2 * Copyright (c) 2009 Atheros Communications Inc.
3 * Copyright (c) 2010 Bruno Randolf <br1@einfach.org>
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 #include <asm/unaligned.h>
19 #include <net/mac80211.h>
24 #define REG_READ (common->ops->read)
25 #define REG_WRITE(_ah, _reg, _val) (common->ops->write)(_ah, _val, _reg)
26 #define ENABLE_REGWRITE_BUFFER(_ah) \
27 if (common->ops->enable_write_buffer) \
28 common->ops->enable_write_buffer((_ah));
30 #define REGWRITE_BUFFER_FLUSH(_ah) \
31 if (common->ops->write_flush) \
32 common->ops->write_flush((_ah));
35 #define IEEE80211_WEP_NKID 4 /* number of key ids */
37 /************************/
38 /* Key Cache Management */
39 /************************/
41 bool ath_hw_keyreset(struct ath_common
*common
, u16 entry
)
44 void *ah
= common
->ah
;
46 if (entry
>= common
->keymax
) {
47 ath_err(common
, "keycache entry %u out of range\n", entry
);
51 keyType
= REG_READ(ah
, AR_KEYTABLE_TYPE(entry
));
53 ENABLE_REGWRITE_BUFFER(ah
);
55 REG_WRITE(ah
, AR_KEYTABLE_KEY0(entry
), 0);
56 REG_WRITE(ah
, AR_KEYTABLE_KEY1(entry
), 0);
57 REG_WRITE(ah
, AR_KEYTABLE_KEY2(entry
), 0);
58 REG_WRITE(ah
, AR_KEYTABLE_KEY3(entry
), 0);
59 REG_WRITE(ah
, AR_KEYTABLE_KEY4(entry
), 0);
60 REG_WRITE(ah
, AR_KEYTABLE_TYPE(entry
), AR_KEYTABLE_TYPE_CLR
);
61 REG_WRITE(ah
, AR_KEYTABLE_MAC0(entry
), 0);
62 REG_WRITE(ah
, AR_KEYTABLE_MAC1(entry
), 0);
64 if (keyType
== AR_KEYTABLE_TYPE_TKIP
) {
65 u16 micentry
= entry
+ 64;
67 REG_WRITE(ah
, AR_KEYTABLE_KEY0(micentry
), 0);
68 REG_WRITE(ah
, AR_KEYTABLE_KEY1(micentry
), 0);
69 REG_WRITE(ah
, AR_KEYTABLE_KEY2(micentry
), 0);
70 REG_WRITE(ah
, AR_KEYTABLE_KEY3(micentry
), 0);
71 if (common
->crypt_caps
& ATH_CRYPT_CAP_MIC_COMBINED
) {
72 REG_WRITE(ah
, AR_KEYTABLE_KEY4(micentry
), 0);
73 REG_WRITE(ah
, AR_KEYTABLE_TYPE(micentry
),
74 AR_KEYTABLE_TYPE_CLR
);
79 REGWRITE_BUFFER_FLUSH(ah
);
83 EXPORT_SYMBOL(ath_hw_keyreset
);
85 static bool ath_hw_keysetmac(struct ath_common
*common
,
86 u16 entry
, const u8
*mac
)
89 u32 unicast_flag
= AR_KEYTABLE_VALID
;
90 void *ah
= common
->ah
;
92 if (entry
>= common
->keymax
) {
93 ath_err(common
, "keycache entry %u out of range\n", entry
);
99 * AR_KEYTABLE_VALID indicates that the address is a unicast
100 * address, which must match the transmitter address for
102 * Not setting this bit allows the hardware to use the key
103 * for multicast frame decryption.
