1 /******************************************************************************
3 * Copyright(c) 2009-2010 Realtek Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of version 2 of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
18 * The full GNU General Public License is included in this distribution in the
19 * file called LICENSE.
21 * Contact Information:
22 * wlanfae <wlanfae@realtek.com>
23 * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
24 * Hsinchu 300, Taiwan.
26 * Larry Finger <Larry.Finger@lwfinger.net>
28 *****************************************************************************/
30 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47 void rtl92se_get_hw_reg(struct ieee80211_hw
*hw
, u8 variable
, u8
*val
)
49 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
50 struct rtl_ps_ctl
*ppsc
= rtl_psc(rtl_priv(hw
));
51 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
55 *((u32
*) (val
)) = rtlpci
->receive_config
;
58 case HW_VAR_RF_STATE
: {
59 *((enum rf_pwrstate
*)(val
)) = ppsc
->rfpwr_state
;
62 case HW_VAR_FW_PSMODE_STATUS
: {
63 *((bool *) (val
)) = ppsc
->fw_current_inpsmode
;
66 case HW_VAR_CORRECT_TSF
: {
68 u32
*ptsf_low
= (u32
*)&tsf
;
69 u32
*ptsf_high
= ((u32
*)&tsf
) + 1;
71 *ptsf_high
= rtl_read_dword(rtlpriv
, (TSFR
+ 4));
72 *ptsf_low
= rtl_read_dword(rtlpriv
, TSFR
);
74 *((u64
*) (val
)) = tsf
;
79 *((bool *)(val
)) = rtlpriv
->dm
.current_mrc_switch
;
83 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_EMERG
,
84 ("switch case not process\n"));
90 void rtl92se_set_hw_reg(struct ieee80211_hw
*hw
, u8 variable
, u8
*val
)
92 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
93 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
94 struct rtl_mac
*mac
= rtl_mac(rtl_priv(hw
));
95 struct rtl_hal
*rtlhal
= rtl_hal(rtl_priv(hw
));
96 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
97 struct rtl_ps_ctl
*ppsc
= rtl_psc(rtl_priv(hw
));
100 case HW_VAR_ETHER_ADDR
:{
101 rtl_write_dword(rtlpriv
, IDR0
, ((u32
*)(val
))[0]);
102 rtl_write_word(rtlpriv
, IDR4
, ((u16
*)(val
+ 4))[0]);
105 case HW_VAR_BASIC_RATE
:{
106 u16 rate_cfg
= ((u16
*) val
)[0];
109 if (rtlhal
->version
== VERSION_8192S_ACUT
)
110 rate_cfg
= rate_cfg
& 0x150;
112 rate_cfg
= rate_cfg
& 0x15f;
116 rtl_write_byte(rtlpriv
, RRSR
, rate_cfg
& 0xff);
117 rtl_write_byte(rtlpriv
, RRSR
+ 1,
118 (rate_cfg
>> 8) & 0xff);
120 while (rate_cfg
> 0x1) {
121 rate_cfg
= (rate_cfg
>> 1);
124 rtl_write_byte(rtlpriv
, INIRTSMCS_SEL
, rate_index
);
129 rtl_write_dword(rtlpriv
, BSSIDR
, ((u32
*)(val
))[0]);
130 rtl_write_word(rtlpriv
, BSSIDR
+ 4,
131 ((u16
*)(val
+ 4))[0]);
135 rtl_write_byte(rtlpriv
, SIFS_OFDM
, val
[0]);
136 rtl_write_byte(rtlpriv
, SIFS_OFDM
+ 1, val
[1]);
139 case HW_VAR_SLOT_TIME
:{
142 RT_TRACE(rtlpriv
, COMP_MLME
, DBG_LOUD
,
143 ("HW_VAR_SLOT_TIME %x\n", val
[0]));
145 rtl_write_byte(rtlpriv
, SLOT_TIME
, val
[0]);
147 for (e_aci
= 0; e_aci
< AC_MAX
; e_aci
++) {
148 rtlpriv
->cfg
->ops
->set_hw_reg(hw
,
154 case HW_VAR_ACK_PREAMBLE
:{
156 u8 short_preamble
= (bool) (*(u8
*) val
);
157 reg_tmp
= (mac
->cur_40_prime_sc
) << 5;
161 rtl_write_byte(rtlpriv
, RRSR
+ 2, reg_tmp
);
164 case HW_VAR_AMPDU_MIN_SPACE
:{
165 u8 min_spacing_to_set
;
168 min_spacing_to_set
= *((u8
*)val
);
169 if (min_spacing_to_set
<= 7) {
170 if (rtlpriv
->sec
.pairwise_enc_algorithm
==
176 if (min_spacing_to_set
< sec_min_space
)
177 min_spacing_to_set
= sec_min_space
;
178 if (min_spacing_to_set
> 5)
179 min_spacing_to_set
= 5;
182 ((mac
->min_space_cfg
& 0xf8) |
185 *val
= min_spacing_to_set
;
187 RT_TRACE(rtlpriv
, COMP_MLME
, DBG_LOUD
,
188 ("Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
189 mac
->min_space_cfg
));
191 rtl_write_byte(rtlpriv
, AMPDU_MIN_SPACE
,
196 case HW_VAR_SHORTGI_DENSITY
:{
199 density_to_set
= *((u8
*) val
);
200 mac
->min_space_cfg
= rtlpriv
->rtlhal
.minspace_cfg
;
201 mac
->min_space_cfg
|= (density_to_set
<< 3);
203 RT_TRACE(rtlpriv
, COMP_MLME
, DBG_LOUD
,
204 ("Set HW_VAR_SHORTGI_DENSITY: %#x\n",
205 mac
->min_space_cfg
));
207 rtl_write_byte(rtlpriv
, AMPDU_MIN_SPACE
,
212 case HW_VAR_AMPDU_FACTOR
:{
215 u8 factorlevel
[18] = {
216 2, 4, 4, 7, 7, 13, 13,
221 factor_toset
= *((u8
*) val
);
222 if (factor_toset
<= 3) {
223 factor_toset
= (1 << (factor_toset
+ 2));
224 if (factor_toset
> 0xf)
227 for (index
= 0; index
< 17; index
++) {
228 if (factorlevel
[index
] > factor_toset
)
233 for (index
= 0; index
< 8; index
++) {
234 regtoset
= ((factorlevel
[index
* 2]) |
237 rtl_write_byte(rtlpriv
,
238 AGGLEN_LMT_L
+ index
,
242 regtoset
= ((factorlevel
[16]) |
243 (factorlevel
[17] << 4));
244 rtl_write_byte(rtlpriv
, AGGLEN_LMT_H
, regtoset
);
246 RT_TRACE(rtlpriv
, COMP_MLME
, DBG_LOUD
,
247 ("Set HW_VAR_AMPDU_FACTOR: %#x\n",
252 case HW_VAR_AC_PARAM
:{
253 u8 e_aci
= *((u8
*) val
);
254 rtl92s_dm_init_edca_turbo(hw
);
256 if (rtlpci
->acm_method
!= eAcmWay2_SW
)
257 rtlpriv
->cfg
->ops
->set_hw_reg(hw
,
262 case HW_VAR_ACM_CTRL
:{
263 u8 e_aci
= *((u8
*) val
);
264 union aci_aifsn
*p_aci_aifsn
= (union aci_aifsn
*)(&(
266 u8 acm
= p_aci_aifsn
->f
.acm
;
267 u8 acm_ctrl
= rtl_read_byte(rtlpriv
, AcmHwCtrl
);
269 acm_ctrl
= acm_ctrl
| ((rtlpci
->acm_method
== 2) ?
275 acm_ctrl
|= AcmHw_BeqEn
;
278 acm_ctrl
|= AcmHw_ViqEn
;
281 acm_ctrl
|= AcmHw_VoqEn
;
284 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_WARNING
,
285 ("HW_VAR_ACM_CTRL acm set "
286 "failed: eACI is %d\n", acm
));
292 acm_ctrl
&= (~AcmHw_BeqEn
);
295 acm_ctrl
&= (~AcmHw_ViqEn
);
298 acm_ctrl
&= (~AcmHw_BeqEn
);
301 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_EMERG
,
302 ("switch case not process\n"));
307 RT_TRACE(rtlpriv
, COMP_QOS
, DBG_TRACE
,
308 ("HW_VAR_ACM_CTRL Write 0x%X\n", acm_ctrl
));
309 rtl_write_byte(rtlpriv
, AcmHwCtrl
, acm_ctrl
);
313 rtl_write_dword(rtlpriv
, RCR
, ((u32
*) (val
))[0]);
314 rtlpci
->receive_config
= ((u32
*) (val
))[0];
317 case HW_VAR_RETRY_LIMIT
:{
318 u8 retry_limit
= ((u8
*) (val
))[0];
320 rtl_write_word(rtlpriv
, RETRY_LIMIT
,
321 retry_limit
<< RETRY_LIMIT_SHORT_SHIFT
|
322 retry_limit
<< RETRY_LIMIT_LONG_SHIFT
);
325 case HW_VAR_DUAL_TSF_RST
: {
328 case HW_VAR_EFUSE_BYTES
: {
329 rtlefuse
->efuse_usedbytes
= *((u16
*) val
);
332 case HW_VAR_EFUSE_USAGE
: {
333 rtlefuse
->efuse_usedpercentage
= *((u8
*) val
);
336 case HW_VAR_IO_CMD
: {
339 case HW_VAR_WPA_CONFIG
: {
340 rtl_write_byte(rtlpriv
, REG_SECR
, *((u8
*) val
));
343 case HW_VAR_SET_RPWM
:{
346 case HW_VAR_H2C_FW_PWRMODE
:{
349 case HW_VAR_FW_PSMODE_STATUS
: {
350 ppsc
->fw_current_inpsmode
= *((bool *) val
);
353 case HW_VAR_H2C_FW_JOINBSSRPT
:{
359 case HW_VAR_CORRECT_TSF
:{
363 bool bmrc_toset
= *((bool *)val
);
367 rtl_set_bbreg(hw
, ROFDM0_TRXPATHENABLE
,
369 u1bdata
= (u8
)rtl_get_bbreg(hw
,
370 ROFDM1_TRXPATHENABLE
,
372 rtl_set_bbreg(hw
, ROFDM1_TRXPATHENABLE
,
374 ((u1bdata
& 0xf0) | 0x03));
375 u1bdata
= (u8
)rtl_get_bbreg(hw
,
376 ROFDM0_TRXPATHENABLE
,
378 rtl_set_bbreg(hw
, ROFDM0_TRXPATHENABLE
,
382 /* Update current settings. */
383 rtlpriv
->dm
.current_mrc_switch
= bmrc_toset
;
385 rtl_set_bbreg(hw
