2 Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
3 Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
4 Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
5 Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
6 Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
7 Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
8 Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
9 Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10 <http://rt2x00.serialmonkey.com>
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the
24 Free Software Foundation, Inc.,
25 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
30 Abstract: rt2800pci device specific routines.
31 Supported chipsets: RT2800E & RT2800ED.
34 #include <linux/delay.h>
35 #include <linux/etherdevice.h>
36 #include <linux/init.h>
37 #include <linux/kernel.h>
38 #include <linux/module.h>
39 #include <linux/pci.h>
40 #include <linux/platform_device.h>
41 #include <linux/eeprom_93cx6.h>
44 #include "rt2x00pci.h"
45 #include "rt2x00soc.h"
46 #include "rt2800lib.h"
48 #include "rt2800pci.h"
51 * Allow hardware encryption to be disabled.
53 static int modparam_nohwcrypt
= 0;
54 module_param_named(nohwcrypt
, modparam_nohwcrypt
, bool, S_IRUGO
);
55 MODULE_PARM_DESC(nohwcrypt
, "Disable hardware encryption.");
57 static void rt2800pci_mcu_status(struct rt2x00_dev
*rt2x00dev
, const u8 token
)
63 * SOC devices don't support MCU requests.
65 if (rt2x00_is_soc(rt2x00dev
))
68 for (i
= 0; i
< 200; i
++) {
69 rt2x00pci_register_read(rt2x00dev
, H2M_MAILBOX_CID
, ®
);
71 if ((rt2x00_get_field32(reg
, H2M_MAILBOX_CID_CMD0
) == token
) ||
72 (rt2x00_get_field32(reg
, H2M_MAILBOX_CID_CMD1
) == token
) ||
73 (rt2x00_get_field32(reg
, H2M_MAILBOX_CID_CMD2
) == token
) ||
74 (rt2x00_get_field32(reg
, H2M_MAILBOX_CID_CMD3
) == token
))
77 udelay(REGISTER_BUSY_DELAY
);
81 ERROR(rt2x00dev
, "MCU request failed, no response from hardware\n");
83 rt2x00pci_register_write(rt2x00dev
, H2M_MAILBOX_STATUS
, ~0);
84 rt2x00pci_register_write(rt2x00dev
, H2M_MAILBOX_CID
, ~0);
87 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
88 static void rt2800pci_read_eeprom_soc(struct rt2x00_dev
*rt2x00dev
)
90 void __iomem
*base_addr
= ioremap(0x1F040000, EEPROM_SIZE
);
92 memcpy_fromio(rt2x00dev
->eeprom
, base_addr
, EEPROM_SIZE
);
97 static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev
*rt2x00dev
)
100 #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
103 static void rt2800pci_eepromregister_read(struct eeprom_93cx6
*eeprom
)
105 struct rt2x00_dev
*rt2x00dev
= eeprom
->data
;
108 rt2x00pci_register_read(rt2x00dev
, E2PROM_CSR
, ®
);
110 eeprom
->reg_data_in
= !!rt2x00_get_field32(reg
, E2PROM_CSR_DATA_IN
);
111 eeprom
->reg_data_out
= !!rt2x00_get_field32(reg
, E2PROM_CSR_DATA_OUT
);
112 eeprom
->reg_data_clock
=
113 !!rt2x00_get_field32(reg
, E2PROM_CSR_DATA_CLOCK
);
114 eeprom
->reg_chip_select
=
115 !!rt2x00_get_field32(reg
, E2PROM_CSR_CHIP_SELECT
);
118 static void rt2800pci_eepromregister_write(struct eeprom_93cx6
*eeprom
)
120 struct rt2x00_dev
*rt2x00dev
= eeprom
->data
;
123 rt2x00_set_field32(®
, E2PROM_CSR_DATA_IN
, !!eeprom
->reg_data_in
);
124 rt2x00_set_field32(®
, E2PROM_CSR_DATA_OUT
, !!eeprom
->reg_data_out
);
125 rt2x00_set_field32(®
, E2PROM_CSR_DATA_CLOCK
,
126 !!eeprom
->reg_data_clock
);
127 rt2x00_set_field32(®
, E2PROM_CSR_CHIP_SELECT
,
128 !!eeprom
->reg_chip_select
);
130 rt2x00pci_register_write(rt2x00dev
, E2PROM_CSR
, reg
);
133 static void rt2800pci_read_eeprom_pci(struct rt2x00_dev
*rt2x00dev
)
135 struct eeprom_93cx6 eeprom
;
138 rt2x00pci_register_read(rt2x00dev
, E2PROM_CSR
, ®
);
140 eeprom
.data
= rt2x00dev
;
141 eeprom
.register_read
= rt2800pci_eepromregister_read
;
142 eeprom
.register_write
= rt2800pci_eepromregister_write
;
143 switch (rt2x00_get_field32(reg
, E2PROM_CSR_TYPE
))
146 eeprom
.width
= PCI_EEPROM_WIDTH_93C46
;
149 eeprom
.width
= PCI_EEPROM_WIDTH_93C66
;
152 eeprom
.width
= PCI_EEPROM_WIDTH_93C86
;
155 eeprom
.reg_data_in
= 0;
156 eeprom
.reg_data_out
= 0;
157 eeprom
.reg_data_clock
= 0;
158 eeprom
.reg_chip_select
= 0;
160 eeprom_93cx6_multiread(&eeprom
, EEPROM_BASE
, rt2x00dev
->eeprom
,
161 EEPROM_SIZE
/ sizeof(u16
));
164 static int rt2800pci_efuse_detect(struct rt2x00_dev
*rt2x00dev
)
166 return rt2800_efuse_detect(rt2x00dev
);
169 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev
*rt2x00dev
)
171 rt2800_read_eeprom_efuse(rt2x00dev
);
174 static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev
*rt2x00dev
)
178 static inline int rt2800pci_efuse_detect(struct rt2x00_dev
*rt2x00dev
)
183 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev
