1 /******************************************************************************
3 * Copyright(c) 2003 - 2011 Intel Corporation. All rights reserved.
5 * Portions of this file are derived from the ipw3945 project, as well
6 * as portions of the ieee80211 subsystem header files.
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of version 2 of the GNU General Public License as
10 * published by the Free Software Foundation.
12 * This program is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 * You should have received a copy of the GNU General Public License along with
18 * this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
21 * The full GNU General Public License is included in this distribution in the
22 * file called LICENSE.
24 * Contact Information:
25 * Intel Linux Wireless <ilw@linux.intel.com>
26 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
28 *****************************************************************************/
29 #include <linux/sched.h>
30 #include <linux/wait.h>
31 #include <linux/gfp.h>
37 #include "iwl-helpers.h"
38 #include "iwl-trans-int-pcie.h"
40 /******************************************************************************
44 ******************************************************************************/
47 * Rx theory of operation
49 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
50 * each of which point to Receive Buffers to be filled by the NIC. These get
51 * used not only for Rx frames, but for any command response or notification
52 * from the NIC. The driver and NIC manage the Rx buffers by means
53 * of indexes into the circular buffer.
56 * The host/firmware share two index registers for managing the Rx buffers.
58 * The READ index maps to the first position that the firmware may be writing
59 * to -- the driver can read up to (but not including) this position and get
61 * The READ index is managed by the firmware once the card is enabled.
63 * The WRITE index maps to the last position the driver has read from -- the
64 * position preceding WRITE is the last slot the firmware can place a packet.
66 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
69 * During initialization, the host sets up the READ queue position to the first
70 * INDEX position, and WRITE to the last (READ - 1 wrapped)
72 * When the firmware places a packet in a buffer, it will advance the READ index
73 * and fire the RX interrupt. The driver can then query the READ index and
74 * process as many packets as possible, moving the WRITE index forward as it
75 * resets the Rx queue buffers with new memory.
77 * The management in the driver is as follows:
78 * + A list of pre-allocated SKBs is stored in iwl->rxq->rx_free. When
79 * iwl->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
80 * to replenish the iwl->rxq->rx_free.
81 * + In iwl_rx_replenish (scheduled) if 'processed' != 'read' then the
82 * iwl->rxq is replenished and the READ INDEX is updated (updating the
83 * 'processed' and 'read' driver indexes as well)
84 * + A received packet is processed and handed to the kernel network stack,
85 * detached from the iwl->rxq. The driver 'processed' index is updated.
86 * + The Host/Firmware iwl->rxq is replenished at tasklet time from the rx_free
87 * list. If there are no allocated buffers in iwl->rxq->rx_free, the READ
88 * INDEX is not incremented and iwl->status(RX_STALLED) is set. If there
89 * were enough free buffers and RX_STALLED is set it is cleared.
94 * iwl_rx_queue_alloc() Allocates rx_free
95 * iwl_rx_replenish() Replenishes rx_free list from rx_used, and calls
96 * iwl_rx_queue_restock
97 * iwl_rx_queue_restock() Moves available buffers from rx_free into Rx
98 * queue, updates firmware pointers, and updates
99 * the WRITE index. If insufficient rx_free buffers
100 * are available, schedules iwl_rx_replenish
102 * -- enable interrupts --
103 * ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the
104 * READ INDEX, detaching the SKB from the pool.
105 * Moves the packet buffer from queue to rx_used.
106 * Calls iwl_rx_queue_restock to refill any empty
113 * iwl_rx_queue_space - Return number of free slots available in queue.
