pause_time
;
686 /* We should never get here. The value should be 0-3. */
687 pr_debug("Flow control param set incorrectly\n");
692 /* Write the new settings */
693 IXGB_WRITE_REG(hw
, CTRL0
, ctrl_reg
);
696 IXGB_WRITE_REG(hw
, PAP
, pap_reg
);
698 /* Set the flow control receive threshold registers. Normally,
699 * these registers will be set to a default threshold that may be
700 * adjusted later by the driver's runtime code. However, if the
701 * ability to transmit pause frames in not enabled, then these
702 * registers will be set to 0.
704 if (!(hw
->fc
.type
& ixgb_fc_tx_pause
)) {
705 IXGB_WRITE_REG(hw
, FCRTL
, 0);
706 IXGB_WRITE_REG(hw
, FCRTH
, 0);
708 /* We need to set up the Receive Threshold high and low water
709 * marks as well as (optionally) enabling the transmission of XON
711 if (hw
->fc
.send_xon
) {
712 IXGB_WRITE_REG(hw
, FCRTL
,
713 (hw
->fc
.low_water
| IXGB_FCRTL_XONE
));
715 IXGB_WRITE_REG(hw
, FCRTL
, hw
->fc
.low_water
);
717 IXGB_WRITE_REG(hw
, FCRTH
, hw
->fc
.high_water
);
722 /******************************************************************************
723 * Reads a word from a device over the Management Data Interface (MDI) bus.
724 * This interface is used to manage Physical layer devices.
726 * hw - Struct containing variables accessed by hw code
727 * reg_address - Offset of device register being read.
728 * phy_address - Address of device on MDI.
730 * Returns: Data word (16 bits) from MDI device.
732 * The 82597EX has support for several MDI access methods. This routine
733 * uses the new protocol MDI Single Command and Address Operation.
734 * This requires that first an address cycle command is sent, followed by a
736 *****************************************************************************/
738 ixgb_read_phy_reg(struct ixgb_hw
*hw
,
747 ASSERT(reg_address
<= IXGB_MAX_PHY_REG_ADDRESS
);
748 ASSERT(phy_address
<= IXGB_MAX_PHY_ADDRESS
);
749 ASSERT(device_type
<= IXGB_MAX_PHY_DEV_TYPE
);
751 /* Setup and write the address cycle command */
752 command
= ((reg_address
<< IXGB_MSCA_NP_ADDR_SHIFT
) |
753 (device_type
<< IXGB_MSCA_DEV_TYPE_SHIFT
) |
754 (phy_address
<< IXGB_MSCA_PHY_ADDR_SHIFT
) |
755 (IXGB_MSCA_ADDR_CYCLE
| IXGB_MSCA_MDI_COMMAND
));
757 IXGB_WRITE_REG(hw
, MSCA
, command
);
759 /**************************************************************
760 ** Check every 10 usec to see if the address cycle completed
761 ** The COMMAND bit will clear when the operation is complete.
762 ** This may take as long as 64 usecs (we'll wait 100 usecs max)
763 ** from the CPU Write to the Ready bit assertion.
764 **************************************************************/
766 for (i
= 0; i
< 10; i
++)
770 command
= IXGB_READ_REG(hw
, MSCA
);
772 if ((command
& IXGB_MSCA_MDI_COMMAND
) == 0)
776 ASSERT((command
& IXGB_MSCA_MDI_COMMAND
) == 0);
778 /* Address cycle complete, setup and write the read command */
779 command
= ((reg_address
<< IXGB_MSCA_NP_ADDR_SHIFT
) |
780 (device_type
<< IXGB_MSCA_DEV_TYPE_SHIFT
) |
781 (phy_address
<< IXGB_MSCA_PHY_ADDR_SHIFT
) |
782 (IXGB_MSCA_READ
| IXGB_MSCA_MDI_COMMAND
));
784 IXGB_WRITE_REG(hw
, MSCA
, command
);
786 /**************************************************************
787 ** Check every 10 usec to see if the read command completed
788 ** The COMMAND bit will clear when the operation is complete.