108 macLo
= get_unaligned_le32(mac
);
109 macHi
= get_unaligned_le16(mac
+ 4);
111 macLo
|= (macHi
& 1) << 31;
116 ENABLE_REGWRITE_BUFFER(ah
);
118 REG_WRITE(ah
, AR_KEYTABLE_MAC0(entry
), macLo
);
119 REG_WRITE(ah
, AR_KEYTABLE_MAC1(entry
), macHi
| unicast_flag
);
121 REGWRITE_BUFFER_FLUSH(ah
);
126 static bool ath_hw_set_keycache_entry(struct ath_common
*common
, u16 entry
,
127 const struct ath_keyval
*k
,
130 void *ah
= common
->ah
;
131 u32 key0
, key1
, key2
, key3
, key4
;
134 if (entry
>= common
->keymax
) {
135 ath_err(common
, "keycache entry %u out of range\n", entry
);
139 switch (k
->kv_type
) {
140 case ATH_CIPHER_AES_OCB
:
141 keyType
= AR_KEYTABLE_TYPE_AES
;
143 case ATH_CIPHER_AES_CCM
:
144 if (!(common
->crypt_caps
& ATH_CRYPT_CAP_CIPHER_AESCCM
)) {
145 ath_dbg(common
, ATH_DBG_ANY
,
146 "AES-CCM not supported by this mac rev\n");
149 keyType
= AR_KEYTABLE_TYPE_CCM
;
151 case ATH_CIPHER_TKIP
:
152 keyType
= AR_KEYTABLE_TYPE_TKIP
;
153 if (entry
+ 64 >= common
->keymax
) {
154 ath_dbg(common
, ATH_DBG_ANY
,
155 "entry %u inappropriate for TKIP\n", entry
);
160 if (k
->kv_len
< WLAN_KEY_LEN_WEP40
) {
161 ath_dbg(common
, ATH_DBG_ANY
,
162 "WEP key length %u too small\n", k
->kv_len
);
165 if (k
->kv_len
<= WLAN_KEY_LEN_WEP40
)
166 keyType
= AR_KEYTABLE_TYPE_40
;
167 else if (k
->kv_len
<= WLAN_KEY_LEN_WEP104
)
168 keyType
= AR_KEYTABLE_TYPE_104
;
170 keyType
= AR_KEYTABLE_TYPE_128
;
173 keyType
= AR_KEYTABLE_TYPE_CLR
;
176 ath_err(common
, "cipher %u not supported\n", k
->kv_type
);
180 key0
= get_unaligned_le32(k
->kv_val
+ 0);
181 key1
= get_unaligned_le16(k
->kv_val
+ 4);
182 key2
= get_unaligned_le32(k
->kv_val
+ 6);
183 key3
= get_unaligned_le16(k
->kv_val
+ 10);
184 key4
= get_unaligned_le32(k
->kv_val
+ 12);
185 if (k
->kv_len
<= WLAN_KEY_LEN_WEP104
)
189 * Note: Key cache registers access special memory area that requires
190 * two 32-bit writes to actually update the values in the internal
191 * memory. Consequently, the exact order and pairs used here must be
195 if (keyType
== AR_KEYTABLE_TYPE_TKIP
) {
196 u16 micentry
= entry
+ 64;
199 * Write inverted key[47:0] first to avoid Michael MIC errors
200 * on frames that could be sent or received at the same time.
