2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <asm/unaligned.h>
19 #include "ar9002_phy.h"
21 #define SIZE_EEPROM_AR9287 (sizeof(struct ar9287_eeprom) / sizeof(u16))
23 static int ath9k_hw_ar9287_get_eeprom_ver(struct ath_hw
*ah
)
25 return (ah
->eeprom
.map9287
.baseEepHeader
.version
>> 12) & 0xF;
28 static int ath9k_hw_ar9287_get_eeprom_rev(struct ath_hw
*ah
)
30 return (ah
->eeprom
.map9287
.baseEepHeader
.version
) & 0xFFF;
33 static bool __ath9k_hw_ar9287_fill_eeprom(struct ath_hw
*ah
)
35 struct ar9287_eeprom
*eep
= &ah
->eeprom
.map9287
;
36 struct ath_common
*common
= ath9k_hw_common(ah
);
38 int addr
, eep_start_loc
= AR9287_EEP_START_LOC
;
39 eep_data
= (u16
*)eep
;
41 for (addr
= 0; addr
< SIZE_EEPROM_AR9287
; addr
++) {
42 if (!ath9k_hw_nvram_read(common
, addr
+ eep_start_loc
,
44 ath_dbg(common
, ATH_DBG_EEPROM
,
45 "Unable to read eeprom region\n");
54 static bool __ath9k_hw_usb_ar9287_fill_eeprom(struct ath_hw
*ah
)
56 u16
*eep_data
= (u16
*)&ah
->eeprom
.map9287
;
58 ath9k_hw_usb_gen_fill_eeprom(ah
, eep_data
,
59 AR9287_HTC_EEP_START_LOC
,
64 static bool ath9k_hw_ar9287_fill_eeprom(struct ath_hw
*ah
)
66 struct ath_common
*common
= ath9k_hw_common(ah
);
68 if (!ath9k_hw_use_flash(ah
)) {
69 ath_dbg(common
, ATH_DBG_EEPROM
,
70 "Reading from EEPROM, not flash\n");
73 if (common
->bus_ops
->ath_bus_type
== ATH_USB
)
74 return __ath9k_hw_usb_ar9287_fill_eeprom(ah
);
76 return __ath9k_hw_ar9287_fill_eeprom(ah
);
79 static int ath9k_hw_ar9287_check_eeprom(struct ath_hw
*ah
)
81 u32 sum
= 0, el
, integer
;
82 u16 temp
, word
, magic
, magic2
, *eepdata
;
84 bool need_swap
= false;
85 struct ar9287_eeprom
*eep
= &ah
->eeprom
.map9287
;
86 struct ath_common
*common
= ath9k_hw_common(ah
);
88 if (!ath9k_hw_use_flash(ah
)) {
89 if (!ath9k_hw_nvram_read(common
, AR5416_EEPROM_MAGIC_OFFSET
,
91 ath_err(common
, "Reading Magic # failed\n");
95 ath_dbg(common
, ATH_DBG_EEPROM
,
96 "Read Magic = 0x%04X\n", magic
);
98 if (magic
!= AR5416_EEPROM_MAGIC
) {
99 magic2
= swab16(magic
);
101 if (magic2
== AR5416_EEPROM_MAGIC
) {
103 eepdata
= (u16
*)(&ah
->eeprom
);
105 for (addr
= 0; addr
< SIZE_EEPROM_AR9287
; addr
++) {
106 temp
= swab16(*eepdata
);
112 "Invalid EEPROM Magic. Endianness mismatch.\n");
118 ath_dbg(common
, ATH_DBG_EEPROM
, "need_swap = %s.\n",
119 need_swap
? "True" : "False");
122 el
= swab16(ah
->eeprom
.map9287
.baseEepHeader
.length
);
124 el
= ah
->eeprom
.map9287
.baseEepHeader
.length
;
126 if (el
> sizeof(struct ar9287_eeprom
))
127 el
= sizeof(struct ar9287_eeprom
) / sizeof(u16
);
129 el
= el
/ sizeof(u16
);
131 eepdata
= (u16
*)(&ah
->eeprom
);
133 for (i
= 0; i
< el
; i
++)
137 word
= swab16(eep
->baseEepHeader
.length
);
138 eep
->baseEepHeader
.length
= word
;
140 word
= swab16(eep
->baseEepHeader
.checksum
);
141 eep
->baseEepHeader
.checksum
= word
;
143 word
= swab16(eep
->baseEepHeader
.version
);
144 eep
->baseEepHeader
.version
= word
;
146 word
= swab16(eep
->baseEepHeader
.regDmn
[0]);
147 eep
->baseEepHeader
.regDmn
[0] = word
;
149 word
= swab16(eep
->baseEepHeader
.regDmn
[1]);
150 eep
->baseEepHeader
.regDmn
[1] = word
;
152 word
= swab16(eep
->baseEepHeader
.rfSilent
);
153 eep
->baseEepHeader
.rfSilent
= word
;
155 word
= swab16(eep
->baseEepHeader
.blueToothOptions
);
156 eep
->baseEepHeader
.blueToothOptions
= word
;
158 word
= swab16(eep
->baseEepHeader
.deviceCap
);
159 eep
->baseEepHeader
.deviceCap
= word
;
161 integer
= swab32(eep
->modalHeader