789 ** The read may take as long as 64 usecs (we'll wait 100 usecs max)
790 ** from the CPU Write to the Ready bit assertion.
791 **************************************************************/
793 for (i
= 0; i
< 10; i
++)
797 command
= IXGB_READ_REG(hw
, MSCA
);
799 if ((command
& IXGB_MSCA_MDI_COMMAND
) == 0)
803 ASSERT((command
& IXGB_MSCA_MDI_COMMAND
) == 0);
805 /* Operation is complete, get the data from the MDIO Read/Write Data
806 * register and return.
808 data
= IXGB_READ_REG(hw
, MSRWD
);
809 data
>>= IXGB_MSRWD_READ_DATA_SHIFT
;
813 /******************************************************************************
814 * Writes a word to a device over the Management Data Interface (MDI) bus.
815 * This interface is used to manage Physical layer devices.
817 * hw - Struct containing variables accessed by hw code
818 * reg_address - Offset of device register being read.
819 * phy_address - Address of device on MDI.
820 * device_type - Also known as the Device ID or DID.
821 * data - 16-bit value to be written
825 * The 82597EX has support for several MDI access methods. This routine
826 * uses the new protocol MDI Single Command and Address Operation.
827 * This requires that first an address cycle command is sent, followed by a
829 *****************************************************************************/
831 ixgb_write_phy_reg(struct ixgb_hw
*hw
,
840 ASSERT(reg_address
<= IXGB_MAX_PHY_REG_ADDRESS
);
841 ASSERT(phy_address
<= IXGB_MAX_PHY_ADDRESS
);
842 ASSERT(device_type
<= IXGB_MAX_PHY_DEV_TYPE
);
844 /* Put the data in the MDIO Read/Write Data register */
845 IXGB_WRITE_REG(hw
, MSRWD
, (u32
)data
);
847 /* Setup and write the address cycle command */
848 command
= ((reg_address
<< IXGB_MSCA_NP_ADDR_SHIFT
) |
849 (device_type
<< IXGB_MSCA_DEV_TYPE_SHIFT
) |
850 (phy_address
<< IXGB_MSCA_PHY_ADDR_SHIFT
) |
851 (IXGB_MSCA_ADDR_CYCLE
| IXGB_MSCA_MDI_COMMAND
));
853 IXGB_WRITE_REG(hw
, MSCA
, command
);
855 /**************************************************************
856 ** Check every 10 usec to see if the address cycle completed
857 ** The COMMAND bit will clear when the operation is complete.
858 ** This may take as long as 64 usecs (we'll wait 100 usecs max)
859 ** from the CPU Write to the Ready bit assertion.
860 **************************************************************/
862 for (i
= 0; i
< 10; i
++)
866 command
= IXGB_READ_REG(hw
, MSCA
);
868 if ((command
& IXGB_MSCA_MDI_COMMAND
) == 0)
872 ASSERT((command
& IXGB_MSCA_MDI_COMMAND
) == 0);
874 /* Address cycle complete, setup and write the write command */
875 command
= ((reg_address
<< IXGB_MSCA_NP_ADDR_SHIFT
) |
876 (device_type
<< IXGB_MSCA_DEV_TYPE_SHIFT
) |
877 (phy_address
<< IXGB_MSCA_PHY_ADDR_SHIFT
) |
878 (IXGB_MSCA_WRITE
| IXGB_MSCA_MDI_COMMAND
));
880 IXGB_WRITE_REG(hw
, MSCA
, command
);
882 /**************************************************************
883 ** Check every 10 usec to see if the read command completed
884 ** The COMMAND bit will clear when the operation is complete.
885 ** The write may take as long as 64 usecs (we'll wait 100 usecs max)
886 ** from the CPU Write to the Ready bit assertion.
887 **************************************************************/
889 for (i
= 0; i
< 10; i
++)
893 command
= IXGB_READ_REG(hw
, MSCA
);
895 if ((command
& IXGB_MSCA_MDI_COMMAND
) == 0)
899 ASSERT((command
& IXGB_MSCA_MDI_COMMAND
) == 0);
901 /* Operation is complete, return. */
904 /******************************************************************************
905 * Checks to see if the link status of the hardware has changed.