*rt2x00dev
)
186 #endif /* CONFIG_PCI */
191 static void rt2800pci_start_queue(struct data_queue
*queue
)
193 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
196 switch (queue
->qid
) {
198 rt2x00pci_register_read(rt2x00dev
, MAC_SYS_CTRL
, ®
);
199 rt2x00_set_field32(®
, MAC_SYS_CTRL_ENABLE_RX
, 1);
200 rt2x00pci_register_write(rt2x00dev
, MAC_SYS_CTRL
, reg
);
204 * Allow beacon tasklets to be scheduled for periodic
207 tasklet_enable(&rt2x00dev
->tbtt_tasklet
);
208 tasklet_enable(&rt2x00dev
->pretbtt_tasklet
);
210 rt2x00pci_register_read(rt2x00dev
, BCN_TIME_CFG
, ®
);
211 rt2x00_set_field32(®
, BCN_TIME_CFG_TSF_TICKING
, 1);
212 rt2x00_set_field32(®
, BCN_TIME_CFG_TBTT_ENABLE
, 1);
213 rt2x00_set_field32(®
, BCN_TIME_CFG_BEACON_GEN
, 1);
214 rt2x00pci_register_write(rt2x00dev
, BCN_TIME_CFG
, reg
);
216 rt2x00pci_register_read(rt2x00dev
, INT_TIMER_EN
, ®
);
217 rt2x00_set_field32(®
, INT_TIMER_EN_PRE_TBTT_TIMER
, 1);
218 rt2x00pci_register_write(rt2x00dev
, INT_TIMER_EN
, reg
);
225 static void rt2800pci_kick_queue(struct data_queue
*queue
)
227 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
228 struct queue_entry
*entry
;
230 switch (queue
->qid
) {
235 entry
= rt2x00queue_get_entry(queue
, Q_INDEX
);
236 rt2x00pci_register_write(rt2x00dev
, TX_CTX_IDX(queue
->qid
),
240 entry
= rt2x00queue_get_entry(queue
, Q_INDEX
);
241 rt2x00pci_register_write(rt2x00dev
, TX_CTX_IDX(5),
249 static void rt2800pci_stop_queue(struct data_queue
*queue
)
251 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
254 switch (queue
->qid
) {
256 rt2x00pci_register_read(rt2x00dev
, MAC_SYS_CTRL
, ®
);
257 rt2x00_set_field32(®
, MAC_SYS_CTRL_ENABLE_RX
, 0);
258 rt2x00pci_register_write(rt2x00dev
, MAC_SYS_CTRL
, reg
);
261 rt2x00pci_register_read(rt2x00dev
, BCN_TIME_CFG
, ®
);
262 rt2x00_set_field32(®
, BCN_TIME_CFG_TSF_TICKING
, 0);
263 rt2x00_set_field32(®
, BCN_TIME_CFG_TBTT_ENABLE
, 0);
264 rt2x00_set_field32(®
, BCN_TIME_CFG_BEACON_GEN
, 0);
265 rt2x00pci_register_write(rt2x00dev
, BCN_TIME_CFG
, reg
);
267 rt2x00pci_register_read(rt2x00dev
, INT_TIMER_EN
, ®
);
268 rt2x00_set_field32(®
, INT_TIMER_EN_PRE_TBTT_TIMER
, 0);
269 rt2x00pci_register_write(rt2x00dev
, INT_TIMER_EN
, reg
);
272 * Wait for tbtt tasklets to finish.
274 tasklet_disable(&rt2x00dev
->tbtt_tasklet
);
275 tasklet_disable(&rt2x00dev
->pretbtt_tasklet
);
285 static char *rt2800pci_get_firmware_name(struct rt2x00_dev
*rt2x00dev
)
287 return FIRMWARE_RT2860
;
290 static int rt2800pci_write_firmware(struct rt2x00_dev
*rt2x00dev
,
291 const u8
*data
, const size_t len
)
296 * enable Host program ram write selection
299 rt2x00_set_field32(®
, PBF_SYS_CTRL_HOST_RAM_WRITE
, 1);
300 rt2x00pci_register_write(rt2x00dev
, PBF_SYS_CTRL
, reg
);
303 * Write firmware to device.
305 rt2x00pci_register_multiwrite(rt2x00dev
, FIRMWARE_IMAGE_BASE
,
308 rt2x00pci_register_write(rt2x00dev
, PBF_SYS_CTRL
, 0x00000);
309 rt2x00pci_register_write(rt2x00dev
, PBF_SYS_CTRL
, 0x00001);
311 rt2x00pci_register_write(rt2x00dev
, H2M_BBP_AGENT
, 0);
312 rt2x00pci_register_write(rt2x00dev
, H2M_MAILBOX_CSR
, 0);
318 * Initialization functions.
320 static bool rt2800pci_get_entry_state(struct queue_entry
*entry
)
322 struct queue_entry_priv_pci
*entry_priv
= entry
->priv_data
;
325 if (entry
->queue
->qid
== QID_RX
) {
326 rt2x00_desc_read(entry_priv
->desc
, 1, &word
);
328 return (!rt2x00_get_field32(word
, RXD_W1_DMA_DONE
));
330 rt2x00_desc_read(entry_priv
->desc
, 1, &word
);
332 return (!rt2x00_get_field32(word
, TXD_W1_DMA_DONE
));
336 static void rt2800pci_clear_entry(struct queue_entry
*entry
)
338 struct queue_entry_priv_pci
*entry_priv
= entry
->priv_data
;
339 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
340 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
343 if (entry
->queue
->qid
== QID_RX
) {
344 rt2x00_desc_read(entry_priv
->desc
, 0, &word
);
345 rt2x00_set_field32(&word
, RXD_W0_SDP0
, skbdesc
->skb_dma
);
346 rt2x00_desc_write(entry_priv
->desc
, 0, word
);
348 rt2x00_desc_read(entry_priv
->desc
, 1, &word
);
349 rt2x00_set_field32(&word
, RXD_W1_DMA_DONE
, 0);
350 rt2x00_desc_write(entry_priv
->desc
, 1, word
);
353 * Set RX IDX in register to inform hardware that we have
354 * handled this entry and it is available for reuse again.
356 rt2x00pci_register_write(rt2x00dev
, RX_CRX_IDX
,
359 rt2x00_desc_read(entry_priv
->desc
, 1, &word
);
360 rt2x00_set_field32(&word
, TXD_W1_DMA_DONE
, 1);
361 rt2x00_desc_write(entry_priv
->desc
, 1, word
);
365 static int rt2800pci_init_queues(struct rt2x00_dev
*rt2x00dev
)
367 struct queue_entry_priv_pci
*entry_priv
;
371 * Initialize registers.