115 static int iwl_rx_queue_space(const struct iwl_rx_queue
*q
)
117 int s
= q
->read
- q
->write
;
120 /* keep some buffer to not confuse full and empty queue */
128 * iwl_rx_queue_update_write_ptr - Update the write pointer for the RX queue
130 void iwl_rx_queue_update_write_ptr(struct iwl_priv
*priv
,
131 struct iwl_rx_queue
*q
)
136 spin_lock_irqsave(&q
->lock
, flags
);
138 if (q
->need_update
== 0)
141 if (priv
->cfg
->base_params
->shadow_reg_enable
) {
142 /* shadow register enabled */
143 /* Device expects a multiple of 8 */
144 q
->write_actual
= (q
->write
& ~0x7);
145 iwl_write32(priv
, FH_RSCSR_CHNL0_WPTR
, q
->write_actual
);
147 /* If power-saving is in use, make sure device is awake */
148 if (test_bit(STATUS_POWER_PMI
, &priv
->status
)) {
149 reg
= iwl_read32(priv
, CSR_UCODE_DRV_GP1
);
151 if (reg
& CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP
) {
153 "Rx queue requesting wakeup,"
154 " GP1 = 0x%x\n", reg
);
155 iwl_set_bit(priv
, CSR_GP_CNTRL
,
156 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ
);
160 q
->write_actual
= (q
->write
& ~0x7);
161 iwl_write_direct32(priv
, FH_RSCSR_CHNL0_WPTR
,
164 /* Else device is assumed to be awake */
166 /* Device expects a multiple of 8 */
167 q
->write_actual
= (q
->write
& ~0x7);
168 iwl_write_direct32(priv
, FH_RSCSR_CHNL0_WPTR
,
175 spin_unlock_irqrestore(&q
->lock
, flags
);
179 * iwlagn_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
181 static inline __le32
iwlagn_dma_addr2rbd_ptr(struct iwl_priv
*priv
,
184 return cpu_to_le32((u32
)(dma_addr
>> 8));
188 * iwlagn_rx_queue_restock - refill RX queue from pre-allocated pool
190 * If there are slots in the RX queue that need to be restocked,
191 * and we have free pre-allocated buffers, fill the ranks as much
192 * as we can, pulling from rx_free.
194 * This moves the 'write' index forward to catch up with 'processed', and
195 * also updates the memory address in the firmware to reference the new
198 static void iwlagn_rx_queue_restock(struct iwl_priv
*priv
)
200 struct iwl_rx_queue
*rxq
= &priv
->rxq
;
201 struct list_head
*element
;
202 struct iwl_rx_mem_buffer
*rxb
;
205 spin_lock_irqsave(&rxq
->lock
, flags
);
206 while ((iwl_rx_queue_space(rxq
) > 0) && (rxq
->free_count
)) {
207 /* The overwritten rxb must be a used one */
208 rxb
= rxq
->queue
[rxq
->write
];
209 BUG_ON(rxb
&& rxb
->page
);
211 /* Get next free Rx buffer, remove from free list */
212 element
= rxq
->rx_free
.next
;
213 rxb
= list_entry(element
, struct iwl_rx_mem_buffer
, list
);
216 /* Point to Rx buffer via next RBD in circular buffer */
217 rxq
->bd
[rxq
->write
] = iwlagn_dma_addr2rbd_ptr(priv
,
219 rxq
->queue
[rxq
->write
] = rxb
;
220 rxq
->write
= (rxq
->write
+ 1) & RX_QUEUE_MASK
;
223 spin_unlock_irqrestore(&rxq
->lock
, flags
);
224 /* If the pre-allocated buffer pool is dropping low, schedule to
226 if (rxq
->free_count
<= RX_LOW_WATERMARK
)
227 queue_work(priv
->workqueue
, &priv
->rx_replenish
);
230 /* If we've added more space for the firmware to place data, tell it.
231 * Increment device's write pointer in multiples of 8. */
232 if (rxq
->write_actual
!= (rxq
->write
& ~0x7)) {
233 spin_lock_irqsave(&rxq
->lock
, flags
);
234 rxq
->need_update
= 1;
235 spin_unlock_irqrestore(&rxq
->lock
, flags
);
236 iwl_rx_queue_update_write_ptr(priv
, rxq
);
241 * iwlagn_rx_replenish - Move all used packet from rx_used to rx_free
243 * When moving to rx_free an SKB is allocated for the slot.
245 * Also restock the Rx queue via iwl_rx_queue_restock.
246 * This is called as a scheduled work item (except for during initialization)
248 static void iwlagn_rx_allocate(struct iwl_priv
*priv
, gfp_t priority
)
250 struct iwl_rx_queue
*rxq
= &priv
->rxq
;
251 struct list_head
*element
;
252 struct iwl_rx_mem_buffer
*rxb
;
255 gfp_t gfp_mask
= priority
;
258 spin_lock_irqsave(&rxq
->lock
, flags
);
259 if (list_empty(&rxq
->rx_used
)) {
260 spin_unlock_irqrestore(&rxq
->lock
, flags
);
263 spin_unlock_irqrestore(&rxq
->lock
, flags
);
265 if (rxq
->free_count
> RX_LOW_WATERMARK
)
266 gfp_mask
|= __GFP_NOWARN
;
268 if (priv
->hw_params
.rx_page_order
> 0)
269 gfp_mask
|= __GFP_COMP
;
271 /* Alloc a new receive buffer */
272 page
= alloc_pages(gfp_mask
, priv
->hw_params
.rx_page_order
);
275 IWL_DEBUG_INFO(priv
, "alloc_pages failed, "
277 priv
->hw_params
.rx_page_order
);
279 if ((rxq
->free_count
<= RX_LOW_WATERMARK
) &&
281 IWL_CRIT(priv
, "Failed to alloc_pages with %s."