.antCtrlCommon
);
162 eep
->modalHeader
.antCtrlCommon
= integer
;
164 for (i
= 0; i
< AR9287_MAX_CHAINS
; i
++) {
165 integer
= swab32(eep
->modalHeader
.antCtrlChain
[i
]);
166 eep
->modalHeader
.antCtrlChain
[i
] = integer
;
169 for (i
= 0; i
< AR_EEPROM_MODAL_SPURS
; i
++) {
170 word
= swab16(eep
->modalHeader
.spurChans
[i
].spurChan
);
171 eep
->modalHeader
.spurChans
[i
].spurChan
= word
;
175 if (sum
!= 0xffff || ah
->eep_ops
->get_eeprom_ver(ah
) != AR9287_EEP_VER
176 || ah
->eep_ops
->get_eeprom_rev(ah
) < AR5416_EEP_NO_BACK_VER
) {
177 ath_err(common
, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
178 sum
, ah
->eep_ops
->get_eeprom_ver(ah
));
185 static u32
ath9k_hw_ar9287_get_eeprom(struct ath_hw
*ah
,
186 enum eeprom_param param
)
188 struct ar9287_eeprom
*eep
= &ah
->eeprom
.map9287
;
189 struct modal_eep_ar9287_header
*pModal
= &eep
->modalHeader
;
190 struct base_eep_ar9287_header
*pBase
= &eep
->baseEepHeader
;
193 ver_minor
= pBase
->version
& AR9287_EEP_VER_MINOR_MASK
;
197 return pModal
->noiseFloorThreshCh
[0];
199 return get_unaligned_be16(pBase
->macAddr
);
201 return get_unaligned_be16(pBase
->macAddr
+ 2);
203 return get_unaligned_be16(pBase
->macAddr
+ 4);
205 return pBase
->regDmn
[0];
207 return pBase
->regDmn
[1];
209 return pBase
->deviceCap
;
211 return pBase
->opCapFlags
;
213 return pBase
->rfSilent
;
217 return pBase
->txMask
;
219 return pBase
->rxMask
;
221 return pBase
->deviceType
;
223 return pBase
->openLoopPwrCntl
;
224 case EEP_TEMPSENSE_SLOPE
:
225 if (ver_minor
>= AR9287_EEP_MINOR_VER_2
)
226 return pBase
->tempSensSlope
;
229 case EEP_TEMPSENSE_SLOPE_PAL_ON
:
230 if (ver_minor
>= AR9287_EEP_MINOR_VER_3
)
231 return pBase
->tempSensSlopePalOn
;
239 static void ar9287_eeprom_get_tx_gain_index(struct ath_hw
*ah
,
240 struct ath9k_channel
*chan
,
241 struct cal_data_op_loop_ar9287
*pRawDatasetOpLoop
,
242 u8
*pCalChans
, u16 availPiers
, int8_t *pPwr
)
244 u16 idxL
= 0, idxR
= 0, numPiers
;
246 struct chan_centers centers
;
248 ath9k_hw_get_channel_centers(ah
, chan
, ¢ers
);
250 for (numPiers
= 0; numPiers
< availPiers
; numPiers
++) {
251 if (pCalChans
[numPiers
] == AR5416_BCHAN_UNUSED
)
255 match
= ath9k_hw_get_lower_upper_index(
256 (u8
)FREQ2FBIN(centers
.synth_center
, IS_CHAN_2GHZ(chan
)),
257 pCalChans
, numPiers
, &idxL
, &idxR
);
260 *pPwr
= (int8_t) pRawDatasetOpLoop
[idxL
].pwrPdg
[0][0];
262 *pPwr
= ((int8_t) pRawDatasetOpLoop
[idxL
].pwrPdg
[0][0] +
263 (int8_t) pRawDatasetOpLoop
[idxR
].pwrPdg
[0][0])/2;
268 static void ar9287_eeprom_olpc_set_pdadcs(struct ath_hw
*ah
,
269 int32_t txPower
, u16 chain
)
274 /* Enable OLPC for chain 0 */
276 tmpVal
= REG_READ(ah
, 0xa270);
277 tmpVal
= tmpVal
& 0xFCFFFFFF;
278 tmpVal
= tmpVal
| (0x3 << 24);
279 REG_WRITE(ah
, 0xa270, tmpVal
);
281 /* Enable OLPC for chain 1 */
283 tmpVal
= REG_READ(ah
, 0xb270);
284 tmpVal
= tmpVal
& 0xFCFFFFFF;
285 tmpVal
= tmpVal
| (0x3 << 24);
286 REG_WRITE(ah
, 0xb270, tmpVal
);
288 /* Write the OLPC ref power for chain 0 */
291 tmpVal
= REG_READ(ah
, 0xa398);
292 tmpVal
= tmpVal
& 0xff00ffff;
294 tmpVal
= tmpVal
| (a
<< 16);
295 REG_WRITE(ah
, 0xa398, tmpVal
);
298 /* Write the OLPC ref power for chain 1 */
301 tmpVal
= REG_READ(ah
, 0xb398);
302 tmpVal
= tmpVal
& 0xff00ffff;
304 tmpVal
= tmpVal
| (a
<< 16);
305 REG_WRITE(ah
, 0xb398, tmpVal
);
309 static void ath9k_hw_set_ar9287_power_cal_table(struct ath_hw
*ah
,
310 struct ath9k_channel
*chan
,