373 entry_priv
= rt2x00dev
->tx
[0].entries
[0].priv_data
;
374 rt2x00pci_register_write(rt2x00dev
, TX_BASE_PTR0
, entry_priv
->desc_dma
);
375 rt2x00pci_register_write(rt2x00dev
, TX_MAX_CNT0
,
376 rt2x00dev
->tx
[0].limit
);
377 rt2x00pci_register_write(rt2x00dev
, TX_CTX_IDX0
, 0);
378 rt2x00pci_register_write(rt2x00dev
, TX_DTX_IDX0
, 0);
380 entry_priv
= rt2x00dev
->tx
[1].entries
[0].priv_data
;
381 rt2x00pci_register_write(rt2x00dev
, TX_BASE_PTR1
, entry_priv
->desc_dma
);
382 rt2x00pci_register_write(rt2x00dev
, TX_MAX_CNT1
,
383 rt2x00dev
->tx
[1].limit
);
384 rt2x00pci_register_write(rt2x00dev
, TX_CTX_IDX1
, 0);
385 rt2x00pci_register_write(rt2x00dev
, TX_DTX_IDX1
, 0);
387 entry_priv
= rt2x00dev
->tx
[2].entries
[0].priv_data
;
388 rt2x00pci_register_write(rt2x00dev
, TX_BASE_PTR2
, entry_priv
->desc_dma
);
389 rt2x00pci_register_write(rt2x00dev
, TX_MAX_CNT2
,
390 rt2x00dev
->tx
[2].limit
);
391 rt2x00pci_register_write(rt2x00dev
, TX_CTX_IDX2
, 0);
392 rt2x00pci_register_write(rt2x00dev
, TX_DTX_IDX2
, 0);
394 entry_priv
= rt2x00dev
->tx
[3].entries
[0].priv_data
;
395 rt2x00pci_register_write(rt2x00dev
, TX_BASE_PTR3
, entry_priv
->desc_dma
);
396 rt2x00pci_register_write(rt2x00dev
, TX_MAX_CNT3
,
397 rt2x00dev
->tx
[3].limit
);
398 rt2x00pci_register_write(rt2x00dev
, TX_CTX_IDX3
, 0);
399 rt2x00pci_register_write(rt2x00dev
, TX_DTX_IDX3
, 0);
401 entry_priv
= rt2x00dev
->rx
->entries
[0].priv_data
;
402 rt2x00pci_register_write(rt2x00dev
, RX_BASE_PTR
, entry_priv
->desc_dma
);
403 rt2x00pci_register_write(rt2x00dev
, RX_MAX_CNT
,
404 rt2x00dev
->rx
[0].limit
);
405 rt2x00pci_register_write(rt2x00dev
, RX_CRX_IDX
,
406 rt2x00dev
->rx
[0].limit
- 1);
407 rt2x00pci_register_write(rt2x00dev
, RX_DRX_IDX
, 0);
410 * Enable global DMA configuration
412 rt2x00pci_register_read(rt2x00dev
, WPDMA_GLO_CFG
, ®
);
413 rt2x00_set_field32(®
, WPDMA_GLO_CFG_ENABLE_TX_DMA
, 0);
414 rt2x00_set_field32(®
, WPDMA_GLO_CFG_ENABLE_RX_DMA
, 0);
415 rt2x00_set_field32(®
, WPDMA_GLO_CFG_TX_WRITEBACK_DONE
, 1);
416 rt2x00pci_register_write(rt2x00dev
, WPDMA_GLO_CFG
, reg
);
418 rt2x00pci_register_write(rt2x00dev
, DELAY_INT_CFG
, 0);
424 * Device state switch handlers.
426 static void rt2800pci_toggle_irq(struct rt2x00_dev
*rt2x00dev
,
427 enum dev_state state
)
429 int mask
= (state
== STATE_RADIO_IRQ_ON
);
434 * When interrupts are being enabled, the interrupt registers
435 * should clear the register to assure a clean state.
437 if (state
== STATE_RADIO_IRQ_ON
) {
438 rt2x00pci_register_read(rt2x00dev
, INT_SOURCE_CSR
, ®
);
439 rt2x00pci_register_write(rt2x00dev
, INT_SOURCE_CSR
, reg
);
442 * Enable tasklets. The beacon related tasklets are
443 * enabled when the beacon queue is started.
445 tasklet_enable(&rt2x00dev
->txstatus_tasklet
);
446 tasklet_enable(&rt2x00dev
->rxdone_tasklet
);
447 tasklet_enable(&rt2x00dev
->autowake_tasklet
);
450 spin_lock_irqsave(&rt2x00dev
->irqmask_lock
, flags
);
451 rt2x00pci_register_read(rt2x00dev
, INT_MASK_CSR
, ®
);
452 rt2x00_set_field32(®
, INT_MASK_CSR_RXDELAYINT
, 0);
453 rt2x00_set_field32(®
, INT_MASK_CSR_TXDELAYINT
, 0);
454 rt2x00_set_field32(®
, INT_MASK_CSR_RX_DONE
, mask
);
455 rt2x00_set_field32(®
, INT_MASK_CSR_AC0_DMA_DONE
, 0);
456 rt2x00_set_field32(®
, INT_MASK_CSR_AC1_DMA_DONE
, 0);
457 rt2x00_set_field32(®
, INT_MASK_CSR_AC2_DMA_DONE
, 0);
458 rt2x00_set_field32(®
, INT_MASK_CSR_AC3_DMA_DONE
, 0);
459 rt2x00_set_field32(®
, INT_MASK_CSR_HCCA_DMA_DONE
, 0);
460 rt2x00_set_field32(®
, INT_MASK_CSR_MGMT_DMA_DONE
, 0);
461 rt2x00_set_field32(®
, INT_MASK_CSR_MCU_COMMAND
, 0);
462 rt2x00_set_field32(®
, INT_MASK_CSR_RXTX_COHERENT
, 0);
463 rt2x00_set_field32(®
, INT_MASK_CSR_TBTT
, mask
);
464 rt2x00_set_field32(®
, INT_MASK_CSR_PRE_TBTT
, mask
);
465 rt2x00_set_field32(®
, INT_MASK_CSR_TX_FIFO_STATUS
, mask
);
466 rt2x00_set_field32(®
, INT_MASK_CSR_AUTO_WAKEUP
, mask
);
467 rt2x00_set_field32(®
, INT_MASK_CSR_GPTIMER
, 0);
468 rt2x00_set_field32(®
, INT_MASK_CSR_RX_COHERENT
, 0);
469 rt2x00_set_field32(®
, INT_MASK_CSR_TX_COHERENT
, 0);
470 rt2x00pci_register_write(rt2x00dev
, INT_MASK_CSR
, reg
);
471 spin_unlock_irqrestore(&rt2x00dev
->irqmask_lock
, flags
);
473 if (state
== STATE_RADIO_IRQ_OFF
) {
475 * Ensure that all tasklets are finished before
476 * disabling the interrupts.