907 * hw - Struct containing variables accessed by hw code
909 * Called by any function that needs to check the link status of the adapter.
910 *****************************************************************************/
912 ixgb_check_for_link(struct ixgb_hw
*hw
)
919 xpcss_reg
= IXGB_READ_REG(hw
, XPCSS
);
920 status_reg
= IXGB_READ_REG(hw
, STATUS
);
922 if ((xpcss_reg
& IXGB_XPCSS_ALIGN_STATUS
) &&
923 (status_reg
& IXGB_STATUS_LU
)) {
925 } else if (!(xpcss_reg
& IXGB_XPCSS_ALIGN_STATUS
) &&
926 (status_reg
& IXGB_STATUS_LU
)) {
927 pr_debug("XPCSS Not Aligned while Status:LU is set\n");
928 hw
->link_up
= ixgb_link_reset(hw
);
931 * 82597EX errata. Since the lane deskew problem may prevent
932 * link, reset the link before reporting link down.
934 hw
->link_up
= ixgb_link_reset(hw
);
936 /* Anything else for 10 Gig?? */
939 /******************************************************************************
940 * Check for a bad link condition that may have occurred.
941 * The indication is that the RFC / LFC registers may be incrementing
942 * continually. A full adapter reset is required to recover.
944 * hw - Struct containing variables accessed by hw code
946 * Called by any function that needs to check the link status of the adapter.
947 *****************************************************************************/
948 bool ixgb_check_for_bad_link(struct ixgb_hw
*hw
)
951 bool bad_link_returncode
= false;
953 if (hw
->phy_type
== ixgb_phy_type_txn17401
) {
954 newLFC
= IXGB_READ_REG(hw
, LFC
);
955 newRFC
= IXGB_READ_REG(hw
, RFC
);
956 if ((hw
->lastLFC
+ 250 < newLFC
)
957 || (hw
->lastRFC
+ 250 < newRFC
)) {
958 pr_debug("BAD LINK! too many LFC/RFC since last check\n");
959 bad_link_returncode
= true;
961 hw
->lastLFC
= newLFC
;
962 hw
->lastRFC
= newRFC
;
965 return bad_link_returncode
;
968 /******************************************************************************
969 * Clears all hardware statistics counters.
971 * hw - Struct containing variables accessed by shared code
972 *****************************************************************************/
974 ixgb_clear_hw_cntrs(struct ixgb_hw
*hw
)
976 volatile u32 temp_reg
;
980 /* if we are stopped or resetting exit gracefully */
981 if (hw
->adapter_stopped
) {
982 pr_debug("Exiting because the adapter is stopped!!!\n");
986 temp_reg
= IXGB_READ_REG(hw
, TPRL
);
987 temp_reg
= IXGB_READ_REG(hw
, TPRH
);
988 temp_reg
= IXGB_READ_REG(hw
, GPRCL
);
989 temp_reg
= IXGB_READ_REG(hw
, GPRCH
);
990 temp_reg
= IXGB_READ_REG(hw
, BPRCL
);
991 temp_reg
= IXGB_READ_REG(hw
, BPRCH
);
992 temp_reg
= IXGB_READ_REG(hw
, MPRCL
);
993 temp_reg
= IXGB_READ_REG(hw
, MPRCH
);
994 temp_reg
= IXGB_READ_REG(hw
, UPRCL
);
995 temp_reg
= IXGB_READ_REG(hw
, UPRCH
);
996 temp_reg
= IXGB_READ_REG(hw
, VPRCL
);
997 temp_reg
= IXGB_READ_REG(hw
, VPRCH
);
998 temp_reg
= IXGB_READ_REG(hw
, JPRCL
);
999 temp_reg
= IXGB_READ_REG(hw
, JPRCH
);
1000 temp_reg
= IXGB_READ_REG(hw
, GORCL
);
1001 temp_reg
= IXGB_READ_REG(hw
, GORCH
);
1002 temp_reg
= IXGB_READ_REG(hw
, TORL
);
1003 temp_reg
= IXGB_READ_REG(hw
, TORH
);
1004 temp_reg
= IXGB_READ_REG(hw
, RNBC
);
1005 temp_reg
= IXGB_READ_REG(hw
, RUC
);
1006 temp_reg
= IXGB_READ_REG(hw