201 * The correct key will be written in the end once everything
204 REG_WRITE(ah
, AR_KEYTABLE_KEY0(entry
), ~key0
);
205 REG_WRITE(ah
, AR_KEYTABLE_KEY1(entry
), ~key1
);
207 /* Write key[95:48] */
208 REG_WRITE(ah
, AR_KEYTABLE_KEY2(entry
), key2
);
209 REG_WRITE(ah
, AR_KEYTABLE_KEY3(entry
), key3
);
211 /* Write key[127:96] and key type */
212 REG_WRITE(ah
, AR_KEYTABLE_KEY4(entry
), key4
);
213 REG_WRITE(ah
, AR_KEYTABLE_TYPE(entry
), keyType
);
215 /* Write MAC address for the entry */
216 (void) ath_hw_keysetmac(common
, entry
, mac
);
218 if (common
->crypt_caps
& ATH_CRYPT_CAP_MIC_COMBINED
) {
220 * TKIP uses two key cache entries:
221 * Michael MIC TX/RX keys in the same key cache entry
222 * (idx = main index + 64):
223 * key0 [31:0] = RX key [31:0]
224 * key1 [15:0] = TX key [31:16]
225 * key1 [31:16] = reserved
226 * key2 [31:0] = RX key [63:32]
227 * key3 [15:0] = TX key [15:0]
228 * key3 [31:16] = reserved
229 * key4 [31:0] = TX key [63:32]
231 u32 mic0
, mic1
, mic2
, mic3
, mic4
;
233 mic0
= get_unaligned_le32(k
->kv_mic
+ 0);
234 mic2
= get_unaligned_le32(k
->kv_mic
+ 4);
235 mic1
= get_unaligned_le16(k
->kv_txmic
+ 2) & 0xffff;
236 mic3
= get_unaligned_le16(k
->kv_txmic
+ 0) & 0xffff;
237 mic4
= get_unaligned_le32(k
->kv_txmic
+ 4);
239 ENABLE_REGWRITE_BUFFER(ah
);
241 /* Write RX[31:0] and TX[31:16] */
242 REG_WRITE(ah
, AR_KEYTABLE_KEY0(micentry
), mic0
);
243 REG_WRITE(ah
, AR_KEYTABLE_KEY1(micentry
), mic1
);
245 /* Write RX[63:32] and TX[15:0] */
246 REG_WRITE(ah
, AR_KEYTABLE_KEY2(micentry
), mic2
);
247 REG_WRITE(ah
, AR_KEYTABLE_KEY3(micentry
), mic3
);
249 /* Write TX[63:32] and keyType(reserved) */
250 REG_WRITE(ah
, AR_KEYTABLE_KEY4(micentry
), mic4
);
251 REG_WRITE(ah
, AR_KEYTABLE_TYPE(micentry
),
252 AR_KEYTABLE_TYPE_CLR
);
254 REGWRITE_BUFFER_FLUSH(ah
);
258 * TKIP uses four key cache entries (two for group
260 * Michael MIC TX/RX keys are in different key cache
261 * entries (idx = main index + 64 for TX and
262 * main index + 32 + 96 for RX):
263 * key0 [31:0] = TX/RX MIC key [31:0]
264 * key1 [31:0] = reserved
265 * key2 [31:0] = TX/RX MIC key [63:32]
266 * key3 [31:0] = reserved
267 * key4 [31:0] = reserved
269 * Upper layer code will call this function separately
270 * for TX and RX keys when these registers offsets are
275 mic0
= get_unaligned_le32(k
->kv_mic
+ 0);
276 mic2
= get_unaligned_le32(k
->kv_mic
+ 4);
278 ENABLE_REGWRITE_BUFFER(ah
);
280 /* Write MIC key[31:0] */
281 REG_WRITE(ah
, AR_KEYTABLE_KEY0(micentry
), mic0
);
282 REG_WRITE(ah
, AR_KEYTABLE_KEY1(micentry
), 0);
284 /* Write MIC key[63:32] */
285 REG_WRITE(ah
, AR_KEYTABLE_KEY2(micentry
), mic2
);
286 REG_WRITE(ah