478 tasklet_disable(&rt2x00dev
->txstatus_tasklet
);
479 tasklet_disable(&rt2x00dev
->rxdone_tasklet
);
480 tasklet_disable(&rt2x00dev
->autowake_tasklet
);
484 static int rt2800pci_init_registers(struct rt2x00_dev
*rt2x00dev
)
491 rt2x00pci_register_read(rt2x00dev
, WPDMA_RST_IDX
, ®
);
492 rt2x00_set_field32(®
, WPDMA_RST_IDX_DTX_IDX0
, 1);
493 rt2x00_set_field32(®
, WPDMA_RST_IDX_DTX_IDX1
, 1);
494 rt2x00_set_field32(®
, WPDMA_RST_IDX_DTX_IDX2
, 1);
495 rt2x00_set_field32(®
, WPDMA_RST_IDX_DTX_IDX3
, 1);
496 rt2x00_set_field32(®
, WPDMA_RST_IDX_DTX_IDX4
, 1);
497 rt2x00_set_field32(®
, WPDMA_RST_IDX_DTX_IDX5
, 1);
498 rt2x00_set_field32(®
, WPDMA_RST_IDX_DRX_IDX0
, 1);
499 rt2x00pci_register_write(rt2x00dev
, WPDMA_RST_IDX
, reg
);
501 rt2x00pci_register_write(rt2x00dev
, PBF_SYS_CTRL
, 0x00000e1f);
502 rt2x00pci_register_write(rt2x00dev
, PBF_SYS_CTRL
, 0x00000e00);
504 if (rt2x00_is_pcie(rt2x00dev
) &&
505 (rt2x00_rt(rt2x00dev
, RT3572
) ||
506 rt2x00_rt(rt2x00dev
, RT5390
))) {
507 rt2x00pci_register_read(rt2x00dev
, AUX_CTRL
, ®
);
508 rt2x00_set_field32(®
, AUX_CTRL_FORCE_PCIE_CLK
, 1);
509 rt2x00_set_field32(®
, AUX_CTRL_WAKE_PCIE_EN
, 1);
510 rt2x00pci_register_write(rt2x00dev
, AUX_CTRL
, reg
);
513 rt2x00pci_register_write(rt2x00dev
, PWR_PIN_CFG
, 0x00000003);
515 rt2x00pci_register_read(rt2x00dev
, MAC_SYS_CTRL
, ®
);
516 rt2x00_set_field32(®
, MAC_SYS_CTRL_RESET_CSR
, 1);
517 rt2x00_set_field32(®
, MAC_SYS_CTRL_RESET_BBP
, 1);
518 rt2x00pci_register_write(rt2x00dev
, MAC_SYS_CTRL
, reg
);
520 rt2x00pci_register_write(rt2x00dev
, MAC_SYS_CTRL
, 0x00000000);
525 static int rt2800pci_enable_radio(struct rt2x00_dev
*rt2x00dev
)
527 if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev
) ||
528 rt2800pci_init_queues(rt2x00dev
)))
531 return rt2800_enable_radio(rt2x00dev
);
534 static void rt2800pci_disable_radio(struct rt2x00_dev
*rt2x00dev
)
536 if (rt2x00_is_soc(rt2x00dev
)) {
537 rt2800_disable_radio(rt2x00dev
);
538 rt2x00pci_register_write(rt2x00dev
, PWR_PIN_CFG
, 0);
539 rt2x00pci_register_write(rt2x00dev
, TX_PIN_CFG
, 0);
543 static int rt2800pci_set_state(struct rt2x00_dev
*rt2x00dev
,
544 enum dev_state state
)
546 if (state
== STATE_AWAKE
) {
547 rt2800_mcu_request(rt2x00dev
, MCU_WAKEUP
, TOKEN_WAKUP
, 0, 0x02);
548 rt2800pci_mcu_status(rt2x00dev
, TOKEN_WAKUP
);
549 } else if (state
== STATE_SLEEP
) {
550 rt2x00pci_register_write(rt2x00dev
, H2M_MAILBOX_STATUS
,
552 rt2x00pci_register_write(rt2x00dev
, H2M_MAILBOX_CID
,
554 rt2800_mcu_request(rt2x00dev
, MCU_SLEEP
, 0x01, 0xff, 0x01);
560 static int rt2800pci_set_device_state(struct rt2x00_dev
*rt2x00dev
,
561 enum dev_state state
)
568 * Before the radio can be enabled, the device first has
569 * to be woken up. After that it needs a bit of time
570 * to be fully awake and then the radio can be enabled.
572 rt2800pci_set_state(rt2x00dev
, STATE_AWAKE
);
574 retval
= rt2800pci_enable_radio(rt2x00dev
);
576 case STATE_RADIO_OFF
:
578 * After the radio has been disabled, the device should
579 * be put to sleep for powersaving.
581 rt2800pci_disable_radio(rt2x00dev
);
582 rt2800pci_set_state(rt2x00dev
, STATE_SLEEP
);
584 case STATE_RADIO_IRQ_ON
:
585 case STATE_RADIO_IRQ_OFF
:
586 rt2800pci_toggle_irq(rt2x00dev
, state
);
588 case STATE_DEEP_SLEEP
:
592 retval
= rt2800pci_set_state(rt2x00dev
, state
);
599 if (unlikely(retval
))
600 ERROR(rt2x00dev
, "Device failed to enter state %d (%d).\n",
607 * TX descriptor initialization
609 static __le32
*rt2800pci_get_txwi(struct queue_entry
*entry
)
611 return (__le32
*) entry
->skb
->data
;
614 static void rt2800pci_write_tx_desc(struct queue_entry
*entry
,
615 struct txentry_desc
*txdesc
)
617 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
618 struct queue_entry_priv_pci
*entry_priv
= entry
->priv_data
;
619 __le32
*txd
= entry_priv
->desc
;
623 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
624 * must contains a TXWI structure + 802.11 header + padding + 802.11
625 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
626 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
627 * data. It means that LAST_SEC0 is always 0.