, ROC
);
1007 temp_reg
= IXGB_READ_REG(hw
, RLEC
);
1008 temp_reg
= IXGB_READ_REG(hw
, CRCERRS
);
1009 temp_reg
= IXGB_READ_REG(hw
, ICBC
);
1010 temp_reg
= IXGB_READ_REG(hw
, ECBC
);
1011 temp_reg
= IXGB_READ_REG(hw
, MPC
);
1012 temp_reg
= IXGB_READ_REG(hw
, TPTL
);
1013 temp_reg
= IXGB_READ_REG(hw
, TPTH
);
1014 temp_reg
= IXGB_READ_REG(hw
, GPTCL
);
1015 temp_reg
= IXGB_READ_REG(hw
, GPTCH
);
1016 temp_reg
= IXGB_READ_REG(hw
, BPTCL
);
1017 temp_reg
= IXGB_READ_REG(hw
, BPTCH
);
1018 temp_reg
= IXGB_READ_REG(hw
, MPTCL
);
1019 temp_reg
= IXGB_READ_REG(hw
, MPTCH
);
1020 temp_reg
= IXGB_READ_REG(hw
, UPTCL
);
1021 temp_reg
= IXGB_READ_REG(hw
, UPTCH
);
1022 temp_reg
= IXGB_READ_REG(hw
, VPTCL
);
1023 temp_reg
= IXGB_READ_REG(hw
, VPTCH
);
1024 temp_reg
= IXGB_READ_REG(hw
, JPTCL
);
1025 temp_reg
= IXGB_READ_REG(hw
, JPTCH
);
1026 temp_reg
= IXGB_READ_REG(hw
, GOTCL
);
1027 temp_reg
= IXGB_READ_REG(hw
, GOTCH
);
1028 temp_reg
= IXGB_READ_REG(hw
, TOTL
);
1029 temp_reg
= IXGB_READ_REG(hw
, TOTH
);
1030 temp_reg
= IXGB_READ_REG(hw
, DC
);
1031 temp_reg
= IXGB_READ_REG(hw
, PLT64C
);
1032 temp_reg
= IXGB_READ_REG(hw
, TSCTC
);
1033 temp_reg
= IXGB_READ_REG(hw
, TSCTFC
);
1034 temp_reg
= IXGB_READ_REG(hw
, IBIC
);
1035 temp_reg
= IXGB_READ_REG(hw
, RFC
);
1036 temp_reg
= IXGB_READ_REG(hw
, LFC
);
1037 temp_reg
= IXGB_READ_REG(hw
, PFRC
);
1038 temp_reg
= IXGB_READ_REG(hw
, PFTC
);
1039 temp_reg
= IXGB_READ_REG(hw
, MCFRC
);
1040 temp_reg
= IXGB_READ_REG(hw
, MCFTC
);
1041 temp_reg
= IXGB_READ_REG(hw
, XONRXC
);
1042 temp_reg
= IXGB_READ_REG(hw
, XONTXC
);
1043 temp_reg
= IXGB_READ_REG(hw
, XOFFRXC
);
1044 temp_reg
= IXGB_READ_REG(hw
, XOFFTXC
);
1045 temp_reg
= IXGB_READ_REG(hw
, RJC
);
1048 /******************************************************************************
1049 * Turns on the software controllable LED
1051 * hw - Struct containing variables accessed by shared code
1052 *****************************************************************************/
1054 ixgb_led_on(struct ixgb_hw
*hw
)
1056 u32 ctrl0_reg
= IXGB_READ_REG(hw
, CTRL0
);
1058 /* To turn on the LED, clear software-definable pin 0 (SDP0). */
1059 ctrl0_reg
&= ~IXGB_CTRL0_SDP0
;
1060 IXGB_WRITE_REG(hw
, CTRL0
, ctrl0_reg
);
1063 /******************************************************************************
1064 * Turns off the software controllable LED
1066 * hw - Struct containing variables accessed by shared code
1067 *****************************************************************************/
1069 ixgb_led_off(struct ixgb_hw
*hw
)
1071 u32 ctrl0_reg
= IXGB_READ_REG(hw
, CTRL0
);
1073 /* To turn off the LED, set software-definable pin 0 (SDP0). */
1074 ctrl0_reg
|= IXGB_CTRL0_SDP0
;
1075 IXGB_WRITE_REG(hw
, CTRL0
, ctrl0_reg
);
1078 /******************************************************************************
1079 * Gets the current PCI bus type, speed, and width of the hardware
1081 * hw - Struct containing variables accessed by shared code
1082 *****************************************************************************/
1084 ixgb_get_bus_info(struct ixgb_hw
*hw
)
1088 status_reg
= IXGB_READ_REG(hw
, STATUS
);
1090 hw
->bus
.type
= (status_reg
& IXGB_STATUS_PCIX_MODE
) ?