282 "Only %u free buffers remaining.\n",
283 priority
== GFP_ATOMIC
?
284 "GFP_ATOMIC" : "GFP_KERNEL",
286 /* We don't reschedule replenish work here -- we will
287 * call the restock method and if it still needs
288 * more buffers it will schedule replenish */
292 spin_lock_irqsave(&rxq
->lock
, flags
);
294 if (list_empty(&rxq
->rx_used
)) {
295 spin_unlock_irqrestore(&rxq
->lock
, flags
);
296 __free_pages(page
, priv
->hw_params
.rx_page_order
);
299 element
= rxq
->rx_used
.next
;
300 rxb
= list_entry(element
, struct iwl_rx_mem_buffer
, list
);
303 spin_unlock_irqrestore(&rxq
->lock
, flags
);
307 /* Get physical address of the RB */
308 rxb
->page_dma
= dma_map_page(priv
->bus
->dev
, page
, 0,
309 PAGE_SIZE
<< priv
->hw_params
.rx_page_order
,
311 /* dma address must be no more than 36 bits */
312 BUG_ON(rxb
->page_dma
& ~DMA_BIT_MASK(36));
313 /* and also 256 byte aligned! */
314 BUG_ON(rxb
->page_dma
& DMA_BIT_MASK(8));
316 spin_lock_irqsave(&rxq
->lock
, flags
);
318 list_add_tail(&rxb
->list
, &rxq
->rx_free
);
321 spin_unlock_irqrestore(&rxq
->lock
, flags
);
325 void iwlagn_rx_replenish(struct iwl_priv
*priv
)
329 iwlagn_rx_allocate(priv
, GFP_KERNEL
);
331 spin_lock_irqsave(&priv
->lock
, flags
);
332 iwlagn_rx_queue_restock(priv
);
333 spin_unlock_irqrestore(&priv
->lock
, flags
);
336 static void iwlagn_rx_replenish_now(struct iwl_priv
*priv
)
338 iwlagn_rx_allocate(priv
, GFP_ATOMIC
);
340 iwlagn_rx_queue_restock(priv
);
343 void iwl_bg_rx_replenish(struct work_struct
*data
)
345 struct iwl_priv
*priv
=
346 container_of(data
, struct iwl_priv
, rx_replenish
);
348 if (test_bit(STATUS_EXIT_PENDING
, &priv
->status
))
351 mutex_lock(&priv
->mutex
);
352 iwlagn_rx_replenish(priv
);
353 mutex_unlock(&priv
->mutex
);
357 * iwl_rx_handle - Main entry function for receiving responses from uCode
359 * Uses the priv->rx_handlers callback function array to invoke
360 * the appropriate handlers, including command responses,
361 * frame-received notifications, and other notifications.
363 static void iwl_rx_handle(struct iwl_priv
*priv
)
365 struct iwl_rx_mem_buffer
*rxb
;
366 struct iwl_rx_packet
*pkt
;
367 struct iwl_rx_queue
*rxq
= &priv
->rxq
;
375 /* uCode's read index (stored in shared DRAM) indicates the last Rx
376 * buffer that the driver may process (last buffer filled by ucode). */
377 r
= le16_to_cpu(rxq
->rb_stts
->closed_rb_num
) & 0x0FFF;
380 /* Rx interrupt, but nothing sent from uCode */
382 IWL_DEBUG_RX(priv
, "r = %d, i = %d\n", r
, i
);
384 /* calculate total frames need to be restock after handling RX */
385 total_empty
= r
- rxq
->write_actual
;
387 total_empty
+= RX_QUEUE_SIZE
;
389 if (total_empty
> (RX_QUEUE_SIZE
/ 2))
397 /* If an RXB doesn't have a Rx queue slot associated with it,
398 * then a bug has been introduced in the queue refilling
399 * routines -- catch it here */
400 if (WARN_ON(rxb
== NULL
)) {
401 i
= (i
+ 1) & RX_QUEUE_MASK
;
405 rxq
->queue
[i
] = NULL
;
407 dma_unmap_page(priv
->bus
->dev
, rxb
->page_dma
,
408 PAGE_SIZE
<< priv
->hw_params
.rx_page_order
,
412 IWL_DEBUG_RX(priv
, "r = %d, i = %d, %s, 0x%02x\n", r
,
413 i
, get_cmd_string(pkt
->hdr
.cmd
), pkt
->hdr
.cmd
);
415 len
= le32_to_cpu(pkt
->len_n_flags
) & FH_RSCSR_FRAME_SIZE_MSK
;
416 len
+= sizeof(u32
); /* account for status word */
417 trace_iwlwifi_dev_rx(priv
, pkt
, len
);
419 /* Reclaim a command buffer only if this packet is a response
420 * to a (driver-originated) command.