311 int16_t *pTxPowerIndexOffset
)
313 struct cal_data_per_freq_ar9287
*pRawDataset
;
314 struct cal_data_op_loop_ar9287
*pRawDatasetOpenLoop
;
315 u8
*pCalBChans
= NULL
;
316 u16 pdGainOverlap_t2
;
317 u8 pdadcValues
[AR5416_NUM_PDADC_VALUES
];
318 u16 gainBoundaries
[AR5416_PD_GAINS_IN_MASK
];
319 u16 numPiers
= 0, i
, j
;
320 u16 numXpdGain
, xpdMask
;
321 u16 xpdGainValues
[AR5416_NUM_PD_GAINS
] = {0, 0, 0, 0};
322 u32 reg32
, regOffset
, regChainOffset
, regval
;
324 struct ar9287_eeprom
*pEepData
= &ah
->eeprom
.map9287
;
326 xpdMask
= pEepData
->modalHeader
.xpdGain
;
328 if ((pEepData
->baseEepHeader
.version
& AR9287_EEP_VER_MINOR_MASK
) >=
329 AR9287_EEP_MINOR_VER_2
)
330 pdGainOverlap_t2
= pEepData
->modalHeader
.pdGainOverlap
;
332 pdGainOverlap_t2
= (u16
)(MS(REG_READ(ah
, AR_PHY_TPCRG5
),
333 AR_PHY_TPCRG5_PD_GAIN_OVERLAP
));
335 if (IS_CHAN_2GHZ(chan
)) {
336 pCalBChans
= pEepData
->calFreqPier2G
;
337 numPiers
= AR9287_NUM_2G_CAL_PIERS
;
338 if (ath9k_hw_ar9287_get_eeprom(ah
, EEP_OL_PWRCTRL
)) {
339 pRawDatasetOpenLoop
=
340 (struct cal_data_op_loop_ar9287
*)pEepData
->calPierData2G
[0];
341 ah
->initPDADC
= pRawDatasetOpenLoop
->vpdPdg
[0][0];
347 /* Calculate the value of xpdgains from the xpdGain Mask */
348 for (i
= 1; i
<= AR5416_PD_GAINS_IN_MASK
; i
++) {
349 if ((xpdMask
>> (AR5416_PD_GAINS_IN_MASK
- i
)) & 1) {
350 if (numXpdGain
>= AR5416_NUM_PD_GAINS
)
352 xpdGainValues
[numXpdGain
] =
353 (u16
)(AR5416_PD_GAINS_IN_MASK
-i
);
358 REG_RMW_FIELD(ah
, AR_PHY_TPCRG1
, AR_PHY_TPCRG1_NUM_PD_GAIN
,
359 (numXpdGain
- 1) & 0x3);
360 REG_RMW_FIELD(ah
, AR_PHY_TPCRG1
, AR_PHY_TPCRG1_PD_GAIN_1
,
362 REG_RMW_FIELD(ah
, AR_PHY_TPCRG1
, AR_PHY_TPCRG1_PD_GAIN_2
,
364 REG_RMW_FIELD(ah
, AR_PHY_TPCRG1
, AR_PHY_TPCRG1_PD_GAIN_3
,
367 for (i
= 0; i
< AR9287_MAX_CHAINS
; i
++) {
368 regChainOffset
= i
* 0x1000;
370 if (pEepData
->baseEepHeader
.txMask
& (1 << i
)) {
371 pRawDatasetOpenLoop
=
372 (struct cal_data_op_loop_ar9287
*)pEepData
->calPierData2G
[i
];
374 if (ath9k_hw_ar9287_get_eeprom(ah
, EEP_OL_PWRCTRL
)) {
376 ar9287_eeprom_get_tx_gain_index(ah
, chan
,
378 pCalBChans
, numPiers
,
380 ar9287_eeprom_olpc_set_pdadcs(ah
, txPower
, i
);
383 (struct cal_data_per_freq_ar9287
*)
384 pEepData
->calPierData2G
[i
];
386 ath9k_hw_get_gain_boundaries_pdadcs(ah
, chan
,
388 pCalBChans
, numPiers
,
395 ENABLE_REGWRITE_BUFFER(ah
);
398 if (!ath9k_hw_ar9287_get_eeprom(ah
,
401 regval
= SM(pdGainOverlap_t2
,
402 AR_PHY_TPCRG5_PD_GAIN_OVERLAP
)
403 | SM(gainBoundaries
[0],
404 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1
)
405 | SM(gainBoundaries
[1],
406 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2
)
407 | SM(gainBoundaries
[2],
408 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3
)
409 | SM(gainBoundaries
[3],
410 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4
);
413 AR_PHY_TPCRG5
+ regChainOffset
,
418 if ((int32_t)AR9287_PWR_TABLE_OFFSET_DB
!=
419 pEepData
->baseEepHeader
.pwrTableOffset
) {
420 diff
= (u16
)(pEepData
->baseEepHeader
.pwrTableOffset
-
421 (int32_t)AR9287_PWR_TABLE_OFFSET_DB
);
424 for (j
= 0; j
< ((u16
)AR5416_NUM_PDADC_VALUES
-diff
); j
++)
425 pdadcValues
[j
] = pdadcValues
[j
+diff
];
427 for (j
= (u16
)(AR5416_NUM_PDADC_VALUES
-diff
);
428 j
< AR5416_NUM_PDADC_VALUES
; j
++)
430 pdadcValues
[AR5416_NUM_PDADC_VALUES
-diff
];
433 if (!ath9k_hw_ar9287_get_eeprom(ah
, EEP_OL_PWRCTRL
)) {
434 regOffset
= AR_PHY_BASE
+
435 (672 << 2) + regChainOffset
;