, ROFDM0_TRXPATHENABLE
,
387 u1bdata
= (u8
)rtl_get_bbreg(hw
,
388 ROFDM1_TRXPATHENABLE
,
390 rtl_set_bbreg(hw
, ROFDM1_TRXPATHENABLE
,
392 ((u1bdata
& 0xf0) | 0x01));
393 u1bdata
= (u8
)rtl_get_bbreg(hw
,
394 ROFDM0_TRXPATHENABLE
,
396 rtl_set_bbreg(hw
, ROFDM0_TRXPATHENABLE
,
397 MASKBYTE1
, (u1bdata
& 0xfb));
399 /* Update current settings. */
400 rtlpriv
->dm
.current_mrc_switch
= bmrc_toset
;
406 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_EMERG
,
407 ("switch case not process\n"));
413 void rtl92se_enable_hw_security_config(struct ieee80211_hw
*hw
)
415 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
416 u8 sec_reg_value
= 0x0;
418 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
, ("PairwiseEncAlgorithm = %d "
419 "GroupEncAlgorithm = %d\n",
420 rtlpriv
->sec
.pairwise_enc_algorithm
,
421 rtlpriv
->sec
.group_enc_algorithm
));
423 if (rtlpriv
->cfg
->mod_params
->sw_crypto
|| rtlpriv
->sec
.use_sw_sec
) {
424 RT_TRACE(rtlpriv
, COMP_SEC
, DBG_DMESG
,
425 ("not open hw encryption\n"));
429 sec_reg_value
= SCR_TXENCENABLE
| SCR_RXENCENABLE
;
431 if (rtlpriv
->sec
.use_defaultkey
) {
432 sec_reg_value
|= SCR_TXUSEDK
;
433 sec_reg_value
|= SCR_RXUSEDK
;
436 RT_TRACE(rtlpriv
, COMP_SEC
, DBG_LOUD
, ("The SECR-value %x\n",
439 rtlpriv
->cfg
->ops
->set_hw_reg(hw
, HW_VAR_WPA_CONFIG
, &sec_reg_value
);
443 static u8
_rtl92ce_halset_sysclk(struct ieee80211_hw
*hw
, u8 data
)
445 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
447 bool bresult
= false;
450 rtl_write_byte(rtlpriv
, SYS_CLKR
+ 1, data
);
452 /* Wait the MAC synchronized. */
455 /* Check if it is set ready. */
456 tmpvalue
= rtl_read_byte(rtlpriv
, SYS_CLKR
+ 1);
457 bresult
= ((tmpvalue
& BIT(7)) == (data
& BIT(7)));
459 if ((data
& (BIT(6) | BIT(7))) == false) {
466 tmpvalue
= rtl_read_byte(rtlpriv
, SYS_CLKR
+ 1);
467 if ((tmpvalue
& BIT(6)))
470 pr_err("wait for BIT(6) return value %x\n", tmpvalue
);
486 void rtl8192se_gpiobit3_cfg_inputmode(struct ieee80211_hw
*hw
)
488 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
491 /* The following config GPIO function */
492 rtl_write_byte(rtlpriv
, MAC_PINMUX_CFG
, (GPIOMUX_EN
| GPIOSEL_GPIO
));
493 u1tmp
= rtl_read_byte(rtlpriv
, GPIO_IO_SEL
);
495 /* config GPIO3 to input */
496 u1tmp
&= HAL_8192S_HW_GPIO_OFF_MASK
;
497 rtl_write_byte(rtlpriv
, GPIO_IO_SEL
, u1tmp
);
501 static u8
_rtl92se_rf_onoff_detect(struct ieee80211_hw
*hw
)
503 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
507 /* The following config GPIO function */
508 rtl_write_byte(rtlpriv
, MAC_PINMUX_CFG
, (GPIOMUX_EN
| GPIOSEL_GPIO
));
509 u1tmp
= rtl_read_byte(rtlpriv
, GPIO_IO_SEL
);
511 /* config GPIO3 to input */
512 u1tmp
&= HAL_8192S_HW_GPIO_OFF_MASK
;
513 rtl_write_byte(rtlpriv
, GPIO_IO_SEL
, u1tmp
);
515 /* On some of the platform, driver cannot read correct
516 * value without delay between Write_GPIO_SEL and Read_GPIO_IN */
520 u1tmp
= rtl_read_byte(rtlpriv
, GPIO_IN_SE
);
521 retval
= (u1tmp
& HAL_8192S_HW_GPIO_OFF_BIT
) ? ERFON
: ERFOFF
;
526 static void _rtl92se_macconfig_before_fwdownload(struct ieee80211_hw
*hw
)
528 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
529 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
530 struct rtl_ps_ctl
*ppsc
= rtl_psc(rtl_priv(hw
));
537 if (rtlpci
->first_init
) {
538 /* Reset PCIE Digital */
539 tmpu1b
= rtl_read_byte(rtlpriv
, REG_SYS_FUNC_EN
+ 1);
541 rtl_write_byte(rtlpriv
, REG_SYS_FUNC_EN
+ 1, tmpu1b
);
543 rtl_write_byte(rtlpriv
, REG_SYS_FUNC_EN
+ 1, tmpu1b
| BIT(0));
546 /* Switch to SW IO control */
547 tmpu1b
= rtl_read_byte(rtlpriv
, (SYS_CLKR
+ 1));
548 if (tmpu1b
& BIT(7)) {
549 tmpu1b
&= ~(BIT(6) | BIT(7));
551 /* Set failed, return to prevent hang. */
552 if (!_rtl92ce_halset_sysclk(hw
, tmpu1b
))
556 rtl_write_byte(rtlpriv
, AFE_PLL_CTRL
, 0x0);
558 rtl_write_byte(rtlpriv
, LDOA15_CTRL
, 0x34);
561 /* Clear FW RPWM for FW control LPS.*/
562 rtl_write_byte(rtlpriv
, RPWM
, 0x0);
564 /* Reset MAC-IO and CPU and Core Digital BIT(10)/11/15 */
565 tmpu1b
= rtl_read_byte(rtlpriv
, REG_SYS_FUNC_EN
+ 1);
567 rtl_write_byte(rtlpriv
, REG_SYS_FUNC_EN
+ 1, tmpu1b
);
568 /* wait for BIT 10/11/15 to pull high automatically!! */
571 rtl_write_byte(rtlpriv
, CMDR
, 0);
572 rtl_write_byte(rtlpriv
, TCR
, 0);
574 /* Data sheet not define 0x562!!! Copy from WMAC!!!!! */
575 tmpu1b
= rtl_read_byte(rtlpriv
, 0x562);
577 rtl_write_byte(rtlpriv
, 0x562, tmpu1b
);
579 rtl_write_byte(rtlpriv
, 0x562, tmpu1b
);
581 /* Enable AFE clock source */
582 tmpu1b
= rtl_read_byte(rtlpriv
, AFE_XTAL_CTRL
);
583 rtl_write_byte(rtlpriv
, AFE_XTAL_CTRL
, (tmpu1b
| 0x01));
586 tmpu1b
= rtl_read_byte(rtlpriv
, AFE_XTAL_CTRL
+ 1);
587 rtl_write_byte(rtlpriv
, AFE_XTAL_CTRL
+ 1, (tmpu1b
& 0xfb));
589 /* Enable AFE Macro Block's Bandgap */
590 tmpu1b
= rtl_read_byte(rtlpriv
, AFE_MISC
);
591 rtl_write_byte(rtlpriv
, AFE_MISC
, (tmpu1b
| BIT(0)));
594 /* Enable AFE Mbias */
595 tmpu1b
= rtl_read_byte(rtlpriv
, AFE_MISC
);
596 rtl_write_byte(rtlpriv
, AFE_MISC
, (tmpu1b
| 0x02));
599 /* Enable LDOA15 block */
600 tmpu1b
= rtl_read_byte(rtlpriv
, LDOA15_CTRL
);
601 rtl_write_byte(rtlpriv
, LDOA15_CTRL
, (tmpu1b
| BIT(0)));
603 /* Set Digital Vdd to Retention isolation Path. */
604 tmpu2b
= rtl_read_word(rtlpriv
, REG_SYS_ISO_CTRL
);
605 rtl_write_word(rtlpriv
, REG_SYS_ISO_CTRL
, (tmpu2b
| BIT(11)));
607 /* For warm reboot NIC disappera bug. */
608 tmpu2b
= rtl_read_word(rtlpriv
, REG_SYS_FUNC_EN
);
609 rtl_write_word(rtlpriv
, REG_SYS_FUNC_EN
, (tmpu2b
| BIT(13)));
611 rtl_write_byte(rtlpriv
, REG_SYS_ISO_CTRL
+ 1, 0x68);
613 /* Enable AFE PLL Macro Block */
614 /* We need to delay 100u before enabling PLL. */
616 tmpu1b
= rtl_read_byte(rtlpriv
, AFE_PLL_CTRL
);
617 rtl_write_byte(rtlpriv
, AFE_PLL_CTRL
, (tmpu1b
| BIT(0) | BIT(4)));
619 /* for divider reset */
621 rtl_write_byte(rtlpriv
, AFE_PLL_CTRL
, (tmpu1b
| BIT(0) |
624 rtl_write_byte(rtlpriv
, AFE_PLL_CTRL
, (tmpu1b
| BIT(0) | BIT(4)));
627 /* Enable MAC 80MHZ clock */
628 tmpu1b
= rtl_read_byte(rtlpriv
, AFE_PLL_CTRL
+ 1);
629 rtl_write_byte(rtlpriv
, AFE_PLL_CTRL
+ 1, (tmpu1b
| BIT(0)));
632 /* Release isolation AFE PLL & MD */
633 rtl_write_byte(rtlpriv
, REG_SYS_ISO_CTRL
, 0xA6);
635 /* Enable MAC clock */
636 tmpu2b
= rtl_read_word(rtlpriv
, SYS_CLKR
);
637 rtl_write_word(rtlpriv
, SYS_CLKR
, (tmpu2b
| BIT(12) | BIT(11)));
639 /* Enable Core digital and enable IOREG R/W */
640 tmpu2b
= rtl_read_word(rtlpriv
, REG_SYS_FUNC_EN
);
641 rtl_write_word(rtlpriv
, REG_SYS_FUNC_EN
, (tmpu2b
| BIT(11)));
643 tmpu1b
= rtl_read_byte(rtlpriv
, REG_SYS_FUNC_EN
+ 1);
644 rtl_write_byte(rtlpriv
, REG_SYS_FUNC_EN
+ 1, tmpu1b
& ~(BIT(7)));
647 rtl_write_word(rtlpriv
, REG_SYS_FUNC_EN
, (tmpu2b
| BIT(11) | BIT(15)));
649 /* Switch the control path. */
650 tmpu2b
= rtl_read_word(rtlpriv
, SYS_CLKR
);
651 rtl_write_word(rtlpriv
, SYS_CLKR
, (tmpu2b
& (~BIT(2))));
653 tmpu1b
= rtl_read_byte(rtlpriv
, (SYS_CLKR
+ 1));
654 tmpu1b
= ((tmpu1b
| BIT(7)) & (~BIT(6)));
655 if (!_rtl92ce_halset_sysclk(hw
, tmpu1b
))
656 return; /* Set failed, return to prevent hang. */