, AR_KEYTABLE_KEY3(micentry
), 0);
288 /* Write TX[63:32] and keyType(reserved) */
289 REG_WRITE(ah
, AR_KEYTABLE_KEY4(micentry
), 0);
290 REG_WRITE(ah
, AR_KEYTABLE_TYPE(micentry
),
291 AR_KEYTABLE_TYPE_CLR
);
293 REGWRITE_BUFFER_FLUSH(ah
);
296 ENABLE_REGWRITE_BUFFER(ah
);
298 /* MAC address registers are reserved for the MIC entry */
299 REG_WRITE(ah
, AR_KEYTABLE_MAC0(micentry
), 0);
300 REG_WRITE(ah
, AR_KEYTABLE_MAC1(micentry
), 0);
303 * Write the correct (un-inverted) key[47:0] last to enable
304 * TKIP now that all other registers are set with correct
307 REG_WRITE(ah
, AR_KEYTABLE_KEY0(entry
), key0
);
308 REG_WRITE(ah
, AR_KEYTABLE_KEY1(entry
), key1
);
310 REGWRITE_BUFFER_FLUSH(ah
);
312 ENABLE_REGWRITE_BUFFER(ah
);
314 /* Write key[47:0] */
315 REG_WRITE(ah
, AR_KEYTABLE_KEY0(entry
), key0
);
316 REG_WRITE(ah
, AR_KEYTABLE_KEY1(entry
), key1
);
318 /* Write key[95:48] */
319 REG_WRITE(ah
, AR_KEYTABLE_KEY2(entry
), key2
);
320 REG_WRITE(ah
, AR_KEYTABLE_KEY3(entry
), key3
);
322 /* Write key[127:96] and key type */
323 REG_WRITE(ah
, AR_KEYTABLE_KEY4(entry
), key4
);
324 REG_WRITE(ah
, AR_KEYTABLE_TYPE(entry
), keyType
);
326 REGWRITE_BUFFER_FLUSH(ah
);
328 /* Write MAC address for the entry */
329 (void) ath_hw_keysetmac(common
, entry
, mac
);
335 static int ath_setkey_tkip(struct ath_common
*common
, u16 keyix
, const u8
*key
,
336 struct ath_keyval
*hk
, const u8
*addr
,
342 key_txmic
= key
+ NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY
;
343 key_rxmic
= key
+ NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY
;
347 * Group key installation - only two key cache entries are used
348 * regardless of splitmic capability since group key is only
349 * used either for TX or RX.
352 memcpy(hk
->kv_mic
, key_txmic
, sizeof(hk
->kv_mic
));
353 memcpy(hk
->kv_txmic
, key_txmic
, sizeof(hk
->kv_mic
));
355 memcpy(hk
->kv_mic
, key_rxmic
, sizeof(hk
->kv_mic
));
356 memcpy(hk
->kv_txmic
, key_rxmic
, sizeof(hk
->kv_mic
));
358 return ath_hw_set_keycache_entry(common
, keyix
, hk
, addr
);
360 if (common
->crypt_caps
& ATH_CRYPT_CAP_MIC_COMBINED
) {
361 /* TX and RX keys share the same key cache entry. */
362 memcpy(hk
->kv_mic
, key_rxmic
, sizeof(hk
->kv_mic
));
363 memcpy(hk
->kv_txmic
, key_txmic
, sizeof(hk
->kv_txmic
));
364 return ath_hw_set_keycache_entry(common
, keyix
, hk
, addr
);
367 /* Separate key cache entries for TX and RX */
369 /* TX key goes at first index, RX key at +32. */
370 memcpy(hk
->kv_mic
, key_txmic
, sizeof(hk
->kv_mic
));
371 if (!ath_hw_set_keycache_entry(common
, keyix
, hk
, NULL
)) {
372 /* TX MIC entry failed. No need to proceed further */
373 ath_err(common
, "Setting TX MIC Key Failed\n");