437 for (j
= 0; j
< 32; j
++) {
438 reg32
= get_unaligned_le32(&pdadcValues
[4 * j
]);
440 REG_WRITE(ah
, regOffset
, reg32
);
444 REGWRITE_BUFFER_FLUSH(ah
);
448 *pTxPowerIndexOffset
= 0;
451 static void ath9k_hw_set_ar9287_power_per_rate_table(struct ath_hw
*ah
,
452 struct ath9k_channel
*chan
,
455 u16 AntennaReduction
,
456 u16 twiceMaxRegulatoryPower
,
460 (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
461 pEepData->ctlIndex[i])
464 (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
465 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
467 #define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6
468 #define REDUCE_SCALED_POWER_BY_THREE_CHAIN 10
470 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
471 u16 twiceMaxEdgePower
= MAX_RATE_POWER
;
472 static const u16 tpScaleReductionTable
[5] =
473 { 0, 3, 6, 9, MAX_RATE_POWER
};
475 int16_t twiceLargestAntenna
;
476 struct cal_ctl_data_ar9287
*rep
;
477 struct cal_target_power_leg targetPowerOfdm
= {0, {0, 0, 0, 0} },
478 targetPowerCck
= {0, {0, 0, 0, 0} };
479 struct cal_target_power_leg targetPowerOfdmExt
= {0, {0, 0, 0, 0} },
480 targetPowerCckExt
= {0, {0, 0, 0, 0} };
481 struct cal_target_power_ht targetPowerHt20
,
482 targetPowerHt40
= {0, {0, 0, 0, 0} };
483 u16 scaledPower
= 0, minCtlPower
, maxRegAllowedPower
;
484 static const u16 ctlModesFor11g
[] = {
485 CTL_11B
, CTL_11G
, CTL_2GHT20
,
486 CTL_11B_EXT
, CTL_11G_EXT
, CTL_2GHT40
489 const u16
*pCtlMode
= NULL
;
491 struct chan_centers centers
;
493 u16 twiceMinEdgePower
;
494 struct ar9287_eeprom
*pEepData
= &ah
->eeprom
.map9287
;
495 tx_chainmask
= ah
->txchainmask
;
497 ath9k_hw_get_channel_centers(ah
, chan
, ¢ers
);
499 /* Compute TxPower reduction due to Antenna Gain */
500 twiceLargestAntenna
= max(pEepData
->modalHeader
.antennaGainCh
[0],
501 pEepData
->modalHeader
.antennaGainCh
[1]);
502 twiceLargestAntenna
= (int16_t)min((AntennaReduction
) -
503 twiceLargestAntenna
, 0);
506 * scaledPower is the minimum of the user input power level
507 * and the regulatory allowed power level.
509 maxRegAllowedPower
= twiceMaxRegulatoryPower
+ twiceLargestAntenna
;
511 if (regulatory
->tp_scale
!= ATH9K_TP_SCALE_MAX
)
512 maxRegAllowedPower
-=
513 (tpScaleReductionTable
[(regulatory
->tp_scale
)] * 2);
515 scaledPower
= min(powerLimit
, maxRegAllowedPower
);
518 * Reduce scaled Power by number of chains active
519 * to get the per chain tx power level.
521 switch (ar5416_get_ntxchains(tx_chainmask
)) {
525 if (scaledPower
> REDUCE_SCALED_POWER_BY_TWO_CHAIN
)
526 scaledPower
-= REDUCE_SCALED_POWER_BY_TWO_CHAIN
;
531 if (scaledPower
> REDUCE_SCALED_POWER_BY_THREE_CHAIN
)
532 scaledPower
-= REDUCE_SCALED_POWER_BY_THREE_CHAIN
;
537 scaledPower
= max((u16
)0, scaledPower
);
540 * Get TX power from EEPROM.
542 if (IS_CHAN_2GHZ(chan
)) {
543 /* CTL_11B, CTL_11G, CTL_2GHT20 */
545 ARRAY_SIZE(ctlModesFor11g
) - SUB_NUM_CTL_MODES_AT_2G_40
;
547 pCtlMode
= ctlModesFor11g
;
549 ath9k_hw_get_legacy_target_powers(ah
, chan
,
550 pEepData
->calTargetPowerCck
,
551 AR9287_NUM_2G_CCK_TARGET_POWERS
,
552 &targetPowerCck
, 4, false);
553 ath9k_hw_get_legacy_target_powers(ah
, chan
,
554 pEepData
->calTargetPower2G
,
555 AR9287_NUM_2G_20_TARGET_POWERS
,
556 &targetPowerOfdm
, 4, false);
557 ath9k_hw_get_target_powers(ah
, chan
,
558 pEepData
->calTargetPower2GHT20
,
559 AR9287_NUM_2G_20_TARGET_POWERS
,
560 &targetPowerHt20
, 8, false);
562 if (IS_CHAN_HT40(chan
)) {
564 numCtlModes