658 rtl_write_word(rtlpriv
, CMDR
, 0x07FC);
660 /* MH We must enable the section of code to prevent load IMEM fail. */
661 /* Load MAC register from WMAc temporarily We simulate macreg. */
662 /* txt HW will provide MAC txt later */
663 rtl_write_byte(rtlpriv
, 0x6, 0x30);
664 rtl_write_byte(rtlpriv
, 0x49, 0xf0);
666 rtl_write_byte(rtlpriv
, 0x4b, 0x81);
668 rtl_write_byte(rtlpriv
, 0xb5, 0x21);
670 rtl_write_byte(rtlpriv
, 0xdc, 0xff);
671 rtl_write_byte(rtlpriv
, 0xdd, 0xff);
672 rtl_write_byte(rtlpriv
, 0xde, 0xff);
673 rtl_write_byte(rtlpriv
, 0xdf, 0xff);
675 rtl_write_byte(rtlpriv
, 0x11a, 0x00);
676 rtl_write_byte(rtlpriv
, 0x11b, 0x00);
678 for (i
= 0; i
< 32; i
++)
679 rtl_write_byte(rtlpriv
, INIMCS_SEL
+ i
, 0x1b);
681 rtl_write_byte(rtlpriv
, 0x236, 0xff);
683 rtl_write_byte(rtlpriv
, 0x503, 0x22);
685 if (ppsc
->support_aspm
&& !ppsc
->support_backdoor
)
686 rtl_write_byte(rtlpriv
, 0x560, 0x40);
688 rtl_write_byte(rtlpriv
, 0x560, 0x00);
690 rtl_write_byte(rtlpriv
, DBG_PORT
, 0x91);
692 /* Set RX Desc Address */
693 rtl_write_dword(rtlpriv
, RDQDA
, rtlpci
->rx_ring
[RX_MPDU_QUEUE
].dma
);
694 rtl_write_dword(rtlpriv
, RCDA
, rtlpci
->rx_ring
[RX_CMD_QUEUE
].dma
);
696 /* Set TX Desc Address */
697 rtl_write_dword(rtlpriv
, TBKDA
, rtlpci
->tx_ring
[BK_QUEUE
].dma
);
698 rtl_write_dword(rtlpriv
, TBEDA
, rtlpci
->tx_ring
[BE_QUEUE
].dma
);
699 rtl_write_dword(rtlpriv
, TVIDA
, rtlpci
->tx_ring
[VI_QUEUE
].dma
);
700 rtl_write_dword(rtlpriv
, TVODA
, rtlpci
->tx_ring
[VO_QUEUE
].dma
);
701 rtl_write_dword(rtlpriv
, TBDA
, rtlpci
->tx_ring
[BEACON_QUEUE
].dma
);
702 rtl_write_dword(rtlpriv
, TCDA
, rtlpci
->tx_ring
[TXCMD_QUEUE
].dma
);
703 rtl_write_dword(rtlpriv
, TMDA
, rtlpci
->tx_ring
[MGNT_QUEUE
].dma
);
704 rtl_write_dword(rtlpriv
, THPDA
, rtlpci
->tx_ring
[HIGH_QUEUE
].dma
);
705 rtl_write_dword(rtlpriv
, HDA
, rtlpci
->tx_ring
[HCCA_QUEUE
].dma
);
707 rtl_write_word(rtlpriv
, CMDR
, 0x37FC);
709 /* To make sure that TxDMA can ready to download FW. */
710 /* We should reset TxDMA if IMEM RPT was not ready. */
712 tmpu1b
= rtl_read_byte(rtlpriv
, TCR
);
713 if ((tmpu1b
& TXDMA_INIT_VALUE
) == TXDMA_INIT_VALUE
)
717 } while (pollingcnt
--);
719 if (pollingcnt
<= 0) {
720 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_EMERG
,
721 ("Polling TXDMA_INIT_VALUE "
722 "timeout!! Current TCR(%#x)\n", tmpu1b
));
723 tmpu1b
= rtl_read_byte(rtlpriv
, CMDR
);
724 rtl_write_byte(rtlpriv
, CMDR
, tmpu1b
& (~TXDMA_EN
));
727 rtl_write_byte(rtlpriv
, CMDR
, tmpu1b
| TXDMA_EN
);
730 /* After MACIO reset,we must refresh LED state. */
731 if ((ppsc
->rfoff_reason
== RF_CHANGE_BY_IPS
) ||
732 (ppsc
->rfoff_reason
== 0)) {
733 struct rtl_pci_priv
*pcipriv
= rtl_pcipriv(hw
);
734 struct rtl_led
*pLed0
= &(pcipriv
->ledctl
.sw_led0
);
735 enum rf_pwrstate rfpwr_state_toset
;
736 rfpwr_state_toset
= _rtl92se_rf_onoff_detect(hw
);
738 if (rfpwr_state_toset
== ERFON
)
739 rtl92se_sw_led_on(hw
, pLed0
);
743 static void _rtl92se_macconfig_after_fwdownload(struct ieee80211_hw
*hw
)
745 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
746 struct rtl_hal
*rtlhal
= rtl_hal(rtl_priv(hw
));
747 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
748 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
752 /* 1. System Configure Register (Offset: 0x0000 - 0x003F) */
754 /* 2. Command Control Register (Offset: 0x0040 - 0x004F) */
755 /* Turn on 0x40 Command register */
756 rtl_write_word(rtlpriv
, CMDR
, (BBRSTN
| BB_GLB_RSTN
|
757 SCHEDULE_EN
| MACRXEN
| MACTXEN
| DDMA_EN
| FW2HW_EN
|
758 RXDMA_EN
| TXDMA_EN
| HCI_RXDMA_EN
| HCI_TXDMA_EN
));
760 /* Set TCR TX DMA pre 2 FULL enable bit */
761 rtl_write_dword(rtlpriv
, TCR
, rtl_read_dword(rtlpriv
, TCR
) |
765 rtl_write_dword(rtlpriv
, RCR
, rtlpci
->receive_config
);
767 /* 3. MACID Setting Register (Offset: 0x0050 - 0x007F) */
769 /* 4. Timing Control Register (Offset: 0x0080 - 0x009F) */
770 /* Set CCK/OFDM SIFS */
771 /* CCK SIFS shall always be 10us. */
772 rtl_write_word(rtlpriv
, SIFS_CCK
, 0x0a0a);
773 rtl_write_word(rtlpriv
, SIFS_OFDM
, 0x1010);
776 rtl_write_byte(rtlpriv
, ACK_TIMEOUT
, 0x40);
779 rtl_write_word(rtlpriv
, BCN_INTERVAL
, 100);
780 rtl_write_word(rtlpriv
, ATIMWND
, 2);
782 /* 5. FIFO Control Register (Offset: 0x00A0 - 0x015F) */
783 /* 5.1 Initialize Number of Reserved Pages in Firmware Queue */
784 /* Firmware allocate now, associate with FW internal setting.!!! */
786 /* 5.2 Setting TX/RX page size 0/1/2/3/4=64/128/256/512/1024 */
787 /* 5.3 Set driver info, we only accept PHY status now. */
788 /* 5.4 Set RXDMA arbitration to control RXDMA/MAC/FW R/W for RXFIFO */
789 rtl_write_byte(rtlpriv
, RXDMA
, rtl_read_byte(rtlpriv
, RXDMA
) | BIT(6));
791 /* 6. Adaptive Control Register (Offset: 0x0160 - 0x01CF) */
792 /* Set RRSR to all legacy rate and HT rate
793 * CCK rate is supported by default.
794 * CCK rate will be filtered out only when associated
795 * AP does not support it.
796 * Only enable ACK rate to OFDM 24M
797 * Disable RRSR for CCK rate in A-Cut */
799 if (rtlhal
->version
== VERSION_8192S_ACUT
)
800 rtl_write_byte(rtlpriv
, RRSR
, 0xf0);
801 else if (rtlhal
->version
== VERSION_8192S_BCUT
)
802 rtl_write_byte(rtlpriv
, RRSR
, 0xff);
803 rtl_write_byte(rtlpriv
, RRSR
+ 1, 0x01);
804 rtl_write_byte(rtlpriv
, RRSR
+ 2, 0x00);
806 /* A-Cut IC do not support CCK rate. We forbid ARFR to */
807 /* fallback to CCK rate */
808 for (i
= 0; i
< 8; i
++) {
809 /*Disable RRSR for CCK rate in A-Cut */
810 if (rtlhal
->version
== VERSION_8192S_ACUT
)
811 rtl_write_dword(rtlpriv
, ARFR0
+ i
* 4, 0x1f0ff0f0);
814 /* Different rate use different AMPDU size */
815 /* MCS32/ MCS15_SG use max AMPDU size 15*2=30K */
816 rtl_write_byte(rtlpriv
, AGGLEN_LMT_H
, 0x0f);
817 /* MCS0/1/2/3 use max AMPDU size 4*2=8K */
818 rtl_write_word(rtlpriv
, AGGLEN_LMT_L
, 0x7442);
819 /* MCS4/5 use max AMPDU size 8*2=16K 6/7 use 10*2=20K */
820 rtl_write_word(rtlpriv
, AGGLEN_LMT_L
+ 2, 0xddd7);
821 /* MCS8/9 use max AMPDU size 8*2=16K 10/11 use 10*2=20K */
822 rtl_write_word(rtlpriv
, AGGLEN_LMT_L
+ 4, 0xd772);
823 /* MCS12/13/14/15 use max AMPDU size 15*2=30K */
824 rtl_write_word(rtlpriv
, AGGLEN_LMT_L
+ 6, 0xfffd);
826 /* Set Data / Response auto rate fallack retry count */
827 rtl_write_dword(rtlpriv
, DARFRC
, 0x04010000);
828 rtl_write_dword(rtlpriv
, DARFRC
+ 4, 0x09070605);
829 rtl_write_dword(rtlpriv
, RARFRC
, 0x04010000);
830 rtl_write_dword(rtlpriv
, RARFRC
+ 4, 0x09070605);
832 /* 7. EDCA Setting Register (Offset: 0x01D0 - 0x01FF) */
833 /* Set all rate to support SG */
834 rtl_write_word(rtlpriv
, SG_RATE
, 0xFFFF);
836 /* 8. WMAC, BA, and CCX related Register (Offset: 0x0200 - 0x023F) */
837 /* Set NAV protection length */
838 rtl_write_word(rtlpriv
, NAV_PROT_LEN
, 0x0080);
839 /* CF-END Threshold */
840 rtl_write_byte(rtlpriv
, CFEND_TH
, 0xFF);
841 /* Set AMPDU minimum space */
842 rtl_write_byte(rtlpriv
, AMPDU_MIN_SPACE
, 0x07);
843 /* Set TXOP stall control for several queue/HI/BCN/MGT/ */
844 rtl_write_byte(rtlpriv
, TXOP_STALL_CTRL
, 0x00);