631 * Initialize TX descriptor
633 rt2x00_desc_read(txd
, 0, &word
);
634 rt2x00_set_field32(&word
, TXD_W0_SD_PTR0
, skbdesc
->skb_dma
);
635 rt2x00_desc_write(txd
, 0, word
);
637 rt2x00_desc_read(txd
, 1, &word
);
638 rt2x00_set_field32(&word
, TXD_W1_SD_LEN1
, entry
->skb
->len
);
639 rt2x00_set_field32(&word
, TXD_W1_LAST_SEC1
,
640 !test_bit(ENTRY_TXD_MORE_FRAG
, &txdesc
->flags
));
641 rt2x00_set_field32(&word
, TXD_W1_BURST
,
642 test_bit(ENTRY_TXD_BURST
, &txdesc
->flags
));
643 rt2x00_set_field32(&word
, TXD_W1_SD_LEN0
, TXWI_DESC_SIZE
);
644 rt2x00_set_field32(&word
, TXD_W1_LAST_SEC0
, 0);
645 rt2x00_set_field32(&word
, TXD_W1_DMA_DONE
, 0);
646 rt2x00_desc_write(txd
, 1, word
);
648 rt2x00_desc_read(txd
, 2, &word
);
649 rt2x00_set_field32(&word
, TXD_W2_SD_PTR1
,
650 skbdesc
->skb_dma
+ TXWI_DESC_SIZE
);
651 rt2x00_desc_write(txd
, 2, word
);
653 rt2x00_desc_read(txd
, 3, &word
);
654 rt2x00_set_field32(&word
, TXD_W3_WIV
,
655 !test_bit(ENTRY_TXD_ENCRYPT_IV
, &txdesc
->flags
));
656 rt2x00_set_field32(&word
, TXD_W3_QSEL
, 2);
657 rt2x00_desc_write(txd
, 3, word
);
660 * Register descriptor details in skb frame descriptor.
663 skbdesc
->desc_len
= TXD_DESC_SIZE
;
667 * RX control handlers
669 static void rt2800pci_fill_rxdone(struct queue_entry
*entry
,
670 struct rxdone_entry_desc
*rxdesc
)
672 struct queue_entry_priv_pci
*entry_priv
= entry
->priv_data
;
673 __le32
*rxd
= entry_priv
->desc
;
676 rt2x00_desc_read(rxd
, 3, &word
);
678 if (rt2x00_get_field32(word
, RXD_W3_CRC_ERROR
))
679 rxdesc
->flags
|= RX_FLAG_FAILED_FCS_CRC
;
682 * Unfortunately we don't know the cipher type used during
683 * decryption. This prevents us from correct providing
684 * correct statistics through debugfs.
686 rxdesc
->cipher_status
= rt2x00_get_field32(word
, RXD_W3_CIPHER_ERROR
);
688 if (rt2x00_get_field32(word
, RXD_W3_DECRYPTED
)) {
690 * Hardware has stripped IV/EIV data from 802.11 frame during
691 * decryption. Unfortunately the descriptor doesn't contain
692 * any fields with the EIV/IV data either, so they can't
693 * be restored by rt2x00lib.
695 rxdesc
->flags
|= RX_FLAG_IV_STRIPPED
;
698 * The hardware has already checked the Michael Mic and has
699 * stripped it from the frame. Signal this to mac80211.
701 rxdesc
->flags
|= RX_FLAG_MMIC_STRIPPED
;
703 if (rxdesc
->cipher_status
== RX_CRYPTO_SUCCESS
)
704 rxdesc
->flags
|= RX_FLAG_DECRYPTED
;
705 else if (rxdesc
->cipher_status
== RX_CRYPTO_FAIL_MIC
)
706 rxdesc
->flags
|= RX_FLAG_MMIC_ERROR
;
709 if (rt2x00_get_field32(word
, RXD_W3_MY_BSS
))
710 rxdesc
->dev_flags
|= RXDONE_MY_BSS
;
712 if (rt2x00_get_field32(word
, RXD_W3_L2PAD
))
713 rxdesc
->dev_flags
|= RXDONE_L2PAD
;
716 * Process the RXWI structure that is at the start of the buffer.
718 rt2800_process_rxwi(entry
, rxdesc
);
722 * Interrupt functions.
724 static void rt2800pci_wakeup(struct rt2x00_dev
*rt2x00dev
)
726 struct ieee80211_conf conf
= { .flags
= 0 };
727 struct rt2x00lib_conf libconf
= { .conf
= &conf
};
729 rt2800_config(rt2x00dev
, &libconf
, IEEE80211_CONF_CHANGE_PS
);
732 static bool rt2800pci_txdone(struct rt2x00_dev
*rt2x00dev
)
734 struct data_queue
*queue
;
735 struct queue_entry
*entry
;
738 int max_tx_done
= 16;
740 while (kfifo_get(&rt2x00dev
->txstatus_fifo
, &status
)) {
741 qid
= rt2x00_get_field32(status
, TX_STA_FIFO_PID_QUEUE
);
742 if (unlikely(qid
>= QID_RX
)) {
744 * Unknown queue, this shouldn't happen. Just drop
747 WARNING(rt2x00dev
, "Got TX status report with "
748 "unexpected pid %u, dropping\n", qid
);
752 queue
= rt2x00queue_get_tx_queue(rt2x00dev
, qid
);
753 if (unlikely(queue
== NULL
)) {
755 * The queue is NULL, this shouldn't happen. Stop
756 * processing here and drop the tx status
758 WARNING(rt2x00dev
, "Got TX status for an unavailable "
759 "queue %u, dropping\n", qid
);
763 if (unlikely(rt2x00queue_empty(queue
))) {
765 * The queue is empty. Stop processing here
766 * and drop the tx status.
768 WARNING(rt2x00dev
, "Got TX status for an empty "
769 "queue %u, dropping\n", qid
);
773 entry
= rt2x00queue_get_entry(queue
, Q_INDEX_DONE
);
774 rt2800_txdone_entry(entry
, status
);
776 if (--max_tx_done
== 0)
783 static inline void rt2800pci_enable_interrupt(struct rt2x00_dev
*rt2x00dev
,
784 struct rt2x00_field32 irq_field
)
789 * Enable a single interrupt. The interrupt mask register
790 * access needs locking.