= ARRAY_SIZE(ctlModesFor11g
);
565 ath9k_hw_get_target_powers(ah
, chan
,
566 pEepData
->calTargetPower2GHT40
,
567 AR9287_NUM_2G_40_TARGET_POWERS
,
568 &targetPowerHt40
, 8, true);
569 ath9k_hw_get_legacy_target_powers(ah
, chan
,
570 pEepData
->calTargetPowerCck
,
571 AR9287_NUM_2G_CCK_TARGET_POWERS
,
572 &targetPowerCckExt
, 4, true);
573 ath9k_hw_get_legacy_target_powers(ah
, chan
,
574 pEepData
->calTargetPower2G
,
575 AR9287_NUM_2G_20_TARGET_POWERS
,
576 &targetPowerOfdmExt
, 4, true);
580 for (ctlMode
= 0; ctlMode
< numCtlModes
; ctlMode
++) {
582 (pCtlMode
[ctlMode
] == CTL_2GHT40
) ? true : false;
585 freq
= centers
.synth_center
;
586 else if (pCtlMode
[ctlMode
] & EXT_ADDITIVE
)
587 freq
= centers
.ext_center
;
589 freq
= centers
.ctl_center
;
591 /* Walk through the CTL indices stored in EEPROM */
592 for (i
= 0; (i
< AR9287_NUM_CTLS
) && pEepData
->ctlIndex
[i
]; i
++) {
593 struct cal_ctl_edges
*pRdEdgesPower
;
596 * Compare test group from regulatory channel list
597 * with test mode from pCtlMode list
599 if (CMP_CTL
|| CMP_NO_CTL
) {
600 rep
= &(pEepData
->ctlData
[i
]);
602 rep
->ctlEdges
[ar5416_get_ntxchains(tx_chainmask
) - 1];
604 twiceMinEdgePower
= ath9k_hw_get_max_edge_power(freq
,
607 AR5416_NUM_BAND_EDGES
);
609 if ((cfgCtl
& ~CTL_MODE_M
) == SD_NO_CTL
) {
610 twiceMaxEdgePower
= min(twiceMaxEdgePower
,
613 twiceMaxEdgePower
= twiceMinEdgePower
;
619 minCtlPower
= (u8
)min(twiceMaxEdgePower
, scaledPower
);
621 /* Apply ctl mode to correct target power set */
622 switch (pCtlMode
[ctlMode
]) {
624 for (i
= 0; i
< ARRAY_SIZE(targetPowerCck
.tPow2x
); i
++) {
625 targetPowerCck
.tPow2x
[i
] =
626 (u8
)min((u16
)targetPowerCck
.tPow2x
[i
],
632 for (i
= 0; i
< ARRAY_SIZE(targetPowerOfdm
.tPow2x
); i
++) {
633 targetPowerOfdm
.tPow2x
[i
] =
634 (u8
)min((u16
)targetPowerOfdm
.tPow2x
[i
],
640 for (i
= 0; i
< ARRAY_SIZE(targetPowerHt20
.tPow2x
); i
++) {
641 targetPowerHt20
.tPow2x
[i
] =
642 (u8
)min((u16
)targetPowerHt20
.tPow2x
[i
],
647 targetPowerCckExt
.tPow2x
[0] =
648 (u8
)min((u16
)targetPowerCckExt
.tPow2x
[0],
653 targetPowerOfdmExt
.tPow2x
[0] =
654 (u8
)min((u16
)targetPowerOfdmExt
.tPow2x
[0],
659 for (i
= 0; i
< ARRAY_SIZE(targetPowerHt40
.tPow2x
); i
++) {
660 targetPowerHt40
.tPow2x
[i
] =
661 (u8
)min((u16
)targetPowerHt40
.tPow2x
[i
],
670 /* Now set the rates array */
672 ratesArray
[rate6mb
] =
673 ratesArray
[rate9mb
] =
674 ratesArray
[rate12mb
] =
675 ratesArray
[rate18mb
] =
676 ratesArray
[rate24mb
] = targetPowerOfdm
.tPow2x
[0];
678 ratesArray
[rate36mb
] = targetPowerOfdm
.tPow2x
[1];
679 ratesArray
[rate48mb
] = targetPowerOfdm
.tPow2x
[2];
680 ratesArray
[rate54mb
] = targetPowerOfdm
.tPow2x
[3];
681 ratesArray
[rateXr
] = targetPowerOfdm
.tPow2x
[0];
683 for (i
= 0; i
< ARRAY_SIZE(targetPowerHt20
.tPow2x
); i
++)
684 ratesArray
[rateHt20_0
+ i
] = targetPowerHt20
.tPow2x
[i
];
686 if (IS_CHAN_2GHZ(chan
)) {
687 ratesArray
[rate1l
] = targetPowerCck
.tPow2x
[0];
689 ratesArray
[rate2l
] = targetPowerCck
.tPow2x
[1];
690 ratesArray
[rate5_5s
] =
691 ratesArray
[rate5_5l
] = targetPowerCck
.tPow2x
[2];
692 ratesArray
[rate11s
] =
693 ratesArray
[rate11l
] = targetPowerCck
.tPow2x
[3];
695 if (IS_CHAN_HT40(chan
)) {
696 for (i
= 0; i
< ARRAY_SIZE(targetPowerHt40
.tPow2x
); i
++)
697 ratesArray
[rateHt40_0
+ i
] = targetPowerHt40
.tPow2x
[i
];
699 ratesArray
[rateDupOfdm
] = targetPowerHt40
.tPow2x
[0];
700 ratesArray
[rateDupCck
] = targetPowerHt40
.tPow2x