846 /* 9. Security Control Register (Offset: 0x0240 - 0x025F) */
847 /* 10. Power Save Control Register (Offset: 0x0260 - 0x02DF) */
848 /* 11. General Purpose Register (Offset: 0x02E0 - 0x02FF) */
849 /* 12. Host Interrupt Status Register (Offset: 0x0300 - 0x030F) */
850 /* 13. Test Mode and Debug Control Register (Offset: 0x0310 - 0x034F) */
852 /* 14. Set driver info, we only accept PHY status now. */
853 rtl_write_byte(rtlpriv
, RXDRVINFO_SZ
, 4);
855 /* 15. For EEPROM R/W Workaround */
856 /* 16. For EFUSE to share REG_SYS_FUNC_EN with EEPROM!!! */
857 tmpu2b
= rtl_read_byte(rtlpriv
, REG_SYS_FUNC_EN
);
858 rtl_write_byte(rtlpriv
, REG_SYS_FUNC_EN
, tmpu2b
| BIT(13));
859 tmpu2b
= rtl_read_byte(rtlpriv
, REG_SYS_ISO_CTRL
);
860 rtl_write_byte(rtlpriv
, REG_SYS_ISO_CTRL
, tmpu2b
& (~BIT(8)));
863 /* We may R/W EFUSE in EEPROM mode */
864 if (rtlefuse
->epromtype
== EEPROM_BOOT_EFUSE
) {
867 tempval
= rtl_read_byte(rtlpriv
, REG_SYS_ISO_CTRL
+ 1);
869 rtl_write_byte(rtlpriv
, REG_SYS_ISO_CTRL
+ 1, tempval
);
871 /* Change Program timing */
872 rtl_write_byte(rtlpriv
, REG_EFUSE_CTRL
+ 3, 0x72);
873 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_DMESG
, ("EFUSE CONFIG OK\n"));
876 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_DMESG
, ("OK\n"));
880 static void _rtl92se_hw_configure(struct ieee80211_hw
*hw
)
882 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
883 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
884 struct rtl_phy
*rtlphy
= &(rtlpriv
->phy
);
885 struct rtl_hal
*rtlhal
= rtl_hal(rtl_priv(hw
));
887 u8 reg_bw_opmode
= 0;
891 reg_bw_opmode
= BW_OPMODE_20MHZ
;
892 reg_rrsr
= RATE_ALL_CCK
| RATE_ALL_OFDM_AG
;
894 regtmp
= rtl_read_byte(rtlpriv
, INIRTSMCS_SEL
);
895 reg_rrsr
= ((reg_rrsr
& 0x000fffff) << 8) | regtmp
;
896 rtl_write_dword(rtlpriv
, INIRTSMCS_SEL
, reg_rrsr
);
897 rtl_write_byte(rtlpriv
, BW_OPMODE
, reg_bw_opmode
);
899 /* Set Retry Limit here */
900 rtlpriv
->cfg
->ops
->set_hw_reg(hw
, HW_VAR_RETRY_LIMIT
,
901 (u8
*)(&rtlpci
->shortretry_limit
));
903 rtl_write_byte(rtlpriv
, MLT
, 0x8f);
905 /* For Min Spacing configuration. */
906 switch (rtlphy
->rf_type
) {
909 rtlhal
->minspace_cfg
= (MAX_MSS_DENSITY_1T
<< 3);
913 rtlhal
->minspace_cfg
= (MAX_MSS_DENSITY_2T
<< 3);
916 rtl_write_byte(rtlpriv
, AMPDU_MIN_SPACE
, rtlhal
->minspace_cfg
);
919 int rtl92se_hw_init(struct ieee80211_hw
*hw
)
921 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
922 struct rtl_hal
*rtlhal
= rtl_hal(rtl_priv(hw
));
923 struct rtl_phy
*rtlphy
= &(rtlpriv
->phy
);
924 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
925 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
928 bool rtstatus
= true;
932 int wdcapra_add
[] = {
933 EDCAPARA_BE
, EDCAPARA_BK
,
934 EDCAPARA_VI
, EDCAPARA_VO
};
937 rtlpci
->being_init_adapter
= true;
939 rtlpriv
->intf_ops
->disable_aspm(hw
);
941 /* 1. MAC Initialize */
942 /* Before FW download, we have to set some MAC register */
943 _rtl92se_macconfig_before_fwdownload(hw
);
945 rtlhal
->version
= (enum version_8192s
)((rtl_read_dword(rtlpriv
,
946 PMC_FSM
) >> 16) & 0xF);
948 rtl8192se_gpiobit3_cfg_inputmode(hw
);
950 /* 2. download firmware */
951 rtstatus
= rtl92s_download_fw(hw
);
953 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_WARNING
,
954 ("Failed to download FW. "
955 "Init HW without FW now.., Please copy FW into"
956 "/lib/firmware/rtlwifi\n"));
957 rtlhal
->fw_ready
= false;
959 rtlhal
->fw_ready
= true;
962 /* After FW download, we have to reset MAC register */
963 _rtl92se_macconfig_after_fwdownload(hw
);
965 /*Retrieve default FW Cmd IO map. */
966 rtlhal
->fwcmd_iomap
= rtl_read_word(rtlpriv
, LBUS_MON_ADDR
);
967 rtlhal
->fwcmd_ioparam
= rtl_read_dword(rtlpriv
, LBUS_ADDR_MASK
);
969 /* 3. Initialize MAC/PHY Config by MACPHY_reg.txt */
970 if (rtl92s_phy_mac_config(hw
) != true) {
971 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_EMERG
, ("MAC Config failed\n"));
975 /* Make sure BB/RF write OK. We should prevent enter IPS. radio off. */
976 /* We must set flag avoid BB/RF config period later!! */
977 rtl_write_dword(rtlpriv
, CMDR
, 0x37FC);
979 /* 4. Initialize BB After MAC Config PHY_reg.txt, AGC_Tab.txt */
980 if (rtl92s_phy_bb_config(hw
) != true) {
981 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_EMERG
, ("BB Config failed\n"));
985 /* 5. Initiailze RF RAIO_A.txt RF RAIO_B.txt */
986 /* Before initalizing RF. We can not use FW to do RF-R/W. */
988 rtlphy
->rf_mode
= RF_OP_BY_SW_3WIRE
;
992 /* H/W or S/W RF OFF before sleep. */
993 if (rtlpriv
->psc
.rfoff_reason
> RF_CHANGE_BY_PS
) {
994 u32 rfoffreason
= rtlpriv
->psc
.rfoff_reason
;
996 rtlpriv
->psc
.rfoff_reason
= RF_CHANGE_BY_INIT
;
997 rtlpriv
->psc
.rfpwr_state
= ERFON
;
998 /* FIXME: check spinlocks if this block is uncommented */
999 rtl_ps_set_rf_state(hw
, ERFOFF
, rfoffreason
);
1001 /* gpio radio on/off is out of adapter start */
1002 if (rtlpriv
->psc
.hwradiooff
== false) {
1003 rtlpriv
->psc
.rfpwr_state
= ERFON
;
1004 rtlpriv
->psc
.rfoff_reason
= 0;
1009 /* Before RF-R/W we must execute the IO from Scott's suggestion. */
1010 rtl_write_byte(rtlpriv
, AFE_XTAL_CTRL
+ 1, 0xDB);
1011 if (rtlhal
->version
== VERSION_8192S_ACUT
)
1012 rtl_write_byte(rtlpriv
, SPS1_CTRL
+ 3, 0x07);
1014 rtl_write_byte(rtlpriv
, RF_CTRL
, 0x07);
1016 if (rtl92s_phy_rf_config(hw
) != true) {
1017 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_DMESG
, ("RF Config failed\n"));
1021 /* After read predefined TXT, we must set BB/MAC/RF
1022 * register as our requirement */
1024 rtlphy
->rfreg_chnlval
[0] = rtl92s_phy_query_rf_reg(hw
,
1028 rtlphy
->rfreg_chnlval
[1] = rtl92s_phy_query_rf_reg(hw
,
1033 /*---- Set CCK and OFDM Block "ON"----*/
1034 rtl_set_bbreg(hw
, RFPGA0_RFMOD
, BCCKEN
, 0x1);
1035 rtl_set_bbreg(hw
, RFPGA0_RFMOD
, BOFDMEN
, 0x1);
1037 /*3 Set Hardware(Do nothing now) */
1038 _rtl92se_hw_configure(hw
);
1040 /* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */
1041 /* TX power index for different rate set. */
1042 /* Get original hw reg values */
1043 rtl92s_phy_get_hw_reg_originalvalue(hw
);
1044 /* Write correct tx power index */
1045 rtl92s_phy_set_txpower(hw
, rtlphy
->current_channel
);
1047 /* We must set MAC address after firmware download. */
1048 for (i
= 0; i
< 6; i
++)
1049 rtl_write_byte(rtlpriv
, MACIDR0
+ i
, rtlefuse
->dev_addr
[i
]);
1051 /* EEPROM R/W workaround */
1052 tmp_u1b
= rtl_read_byte(rtlpriv
, MAC_PINMUX_CFG
);
1053 rtl_write_byte(rtlpriv
, MAC_PINMUX_CFG
, tmp_u1b
& (~BIT(3)));
1055 rtl_write_byte(rtlpriv
, 0x4d, 0x0);
1057 if (hal_get_firmwareversion(rtlpriv
) >= 0x49) {
1058 tmp_byte
= rtl_read_byte(rtlpriv
, FW_RSVD_PG_CRTL
) & (~BIT(4));
1059 tmp_byte
= tmp_byte
| BIT(5);
1060 rtl_write_byte(rtlpriv
, FW_RSVD_PG_CRTL
, tmp_byte
);
1061 rtl_write_dword(rtlpriv
, TXDESC_MSK
, 0xFFFFCFFF);
1064 /* We enable high power and RA related mechanism after NIC
1066 rtl92s_phy_set_fw_cmd(hw
, FW_CMD_RA_INIT
);
1068 /* Add to prevent ASPM bug. */
1069 /* Always enable hst and NIC clock request. */
1070 rtl92s_phy_switch_ephy_parameter(hw
);
1073 * 1. Clear all H/W keys.