792 spin_lock_irq(&rt2x00dev
->irqmask_lock
);
793 rt2x00pci_register_read(rt2x00dev
, INT_MASK_CSR
, ®
);
794 rt2x00_set_field32(®
, irq_field
, 1);
795 rt2x00pci_register_write(rt2x00dev
, INT_MASK_CSR
, reg
);
796 spin_unlock_irq(&rt2x00dev
->irqmask_lock
);
799 static void rt2800pci_txstatus_tasklet(unsigned long data
)
801 struct rt2x00_dev
*rt2x00dev
= (struct rt2x00_dev
*)data
;
802 if (rt2800pci_txdone(rt2x00dev
))
803 tasklet_schedule(&rt2x00dev
->txstatus_tasklet
);
806 * No need to enable the tx status interrupt here as we always
807 * leave it enabled to minimize the possibility of a tx status
808 * register overflow. See comment in interrupt handler.
812 static void rt2800pci_pretbtt_tasklet(unsigned long data
)
814 struct rt2x00_dev
*rt2x00dev
= (struct rt2x00_dev
*)data
;
815 rt2x00lib_pretbtt(rt2x00dev
);
816 rt2800pci_enable_interrupt(rt2x00dev
, INT_MASK_CSR_PRE_TBTT
);
819 static void rt2800pci_tbtt_tasklet(unsigned long data
)
821 struct rt2x00_dev
*rt2x00dev
= (struct rt2x00_dev
*)data
;
822 rt2x00lib_beacondone(rt2x00dev
);
823 rt2800pci_enable_interrupt(rt2x00dev
, INT_MASK_CSR_TBTT
);
826 static void rt2800pci_rxdone_tasklet(unsigned long data
)
828 struct rt2x00_dev
*rt2x00dev
= (struct rt2x00_dev
*)data
;
829 if (rt2x00pci_rxdone(rt2x00dev
))
830 tasklet_schedule(&rt2x00dev
->rxdone_tasklet
);
832 rt2800pci_enable_interrupt(rt2x00dev
, INT_MASK_CSR_RX_DONE
);
835 static void rt2800pci_autowake_tasklet(unsigned long data
)
837 struct rt2x00_dev
*rt2x00dev
= (struct rt2x00_dev
*)data
;
838 rt2800pci_wakeup(rt2x00dev
);
839 rt2800pci_enable_interrupt(rt2x00dev
, INT_MASK_CSR_AUTO_WAKEUP
);
842 static void rt2800pci_txstatus_interrupt(struct rt2x00_dev
*rt2x00dev
)
848 * The TX_FIFO_STATUS interrupt needs special care. We should
849 * read TX_STA_FIFO but we should do it immediately as otherwise
850 * the register can overflow and we would lose status reports.
852 * Hence, read the TX_STA_FIFO register and copy all tx status
853 * reports into a kernel FIFO which is handled in the txstatus
854 * tasklet. We use a tasklet to process the tx status reports
855 * because we can schedule the tasklet multiple times (when the
856 * interrupt fires again during tx status processing).
858 * Furthermore we don't disable the TX_FIFO_STATUS
859 * interrupt here but leave it enabled so that the TX_STA_FIFO
860 * can also be read while the tx status tasklet gets executed.
862 * Since we have only one producer and one consumer we don't
863 * need to lock the kfifo.
865 for (i
= 0; i
< rt2x00dev
->ops
->tx
->entry_num
; i
++) {
866 rt2x00pci_register_read(rt2x00dev
, TX_STA_FIFO
, &status
);
868 if (!rt2x00_get_field32(status
, TX_STA_FIFO_VALID
))
871 if (!kfifo_put(&rt2x00dev
->txstatus_fifo
, &status
)) {
872 WARNING(rt2x00dev
, "TX status FIFO overrun,"
873 "drop tx status report.\n");
878 /* Schedule the tasklet for processing the tx status. */
879 tasklet_schedule(&rt2x00dev
->txstatus_tasklet
);
882 static irqreturn_t
rt2800pci_interrupt(int irq
, void *dev_instance
)
884 struct rt2x00_dev
*rt2x00dev
= dev_instance
;
887 /* Read status and ACK all interrupts */
888 rt2x00pci_register_read(rt2x00dev
, INT_SOURCE_CSR
, ®
);
889 rt2x00pci_register_write(rt2x00dev
, INT_SOURCE_CSR
, reg
);
894 if (!test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
898 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
899 * for interrupts and interrupt masks we can just use the value of
900 * INT_SOURCE_CSR to create the interrupt mask.
904 if (rt2x00_get_field32(reg
, INT_SOURCE_CSR_TX_FIFO_STATUS
)) {
905 rt2800pci_txstatus_interrupt(rt2x00dev
);
907 * Never disable the TX_FIFO_STATUS interrupt.
909 rt2x00_set_field32(&mask
, INT_MASK_CSR_TX_FIFO_STATUS
, 1);
912 if (rt2x00_get_field32(reg
, INT_SOURCE_CSR_PRE_TBTT
))
913 tasklet_hi_schedule(&rt2x00dev
->pretbtt_tasklet
);
915 if (rt2x00_get_field32(reg
, INT_SOURCE_CSR_TBTT
))
916 tasklet_hi_schedule(&rt2x00dev
->tbtt_tasklet
);
918 if (rt2x00_get_field32(reg
, INT_SOURCE_CSR_RX_DONE
))
919 tasklet_schedule(&rt2x00dev
->rxdone_tasklet
);
921 if (rt2x00_get_field32(reg
, INT_SOURCE_CSR_AUTO_WAKEUP
))
922 tasklet_schedule(&rt2x00dev
->autowake_tasklet
);
925 * Disable all interrupts for which a tasklet was scheduled right now,
926 * the tasklet will reenable the appropriate interrupts.
928 spin_lock(&rt2x00dev
->irqmask_lock
);
929 rt2x00pci_register_read(rt2x00dev
, INT_MASK_CSR
, ®
);
931 rt2x00pci_register_write(rt2x00dev
, INT_MASK_CSR
, reg
);
932 spin_unlock(&rt2x00dev
->irqmask_lock
);
938 * Device probe functions.
940 static int rt2800pci_validate_eeprom(struct rt2x00_dev
*rt2x00dev
)
943 * Read EEPROM into buffer
945 if (rt2x00_is_soc(rt2x00dev
))
946 rt2800pci_read_eeprom_soc(rt2x00dev
);
947 else if (rt2800pci_efuse_detect(rt2x00dev
))
948 rt2800pci_read_eeprom_efuse(rt2x00dev
);
950 rt2800pci_read_eeprom_pci(rt2x00dev
);
952 return rt2800_validate_eeprom(rt2x00dev
);
955 static int rt2800pci_probe_hw(struct rt2x00_dev
*rt2x00dev
)
960 * Allocate eeprom data.