[0];
701 ratesArray
[rateExtOfdm
] = targetPowerOfdmExt
.tPow2x
[0];
703 if (IS_CHAN_2GHZ(chan
))
704 ratesArray
[rateExtCck
] = targetPowerCckExt
.tPow2x
[0];
709 #undef REDUCE_SCALED_POWER_BY_TWO_CHAIN
710 #undef REDUCE_SCALED_POWER_BY_THREE_CHAIN
713 static void ath9k_hw_ar9287_set_txpower(struct ath_hw
*ah
,
714 struct ath9k_channel
*chan
, u16 cfgCtl
,
715 u8 twiceAntennaReduction
,
716 u8 twiceMaxRegulatoryPower
,
717 u8 powerLimit
, bool test
)
719 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
720 struct ar9287_eeprom
*pEepData
= &ah
->eeprom
.map9287
;
721 struct modal_eep_ar9287_header
*pModal
= &pEepData
->modalHeader
;
722 int16_t ratesArray
[Ar5416RateSize
];
723 int16_t txPowerIndexOffset
= 0;
724 u8 ht40PowerIncForPdadc
= 2;
727 memset(ratesArray
, 0, sizeof(ratesArray
));
729 if ((pEepData
->baseEepHeader
.version
& AR9287_EEP_VER_MINOR_MASK
) >=
730 AR9287_EEP_MINOR_VER_2
)
731 ht40PowerIncForPdadc
= pModal
->ht40PowerIncForPdadc
;
733 ath9k_hw_set_ar9287_power_per_rate_table(ah
, chan
,
734 &ratesArray
[0], cfgCtl
,
735 twiceAntennaReduction
,
736 twiceMaxRegulatoryPower
,
739 ath9k_hw_set_ar9287_power_cal_table(ah
, chan
, &txPowerIndexOffset
);
741 regulatory
->max_power_level
= 0;
742 for (i
= 0; i
< ARRAY_SIZE(ratesArray
); i
++) {
743 ratesArray
[i
] = (int16_t)(txPowerIndexOffset
+ ratesArray
[i
]);
744 if (ratesArray
[i
] > MAX_RATE_POWER
)
745 ratesArray
[i
] = MAX_RATE_POWER
;
747 if (ratesArray
[i
] > regulatory
->max_power_level
)
748 regulatory
->max_power_level
= ratesArray
[i
];
754 if (IS_CHAN_2GHZ(chan
))
759 regulatory
->max_power_level
= ratesArray
[i
];
761 if (AR_SREV_9280_20_OR_LATER(ah
)) {
762 for (i
= 0; i
< Ar5416RateSize
; i
++)
763 ratesArray
[i
] -= AR9287_PWR_TABLE_OFFSET_DB
* 2;
766 ENABLE_REGWRITE_BUFFER(ah
);
768 /* OFDM power per rate */
769 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE1
,
770 ATH9K_POW_SM(ratesArray
[rate18mb
], 24)
771 | ATH9K_POW_SM(ratesArray
[rate12mb
], 16)
772 | ATH9K_POW_SM(ratesArray
[rate9mb
], 8)
773 | ATH9K_POW_SM(ratesArray
[rate6mb
], 0));
775 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE2
,
776 ATH9K_POW_SM(ratesArray
[rate54mb
], 24)
777 | ATH9K_POW_SM(ratesArray
[rate48mb
], 16)
778 | ATH9K_POW_SM(ratesArray
[rate36mb
], 8)
779 | ATH9K_POW_SM(ratesArray
[rate24mb
], 0));
781 /* CCK power per rate */
782 if (IS_CHAN_2GHZ(chan
)) {
783 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE3
,
784 ATH9K_POW_SM(ratesArray
[rate2s
], 24)
785 | ATH9K_POW_SM(ratesArray
[rate2l
], 16)
786 | ATH9K_POW_SM(ratesArray
[rateXr
], 8)
787 | ATH9K_POW_SM(ratesArray
[rate1l
], 0));
788 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE4
,
789 ATH9K_POW_SM(ratesArray
[rate11s
], 24)
790 | ATH9K_POW_SM(ratesArray
[rate11l
], 16)
791 | ATH9K_POW_SM(ratesArray
[rate5_5s
], 8)
792 | ATH9K_POW_SM(ratesArray
[rate5_5l
], 0));
795 /* HT20 power per rate */
796 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE5
,
797 ATH9K_POW_SM(ratesArray
[rateHt20_3
], 24)
798 | ATH9K_POW_SM(ratesArray
[rateHt20_2
], 16)
799 | ATH9K_POW_SM(ratesArray
[rateHt20_1
], 8)
800 | ATH9K_POW_SM(ratesArray
[rateHt20_0
], 0));
802 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE6
,
803 ATH9K_POW_SM(ratesArray
[rateHt20_7
], 24)
804 | ATH9K_POW_SM(ratesArray
[rateHt20_6
], 16)
805 | ATH9K_POW_SM(ratesArray
[rateHt20_5
], 8)
806 | ATH9K_POW_SM(ratesArray
[rateHt20_4
], 0));
808 /* HT40 power per rate */
809 if (IS_CHAN_HT40(chan
