cris: add arch/cris/include/asm/serial.h
[linux-2.6/next.git] / drivers / net / wireless / ath / key.c
blob17b0efd86f9a49d7b5e049e950a9fcf7802ddaad
1 /*
2 * Copyright (c) 2009 Atheros Communications Inc.
3 * Copyright (c) 2010 Bruno Randolf <br1@einfach.org>
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 #include <asm/unaligned.h>
19 #include <net/mac80211.h>
21 #include "ath.h"
22 #include "reg.h"
24 #define REG_READ (common->ops->read)
25 #define REG_WRITE(_ah, _reg, _val) (common->ops->write)(_ah, _val, _reg)
26 #define ENABLE_REGWRITE_BUFFER(_ah) \
27 if (common->ops->enable_write_buffer) \
28 common->ops->enable_write_buffer((_ah));
30 #define REGWRITE_BUFFER_FLUSH(_ah) \
31 if (common->ops->write_flush) \
32 common->ops->write_flush((_ah));
35 #define IEEE80211_WEP_NKID 4 /* number of key ids */
37 /************************/
38 /* Key Cache Management */
39 /************************/
41 bool ath_hw_keyreset(struct ath_common *common, u16 entry)
43 u32 keyType;
44 void *ah = common->ah;
46 if (entry >= common->keymax) {
47 ath_err(common, "keycache entry %u out of range\n", entry);
48 return false;
51 keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
53 ENABLE_REGWRITE_BUFFER(ah);
55 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
56 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
57 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
58 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
59 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
60 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
61 REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
62 REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
64 if (keyType == AR_KEYTABLE_TYPE_TKIP) {
65 u16 micentry = entry + 64;
67 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
68 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
69 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
70 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
71 if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
72 REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
73 REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
74 AR_KEYTABLE_TYPE_CLR);
79 REGWRITE_BUFFER_FLUSH(ah);
81 return true;
83 EXPORT_SYMBOL(ath_hw_keyreset);
85 static bool ath_hw_keysetmac(struct ath_common *common,
86 u16 entry, const u8 *mac)
88 u32 macHi, macLo;
89 u32 unicast_flag = AR_KEYTABLE_VALID;
90 void *ah = common->ah;
92 if (entry >= common->keymax) {
93 ath_err(common, "keycache entry %u out of range\n", entry);
94 return false;
97 if (mac != NULL) {
99 * AR_KEYTABLE_VALID indicates that the address is a unicast
100 * address, which must match the transmitter address for
101 * decrypting frames.
102 * Not setting this bit allows the hardware to use the key
103 * for multicast frame decryption.
105 if (mac[0] & 0x01)
106 unicast_flag = 0;
108 macLo = get_unaligned_le32(mac);
109 macHi = get_unaligned_le16(mac + 4);
110 macLo >>= 1;
111 macLo |= (macHi & 1) << 31;
112 macHi >>= 1;
113 } else {
114 macLo = macHi = 0;
116 ENABLE_REGWRITE_BUFFER(ah);
118 REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
119 REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | unicast_flag);
121 REGWRITE_BUFFER_FLUSH(ah);
123 return true;
126 static bool ath_hw_set_keycache_entry(struct ath_common *common, u16 entry,
127 const struct ath_keyval *k,
128 const u8 *mac)
130 void *ah = common->ah;
131 u32 key0, key1, key2, key3, key4;
132 u32 keyType;
134 if (entry >= common->keymax) {
135 ath_err(common, "keycache entry %u out of range\n", entry);
136 return false;
139 switch (k->kv_type) {
140 case ATH_CIPHER_AES_OCB:
141 keyType = AR_KEYTABLE_TYPE_AES;
142 break;
143 case ATH_CIPHER_AES_CCM:
144 if (!(common->crypt_caps & ATH_CRYPT_CAP_CIPHER_AESCCM)) {
145 ath_dbg(common, ATH_DBG_ANY,
146 "AES-CCM not supported by this mac rev\n");
147 return false;
149 keyType = AR_KEYTABLE_TYPE_CCM;
150 break;
151 case ATH_CIPHER_TKIP:
152 keyType = AR_KEYTABLE_TYPE_TKIP;
153 if (entry + 64 >= common->keymax) {
154 ath_dbg(common, ATH_DBG_ANY,
155 "entry %u inappropriate for TKIP\n", entry);
156 return false;
158 break;
159 case ATH_CIPHER_WEP:
160 if (k->kv_len < WLAN_KEY_LEN_WEP40) {
161 ath_dbg(common, ATH_DBG_ANY,
162 "WEP key length %u too small\n", k->kv_len);
163 return false;
165 if (k->kv_len <= WLAN_KEY_LEN_WEP40)
166 keyType = AR_KEYTABLE_TYPE_40;
167 else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
168 keyType = AR_KEYTABLE_TYPE_104;
169 else
170 keyType = AR_KEYTABLE_TYPE_128;
171 break;
172 case ATH_CIPHER_CLR:
173 keyType = AR_KEYTABLE_TYPE_CLR;
174 break;
175 default:
176 ath_err(common, "cipher %u not supported\n", k->kv_type);
177 return false;
180 key0 = get_unaligned_le32(k->kv_val + 0);
181 key1 = get_unaligned_le16(k->kv_val + 4);
182 key2 = get_unaligned_le32(k->kv_val + 6);
183 key3 = get_unaligned_le16(k->kv_val + 10);
184 key4 = get_unaligned_le32(k->kv_val + 12);
185 if (k->kv_len <= WLAN_KEY_LEN_WEP104)
186 key4 &= 0xff;
189 * Note: Key cache registers access special memory area that requires
190 * two 32-bit writes to actually update the values in the internal
191 * memory. Consequently, the exact order and pairs used here must be
192 * maintained.