421 * If the packet (e.g. Rx frame) originated from uCode,
422 * there is no command buffer to reclaim.
423 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
424 * but apparently a few don't get set; catch them here. */
425 reclaim
= !(pkt
->hdr
.sequence
& SEQ_RX_FRAME
) &&
426 (pkt
->hdr
.cmd
!= REPLY_RX_PHY_CMD
) &&
427 (pkt
->hdr
.cmd
!= REPLY_RX
) &&
428 (pkt
->hdr
.cmd
!= REPLY_RX_MPDU_CMD
) &&
429 (pkt
->hdr
.cmd
!= REPLY_COMPRESSED_BA
) &&
430 (pkt
->hdr
.cmd
!= STATISTICS_NOTIFICATION
) &&
431 (pkt
->hdr
.cmd
!= REPLY_TX
);
433 iwl_rx_dispatch(priv
, rxb
);
436 * XXX: After here, we should always check rxb->page
437 * against NULL before touching it or its virtual
438 * memory (pkt). Because some rx_handler might have
439 * already taken or freed the pages.
443 /* Invoke any callbacks, transfer the buffer to caller,
444 * and fire off the (possibly) blocking
446 * as we reclaim the driver command queue */
448 iwl_tx_cmd_complete(priv
, rxb
);
450 IWL_WARN(priv
, "Claim null rxb?\n");
453 /* Reuse the page if possible. For notification packets and
454 * SKBs that fail to Rx correctly, add them back into the
455 * rx_free list for reuse later. */
456 spin_lock_irqsave(&rxq
->lock
, flags
);
457 if (rxb
->page
!= NULL
) {
458 rxb
->page_dma
= dma_map_page(priv
->bus
->dev
, rxb
->page
,
459 0, PAGE_SIZE
<< priv
->hw_params
.rx_page_order
,
461 list_add_tail(&rxb
->list
, &rxq
->rx_free
);
464 list_add_tail(&rxb
->list
, &rxq
->rx_used
);
466 spin_unlock_irqrestore(&rxq
->lock
, flags
);
468 i
= (i
+ 1) & RX_QUEUE_MASK
;
469 /* If there are a lot of unused frames,
470 * restock the Rx queue so ucode wont assert. */
475 iwlagn_rx_replenish_now(priv
);
481 /* Backtrack one entry */
484 iwlagn_rx_replenish_now(priv
);
486 iwlagn_rx_queue_restock(priv
);
489 /* tasklet for iwlagn interrupt */
490 void iwl_irq_tasklet(struct iwl_priv
*priv
)
496 #ifdef CONFIG_IWLWIFI_DEBUG
500 spin_lock_irqsave(&priv
->lock
, flags
);
502 /* Ack/clear/reset pending uCode interrupts.
503 * Note: Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
505 /* There is a hardware bug in the interrupt mask function that some
506 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
507 * they are disabled in the CSR_INT_MASK register. Furthermore the
508 * ICT interrupt handling mechanism has another bug that might cause
509 * these unmasked interrupts fail to be detected. We workaround the
510 * hardware bugs here by ACKing all the possible interrupts so that
511 * interrupt coalescing can still be achieved.