1091 ixgb_bus_type_pcix
: ixgb_bus_type_pci
;
1093 if (hw
->bus
.type
== ixgb_bus_type_pci
) {
1094 hw
->bus
.speed
= (status_reg
& IXGB_STATUS_PCI_SPD
) ?
1095 ixgb_bus_speed_66
: ixgb_bus_speed_33
;
1097 switch (status_reg
& IXGB_STATUS_PCIX_SPD_MASK
) {
1098 case IXGB_STATUS_PCIX_SPD_66
:
1099 hw
->bus
.speed
= ixgb_bus_speed_66
;
1101 case IXGB_STATUS_PCIX_SPD_100
:
1102 hw
->bus
.speed
= ixgb_bus_speed_100
;
1104 case IXGB_STATUS_PCIX_SPD_133
:
1105 hw
->bus
.speed
= ixgb_bus_speed_133
;
1108 hw
->bus
.speed
= ixgb_bus_speed_reserved
;
1113 hw
->bus
.width
= (status_reg
& IXGB_STATUS_BUS64
) ?
1114 ixgb_bus_width_64
: ixgb_bus_width_32
;
1117 /******************************************************************************
1118 * Tests a MAC address to ensure it is a valid Individual Address
1120 * mac_addr - pointer to MAC address.
1122 *****************************************************************************/
1124 mac_addr_valid(u8
*mac_addr
)
1126 bool is_valid
= true;
1129 /* Make sure it is not a multicast address */
1130 if (is_multicast_ether_addr(mac_addr
)) {
1131 pr_debug("MAC address is multicast\n");
1134 /* Not a broadcast address */
1135 else if (is_broadcast_ether_addr(mac_addr
)) {
1136 pr_debug("MAC address is broadcast\n");
1139 /* Reject the zero address */
1140 else if (is_zero_ether_addr(mac_addr
)) {
1141 pr_debug("MAC address is all zeros\n");
1147 /******************************************************************************
1148 * Resets the 10GbE link. Waits the settle time and returns the state of
1151 * hw - Struct containing variables accessed by shared code
1152 *****************************************************************************/
1154 ixgb_link_reset(struct ixgb_hw
*hw
)
1156 bool link_status
= false;
1157 u8 wait_retries
= MAX_RESET_ITERATIONS
;
1158 u8 lrst_retries
= MAX_RESET_ITERATIONS
;
1161 /* Reset the link */
1162 IXGB_WRITE_REG(hw
, CTRL0
,
1163 IXGB_READ_REG(hw
, CTRL0
) | IXGB_CTRL0_LRST
);
1165 /* Wait for link-up and lane re-alignment */
1167 udelay(IXGB_DELAY_USECS_AFTER_LINK_RESET
);
1169 ((IXGB_READ_REG(hw
, STATUS
) & IXGB_STATUS_LU
)
1170 && (IXGB_READ_REG(hw
, XPCSS
) &
1171 IXGB_XPCSS_ALIGN_STATUS
)) ? true : false;
1172 } while (!link_status
&& --wait_retries
);
1174 } while (!link_status
&& --lrst_retries
);
1179 /******************************************************************************
1180 * Resets the 10GbE optics module.