195 if (keyType == AR_KEYTABLE_TYPE_TKIP) {
196 u16 micentry = entry + 64;
199 * Write inverted key[47:0] first to avoid Michael MIC errors
200 * on frames that could be sent or received at the same time.
201 * The correct key will be written in the end once everything
202 * else is ready.
204 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
205 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
207 /* Write key[95:48] */
208 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
209 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
211 /* Write key[127:96] and key type */
212 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
213 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
215 /* Write MAC address for the entry */
216 (void) ath_hw_keysetmac(common, entry, mac);
218 if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
220 * TKIP uses two key cache entries:
221 * Michael MIC TX/RX keys in the same key cache entry
222 * (idx = main index + 64):
223 * key0 [31:0] = RX key [31:0]
224 * key1 [15:0] = TX key [31:16]
225 * key1 [31:16] = reserved
226 * key2 [31:0] = RX key [63:32]
227 * key3 [15:0] = TX key [15:0]
228 * key3 [31:16] = reserved
229 * key4 [31:0] = TX key [63:32]
231 u32 mic0, mic1, mic2, mic3, mic4;
233 mic0 = get_unaligned_le32(k->kv_mic + 0);
234 mic2 = get_unaligned_le32(k->kv_mic + 4);
235 mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
236 mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
237 mic4 = get_unaligned_le32(k->kv_txmic + 4);
239 ENABLE_REGWRITE_BUFFER(ah);
241 /* Write RX[31:0] and TX[31:16] */
242 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
243 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
245 /* Write RX[63:32] and TX[15:0] */
246 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
247 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
249 /* Write TX[63:32] and keyType(reserved) */
250 REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
251 REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
252 AR_KEYTABLE_TYPE_CLR);
254 REGWRITE_BUFFER_FLUSH(ah);
256 } else {
258 * TKIP uses four key cache entries (two for group
259 * keys):
260 * Michael MIC TX/RX keys are in different key cache
261 * entries (idx = main index + 64 for TX and
262 * main index + 32 + 96 for RX):
263 * key0 [31:0] = TX/RX MIC key [31:0]
264 * key1 [31:0] = reserved
265 * key2 [31:0] = TX/RX MIC key [63:32]
266 * key3 [31:0] = reserved
267 * key4 [31:0] = reserved
269 * Upper layer code will call this function separately
270 * for TX and RX keys when these registers offsets are
271 * used.
273 u32 mic0, mic2;
275 mic0 = get_unaligned_le32(k->kv_mic + 0);
276 mic2 = get_unaligned_le32(k->kv_mic + 4);
278 ENABLE_REGWRITE_BUFFER(ah);
280 /* Write MIC key[31:0] */
281 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
282 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
284 /* Write MIC key[63:32] */
285 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
286 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
288 /* Write TX[63:32] and keyType(reserved) */
289 REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
290 REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
291 AR_KEYTABLE_TYPE_CLR);
293 REGWRITE_BUFFER_FLUSH(ah);
296 ENABLE_REGWRITE_BUFFER(ah);
298 /* MAC address registers are reserved for the MIC entry */
299 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
300 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
303 * Write the correct (un-inverted) key[47:0] last to enable
304 * TKIP now that all other registers are set with correct
305 * values.