1074 * 2. Enable H/W encryption/decryption. */
1075 rtl_cam_reset_all_entry(hw
);
1076 secr_value
|= SCR_TXENCENABLE
;
1077 secr_value
|= SCR_RXENCENABLE
;
1078 secr_value
|= SCR_NOSKMC
;
1079 rtl_write_byte(rtlpriv
, REG_SECR
, secr_value
);
1081 for (i
= 0; i
< 4; i
++)
1082 rtl_write_dword(rtlpriv
, wdcapra_add
[i
], 0x5e4322);
1084 if (rtlphy
->rf_type
== RF_1T2R
) {
1085 bool mrc2set
= true;
1086 /* Turn on B-Path */
1087 rtlpriv
->cfg
->ops
->set_hw_reg(hw
, HW_VAR_MRC
, (u8
*)&mrc2set
);
1090 rtlpriv
->cfg
->ops
->led_control(hw
, LED_CTL_POWER_ON
);
1092 rtlpci
->being_init_adapter
= false;
1097 void rtl92se_set_mac_addr(struct rtl_io
*io
, const u8
* addr
)
1101 void rtl92se_set_check_bssid(struct ieee80211_hw
*hw
, bool check_bssid
)
1103 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1104 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
1105 u32 reg_rcr
= rtlpci
->receive_config
;
1107 if (rtlpriv
->psc
.rfpwr_state
!= ERFON
)
1111 reg_rcr
|= (RCR_CBSSID
);
1112 rtlpriv
->cfg
->ops
->set_hw_reg(hw
, HW_VAR_RCR
, (u8
*)(®_rcr
));
1113 } else if (check_bssid
== false) {
1114 reg_rcr
&= (~RCR_CBSSID
);
1115 rtlpriv
->cfg
->ops
->set_hw_reg(hw
, HW_VAR_RCR
, (u8
*)(®_rcr
));
1120 static int _rtl92se_set_media_status(struct ieee80211_hw
*hw
,
1121 enum nl80211_iftype type
)
1123 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1124 u8 bt_msr
= rtl_read_byte(rtlpriv
, MSR
);
1126 bt_msr
&= ~MSR_LINK_MASK
;
1129 case NL80211_IFTYPE_UNSPECIFIED
:
1130 bt_msr
|= (MSR_LINK_NONE
<< MSR_LINK_SHIFT
);
1131 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_TRACE
,
1132 ("Set Network type to NO LINK!\n"));
1134 case NL80211_IFTYPE_ADHOC
:
1135 bt_msr
|= (MSR_LINK_ADHOC
<< MSR_LINK_SHIFT
);
1136 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_TRACE
,
1137 ("Set Network type to Ad Hoc!\n"));
1139 case NL80211_IFTYPE_STATION
:
1140 bt_msr
|= (MSR_LINK_MANAGED
<< MSR_LINK_SHIFT
);
1141 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_TRACE
,
1142 ("Set Network type to STA!\n"));
1144 case NL80211_IFTYPE_AP
:
1145 bt_msr
|= (MSR_LINK_MASTER
<< MSR_LINK_SHIFT
);
1146 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_TRACE
,
1147 ("Set Network type to AP!\n"));
1150 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_EMERG
,
1151 ("Network type %d not support!\n", type
));
1157 rtl_write_byte(rtlpriv
, (MSR
), bt_msr
);
1159 temp
= rtl_read_dword(rtlpriv
, TCR
);
1160 rtl_write_dword(rtlpriv
, TCR
, temp
& (~BIT(8)));
1161 rtl_write_dword(rtlpriv
, TCR
, temp
| BIT(8));
1167 /* HW_VAR_MEDIA_STATUS & HW_VAR_CECHK_BSSID */
1168 int rtl92se_set_network_type(struct ieee80211_hw
*hw
, enum nl80211_iftype type
)
1170 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1172 if (_rtl92se_set_media_status(hw
, type
))
1175 if (rtlpriv
->mac80211
.link_state
== MAC80211_LINKED
) {
1176 if (type
!= NL80211_IFTYPE_AP
)
1177 rtl92se_set_check_bssid(hw
, true);
1179 rtl92se_set_check_bssid(hw
, false);
1185 /* don't set REG_EDCA_BE_PARAM here because mac80211 will send pkt when scan */
1186 void rtl92se_set_qos(struct ieee80211_hw
*hw
, int aci
)
1188 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1189 rtl92s_dm_init_edca_turbo(hw
);
1193 rtl_write_dword(rtlpriv
, EDCAPARA_BK
, 0xa44f);
1196 /* rtl_write_dword(rtlpriv, EDCAPARA_BE, u4b_ac_param); */
1199 rtl_write_dword(rtlpriv
, EDCAPARA_VI
, 0x5e4322);
1202 rtl_write_dword(rtlpriv
, EDCAPARA_VO
, 0x2f3222);
1205 RT_ASSERT(false, ("invalid aci: %d !\n", aci
));
1210 void rtl92se_enable_interrupt(struct ieee80211_hw
*hw
)
1212 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1213 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
1215 rtl_write_dword(rtlpriv
, INTA_MASK
, rtlpci
->irq_mask
[0]);
1216 /* Support Bit 32-37(Assign as Bit 0-5) interrupt setting now */
1217 rtl_write_dword(rtlpriv
, INTA_MASK
+ 4, rtlpci
->irq_mask
[1] & 0x3F);
1220 void rtl92se_disable_interrupt(struct ieee80211_hw
*hw
)
1222 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1223 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
1225 rtl_write_dword(rtlpriv
, INTA_MASK
, 0);
1226 rtl_write_dword(rtlpriv
, INTA_MASK
+ 4, 0);
1228 synchronize_irq(rtlpci
->pdev
->irq
);
1232 static u8
_rtl92s_set_sysclk(struct ieee80211_hw
*hw
, u8 data
)
1234 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1236 bool result
= false;
1239 rtl_write_byte(rtlpriv
, SYS_CLKR
+ 1, data
);
1241 /* Wait the MAC synchronized. */
1244 /* Check if it is set ready. */
1245 tmp
= rtl_read_byte(rtlpriv
, SYS_CLKR
+ 1);
1246 result
= ((tmp
& BIT(7)) == (data
& BIT(7)));
1248 if ((data
& (BIT(6) | BIT(7))) == false) {
1254 tmp
= rtl_read_byte(rtlpriv
, SYS_CLKR
+ 1);
1259 pr_err("wait for BIT(6) return value %x\n", tmp
);
1275 static void _rtl92s_phy_set_rfhalt(struct ieee80211_hw
*hw
)
1277 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1278 struct rtl_hal
*rtlhal
= rtl_hal(rtl_priv(hw
));
1279 struct rtl_ps_ctl
*ppsc
= rtl_psc(rtl_priv(hw
));
1282 if (rtlhal
->driver_going2unload
)
1283 rtl_write_byte(rtlpriv
, 0x560, 0x0);
1285 /* Power save for BB/RF */
1286 u1btmp
= rtl_read_byte(rtlpriv
, LDOV12D_CTRL
);
1288 rtl_write_byte(rtlpriv
, LDOV12D_CTRL
, u1btmp
);
1289 rtl_write_byte(rtlpriv
, SPS1_CTRL
, 0x0);
1290 rtl_write_byte(rtlpriv
, TXPAUSE
, 0xFF);
1291 rtl_write_word(rtlpriv
, CMDR
, 0x57FC);
1293 rtl_write_word(rtlpriv
, CMDR
, 0x77FC);
1294 rtl_write_byte(rtlpriv
, PHY_CCA
, 0x0);
1296 rtl_write_word(rtlpriv
, CMDR
, 0x37FC);
1298 rtl_write_word(rtlpriv
, CMDR
, 0x77FC);
1300 rtl_write_word(rtlpriv
, CMDR
, 0x57FC);
1301 rtl_write_word(rtlpriv
, CMDR
, 0x0000);
1303 if (rtlhal
->driver_going2unload
) {
1304 u1btmp
= rtl_read_byte(rtlpriv
, (REG_SYS_FUNC_EN
+ 1));
1305 u1btmp
&= ~(BIT(0));
1306 rtl_write_byte(rtlpriv
, REG_SYS_FUNC_EN
+ 1, u1btmp
);
1309 u1btmp
= rtl_read_byte(rtlpriv
, (SYS_CLKR
+ 1));
1311 /* Add description. After switch control path. register
1312 * after page1 will be invisible. We can not do any IO
1313 * for register>0x40. After resume&MACIO reset, we need
1314 * to remember previous reg content. */
1315 if (u1btmp
& BIT(7)) {
1316 u1btmp
&= ~(BIT(6) | BIT(7));
1317 if (!_rtl92s_set_sysclk(hw
, u1btmp
)) {
1318 pr_err("Switch ctrl path fail\n");
1323 /* Power save for MAC */
1324 if (ppsc
->rfoff_reason
== RF_CHANGE_BY_IPS
&&
1325 !rtlhal
->driver_going2unload
) {
1326 /* enable LED function */
1327 rtl_write_byte(rtlpriv
, 0x03, 0xF9);
1328 /* SW/HW radio off or halt adapter!! For example S3/S4 */
1330 /* LED function disable. Power range is about 8mA now. */
1331 /* if write 0xF1 disconnet_pci power
1332 * ifconfig wlan0 down power are both high 35:70 */
1333 /* if write oxF9 disconnet_pci power
1334 * ifconfig wlan0 down power are both low 12:45*/
1335 rtl_write_byte(rtlpriv
, 0x03, 0xF9);
1338 rtl_write_byte(rtlpriv
, SYS_CLKR
+ 1, 0x70);
1339 rtl_write_byte(rtlpriv
, AFE_PLL_CTRL
+ 1, 0x68);
1340 rtl_write_byte(rtlpriv
, AFE_PLL_CTRL
, 0x00);
1341 rtl_write_byte(rtlpriv
, LDOA15_CTRL
, 0x34);
1342 rtl_write_byte(rtlpriv
, AFE_XTAL_CTRL
, 0x0E);
1343 RT_SET_PS_LEVEL(ppsc
, RT_RF_OFF_LEVL_HALT_NIC
);
1347 static void _rtl92se_gen_refreshledstate(struct ieee80211_hw
*hw
)
1349 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1350 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
1351 struct rtl_pci_priv
*pcipriv
= rtl_pcipriv(hw
);
1352 struct rtl_led
*pLed0
= &(pcipriv
->ledctl
.sw_led0
);
1354 if (rtlpci
->up_first_time
== 1)
1357 if (rtlpriv
->psc
.rfoff_reason
== RF_CHANGE_BY_IPS
)
1358 rtl92se_sw_led_on(hw
, pLed0
);
1360 rtl92se_sw_led_off(hw
, pLed0
);
1364 static void _rtl92se_power_domain_init(struct ieee80211_hw
*hw
)
1366 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1370 rtlpriv