962 retval
= rt2800pci_validate_eeprom(rt2x00dev
);
966 retval
= rt2800_init_eeprom(rt2x00dev
);
971 * Initialize hw specifications.
973 retval
= rt2800_probe_hw_mode(rt2x00dev
);
978 * This device has multiple filters for control frames
979 * and has a separate filter for PS Poll frames.
981 __set_bit(CAPABILITY_CONTROL_FILTERS
, &rt2x00dev
->cap_flags
);
982 __set_bit(CAPABILITY_CONTROL_FILTER_PSPOLL
, &rt2x00dev
->cap_flags
);
985 * This device has a pre tbtt interrupt and thus fetches
986 * a new beacon directly prior to transmission.
988 __set_bit(CAPABILITY_PRE_TBTT_INTERRUPT
, &rt2x00dev
->cap_flags
);
991 * This device requires firmware.
993 if (!rt2x00_is_soc(rt2x00dev
))
994 __set_bit(REQUIRE_FIRMWARE
, &rt2x00dev
->cap_flags
);
995 __set_bit(REQUIRE_DMA
, &rt2x00dev
->cap_flags
);
996 __set_bit(REQUIRE_L2PAD
, &rt2x00dev
->cap_flags
);
997 __set_bit(REQUIRE_TXSTATUS_FIFO
, &rt2x00dev
->cap_flags
);
998 __set_bit(REQUIRE_TASKLET_CONTEXT
, &rt2x00dev
->cap_flags
);
999 if (!modparam_nohwcrypt
)
1000 __set_bit(CAPABILITY_HW_CRYPTO
, &rt2x00dev
->cap_flags
);
1001 __set_bit(CAPABILITY_LINK_TUNING
, &rt2x00dev
->cap_flags
);
1002 __set_bit(REQUIRE_HT_TX_DESC
, &rt2x00dev
->cap_flags
);
1005 * Set the rssi offset.
1007 rt2x00dev
->rssi_offset
= DEFAULT_RSSI_OFFSET
;
1012 static const struct ieee80211_ops rt2800pci_mac80211_ops
= {
1014 .start
= rt2x00mac_start
,
1015 .stop
= rt2x00mac_stop
,
1016 .add_interface
= rt2x00mac_add_interface
,
1017 .remove_interface
= rt2x00mac_remove_interface
,
1018 .config
= rt2x00mac_config
,
1019 .configure_filter
= rt2x00mac_configure_filter
,
1020 .set_key
= rt2x00mac_set_key
,
1021 .sw_scan_start
= rt2x00mac_sw_scan_start
,
1022 .sw_scan_complete
= rt2x00mac_sw_scan_complete
,
1023 .get_stats
= rt2x00mac_get_stats
,
1024 .get_tkip_seq
= rt2800_get_tkip_seq
,
1025 .set_rts_threshold
= rt2800_set_rts_threshold
,
1026 .bss_info_changed
= rt2x00mac_bss_info_changed
,
1027 .conf_tx
= rt2800_conf_tx
,
1028 .get_tsf
= rt2800_get_tsf
,
1029 .rfkill_poll
= rt2x00mac_rfkill_poll
,
1030 .ampdu_action
= rt2800_ampdu_action
,
1031 .flush
= rt2x00mac_flush
,
1032 .get_survey
= rt2800_get_survey
,
1033 .get_ringparam
= rt2x00mac_get_ringparam
,
1034 .tx_frames_pending
= rt2x00mac_tx_frames_pending
,
1037 static const struct rt2800_ops rt2800pci_rt2800_ops
= {
1038 .register_read
= rt2x00pci_register_read
,
1039 .register_read_lock
= rt2x00pci_register_read
, /* same for PCI */
1040 .register_write
= rt2x00pci_register_write
,
1041 .register_write_lock
= rt2x00pci_register_write
, /* same for PCI */
1042 .register_multiread
= rt2x00pci_register_multiread
,
1043 .register_multiwrite
= rt2x00pci_register_multiwrite
,
1044 .regbusy_read
= rt2x00pci_regbusy_read
,
1045 .drv_write_firmware
= rt2800pci_write_firmware
,
1046 .drv_init_registers
= rt2800pci_init_registers
,
1047 .drv_get_txwi
= rt2800pci_get_txwi
,
1050 static const struct rt2x00lib_ops rt2800pci_rt2x00_ops
= {
1051 .irq_handler
= rt2800pci_interrupt
,
1052 .txstatus_tasklet
= rt2800pci_txstatus_tasklet
,
1053 .pretbtt_tasklet
= rt2800pci_pretbtt_tasklet
,
1054 .tbtt_tasklet
= rt2800pci_tbtt_tasklet
,
1055 .rxdone_tasklet
= rt2800pci_rxdone_tasklet
,
1056 .autowake_tasklet
= rt2800pci_autowake_tasklet
,
1057 .probe_hw
= rt2800pci_probe_hw
,
1058 .get_firmware_name
= rt2800pci_get_firmware_name
,
1059 .check_firmware
= rt2800_check_firmware
,
1060 .load_firmware
= rt2800_load_firmware
,
1061 .initialize
= rt2x00pci_initialize
,
1062 .uninitialize
= rt2x00pci_uninitialize
,
1063 .get_entry_state
= rt2800pci_get_entry_state
,
1064 .clear_entry
= rt2800pci_clear_entry
,
1065 .set_device_state
= rt2800pci_set_device_state
,
1066 .rfkill_poll
= rt2800_rfkill_poll
,
1067 .link_stats
= rt2800_link_stats
,
1068 .reset_tuner
= rt2800_reset_tuner
,
1069 .link_tuner
= rt2800_link_tuner
,
1070 .gain_calibration
= rt2800_gain_calibration
,
1071 .start_queue
= rt2800pci_start_queue
,
1072 .kick_queue
= rt2800pci_kick_queue
,
1073 .stop_queue
= rt2800pci_stop_queue
,
1074 .flush_queue
= rt2x00pci_flush_queue
,
1075 .write_tx_desc
= rt2800pci_write_tx_desc
,
1076 .write_tx_data
= rt2800_write_tx_data
,
1077 .write_beacon
= rt2800_write_beacon
,
1078 .clear_beacon
= rt2800_clear_beacon
,
1079 .fill_rxdone
= rt2800pci_fill_rxdone
,
1080 .config_shared_key
= rt2800_config_shared_key
,
1081 .config_pairwise_key
= rt2800_config_pairwise_key
,
1082 .config_filter
= rt2800_config_filter
,