307 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
308 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
310 REGWRITE_BUFFER_FLUSH(ah);
311 } else {
312 ENABLE_REGWRITE_BUFFER(ah);
314 /* Write key[47:0] */
315 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
316 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
318 /* Write key[95:48] */
319 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
320 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
322 /* Write key[127:96] and key type */
323 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
324 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
326 REGWRITE_BUFFER_FLUSH(ah);
328 /* Write MAC address for the entry */
329 (void) ath_hw_keysetmac(common, entry, mac);
332 return true;
335 static int ath_setkey_tkip(struct ath_common *common, u16 keyix, const u8 *key,
336 struct ath_keyval *hk, const u8 *addr,
337 bool authenticator)
339 const u8 *key_rxmic;
340 const u8 *key_txmic;
342 key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
343 key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
345 if (addr == NULL) {
347 * Group key installation - only two key cache entries are used
348 * regardless of splitmic capability since group key is only
349 * used either for TX or RX.
351 if (authenticator) {
352 memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
353 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
354 } else {
355 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
356 memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
358 return ath_hw_set_keycache_entry(common, keyix, hk, addr);
360 if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
361 /* TX and RX keys share the same key cache entry. */
362 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
363 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
364 return ath_hw_set_keycache_entry(common, keyix, hk, addr);
367 /* Separate key cache entries for TX and RX */
369 /* TX key goes at first index, RX key at +32. */
370 memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
371 if (!ath_hw_set_keycache_entry(common, keyix, hk, NULL)) {
372 /* TX MIC entry failed. No need to proceed further */
373 ath_err(common, "Setting TX MIC Key Failed\n");
374 return 0;
377 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
378 /* XXX delete tx key on failure? */
379 return ath_hw_set_keycache_entry(common, keyix + 32, hk, addr);
382 static int ath_reserve_key_cache_slot_tkip(struct ath_common *common)
384 int i;
386 for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) {
387 if (test_bit(i, common->keymap) ||
388 test_bit(i + 64, common->keymap))
389 continue; /* At least one part of TKIP key allocated */
390 if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) &&
391 (test_bit(i + 32, common->keymap) ||
392 test_bit(i + 64 + 32, common->keymap)))
393 continue; /* At least one part of TKIP key allocated */
395 /* Found a free slot for a TKIP key */
396 return i;
398 return -1;
401 static int ath_reserve_key_cache_slot(struct ath_common *common,
402 u32 cipher)
404 int i;
406 if (cipher == WLAN_CIPHER_SUITE_TKIP)
407 return ath_reserve_key_cache_slot_tkip(common);
409 /* First, try to find slots that would not be available for TKIP. */
410 if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
411 for (i = IEEE80211_WEP_NKID; i < common->keymax / 4; i++) {
412 if (!test_bit(i, common->keymap) &&
413 (test_bit(i + 32, common->keymap) ||
414 test_bit(i + 64, common->keymap) ||
415 test_bit(i + 64 + 32, common->keymap)))
416 return i;
417 if (!test_bit(i + 32, common->keymap) &&
418 (test_bit(i, common->keymap) ||
419 test_bit(i + 64, common->keymap) ||
420 test_bit(i + 64 + 32, common->keymap)))
421 return i + 32;
422 if (!test_bit(i + 64, common->keymap) &&
423 (test_bit(i , common->keymap) ||
424 test_bit(i + 32, common->keymap) ||
425 test_bit(i + 64 + 32, common->keymap)))
426 return i + 64;
427 if (!test_bit(i + 64 + 32, common->keymap) &&
428 (test_bit(i, common->keymap) ||
429 test_bit(i + 32, common->keymap) ||
430 test_bit(i + 64, common->keymap)))
431 return i + 64 + 32;
433 } else {
434 for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) {
435 if (!test_bit(i, common->keymap) &&
436 test_bit(i + 64, common->keymap))
437 return i;
438 if (test_bit(i, common->keymap) &&
439 !test_bit(i + 64, common->keymap))
440 return i + 64;
444 /* No partially used TKIP slots, pick any available slot */
445 for (i = IEEE80211_WEP_NKID; i < common->keymax; i++) {
446 /* Do not allow slots that could be needed for TKIP group keys
447 * to be used. This limitation could be removed if we know that
448 * TKIP will not be used. */
449 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
450 continue;
451 if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
452 if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
453 continue;
454 if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
455 continue;
458 if (!test_bit(i, common->keymap))
459 return i; /* Found a free slot for a key */
462 /* No free slot found */
463 return -1;
467 * Configure encryption in the HW.