513 iwl_write32(priv
, CSR_INT
, priv
->inta
| ~priv
->inta_mask
);
517 #ifdef CONFIG_IWLWIFI_DEBUG
518 if (iwl_get_debug_level(priv
) & IWL_DL_ISR
) {
520 inta_mask
= iwl_read32(priv
, CSR_INT_MASK
);
521 IWL_DEBUG_ISR(priv
, "inta 0x%08x, enabled 0x%08x\n ",
526 spin_unlock_irqrestore(&priv
->lock
, flags
);
528 /* saved interrupt in inta variable now we can reset priv->inta */
531 /* Now service all interrupt bits discovered above. */
532 if (inta
& CSR_INT_BIT_HW_ERR
) {
533 IWL_ERR(priv
, "Hardware error detected. Restarting.\n");
535 /* Tell the device to stop sending interrupts */
536 iwl_disable_interrupts(priv
);
538 priv
->isr_stats
.hw
++;
539 iwl_irq_handle_error(priv
);
541 handled
|= CSR_INT_BIT_HW_ERR
;
546 #ifdef CONFIG_IWLWIFI_DEBUG
547 if (iwl_get_debug_level(priv
) & (IWL_DL_ISR
)) {
548 /* NIC fires this, but we don't use it, redundant with WAKEUP */
549 if (inta
& CSR_INT_BIT_SCD
) {
550 IWL_DEBUG_ISR(priv
, "Scheduler finished to transmit "
551 "the frame/frames.\n");
552 priv
->isr_stats
.sch
++;
555 /* Alive notification via Rx interrupt will do the real work */
556 if (inta
& CSR_INT_BIT_ALIVE
) {
557 IWL_DEBUG_ISR(priv
, "Alive interrupt\n");
558 priv
->isr_stats
.alive
++;
562 /* Safely ignore these bits for debug checks below */
563 inta
&= ~(CSR_INT_BIT_SCD
| CSR_INT_BIT_ALIVE
);
565 /* HW RF KILL switch toggled */
566 if (inta
& CSR_INT_BIT_RF_KILL
) {
568 if (!(iwl_read32(priv
, CSR_GP_CNTRL
) &
569 CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW
))
572 IWL_WARN(priv
, "RF_KILL bit toggled to %s.\n",
573 hw_rf_kill
? "disable radio" : "enable radio");
575 priv
->isr_stats
.rfkill
++;
577 /* driver only loads ucode once setting the interface up.
578 * the driver allows loading the ucode even if the radio
579 * is killed. Hence update the killswitch state here. The
580 * rfkill handler will care about restarting if needed.
582 if (!test_bit(STATUS_ALIVE
, &priv
->status
)) {
584 set_bit(STATUS_RF_KILL_HW
, &priv
->status
);
586 clear_bit(STATUS_RF_KILL_HW
, &priv
->status
);
587 wiphy_rfkill_set_hw_state(priv
->hw
->wiphy
, hw_rf_kill
);
590 handled
|= CSR_INT_BIT_RF_KILL
;
593 /* Chip got too hot and stopped itself */
594 if (inta
& CSR_INT_BIT_CT_KILL
) {
595 IWL_ERR(priv
, "Microcode CT kill error detected.\n");
596 priv
->isr_stats
.ctkill
++;
597 handled
|= CSR_INT_BIT_CT_KILL
;
600 /* Error detected by uCode */
601 if (inta
& CSR_INT_BIT_SW_ERR
) {
602 IWL_ERR(priv
, "Microcode SW error detected. "
603 " Restarting 0x%X.\n", inta
);
604 priv
->isr_stats
.sw
++;
605 iwl_irq_handle_error(priv
);
606 handled
|= CSR_INT_BIT_SW_ERR
;
609 /* uCode wakes up after power-down sleep */
610 if (inta
& CSR_INT_BIT_WAKEUP
) {
611 IWL_DEBUG_ISR(priv
, "Wakeup interrupt\n");
612 iwl_rx_queue_update_write_ptr(priv
, &priv
->rxq
);
613 for (i
= 0; i
< priv
->hw_params
.max_txq_num
; i
++)
614 iwl_txq_update_write_ptr(priv
, &priv
->txq
[i
]);
616 priv
->isr_stats
.wakeup
++;
618 handled
|= CSR_INT_BIT_WAKEUP
;
621 /* All uCode command responses, including Tx command responses,
622 * Rx "responses" (frame-received notification), and other
623 * notifications from uCode come through here*/
624 if (inta
& (CSR_INT_BIT_FH_RX
| CSR_INT_BIT_SW_RX
|
625 CSR_INT_BIT_RX_PERIODIC
)) {
626 IWL_DEBUG_ISR(priv
, "Rx interrupt\n");
627 if (inta
& (CSR_INT_BIT_FH_RX
| CSR_INT_BIT_SW_RX
)) {
628 handled
|= (CSR_INT_BIT_FH_RX
| CSR_INT_BIT_SW_RX
);
629 iwl_write32(priv
, CSR_FH_INT_STATUS
,
632 if (inta
& CSR_INT_BIT_RX_PERIODIC
) {
633 handled
|= CSR_INT_BIT_RX_PERIODIC
;
634 iwl_write32(priv
, CSR_INT
, CSR_INT_BIT_RX_PERIODIC
);
636 /* Sending RX interrupt require many steps to be done in the
638 * 1- write interrupt to current index in ICT table.