377 memcpy(hk
->kv_mic
, key_rxmic
, sizeof(hk
->kv_mic
));
378 /* XXX delete tx key on failure? */
379 return ath_hw_set_keycache_entry(common
, keyix
+ 32, hk
, addr
);
382 static int ath_reserve_key_cache_slot_tkip(struct ath_common
*common
)
386 for (i
= IEEE80211_WEP_NKID
; i
< common
->keymax
/ 2; i
++) {
387 if (test_bit(i
, common
->keymap
) ||
388 test_bit(i
+ 64, common
->keymap
))
389 continue; /* At least one part of TKIP key allocated */
390 if (!(common
->crypt_caps
& ATH_CRYPT_CAP_MIC_COMBINED
) &&
391 (test_bit(i
+ 32, common
->keymap
) ||
392 test_bit(i
+ 64 + 32, common
->keymap
)))
393 continue; /* At least one part of TKIP key allocated */
395 /* Found a free slot for a TKIP key */
401 static int ath_reserve_key_cache_slot(struct ath_common
*common
,
406 if (cipher
== WLAN_CIPHER_SUITE_TKIP
)
407 return ath_reserve_key_cache_slot_tkip(common
);
409 /* First, try to find slots that would not be available for TKIP. */
410 if (!(common
->crypt_caps
& ATH_CRYPT_CAP_MIC_COMBINED
)) {
411 for (i
= IEEE80211_WEP_NKID
; i
< common
->keymax
/ 4; i
++) {
412 if (!test_bit(i
, common
->keymap
) &&
413 (test_bit(i
+ 32, common
->keymap
) ||
414 test_bit(i
+ 64, common
->keymap
) ||
415 test_bit(i
+ 64 + 32, common
->keymap
)))
417 if (!test_bit(i
+ 32, common
->keymap
) &&
418 (test_bit(i
, common
->keymap
) ||
419 test_bit(i
+ 64, common
->keymap
) ||
420 test_bit(i
+ 64 + 32, common
->keymap
)))
422 if (!test_bit(i
+ 64, common
->keymap
) &&
423 (test_bit(i
, common
->keymap
) ||
424 test_bit(i
+ 32, common
->keymap
) ||
425 test_bit(i
+ 64 + 32, common
->keymap
)))
427 if (!test_bit(i
+ 64 + 32, common
->keymap
) &&
428 (test_bit(i
, common
->keymap
) ||
429 test_bit(i
+ 32, common
->keymap
) ||
430 test_bit(i
+ 64, common
->keymap
)))
434 for (i
= IEEE80211_WEP_NKID
; i
< common
->keymax
/ 2; i
++) {
435 if (!test_bit(i
, common
->keymap
) &&
436 test_bit(i
+ 64, common
->keymap
))
438 if (test_bit(i
, common
->keymap
) &&
439 !test_bit(i
+ 64, common
->keymap
))
444 /* No partially used TKIP slots, pick any available slot */
445 for (i
= IEEE80211_WEP_NKID
; i
< common
->keymax
; i
++) {
446 /* Do not allow slots that could be needed for TKIP group keys
447 * to be used. This limitation could be removed if we know that
448 * TKIP will not be used. */
449 if (i
>= 64 && i
< 64 + IEEE80211_WEP_NKID
)
451 if (!(common
->crypt_caps
& ATH_CRYPT_CAP_MIC_COMBINED
)) {
452 if (i
>= 32 && i
< 32 + IEEE80211_WEP_NKID
)
454 if (i
>= 64 + 32 && i
< 64 + 32 + IEEE80211_WEP_NKID
)
458 if (!test_bit(i
, common
->keymap
))
459 return i
; /* Found a free slot for a key */
462 /* No free slot found */
467 * Configure encryption in the HW.