->psc
.pwrdomain_protect
= true;
1372 tmpu1b
= rtl_read_byte(rtlpriv
, (SYS_CLKR
+ 1));
1373 if (tmpu1b
& BIT(7)) {
1374 tmpu1b
&= ~(BIT(6) | BIT(7));
1375 if (!_rtl92s_set_sysclk(hw
, tmpu1b
)) {
1376 rtlpriv
->psc
.pwrdomain_protect
= false;
1381 rtl_write_byte(rtlpriv
, AFE_PLL_CTRL
, 0x0);
1382 rtl_write_byte(rtlpriv
, LDOA15_CTRL
, 0x34);
1384 /* Reset MAC-IO and CPU and Core Digital BIT10/11/15 */
1385 tmpu1b
= rtl_read_byte(rtlpriv
, SYS_FUNC_EN
+ 1);
1387 /* If IPS we need to turn LED on. So we not
1388 * not disable BIT 3/7 of reg3. */
1389 if (rtlpriv
->psc
.rfoff_reason
& (RF_CHANGE_BY_IPS
| RF_CHANGE_BY_HW
))
1394 rtl_write_byte(rtlpriv
, SYS_FUNC_EN
+ 1, tmpu1b
);
1395 /* wait for BIT 10/11/15 to pull high automatically!! */
1398 rtl_write_byte(rtlpriv
, CMDR
, 0);
1399 rtl_write_byte(rtlpriv
, TCR
, 0);
1401 /* Data sheet not define 0x562!!! Copy from WMAC!!!!! */
1402 tmpu1b
= rtl_read_byte(rtlpriv
, 0x562);
1404 rtl_write_byte(rtlpriv
, 0x562, tmpu1b
);
1405 tmpu1b
&= ~(BIT(3));
1406 rtl_write_byte(rtlpriv
, 0x562, tmpu1b
);
1408 /* Enable AFE clock source */
1409 tmpu1b
= rtl_read_byte(rtlpriv
, AFE_XTAL_CTRL
);
1410 rtl_write_byte(rtlpriv
, AFE_XTAL_CTRL
, (tmpu1b
| 0x01));
1413 tmpu1b
= rtl_read_byte(rtlpriv
, AFE_XTAL_CTRL
+ 1);
1414 rtl_write_byte(rtlpriv
, AFE_XTAL_CTRL
+ 1, (tmpu1b
& 0xfb));
1416 /* Enable AFE Macro Block's Bandgap */
1417 tmpu1b
= rtl_read_byte(rtlpriv
, AFE_MISC
);
1418 rtl_write_byte(rtlpriv
, AFE_MISC
, (tmpu1b
| BIT(0)));
1421 /* Enable AFE Mbias */
1422 tmpu1b
= rtl_read_byte(rtlpriv
, AFE_MISC
);
1423 rtl_write_byte(rtlpriv
, AFE_MISC
, (tmpu1b
| 0x02));
1426 /* Enable LDOA15 block */
1427 tmpu1b
= rtl_read_byte(rtlpriv
, LDOA15_CTRL
);
1428 rtl_write_byte(rtlpriv
, LDOA15_CTRL
, (tmpu1b
| BIT(0)));
1430 /* Set Digital Vdd to Retention isolation Path. */
1431 tmpu2b
= rtl_read_word(rtlpriv
, SYS_ISO_CTRL
);
1432 rtl_write_word(rtlpriv
, SYS_ISO_CTRL
, (tmpu2b
| BIT(11)));
1435 /* For warm reboot NIC disappera bug. */
1436 tmpu2b
= rtl_read_word(rtlpriv
, SYS_FUNC_EN
);
1437 rtl_write_word(rtlpriv
, SYS_FUNC_EN
, (tmpu2b
| BIT(13)));
1439 rtl_write_byte(rtlpriv
, SYS_ISO_CTRL
+ 1, 0x68);
1441 /* Enable AFE PLL Macro Block */
1442 tmpu1b
= rtl_read_byte(rtlpriv
, AFE_PLL_CTRL
);
1443 rtl_write_byte(rtlpriv
, AFE_PLL_CTRL
, (tmpu1b
| BIT(0) | BIT(4)));
1444 /* Enable MAC 80MHZ clock */
1445 tmpu1b
= rtl_read_byte(rtlpriv
, AFE_PLL_CTRL
+ 1);
1446 rtl_write_byte(rtlpriv
, AFE_PLL_CTRL
+ 1, (tmpu1b
| BIT(0)));
1449 /* Release isolation AFE PLL & MD */
1450 rtl_write_byte(rtlpriv
, SYS_ISO_CTRL
, 0xA6);
1452 /* Enable MAC clock */
1453 tmpu2b
= rtl_read_word(rtlpriv
, SYS_CLKR
);
1454 rtl_write_word(rtlpriv
, SYS_CLKR
, (tmpu2b
| BIT(12) | BIT(11)));
1456 /* Enable Core digital and enable IOREG R/W */
1457 tmpu2b
= rtl_read_word(rtlpriv
, SYS_FUNC_EN
);
1458 rtl_write_word(rtlpriv
, SYS_FUNC_EN
, (tmpu2b
| BIT(11)));
1460 rtl_write_word(rtlpriv
, SYS_FUNC_EN
, (tmpu2b
| BIT(11) | BIT(15)));
1462 /* Switch the control path. */
1463 tmpu2b
= rtl_read_word(rtlpriv
, SYS_CLKR
);
1464 rtl_write_word(rtlpriv
, SYS_CLKR
, (tmpu2b
& (~BIT(2))));
1466 tmpu1b
= rtl_read_byte(rtlpriv
, (SYS_CLKR
+ 1));
1467 tmpu1b
= ((tmpu1b
| BIT(7)) & (~BIT(6)));
1468 if (!_rtl92s_set_sysclk(hw
, tmpu1b
)) {
1469 rtlpriv
->psc
.pwrdomain_protect
= false;
1473 rtl_write_word(rtlpriv
, CMDR
, 0x37FC);
1475 /* After MACIO reset,we must refresh LED state. */
1476 _rtl92se_gen_refreshledstate(hw
);
1478 rtlpriv
->psc
.pwrdomain_protect
= false;
1481 void rtl92se_card_disable(struct ieee80211_hw
*hw
)
1483 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1484 struct rtl_mac
*mac
= rtl_mac(rtl_priv(hw
));
1485 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
1486 struct rtl_ps_ctl
*ppsc
= rtl_psc(rtl_priv(hw
));
1487 enum nl80211_iftype opmode
;
1490 rtlpriv
->intf_ops
->enable_aspm(hw
);
1492 if (rtlpci
->driver_is_goingto_unload
||
1493 ppsc
->rfoff_reason
> RF_CHANGE_BY_PS
)
1494 rtlpriv
->cfg
->ops
->led_control(hw
, LED_CTL_POWER_OFF
);
1496 /* we should chnge GPIO to input mode
1497 * this will drop away current about 25mA*/
1498 rtl8192se_gpiobit3_cfg_inputmode(hw
);
1500 /* this is very important for ips power save */
1501 while (wait
-- >= 10 && rtlpriv
->psc
.pwrdomain_protect
) {
1502 if (rtlpriv
->psc
.pwrdomain_protect
)
1508 mac
->link_state
= MAC80211_NOLINK
;
1509 opmode
= NL80211_IFTYPE_UNSPECIFIED
;
1510 _rtl92se_set_media_status(hw
, opmode
);
1512 _rtl92s_phy_set_rfhalt(hw
);
1516 void rtl92se_interrupt_recognized(struct ieee80211_hw
*hw
, u32
*p_inta
,
1519 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1520 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
1522 *p_inta
= rtl_read_dword(rtlpriv
, ISR
) & rtlpci
->irq_mask
[0];
1523 rtl_write_dword(rtlpriv
, ISR
, *p_inta
);
1525 *p_intb
= rtl_read_dword(rtlpriv
, ISR
+ 4) & rtlpci
->irq_mask
[1];
1526 rtl_write_dword(rtlpriv
, ISR
+ 4, *p_intb
);
1529 void rtl92se_set_beacon_related_registers(struct ieee80211_hw
*hw
)
1531 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1532 struct rtl_mac
*mac
= rtl_mac(rtl_priv(hw
));
1533 u16 bcntime_cfg
= 0;
1534 u16 bcn_cw
= 6, bcn_ifs
= 0xf;
1535 u16 atim_window
= 2;
1537 /* ATIM Window (in unit of TU). */
1538 rtl_write_word(rtlpriv
, ATIMWND
, atim_window
);
1540 /* Beacon interval (in unit of TU). */
1541 rtl_write_word(rtlpriv
, BCN_INTERVAL
, mac
->beacon_interval
);
1543 /* DrvErlyInt (in unit of TU). (Time to send
1544 * interrupt to notify driver to change
1545 * beacon content) */
1546 rtl_write_word(rtlpriv
, BCN_DRV_EARLY_INT
, 10 << 4);
1548 /* BcnDMATIM(in unit of us). Indicates the
1549 * time before TBTT to perform beacon queue DMA */
1550 rtl_write_word(rtlpriv
, BCN_DMATIME
, 256);
1552 /* Force beacon frame transmission even
1553 * after receiving beacon frame from
1554 * other ad hoc STA */
1555 rtl_write_byte(rtlpriv
, BCN_ERR_THRESH
, 100);
1557 /* Beacon Time Configuration */
1558 if (mac
->opmode
== NL80211_IFTYPE_ADHOC
)
1559 bcntime_cfg
|= (bcn_cw
<< BCN_TCFG_CW_SHIFT
);
1561 /* TODO: bcn_ifs may required to be changed on ASIC */
1562 bcntime_cfg
|= bcn_ifs
<< BCN_TCFG_IFS
;
1564 /*for beacon changed */
1565 rtl92s_phy_set_beacon_hwreg(hw
, mac
->beacon_interval
);
1568 void rtl92se_set_beacon_interval(struct ieee80211_hw
*hw
)
1570 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1571 struct rtl_mac
*mac
= rtl_mac(rtl_priv(hw
));
1572 u16 bcn_interval
= mac
->beacon_interval
;
1574 /* Beacon interval (in unit of TU). */
1575 rtl_write_word(rtlpriv
, BCN_INTERVAL
, bcn_interval
);
1576 /* 2008.10.24 added by tynli for beacon changed. */
1577 rtl92s_phy_set_beacon_hwreg(hw
, bcn_interval
);
1580 void rtl92se_update_interrupt_mask(struct ieee80211_hw
*hw
,
1581 u32 add_msr
, u32 rm_msr
)
1583 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1584 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
1586 RT_TRACE(rtlpriv
, COMP_INTR
, DBG_LOUD
,
1587 ("add_msr:%x, rm_msr:%x\n", add_msr
, rm_msr
));
1590 rtlpci
->irq_mask
[0] |= add_msr
;
1593 rtlpci
->irq_mask
[0] &= (~rm_msr
);
1595 rtl92se_disable_interrupt(hw
);
1596 rtl92se_enable_interrupt(hw
);
1599 static void _rtl8192se_get_IC_Inferiority(struct ieee80211_hw
*hw
)
1601 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
1602 struct rtl_hal
*rtlhal
= rtl_hal(rtl_priv(hw
));
1605 rtlhal
->ic_class
= IC_INFERIORITY_A
;
1607 /* Only retrieving while using EFUSE. */
1608 if ((rtlefuse
->epromtype
== EEPROM_BOOT_EFUSE
) &&
1609 !rtlefuse
->autoload_failflag
) {
1610 efuse_id
= efuse_read_1byte(hw
, EFUSE_IC_ID_OFFSET
);
1612 if (efuse_id
== 0xfe)
1613 rtlhal
->ic_class
= IC_INFERIORITY_B
;