640 * 3- update RX shared data to indicate last write index.
642 * This could lead to RX race, driver could receive RX interrupt
643 * but the shared data changes does not reflect this;
644 * periodic interrupt will detect any dangling Rx activity.
647 /* Disable periodic interrupt; we use it as just a one-shot. */
648 iwl_write8(priv
, CSR_INT_PERIODIC_REG
,
649 CSR_INT_PERIODIC_DIS
);
653 * Enable periodic interrupt in 8 msec only if we received
654 * real RX interrupt (instead of just periodic int), to catch
655 * any dangling Rx interrupt. If it was just the periodic
656 * interrupt, there was no dangling Rx activity, and no need
657 * to extend the periodic interrupt; one-shot is enough.
659 if (inta
& (CSR_INT_BIT_FH_RX
| CSR_INT_BIT_SW_RX
))
660 iwl_write8(priv
, CSR_INT_PERIODIC_REG
,
661 CSR_INT_PERIODIC_ENA
);
663 priv
->isr_stats
.rx
++;
666 /* This "Tx" DMA channel is used only for loading uCode */
667 if (inta
& CSR_INT_BIT_FH_TX
) {
668 iwl_write32(priv
, CSR_FH_INT_STATUS
, CSR_FH_INT_TX_MASK
);
669 IWL_DEBUG_ISR(priv
, "uCode load interrupt\n");
670 priv
->isr_stats
.tx
++;
671 handled
|= CSR_INT_BIT_FH_TX
;
672 /* Wake up uCode load routine, now that load is complete */
673 priv
->ucode_write_complete
= 1;
674 wake_up_interruptible(&priv
->wait_command_queue
);
677 if (inta
& ~handled
) {
678 IWL_ERR(priv
, "Unhandled INTA bits 0x%08x\n", inta
& ~handled
);
679 priv
->isr_stats
.unhandled
++;
682 if (inta
& ~(priv
->inta_mask
)) {
683 IWL_WARN(priv
, "Disabled INTA bits 0x%08x were pending\n",
684 inta
& ~priv
->inta_mask
);
687 /* Re-enable all interrupts */
688 /* only Re-enable if disabled by irq */
689 if (test_bit(STATUS_INT_ENABLED
, &priv
->status
))
690 iwl_enable_interrupts(priv
);
691 /* Re-enable RF_KILL if it occurred */
692 else if (handled
& CSR_INT_BIT_RF_KILL
)
693 iwl_enable_rfkill_int(priv
);
696 /******************************************************************************
700 ******************************************************************************/
701 #define ICT_COUNT (PAGE_SIZE/sizeof(u32))
703 /* Free dram table */
704 void iwl_free_isr_ict(struct iwl_priv
*priv
)
706 if (priv
->ict_tbl_vir
) {
707 dma_free_coherent(priv
->bus
->dev
,
708 (sizeof(u32
) * ICT_COUNT
) + PAGE_SIZE
,
711 priv
->ict_tbl_vir
= NULL
;
712 memset(&priv
->ict_tbl_dma
, 0,
713 sizeof(priv
->ict_tbl_dma
));
714 memset(&priv
->aligned_ict_tbl_dma
, 0,
715 sizeof(priv
->aligned_ict_tbl_dma
));
720 /* allocate dram shared table it is a PAGE_SIZE aligned
721 * also reset all data related to ICT table interrupt.