1182 * hw - Struct containing variables accessed by shared code
1183 *****************************************************************************/
1185 ixgb_optics_reset(struct ixgb_hw
*hw
)
1187 if (hw
->phy_type
== ixgb_phy_type_txn17401
) {
1190 ixgb_write_phy_reg(hw
,
1196 mdio_reg
= ixgb_read_phy_reg(hw
,
1203 /******************************************************************************
1204 * Resets the 10GbE optics module for Sun variant NIC.
1206 * hw - Struct containing variables accessed by shared code
1207 *****************************************************************************/
1209 #define IXGB_BCM8704_USER_PMD_TX_CTRL_REG 0xC803
1210 #define IXGB_BCM8704_USER_PMD_TX_CTRL_REG_VAL 0x0164
1211 #define IXGB_BCM8704_USER_CTRL_REG 0xC800
1212 #define IXGB_BCM8704_USER_CTRL_REG_VAL 0x7FBF
1213 #define IXGB_BCM8704_USER_DEV3_ADDR 0x0003
1214 #define IXGB_SUN_PHY_ADDRESS 0x0000
1215 #define IXGB_SUN_PHY_RESET_DELAY 305
1218 ixgb_optics_reset_bcm(struct ixgb_hw
*hw
)
1220 u32 ctrl
= IXGB_READ_REG(hw
, CTRL0
);
1221 ctrl
&= ~IXGB_CTRL0_SDP2
;
1222 ctrl
|= IXGB_CTRL0_SDP3
;
1223 IXGB_WRITE_REG(hw
, CTRL0
, ctrl
);
1224 IXGB_WRITE_FLUSH(hw
);
1226 /* SerDes needs extra delay */
1227 msleep(IXGB_SUN_PHY_RESET_DELAY
);
1229 /* Broadcom 7408L configuration */
1230 /* Reference clock config */
1231 ixgb_write_phy_reg(hw
,
1232 IXGB_BCM8704_USER_PMD_TX_CTRL_REG
,
1233 IXGB_SUN_PHY_ADDRESS
,
1234 IXGB_BCM8704_USER_DEV3_ADDR
,
1235 IXGB_BCM8704_USER_PMD_TX_CTRL_REG_VAL
);
1236 /* we must read the registers twice */
1237 ixgb_read_phy_reg(hw
,
1238 IXGB_BCM8704_USER_PMD_TX_CTRL_REG
,
1239 IXGB_SUN_PHY_ADDRESS
,
1240 IXGB_BCM8704_USER_DEV3_ADDR
);
1241 ixgb_read_phy_reg(hw
,
1242 IXGB_BCM8704_USER_PMD_TX_CTRL_REG
,
1243 IXGB_SUN_PHY_ADDRESS
,
1244 IXGB_BCM8704_USER_DEV3_ADDR
);
1246 ixgb_write_phy_reg(hw
,
1247 IXGB_BCM8704_USER_CTRL_REG
,
1248 IXGB_SUN_PHY_ADDRESS
,
1249 IXGB_BCM8704_USER_DEV3_ADDR
,
1250 IXGB_BCM8704_USER_CTRL_REG_VAL
);
1251 ixgb_read_phy_reg(hw
,
1252 IXGB_BCM8704_USER_CTRL_REG
,
1253 IXGB_SUN_PHY_ADDRESS
,
1254 IXGB_BCM8704_USER_DEV3_ADDR
);
1255 ixgb_read_phy_reg(hw
,
1256 IXGB_BCM8704_USER_CTRL_REG
,
1257 IXGB_SUN_PHY_ADDRESS
,
1258 IXGB_BCM8704_USER_DEV3_ADDR
);
1260 /* SerDes needs extra delay */
1261 msleep(IXGB_SUN_PHY_RESET_DELAY
);