469 int ath_key_config(struct ath_common *common,
470 struct ieee80211_vif *vif,
471 struct ieee80211_sta *sta,
472 struct ieee80211_key_conf *key)
474 struct ath_keyval hk;
475 const u8 *mac = NULL;
476 u8 gmac[ETH_ALEN];
477 int ret = 0;
478 int idx;
480 memset(&hk, 0, sizeof(hk));
482 switch (key->cipher) {
483 case 0:
484 hk.kv_type = ATH_CIPHER_CLR;
485 break;
486 case WLAN_CIPHER_SUITE_WEP40:
487 case WLAN_CIPHER_SUITE_WEP104:
488 hk.kv_type = ATH_CIPHER_WEP;
489 break;
490 case WLAN_CIPHER_SUITE_TKIP:
491 hk.kv_type = ATH_CIPHER_TKIP;
492 break;
493 case WLAN_CIPHER_SUITE_CCMP:
494 hk.kv_type = ATH_CIPHER_AES_CCM;
495 break;
496 default:
497 return -EOPNOTSUPP;
500 hk.kv_len = key->keylen;
501 if (key->keylen)
502 memcpy(hk.kv_val, key->key, key->keylen);
504 if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
505 switch (vif->type) {
506 case NL80211_IFTYPE_AP:
507 memcpy(gmac, vif->addr, ETH_ALEN);
508 gmac[0] |= 0x01;
509 mac = gmac;
510 idx = ath_reserve_key_cache_slot(common, key->cipher);
511 break;
512 case NL80211_IFTYPE_ADHOC:
513 if (!sta) {
514 idx = key->keyidx;
515 break;
517 memcpy(gmac, sta->addr, ETH_ALEN);
518 gmac[0] |= 0x01;
519 mac = gmac;
520 idx = ath_reserve_key_cache_slot(common, key->cipher);
521 break;
522 default:
523 idx = key->keyidx;
524 break;
526 } else if (key->keyidx) {
527 if (WARN_ON(!sta))
528 return -EOPNOTSUPP;
529 mac = sta->addr;
531 if (vif->type != NL80211_IFTYPE_AP) {
532 /* Only keyidx 0 should be used with unicast key, but
533 * allow this for client mode for now. */
534 idx = key->keyidx;
535 } else
536 return -EIO;
537 } else {
538 if (WARN_ON(!sta))
539 return -EOPNOTSUPP;
540 mac = sta->addr;
542 idx = ath_reserve_key_cache_slot(common, key->cipher);
545 if (idx < 0)
546 return -ENOSPC; /* no free key cache entries */
548 if (key->cipher == WLAN_CIPHER_SUITE_TKIP)
549 ret = ath_setkey_tkip(common, idx, key->key, &hk, mac,
550 vif->type == NL80211_IFTYPE_AP);
551 else
552 ret = ath_hw_set_keycache_entry(common, idx, &hk, mac);
554 if (!ret)
555 return -EIO;
557 set_bit(idx, common->keymap);
558 if (key->cipher == WLAN_CIPHER_SUITE_TKIP) {
559 set_bit(idx + 64, common->keymap);
560 set_bit(idx, common->tkip_keymap);
561 set_bit(idx + 64, common->tkip_keymap);
562 if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
563 set_bit(idx + 32, common->keymap);
564 set_bit(idx + 64 + 32, common->keymap);
565 set_bit(idx + 32, common->tkip_keymap);
566 set_bit(idx + 64 + 32, common->tkip_keymap);
570 return idx;
572 EXPORT_SYMBOL(ath_key_config);
575 * Delete Key.
577 void ath_key_delete(struct ath_common *common, struct ieee80211_key_conf *key)
579 ath_hw_keyreset(common, key->hw_key_idx);
580 if (key->hw_key_idx < IEEE80211_WEP_NKID)
581 return;
583 clear_bit(key->hw_key_idx, common->keymap);
584 if (key->cipher != WLAN_CIPHER_SUITE_TKIP)
585 return;
587 clear_bit(key->hw_key_idx + 64, common->keymap);
589 clear_bit(key->hw_key_idx, common->tkip_keymap);
590 clear_bit(key->hw_key_idx + 64, common->tkip_keymap);
592 if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
593 ath_hw_keyreset(common, key->hw_key_idx + 32);
594 clear_bit(key->hw_key_idx + 32, common->keymap);
595 clear_bit(key->hw_key_idx + 64 + 32, common->keymap);
597 clear_bit(key->hw_key_idx + 32, common->tkip_keymap);
598 clear_bit(key->hw_key_idx + 64 + 32, common->tkip_keymap);
601 EXPORT_SYMBOL(ath_key_delete);