723 int iwl_alloc_isr_ict(struct iwl_priv
*priv
)
726 /* allocate shrared data table */
728 dma_alloc_coherent(priv
->bus
->dev
,
729 (sizeof(u32
) * ICT_COUNT
) + PAGE_SIZE
,
730 &priv
->ict_tbl_dma
, GFP_KERNEL
);
731 if (!priv
->ict_tbl_vir
)
734 /* align table to PAGE_SIZE boundary */
735 priv
->aligned_ict_tbl_dma
=
736 ALIGN(priv
->ict_tbl_dma
, PAGE_SIZE
);
738 IWL_DEBUG_ISR(priv
, "ict dma addr %Lx dma aligned %Lx diff %d\n",
739 (unsigned long long)priv
->ict_tbl_dma
,
740 (unsigned long long)priv
->aligned_ict_tbl_dma
,
741 (int)(priv
->aligned_ict_tbl_dma
-
744 priv
->ict_tbl
= priv
->ict_tbl_vir
+
745 (priv
->aligned_ict_tbl_dma
-
748 IWL_DEBUG_ISR(priv
, "ict vir addr %p vir aligned %p diff %d\n",
749 priv
->ict_tbl
, priv
->ict_tbl_vir
,
750 (int)(priv
->aligned_ict_tbl_dma
-
753 /* reset table and index to all 0 */
754 memset(priv
->ict_tbl_vir
, 0,
755 (sizeof(u32
) * ICT_COUNT
) + PAGE_SIZE
);
758 /* add periodic RX interrupt */
759 priv
->inta_mask
|= CSR_INT_BIT_RX_PERIODIC
;
763 /* Device is going up inform it about using ICT interrupt table,
764 * also we need to tell the driver to start using ICT interrupt.
766 int iwl_reset_ict(struct iwl_priv
*priv
)
771 if (!priv
->ict_tbl_vir
)
774 spin_lock_irqsave(&priv
->lock
, flags
);
775 iwl_disable_interrupts(priv
);
777 memset(&priv
->ict_tbl
[0], 0, sizeof(u32
) * ICT_COUNT
);
779 val
= priv
->aligned_ict_tbl_dma
>> PAGE_SHIFT
;
781 val
|= CSR_DRAM_INT_TBL_ENABLE
;
782 val
|= CSR_DRAM_INIT_TBL_WRAP_CHECK
;
784 IWL_DEBUG_ISR(priv
, "CSR_DRAM_INT_TBL_REG =0x%X "
785 "aligned dma address %Lx\n",
787 (unsigned long long)priv
->aligned_ict_tbl_dma
);
789 iwl_write32(priv
, CSR_DRAM_INT_TBL_REG
, val
);
790 priv
->use_ict
= true;
792 iwl_write32(priv
, CSR_INT
, priv
->inta_mask
);
793 iwl_enable_interrupts(priv
);
794 spin_unlock_irqrestore(&priv
->lock
, flags
);
799 /* Device is going down disable ict interrupt usage */
800 void iwl_disable_ict(struct iwl_priv
*priv
)
804 spin_lock_irqsave(&priv
->lock
, flags
);
805 priv
->use_ict
= false;
806 spin_unlock_irqrestore(&priv
->lock
, flags
);
809 static irqreturn_t
iwl_isr(int irq
, void *data
)
811 struct iwl_priv
*priv
= data
;
814 #ifdef CONFIG_IWLWIFI_DEBUG
820 spin_lock_irqsave(&priv
->lock
, flags
);
822 /* Disable (but don't clear!) interrupts here to avoid
823 * back-to-back ISRs and sporadic interrupts from our NIC.
824 * If we have something to service, the tasklet will re-enable ints.
825 * If we *don't* have something, we'll re-enable before leaving here. */
826 inta_mask
= iwl_read32(priv
, CSR_INT_MASK
); /* just for debug */
827 iwl_write32(priv
, CSR_INT_MASK
, 0x00000000);
829 /* Discover which interrupts are active/pending */
830 inta
= iwl_read32(priv
, CSR_INT
);
832 /* Ignore interrupt if there's nothing in NIC to service.