)) {
810 if (ath9k_hw_ar9287_get_eeprom(ah
, EEP_OL_PWRCTRL
)) {
811 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE7
,
812 ATH9K_POW_SM(ratesArray
[rateHt40_3
], 24)
813 | ATH9K_POW_SM(ratesArray
[rateHt40_2
], 16)
814 | ATH9K_POW_SM(ratesArray
[rateHt40_1
], 8)
815 | ATH9K_POW_SM(ratesArray
[rateHt40_0
], 0));
817 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE8
,
818 ATH9K_POW_SM(ratesArray
[rateHt40_7
], 24)
819 | ATH9K_POW_SM(ratesArray
[rateHt40_6
], 16)
820 | ATH9K_POW_SM(ratesArray
[rateHt40_5
], 8)
821 | ATH9K_POW_SM(ratesArray
[rateHt40_4
], 0));
823 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE7
,
824 ATH9K_POW_SM(ratesArray
[rateHt40_3
] +
825 ht40PowerIncForPdadc
, 24)
826 | ATH9K_POW_SM(ratesArray
[rateHt40_2
] +
827 ht40PowerIncForPdadc
, 16)
828 | ATH9K_POW_SM(ratesArray
[rateHt40_1
] +
829 ht40PowerIncForPdadc
, 8)
830 | ATH9K_POW_SM(ratesArray
[rateHt40_0
] +
831 ht40PowerIncForPdadc
, 0));
833 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE8
,
834 ATH9K_POW_SM(ratesArray
[rateHt40_7
] +
835 ht40PowerIncForPdadc
, 24)
836 | ATH9K_POW_SM(ratesArray
[rateHt40_6
] +
837 ht40PowerIncForPdadc
, 16)
838 | ATH9K_POW_SM(ratesArray
[rateHt40_5
] +
839 ht40PowerIncForPdadc
, 8)
840 | ATH9K_POW_SM(ratesArray
[rateHt40_4
] +
841 ht40PowerIncForPdadc
, 0));
844 /* Dup/Ext power per rate */
845 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE9
,
846 ATH9K_POW_SM(ratesArray
[rateExtOfdm
], 24)
847 | ATH9K_POW_SM(ratesArray
[rateExtCck
], 16)
848 | ATH9K_POW_SM(ratesArray
[rateDupOfdm
], 8)
849 | ATH9K_POW_SM(ratesArray
[rateDupCck
], 0));
851 REGWRITE_BUFFER_FLUSH(ah
);
854 static void ath9k_hw_ar9287_set_addac(struct ath_hw
*ah
,
855 struct ath9k_channel
*chan
)
859 static void ath9k_hw_ar9287_set_board_values(struct ath_hw
*ah
,
860 struct ath9k_channel
*chan
)
862 struct ar9287_eeprom
*eep
= &ah
->eeprom
.map9287
;
863 struct modal_eep_ar9287_header
*pModal
= &eep
->modalHeader
;
864 u32 regChainOffset
, regval
;
868 pModal
= &eep
->modalHeader
;
870 REG_WRITE(ah
, AR_PHY_SWITCH_COM
, pModal
->antCtrlCommon
);
872 for (i
= 0; i
< AR9287_MAX_CHAINS
; i
++) {
873 regChainOffset
= i
* 0x1000;
875 REG_WRITE(ah
, AR_PHY_SWITCH_CHAIN_0
+ regChainOffset
,
876 pModal
->antCtrlChain
[i
]);
878 REG_WRITE(ah
, AR_PHY_TIMING_CTRL4(0) + regChainOffset
,
879 (REG_READ(ah
, AR_PHY_TIMING_CTRL4(0) + regChainOffset
)
880 & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF
|
881 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF
)) |
882 SM(pModal
->iqCalICh
[i
],
883 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF
) |
884 SM(pModal
->iqCalQCh
[i
],
885 AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF
));
887 txRxAttenLocal
= pModal
->txRxAttenCh
[i
];
889 REG_RMW_FIELD(ah
, AR_PHY_GAIN_2GHZ
+ regChainOffset
,
890 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN
,
891 pModal
->bswMargin
[i
]);
892 REG_RMW_FIELD(ah
, AR_PHY_GAIN_2GHZ
+ regChainOffset
,
893 AR_PHY_GAIN_2GHZ_XATTEN1_DB
,
894 pModal
->bswAtten
[i
]);
895 REG_RMW_FIELD(ah
, AR_PHY_RXGAIN
+ regChainOffset
,
896 AR9280_PHY_RXGAIN_TXRX_ATTEN
,
898 REG_RMW_FIELD(ah
, AR_PHY_RXGAIN
+ regChainOffset
,
899 AR9280_PHY_RXGAIN_TXRX_MARGIN
,
900 pModal
->rxTxMarginCh
[i
]);
904 if (IS_CHAN_HT40(chan
))
905 REG_RMW_FIELD(ah
, AR_PHY_SETTLING
,
906 AR_PHY_SETTLING_SWITCH
, pModal
->swSettleHt40
);
908 REG_RMW_FIELD(ah
, AR_PHY_SETTLING
,
909 AR_PHY_SETTLING_SWITCH
, pModal
->switchSettling
);