1617 static void _rtl92se_read_adapter_info(struct ieee80211_hw
*hw
)
1619 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1620 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
1621 struct rtl_phy
*rtlphy
= &(rtlpriv
->phy
);
1625 u8 hwinfo
[HWSET_MAX_SIZE_92S
];
1628 if (rtlefuse
->epromtype
== EEPROM_93C46
) {
1629 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_EMERG
,
1630 ("RTL819X Not boot from eeprom, check it !!"));
1631 } else if (rtlefuse
->epromtype
== EEPROM_BOOT_EFUSE
) {
1632 rtl_efuse_shadow_map_update(hw
);
1634 memcpy((void *)hwinfo
, (void *)
1635 &rtlefuse
->efuse_map
[EFUSE_INIT_MAP
][0],
1636 HWSET_MAX_SIZE_92S
);
1639 RT_PRINT_DATA(rtlpriv
, COMP_INIT
, DBG_DMESG
, ("MAP\n"),
1640 hwinfo
, HWSET_MAX_SIZE_92S
);
1642 eeprom_id
= *((u16
*)&hwinfo
[0]);
1643 if (eeprom_id
!= RTL8190_EEPROM_ID
) {
1644 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_WARNING
,
1645 ("EEPROM ID(%#x) is invalid!!\n", eeprom_id
));
1646 rtlefuse
->autoload_failflag
= true;
1648 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
, ("Autoload OK\n"));
1649 rtlefuse
->autoload_failflag
= false;
1652 if (rtlefuse
->autoload_failflag
)
1655 _rtl8192se_get_IC_Inferiority(hw
);
1657 /* Read IC Version && Channel Plan */
1658 /* VID, DID SE 0xA-D */
1659 rtlefuse
->eeprom_vid
= *(u16
*)&hwinfo
[EEPROM_VID
];
1660 rtlefuse
->eeprom_did
= *(u16
*)&hwinfo
[EEPROM_DID
];
1661 rtlefuse
->eeprom_svid
= *(u16
*)&hwinfo
[EEPROM_SVID
];
1662 rtlefuse
->eeprom_smid
= *(u16
*)&hwinfo
[EEPROM_SMID
];
1663 rtlefuse
->eeprom_version
= *(u16
*)&hwinfo
[EEPROM_VERSION
];
1665 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
,
1666 ("EEPROMId = 0x%4x\n", eeprom_id
));
1667 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
,
1668 ("EEPROM VID = 0x%4x\n", rtlefuse
->eeprom_vid
));
1669 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
,
1670 ("EEPROM DID = 0x%4x\n", rtlefuse
->eeprom_did
));
1671 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
,
1672 ("EEPROM SVID = 0x%4x\n", rtlefuse
->eeprom_svid
));
1673 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
,
1674 ("EEPROM SMID = 0x%4x\n", rtlefuse
->eeprom_smid
));
1676 for (i
= 0; i
< 6; i
+= 2) {
1677 usvalue
= *(u16
*)&hwinfo
[EEPROM_MAC_ADDR
+ i
];
1678 *((u16
*) (&rtlefuse
->dev_addr
[i
])) = usvalue
;
1681 for (i
= 0; i
< 6; i
++)
1682 rtl_write_byte(rtlpriv
, MACIDR0
+ i
, rtlefuse
->dev_addr
[i
]);
1684 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_DMESG
,
1685 ("%pM\n", rtlefuse
->dev_addr
));
1687 /* Get Tx Power Level by Channel */
1688 /* Read Tx power of Channel 1 ~ 14 from EEPROM. */
1689 /* 92S suupport RF A & B */
1690 for (rf_path
= 0; rf_path
< 2; rf_path
++) {
1691 for (i
= 0; i
< 3; i
++) {
1692 /* Read CCK RF A & B Tx power */
1693 rtlefuse
->eeprom_chnlarea_txpwr_cck
[rf_path
][i
] =
1694 hwinfo
[EEPROM_TXPOWERBASE
+ rf_path
* 3 + i
];
1696 /* Read OFDM RF A & B Tx power for 1T */
1697 rtlefuse
->eeprom_chnlarea_txpwr_ht40_1s
[rf_path
][i
] =
1698 hwinfo
[EEPROM_TXPOWERBASE
+ 6 + rf_path
* 3 + i
];
1700 /* Read OFDM RF A & B Tx power for 2T */
1701 rtlefuse
->eeprom_chnlarea_txpwr_ht40_2sdiif
[rf_path
][i
]
1702 = hwinfo
[EEPROM_TXPOWERBASE
+ 12 +
1707 for (rf_path
= 0; rf_path
< 2; rf_path
++)
1708 for (i
= 0; i
< 3; i
++)
1709 RTPRINT(rtlpriv
, FINIT
, INIT_EEPROM
,
1710 ("RF(%d) EEPROM CCK Area(%d) = 0x%x\n", rf_path
,
1711 i
, rtlefuse
->eeprom_chnlarea_txpwr_cck
1713 for (rf_path
= 0; rf_path
< 2; rf_path
++)
1714 for (i
= 0; i
< 3; i
++)
1715 RTPRINT(rtlpriv
, FINIT
, INIT_EEPROM
,
1716 ("RF(%d) EEPROM HT40 1S Area(%d) = 0x%x\n",
1718 rtlefuse
->eeprom_chnlarea_txpwr_ht40_1s
1720 for (rf_path
= 0; rf_path
< 2; rf_path
++)
1721 for (i
= 0; i
< 3; i
++)
1722 RTPRINT(rtlpriv
, FINIT
, INIT_EEPROM
,
1723 ("RF(%d) EEPROM HT40 2S Diff Area(%d) = 0x%x\n",
1725 rtlefuse
->eeprom_chnlarea_txpwr_ht40_2sdiif
1728 for (rf_path
= 0; rf_path
< 2; rf_path
++) {
1730 /* Assign dedicated channel tx power */
1731 for (i
= 0; i
< 14; i
++) {
1732 /* channel 1~3 use the same Tx Power Level. */
1742 /* Record A & B CCK /OFDM - 1T/2T Channel area
1744 rtlefuse
->txpwrlevel_cck
[rf_path
][i
] =
1745 rtlefuse
->eeprom_chnlarea_txpwr_cck
1747 rtlefuse
->txpwrlevel_ht40_1s
[rf_path
][i
] =
1748 rtlefuse
->eeprom_chnlarea_txpwr_ht40_1s
1750 rtlefuse
->txpwrlevel_ht40_2s
[rf_path
][i
] =
1751 rtlefuse
->eeprom_chnlarea_txpwr_ht40_2sdiif
1755 for (i
= 0; i
< 14; i
++) {
1756 RTPRINT(rtlpriv
, FINIT
, INIT_TxPower
,
1757 ("RF(%d)-Ch(%d) [CCK / HT40_1S / HT40_2S] = "
1758 "[0x%x / 0x%x / 0x%x]\n", rf_path
, i
,
1759 rtlefuse
->txpwrlevel_cck
[rf_path
][i
],
1760 rtlefuse
->txpwrlevel_ht40_1s
[rf_path
][i
],
1761 rtlefuse
->txpwrlevel_ht40_2s
[rf_path
][i
]));
1765 for (rf_path
= 0; rf_path
< 2; rf_path
++) {
1766 for (i
= 0; i
< 3; i
++) {
1767 /* Read Power diff limit. */
1768 rtlefuse
->eeprom_pwrgroup
[rf_path
][i
] =
1769 hwinfo
[EEPROM_TXPWRGROUP
+ rf_path
* 3 + i
];
1773 for (rf_path
= 0; rf_path
< 2; rf_path
++) {
1774 /* Fill Pwr group */
1775 for (i
= 0; i
< 14; i
++) {
1786 rtlefuse
->pwrgroup_ht20
[rf_path
][i
] =
1787 (rtlefuse
->eeprom_pwrgroup
[rf_path
][index
] &
1789 rtlefuse
->pwrgroup_ht40
[rf_path
][i
] =
1790 ((rtlefuse
->eeprom_pwrgroup
[rf_path
][index
] &
1793 RTPRINT(rtlpriv
, FINIT
, INIT_TxPower
,
1794 ("RF-%d pwrgroup_ht20[%d] = 0x%x\n",
1796 rtlefuse
->pwrgroup_ht20
[rf_path
][i
]));
1797 RTPRINT(rtlpriv
, FINIT
, INIT_TxPower
,
1798 ("RF-%d pwrgroup_ht40[%d] = 0x%x\n",
1800 rtlefuse
->pwrgroup_ht40
[rf_path
][i
]));
1804 for (i
= 0; i
< 14; i
++) {
1805 /* Read tx power difference between HT OFDM 20/40 MHZ */
1816 tempval
= (*(u8
*)&hwinfo
[EEPROM_TX_PWR_HT20_DIFF
+
1818 rtlefuse
->txpwr_ht20diff
[RF90_PATH_A
][i
] = (tempval
& 0xF);
1819 rtlefuse
->txpwr_ht20diff
[RF90_PATH_B
][i
] =
1820 ((tempval
>> 4) & 0xF);
1822 /* Read OFDM<->HT tx power diff */
1833 tempval
= (*(u8
*)&hwinfo
[EEPROM_TX_PWR_OFDM_DIFF
+ index
])
1835 rtlefuse
->txpwr_legacyhtdiff
[RF90_PATH_A
][i
] =
1837 rtlefuse
->txpwr_legacyhtdiff
[RF90_PATH_B
][i
] =
1838 ((tempval
>> 4) & 0xF);
1840 tempval
= (*(u8
*)&hwinfo
[TX_PWR_SAFETY_CHK
]);
1841 rtlefuse
->txpwr_safetyflag
= (tempval
& 0x01);
1844 rtlefuse
->eeprom_regulatory
= 0;
1845 if (rtlefuse
->eeprom_version
>= 2) {
1847 if (rtlefuse
->eeprom_version
>= 4)
1848 rtlefuse
->eeprom_regulatory
=
1849 (hwinfo
[EEPROM_REGULATORY
] & 0x7);
1851 rtlefuse
->eeprom_regulatory
=
1852 (hwinfo
[EEPROM_REGULATORY
] & 0x1);
1854 RTPRINT(rtlpriv
, FINIT
, INIT_TxPower
,
1855 ("eeprom_regulatory = 0x%x\n", rtlefuse
->eeprom_regulatory
));
1857 for (i
= 0; i
< 14; i
++)
1858 RTPRINT(rtlpriv
, FINIT
, INIT_TxPower
,
1859 ("RF-A Ht20 to HT40 Diff[%d] = 0x%x\n", i
,
1860 rtlefuse
->txpwr_ht20diff
[RF90_PATH_A
][i
]));
1861 for (i
= 0; i
< 14; i
++)
1862 RTPRINT(rtlpriv
, FINIT
, INIT_TxPower
,
1863 ("RF-A Legacy to Ht40 Diff[%d] = 0x%x\n", i
,
1864 rtlefuse
->txpwr_legacyhtdiff
[RF90_PATH_A
][i
]));
1865 for (i
= 0; i
< 14; i
++)
1866 RTPRINT(rtlpriv
, FINIT
, INIT_TxPower
,
1867 ("RF-B Ht20 to HT40 Diff[%d] = 0x%x\n", i
,
1868 rtlefuse
->txpwr_ht20diff
[RF90_PATH_B
][i
]));
1869 for (i
= 0; i
< 14; i
++)
1870 RTPRINT(rtlpriv
, FINIT
, INIT_TxPower
,
1871 ("RF-B Legacy to HT40 Diff[%d] = 0x%x\n", i
,
1872 rtlefuse
->txpwr_legacyhtdiff
[RF90_PATH_B
][i
]));
1874 RTPRINT(rtlpriv
, FINIT
, INIT_TxPower
, ("TxPwrSafetyFlag = %d\n",
1875 rtlefuse
->txpwr_safetyflag
));
1877 /* Read RF-indication and Tx Power gain
1878 * index diff of legacy to HT OFDM rate. */
1879 tempval
= (*(u8
*)&hwinfo
[EEPROM_RFIND_POWERDIFF
]) & 0xff;
1880 rtlefuse
->eeprom_txpowerdiff
= tempval
;
1881 rtlefuse
->legacy_httxpowerdiff
=
1882 rtlefuse
->txpwr_legacyhtdiff
[RF90_PATH_A
][0];
1884 RTPRINT(rtlpriv
, FINIT