833 * This may be due to IRQ shared with another device,
834 * or due to sporadic interrupts thrown from our NIC. */
836 IWL_DEBUG_ISR(priv
, "Ignore interrupt, inta == 0\n");
840 if ((inta
== 0xFFFFFFFF) || ((inta
& 0xFFFFFFF0) == 0xa5a5a5a0)) {
841 /* Hardware disappeared. It might have already raised
843 IWL_WARN(priv
, "HARDWARE GONE?? INTA == 0x%08x\n", inta
);
847 #ifdef CONFIG_IWLWIFI_DEBUG
848 if (iwl_get_debug_level(priv
) & (IWL_DL_ISR
)) {
849 inta_fh
= iwl_read32(priv
, CSR_FH_INT_STATUS
);
850 IWL_DEBUG_ISR(priv
, "ISR inta 0x%08x, enabled 0x%08x, "
851 "fh 0x%08x\n", inta
, inta_mask
, inta_fh
);
856 /* iwl_irq_tasklet() will service interrupts and re-enable them */
858 tasklet_schedule(&priv
->irq_tasklet
);
859 else if (test_bit(STATUS_INT_ENABLED
, &priv
->status
) &&
861 iwl_enable_interrupts(priv
);
864 spin_unlock_irqrestore(&priv
->lock
, flags
);
868 /* re-enable interrupts here since we don't have anything to service. */
869 /* only Re-enable if disabled by irq and no schedules tasklet. */
870 if (test_bit(STATUS_INT_ENABLED
, &priv
->status
) && !priv
->inta
)
871 iwl_enable_interrupts(priv
);
873 spin_unlock_irqrestore(&priv
->lock
, flags
);
877 /* interrupt handler using ict table, with this interrupt driver will
878 * stop using INTA register to get device's interrupt, reading this register
879 * is expensive, device will write interrupts in ICT dram table, increment
880 * index then will fire interrupt to driver, driver will OR all ICT table
881 * entries from current index up to table entry with 0 value. the result is
882 * the interrupt we need to service, driver will set the entries back to 0 and
885 irqreturn_t
iwl_isr_ict(int irq
, void *data
)
887 struct iwl_priv
*priv
= data
;
895 /* dram interrupt table not set yet,
896 * use legacy interrupt.
899 return iwl_isr(irq
, data
);
901 spin_lock_irqsave(&priv
->lock
, flags
);
903 /* Disable (but don't clear!) interrupts here to avoid
904 * back-to-back ISRs and sporadic interrupts from our NIC.
905 * If we have something to service, the tasklet will re-enable ints.
906 * If we *don't* have something, we'll re-enable before leaving here.
908 inta_mask
= iwl_read32(priv
, CSR_INT_MASK
); /* just for debug */
909 iwl_write32(priv
, CSR_INT_MASK
, 0x00000000);
912 /* Ignore interrupt if there's nothing in NIC to service.
913 * This may be due to IRQ shared with another device,
914 * or due to sporadic interrupts thrown from our NIC. */
915 if (!priv
->ict_tbl
[priv
->ict_index
]) {
916 IWL_DEBUG_ISR(priv
, "Ignore interrupt, inta == 0\n");
920 /* read all entries that not 0 start with ict_index */
921 while (priv
->ict_tbl
[priv
->ict_index
]) {
923 val
|= le32_to_cpu(priv
->ict_tbl
[priv
->ict_index
]);
924 IWL_DEBUG_ISR(priv
, "ICT index %d value 0x%08X\n",
927 priv
->ict_tbl
[priv
->ict_index
]));
928 priv
->ict_tbl
[priv
->ict_index
] = 0;
929 priv
->ict_index
= iwl_queue_inc_wrap(priv
->ict_index
,
934 /* We should not get this value, just ignore it. */
935 if (val
== 0xffffffff)
939 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
940 * (bit 15 before shifting it to 31) to clear when using interrupt
941 * coalescing. fortunately, bits 18 and 19 stay set when this happens
942 * so we use them to decide on the real state of the Rx bit.
943 * In order words, bit 15 is set if bit 18 or bit 19 are set.
948 inta
= (0xff & val
) | ((0xff00 & val
) << 16);
949 IWL_DEBUG_ISR(priv
, "ISR inta 0x%08x, enabled 0x%08x ict 0x%08x\n",
950 inta
, inta_mask
, val
);
952 inta
&= priv
->inta_mask
;
955 /* iwl_irq_tasklet() will service interrupts and re-enable them */
957 tasklet_schedule(&priv
->irq_tasklet
);
958 else if (test_bit(STATUS_INT_ENABLED
, &priv
->status
) &&
960 /* Allow interrupt if was disabled by this handler and
961 * no tasklet was schedules, We should not enable interrupt,
962 * tasklet will enable it.
964 iwl_enable_interrupts(priv
);
967 spin_unlock_irqrestore(&priv
->lock
, flags
);
971 /* re-enable interrupts here since we don't have anything to service.
972 * only Re-enable if disabled by irq.
974 if (test_bit(STATUS_INT_ENABLED
, &priv
->status
) && !priv
->inta
)
975 iwl_enable_interrupts(priv
);
977 spin_unlock_irqrestore(&priv
->lock
, flags
);