911 REG_RMW_FIELD(ah
, AR_PHY_DESIRED_SZ
,
912 AR_PHY_DESIRED_SZ_ADC
, pModal
->adcDesiredSize
);
914 REG_WRITE(ah
, AR_PHY_RF_CTL4
,
915 SM(pModal
->txEndToXpaOff
, AR_PHY_RF_CTL4_TX_END_XPAA_OFF
)
916 | SM(pModal
->txEndToXpaOff
, AR_PHY_RF_CTL4_TX_END_XPAB_OFF
)
917 | SM(pModal
->txFrameToXpaOn
, AR_PHY_RF_CTL4_FRAME_XPAA_ON
)
918 | SM(pModal
->txFrameToXpaOn
, AR_PHY_RF_CTL4_FRAME_XPAB_ON
));
920 REG_RMW_FIELD(ah
, AR_PHY_RF_CTL3
,
921 AR_PHY_TX_END_TO_A2_RX_ON
, pModal
->txEndToRxOn
);
923 REG_RMW_FIELD(ah
, AR_PHY_CCA
,
924 AR9280_PHY_CCA_THRESH62
, pModal
->thresh62
);
925 REG_RMW_FIELD(ah
, AR_PHY_EXT_CCA0
,
926 AR_PHY_EXT_CCA0_THRESH62
, pModal
->thresh62
);
928 regval
= REG_READ(ah
, AR9287_AN_RF2G3_CH0
);
929 regval
&= ~(AR9287_AN_RF2G3_DB1
|
930 AR9287_AN_RF2G3_DB2
|
931 AR9287_AN_RF2G3_OB_CCK
|
932 AR9287_AN_RF2G3_OB_PSK
|
933 AR9287_AN_RF2G3_OB_QAM
|
934 AR9287_AN_RF2G3_OB_PAL_OFF
);
935 regval
|= (SM(pModal
->db1
, AR9287_AN_RF2G3_DB1
) |
936 SM(pModal
->db2
, AR9287_AN_RF2G3_DB2
) |
937 SM(pModal
->ob_cck
, AR9287_AN_RF2G3_OB_CCK
) |
938 SM(pModal
->ob_psk
, AR9287_AN_RF2G3_OB_PSK
) |
939 SM(pModal
->ob_qam
, AR9287_AN_RF2G3_OB_QAM
) |
940 SM(pModal
->ob_pal_off
, AR9287_AN_RF2G3_OB_PAL_OFF
));
942 ath9k_hw_analog_shift_regwrite(ah
, AR9287_AN_RF2G3_CH0
, regval
);
944 regval
= REG_READ(ah
, AR9287_AN_RF2G3_CH1
);
945 regval
&= ~(AR9287_AN_RF2G3_DB1
|
946 AR9287_AN_RF2G3_DB2
|
947 AR9287_AN_RF2G3_OB_CCK
|
948 AR9287_AN_RF2G3_OB_PSK
|
949 AR9287_AN_RF2G3_OB_QAM
|
950 AR9287_AN_RF2G3_OB_PAL_OFF
);
951 regval
|= (SM(pModal
->db1
, AR9287_AN_RF2G3_DB1
) |
952 SM(pModal
->db2
, AR9287_AN_RF2G3_DB2
) |
953 SM(pModal
->ob_cck
, AR9287_AN_RF2G3_OB_CCK
) |
954 SM(pModal
->ob_psk
, AR9287_AN_RF2G3_OB_PSK
) |
955 SM(pModal
->ob_qam
, AR9287_AN_RF2G3_OB_QAM
) |
956 SM(pModal
->ob_pal_off
, AR9287_AN_RF2G3_OB_PAL_OFF
));
958 ath9k_hw_analog_shift_regwrite(ah
, AR9287_AN_RF2G3_CH1
, regval
);
960 REG_RMW_FIELD(ah
, AR_PHY_RF_CTL2
,
961 AR_PHY_TX_END_DATA_START
, pModal
->txFrameToDataStart
);
962 REG_RMW_FIELD(ah
, AR_PHY_RF_CTL2
,
963 AR_PHY_TX_END_PA_ON
, pModal
->txFrameToPaOn
);
965 ath9k_hw_analog_shift_rmw(ah
, AR9287_AN_TOP2
,
966 AR9287_AN_TOP2_XPABIAS_LVL
,
967 AR9287_AN_TOP2_XPABIAS_LVL_S
,
971 static u16
ath9k_hw_ar9287_get_spur_channel(struct ath_hw
*ah
,
974 #define EEP_MAP9287_SPURCHAN \
975 (ah->eeprom.map9287.modalHeader.spurChans[i].spurChan)
977 struct ath_common
*common
= ath9k_hw_common(ah
);
978 u16 spur_val
= AR_NO_SPUR
;
980 ath_dbg(common
, ATH_DBG_ANI
,
981 "Getting spur idx:%d is2Ghz:%d val:%x\n",
982 i
, is2GHz
, ah
->config
.spurchans
[i
][is2GHz
]);
984 switch (ah
->config
.spurmode
) {
987 case SPUR_ENABLE_IOCTL
:
988 spur_val
= ah
->config
.spurchans
[i
][is2GHz
];
989 ath_dbg(common
, ATH_DBG_ANI
,
990 "Getting spur val from new loc. %d\n", spur_val
);
992 case SPUR_ENABLE_EEPROM
:
993 spur_val
= EEP_MAP9287_SPURCHAN
;
999 #undef EEP_MAP9287_SPURCHAN
1002 const struct eeprom_ops eep_ar9287_ops
= {
1003 .check_eeprom
= ath9k_hw_ar9287_check_eeprom
,
1004 .get_eeprom
= ath9k_hw_ar9287_get_eeprom
,
1005 .fill_eeprom
= ath9k_hw_ar9287_fill_eeprom
,
1006 .get_eeprom_ver
= ath9k_hw_ar9287_get_eeprom_ver
,
1007 .get_eeprom_rev
= ath9k_hw_ar9287_get_eeprom_rev
,
1008 .set_board_values
= ath9k_hw_ar9287_set_board_values
,
1009 .set_addac
= ath9k_hw_ar9287_set_addac
,
1010 .set_txpower
= ath9k_hw_ar9287_set_txpower
,
1011 .get_spur_channel
= ath9k_hw_ar9287_get_spur_channel