1083 .config_intf
= rt2800_config_intf
,
1084 .config_erp
= rt2800_config_erp
,
1085 .config_ant
= rt2800_config_ant
,
1086 .config
= rt2800_config
,
1089 static const struct data_queue_desc rt2800pci_queue_rx
= {
1091 .data_size
= AGGREGATION_SIZE
,
1092 .desc_size
= RXD_DESC_SIZE
,
1093 .priv_size
= sizeof(struct queue_entry_priv_pci
),
1096 static const struct data_queue_desc rt2800pci_queue_tx
= {
1098 .data_size
= AGGREGATION_SIZE
,
1099 .desc_size
= TXD_DESC_SIZE
,
1100 .priv_size
= sizeof(struct queue_entry_priv_pci
),
1103 static const struct data_queue_desc rt2800pci_queue_bcn
= {
1105 .data_size
= 0, /* No DMA required for beacons */
1106 .desc_size
= TXWI_DESC_SIZE
,
1107 .priv_size
= sizeof(struct queue_entry_priv_pci
),
1110 static const struct rt2x00_ops rt2800pci_ops
= {
1111 .name
= KBUILD_MODNAME
,
1114 .eeprom_size
= EEPROM_SIZE
,
1116 .tx_queues
= NUM_TX_QUEUES
,
1117 .extra_tx_headroom
= TXWI_DESC_SIZE
,
1118 .rx
= &rt2800pci_queue_rx
,
1119 .tx
= &rt2800pci_queue_tx
,
1120 .bcn
= &rt2800pci_queue_bcn
,
1121 .lib
= &rt2800pci_rt2x00_ops
,
1122 .drv
= &rt2800pci_rt2800_ops
,
1123 .hw
= &rt2800pci_mac80211_ops
,
1124 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1125 .debugfs
= &rt2800_rt2x00debug
,
1126 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1130 * RT2800pci module information.
1133 static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table
) = {
1134 { PCI_DEVICE(0x1814, 0x0601) },
1135 { PCI_DEVICE(0x1814, 0x0681) },
1136 { PCI_DEVICE(0x1814, 0x0701) },
1137 { PCI_DEVICE(0x1814, 0x0781) },
1138 { PCI_DEVICE(0x1814, 0x3090) },
1139 { PCI_DEVICE(0x1814, 0x3091) },
1140 { PCI_DEVICE(0x1814, 0x3092) },
1141 { PCI_DEVICE(0x1432, 0x7708) },
1142 { PCI_DEVICE(0x1432, 0x7727) },
1143 { PCI_DEVICE(0x1432, 0x7728) },
1144 { PCI_DEVICE(0x1432, 0x7738) },
1145 { PCI_DEVICE(0x1432, 0x7748) },
1146 { PCI_DEVICE(0x1432, 0x7758) },
1147 { PCI_DEVICE(0x1432, 0x7768) },
1148 { PCI_DEVICE(0x1462, 0x891a) },
1149 { PCI_DEVICE(0x1a3b, 0x1059) },
1150 #ifdef CONFIG_RT2800PCI_RT33XX
1151 { PCI_DEVICE(0x1814, 0x3390) },
1153 #ifdef CONFIG_RT2800PCI_RT35XX
1154 { PCI_DEVICE(0x1432, 0x7711) },
1155 { PCI_DEVICE(0x1432, 0x7722) },
1156 { PCI_DEVICE(0x1814, 0x3060) },
1157 { PCI_DEVICE(0x1814, 0x3062) },
1158 { PCI_DEVICE(0x1814, 0x3562) },
1159 { PCI_DEVICE(0x1814, 0x3592) },
1160 { PCI_DEVICE(0x1814, 0x3593) },
1162 #ifdef CONFIG_RT2800PCI_RT53XX
1163 { PCI_DEVICE(0x1814, 0x5390) },
1164 { PCI_DEVICE(0x1814, 0x539f) },
1168 #endif /* CONFIG_PCI */
1170 MODULE_AUTHOR(DRV_PROJECT
);
1171 MODULE_VERSION(DRV_VERSION
);
1172 MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
1173 MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
1175 MODULE_FIRMWARE(FIRMWARE_RT2860
);
1176 MODULE_DEVICE_TABLE(pci
, rt2800pci_device_table
);
1177 #endif /* CONFIG_PCI */
1178 MODULE_LICENSE("GPL");
1180 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1181 static int rt2800soc_probe(struct platform_device
*pdev
)
1183 return rt2x00soc_probe(pdev
, &rt2800pci_ops
);
1186 static struct platform_driver rt2800soc_driver
= {
1188 .name
= "rt2800_wmac",
1189 .owner
= THIS_MODULE
,
1190 .mod_name
= KBUILD_MODNAME
,
1192 .probe
= rt2800soc_probe
,
1193 .remove
= __devexit_p(rt2x00soc_remove
),
1194 .suspend
= rt2x00soc_suspend
,
1195 .resume
= rt2x00soc_resume
,
1197 #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
1200 static int rt2800pci_probe(struct pci_dev
*pci_dev
,
1201 const struct pci_device_id
*id
)
1203 return rt2x00pci_probe(pci_dev
, &rt2800pci_ops
);
1206 static struct pci_driver rt2800pci_driver
= {
1207 .name
= KBUILD_MODNAME
,
1208 .id_table
= rt2800pci_device_table
,
1209 .probe
= rt2800pci_probe
,
1210 .remove
= __devexit_p(rt2x00pci_remove
),
1211 .suspend
= rt2x00pci_suspend
,
1212 .resume
= rt2x00pci_resume
,
1214 #endif /* CONFIG_PCI */
1216 static int __init
rt2800pci_init(void)
1220 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1221 ret
= platform_driver_register(&rt2800soc_driver
);
1226 ret
= pci_register_driver(&rt2800pci_driver
);
1228 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1229 platform_driver_unregister(&rt2800soc_driver
);
1238 static void __exit
rt2800pci_exit(void)
1241 pci_unregister_driver(&rt2800pci_driver
);
1243 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1244 platform_driver_unregister(&rt2800soc_driver
);
1248 module_init(rt2800pci_init
);
1249 module_exit(rt2800pci_exit
);