469 int ath_key_config(struct ath_common
*common
,
470 struct ieee80211_vif
*vif
,
471 struct ieee80211_sta
*sta
,
472 struct ieee80211_key_conf
*key
)
474 struct ath_keyval hk
;
475 const u8
*mac
= NULL
;
480 memset(&hk
, 0, sizeof(hk
));
482 switch (key
->cipher
) {
484 hk
.kv_type
= ATH_CIPHER_CLR
;
486 case WLAN_CIPHER_SUITE_WEP40
:
487 case WLAN_CIPHER_SUITE_WEP104
:
488 hk
.kv_type
= ATH_CIPHER_WEP
;
490 case WLAN_CIPHER_SUITE_TKIP
:
491 hk
.kv_type
= ATH_CIPHER_TKIP
;
493 case WLAN_CIPHER_SUITE_CCMP
:
494 hk
.kv_type
= ATH_CIPHER_AES_CCM
;
500 hk
.kv_len
= key
->keylen
;
502 memcpy(hk
.kv_val
, key
->key
, key
->keylen
);
504 if (!(key
->flags
& IEEE80211_KEY_FLAG_PAIRWISE
)) {
506 case NL80211_IFTYPE_AP
:
507 memcpy(gmac
, vif
->addr
, ETH_ALEN
);
510 idx
= ath_reserve_key_cache_slot(common
, key
->cipher
);
512 case NL80211_IFTYPE_ADHOC
:
517 memcpy(gmac
, sta
->addr
, ETH_ALEN
);
520 idx
= ath_reserve_key_cache_slot(common
, key
->cipher
);
526 } else if (key
->keyidx
) {
531 if (vif
->type
!= NL80211_IFTYPE_AP
) {
532 /* Only keyidx 0 should be used with unicast key, but
533 * allow this for client mode for now. */
542 idx
= ath_reserve_key_cache_slot(common
, key
->cipher
);
546 return -ENOSPC
; /* no free key cache entries */
548 if (key
->cipher
== WLAN_CIPHER_SUITE_TKIP
)
549 ret
= ath_setkey_tkip(common
, idx
, key
->key
, &hk
, mac
,
550 vif
->type
== NL80211_IFTYPE_AP
);
552 ret
= ath_hw_set_keycache_entry(common
, idx
, &hk
, mac
);
557 set_bit(idx
, common
->keymap
);
558 if (key
->cipher
== WLAN_CIPHER_SUITE_TKIP
) {
559 set_bit(idx
+ 64, common
->keymap
);
560 set_bit(idx
, common
->tkip_keymap
);
561 set_bit(idx
+ 64, common
->tkip_keymap
);
562 if (!(common
->crypt_caps
& ATH_CRYPT_CAP_MIC_COMBINED
)) {
563 set_bit(idx
+ 32, common
->keymap
);
564 set_bit(idx
+ 64 + 32, common
->keymap
);
565 set_bit(idx
+ 32, common
->tkip_keymap
);
566 set_bit(idx
+ 64 + 32, common
->tkip_keymap
);
572 EXPORT_SYMBOL(ath_key_config
);
577 void ath_key_delete(struct ath_common
*common
, struct ieee80211_key_conf
*key
)
579 ath_hw_keyreset(common
, key
->hw_key_idx
);
580 if (key
->hw_key_idx
< IEEE80211_WEP_NKID
)
583 clear_bit(key
->hw_key_idx
, common
->keymap
);
584 if (key
->cipher
!= WLAN_CIPHER_SUITE_TKIP
)
587 clear_bit(key
->hw_key_idx
+ 64, common
->keymap
);
589 clear_bit(key
->hw_key_idx
, common
->tkip_keymap
);
590 clear_bit(key
->hw_key_idx
+ 64, common
->tkip_keymap
);
592 if (!(common
->crypt_caps
& ATH_CRYPT_CAP_MIC_COMBINED
)) {
593 ath_hw_keyreset(common
, key
->hw_key_idx
+ 32);
594 clear_bit(key
->hw_key_idx
+ 32, common
->keymap
);
595 clear_bit(key
->hw_key_idx
+ 64 + 32, common
->keymap
);
597 clear_bit(key
->hw_key_idx
+ 32, common
->tkip_keymap
);
598 clear_bit(key
->hw_key_idx
+ 64 + 32, common
->tkip_keymap
);
601 EXPORT_SYMBOL(ath_key_delete
);