, INIT_TxPower
, ("TxPowerDiff = %#x\n",
1885 rtlefuse
->eeprom_txpowerdiff
));
1887 /* Get TSSI value for each path. */
1888 usvalue
= *(u16
*)&hwinfo
[EEPROM_TSSI_A
];
1889 rtlefuse
->eeprom_tssi
[RF90_PATH_A
] = (u8
)((usvalue
& 0xff00) >> 8);
1890 usvalue
= *(u8
*)&hwinfo
[EEPROM_TSSI_B
];
1891 rtlefuse
->eeprom_tssi
[RF90_PATH_B
] = (u8
)(usvalue
& 0xff);
1893 RTPRINT(rtlpriv
, FINIT
, INIT_TxPower
, ("TSSI_A = 0x%x, TSSI_B = 0x%x\n",
1894 rtlefuse
->eeprom_tssi
[RF90_PATH_A
],
1895 rtlefuse
->eeprom_tssi
[RF90_PATH_B
]));
1897 /* Read antenna tx power offset of B/C/D to A from EEPROM */
1898 /* and read ThermalMeter from EEPROM */
1899 tempval
= *(u8
*)&hwinfo
[EEPROM_THERMALMETER
];
1900 rtlefuse
->eeprom_thermalmeter
= tempval
;
1901 RTPRINT(rtlpriv
, FINIT
, INIT_TxPower
, ("thermalmeter = 0x%x\n",
1902 rtlefuse
->eeprom_thermalmeter
));
1904 /* ThermalMeter, BIT(0)~3 for RFIC1, BIT(4)~7 for RFIC2 */
1905 rtlefuse
->thermalmeter
[0] = (rtlefuse
->eeprom_thermalmeter
& 0x1f);
1906 rtlefuse
->tssi_13dbm
= rtlefuse
->eeprom_thermalmeter
* 100;
1908 /* Read CrystalCap from EEPROM */
1909 tempval
= (*(u8
*)&hwinfo
[EEPROM_CRYSTALCAP
]) >> 4;
1910 rtlefuse
->eeprom_crystalcap
= tempval
;
1911 /* CrystalCap, BIT(12)~15 */
1912 rtlefuse
->crystalcap
= rtlefuse
->eeprom_crystalcap
;
1914 /* Read IC Version && Channel Plan */
1915 /* Version ID, Channel plan */
1916 rtlefuse
->eeprom_channelplan
= *(u8
*)&hwinfo
[EEPROM_CHANNELPLAN
];
1917 rtlefuse
->txpwr_fromeprom
= true;
1918 RTPRINT(rtlpriv
, FINIT
, INIT_TxPower
, ("EEPROM ChannelPlan = 0x%4x\n",
1919 rtlefuse
->eeprom_channelplan
));
1921 /* Read Customer ID or Board Type!!! */
1922 tempval
= *(u8
*)&hwinfo
[EEPROM_BOARDTYPE
];
1923 /* Change RF type definition */
1925 rtlphy
->rf_type
= RF_2T2R
;
1926 else if (tempval
== 1)
1927 rtlphy
->rf_type
= RF_1T2R
;
1928 else if (tempval
== 2)
1929 rtlphy
->rf_type
= RF_1T2R
;
1930 else if (tempval
== 3)
1931 rtlphy
->rf_type
= RF_1T1R
;
1933 /* 1T2R but 1SS (1x1 receive combining) */
1934 rtlefuse
->b1x1_recvcombine
= false;
1935 if (rtlphy
->rf_type
== RF_1T2R
) {
1936 tempval
= rtl_read_byte(rtlpriv
, 0x07);
1937 if (!(tempval
& BIT(0))) {
1938 rtlefuse
->b1x1_recvcombine
= true;
1939 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
,
1940 ("RF_TYPE=1T2R but only 1SS\n"));
1943 rtlefuse
->b1ss_support
= rtlefuse
->b1x1_recvcombine
;
1944 rtlefuse
->eeprom_oemid
= *(u8
*)&hwinfo
[EEPROM_CUSTOMID
];
1946 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
, ("EEPROM Customer ID: 0x%2x",
1947 rtlefuse
->eeprom_oemid
));
1949 /* set channel paln to world wide 13 */
1950 rtlefuse
->channel_plan
= COUNTRY_CODE_WORLD_WIDE_13
;
1953 void rtl92se_read_eeprom_info(struct ieee80211_hw
*hw
)
1955 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1956 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
1959 tmp_u1b
= rtl_read_byte(rtlpriv
, EPROM_CMD
);
1961 if (tmp_u1b
& BIT(4)) {
1962 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_DMESG
, ("Boot from EEPROM\n"));
1963 rtlefuse
->epromtype
= EEPROM_93C46
;
1965 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_DMESG
, ("Boot from EFUSE\n"));
1966 rtlefuse
->epromtype
= EEPROM_BOOT_EFUSE
;
1969 if (tmp_u1b
& BIT(5)) {
1970 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
, ("Autoload OK\n"));
1971 rtlefuse
->autoload_failflag
= false;
1972 _rtl92se_read_adapter_info(hw
);
1974 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_EMERG
, ("Autoload ERR!!\n"));
1975 rtlefuse
->autoload_failflag
= true;
1979 static void rtl92se_update_hal_rate_table(struct ieee80211_hw
*hw
,
1980 struct ieee80211_sta
*sta
)
1982 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1983 struct rtl_phy
*rtlphy
= &(rtlpriv
->phy
);
1984 struct rtl_mac
*mac
= rtl_mac(rtl_priv(hw
));
1985 struct rtl_hal
*rtlhal
= rtl_hal(rtl_priv(hw
));
1988 u8 nmode
= mac
->ht_enable
;
1989 u8 mimo_ps
= IEEE80211_SMPS_OFF
;
1990 u16 shortgi_rate
= 0;
1991 u32 tmp_ratr_value
= 0;
1992 u8 curtxbw_40mhz
= mac
->bw_40
;
1993 u8 curshortgi_40mhz
= (sta
->ht_cap
.cap
& IEEE80211_HT_CAP_SGI_40
) ?
1995 u8 curshortgi_20mhz
= (sta
->ht_cap
.cap
& IEEE80211_HT_CAP_SGI_20
) ?
1997 enum wireless_mode wirelessmode
= mac
->mode
;
1999 if (rtlhal
->current_bandtype
== BAND_ON_5G
)
2000 ratr_value
= sta
->supp_rates
[1] << 4;
2002 ratr_value
= sta
->supp_rates
[0];
2003 ratr_value
|= (sta
->ht_cap
.mcs
.rx_mask
[1] << 20 |
2004 sta
->ht_cap
.mcs
.rx_mask
[0] << 12);
2005 switch (wirelessmode
) {
2006 case WIRELESS_MODE_B
:
2007 ratr_value
&= 0x0000000D;
2009 case WIRELESS_MODE_G
:
2010 ratr_value
&= 0x00000FF5;
2012 case WIRELESS_MODE_N_24G
:
2013 case WIRELESS_MODE_N_5G
:
2015 if (mimo_ps
== IEEE80211_SMPS_STATIC
) {
2016 ratr_value
&= 0x0007F005;
2020 if (get_rf_type(rtlphy
) == RF_1T2R
||
2021 get_rf_type(rtlphy
) == RF_1T1R
) {
2023 ratr_mask
= 0x000ff015;
2025 ratr_mask
= 0x000ff005;
2028 ratr_mask
= 0x0f0ff015;
2030 ratr_mask
= 0x0f0ff005;
2033 ratr_value
&= ratr_mask
;
2037 if (rtlphy
->rf_type
== RF_1T2R
)
2038 ratr_value
&= 0x000ff0ff;
2040 ratr_value
&= 0x0f0ff0ff;
2045 if (rtlpriv
->rtlhal
.version
>= VERSION_8192S_BCUT
)
2046 ratr_value
&= 0x0FFFFFFF;
2047 else if (rtlpriv
->rtlhal
.version
== VERSION_8192S_ACUT
)
2048 ratr_value
&= 0x0FFFFFF0;
2050 if (nmode
&& ((curtxbw_40mhz
&&
2051 curshortgi_40mhz
) || (!curtxbw_40mhz
&&
2052 curshortgi_20mhz
))) {
2054 ratr_value
|= 0x10000000;
2055 tmp_ratr_value
= (ratr_value
>> 12);
2057 for (shortgi_rate
= 15; shortgi_rate
> 0; shortgi_rate
--) {
2058 if ((1 << shortgi_rate
) & tmp_ratr_value
)
2062 shortgi_rate
= (shortgi_rate
<< 12) | (shortgi_rate
<< 8) |
2063 (shortgi_rate
<< 4) | (shortgi_rate
);
2065 rtl_write_byte(rtlpriv
, SG_RATE
, shortgi_rate
);
2068 rtl_write_dword(rtlpriv
, ARFR0
+ ratr_index
* 4, ratr_value
);
2069 if (ratr_value
& 0xfffff000)
2070 rtl92s_phy_set_fw_cmd(hw
, FW_CMD_RA_REFRESH_N
);
2072 rtl92s_phy_set_fw_cmd(hw
, FW_CMD_RA_REFRESH_BG
);
2074 RT_TRACE(rtlpriv
, COMP_RATR
, DBG_DMESG
,
2075 ("%x\n", rtl_read_dword(rtlpriv
, ARFR0
)));
2078 static void rtl92se_update_hal_rate_mask(struct ieee80211_hw
*hw
,
2079 struct ieee80211_sta
*sta
,
2082 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
2083 struct rtl_phy
*rtlphy
= &(rtlpriv
->phy
);
2084 struct rtl_mac
*mac
= rtl_mac(rtl_priv(hw
));
2085 struct rtl_hal
*rtlhal
= rtl_hal(rtl_priv(hw
));
2086 struct rtl_sta_info
*sta_entry
= NULL
;
2089 u8 curtxbw_40mhz
= (sta
->ht_cap
.cap
& IEEE80211_HT_CAP_SUP_WIDTH_20_40
)
2091 u8 curshortgi_40mhz
= (sta
->ht_cap
.cap
& IEEE80211_HT_CAP_SGI_40
) ?
2093 u8 curshortgi_20mhz
= (sta
->ht_cap
.cap
& IEEE80211_HT_CAP_SGI_20
) ?
2095 enum wireless_mode wirelessmode
= 0;
2096 bool shortgi
= false;
2098 u8 shortgi_rate
= 0;
2101 bool bmulticast
= false;
2103 u8 mimo_ps
= IEEE80211_SMPS_OFF
;
2105 sta_entry
= (struct rtl_sta_info
*) sta
->drv_priv
;
2106 wirelessmode
= sta_entry
->wireless_mode
;
2107 if (mac
->opmode
== NL80211_IFTYPE_STATION
)
2108 curtxbw_40mhz
= mac
->bw_40
;
2109 else if (mac
->opmode
== NL80211_IFTYPE_AP
||
2110 mac
->opmode
== NL80211_IFTYPE_ADHOC
)
2111 macid
= sta
->aid
+ 1;
2113 if (rtlhal
->current_bandtype
== BAND_ON_5G
)
2114 ratr_bitmap
= sta
->supp_rates
[1] << 4;
2116 ratr_bitmap
= sta
->supp_rates
[0];
2117 ratr_bitmap
|= (sta
->ht_cap
.mcs
.rx_mask
[1] << 20 |
2118 sta
->ht_cap
.mcs
.rx_mask
[0] << 12);
2119 switch (wirelessmode
) {
2120 case WIRELESS_MODE_B
:
2121 band
|= WIRELESS_11B
;
2122 ratr_index
= RATR_INX_WIRELESS_B
;
2123 if (ratr_bitmap
& 0x0000000c)
2124 ratr_bitmap
&= 0x0000000d;
2126 ratr_bitmap
&= 0x0000000f;
2128 case WIRELESS_MODE_G
:
2129 band
|= (WIRELESS_11G
| WIRELESS_11B
);
2130 ratr_index
= RATR_INX_WIRELESS_GB
;
2132 if (rssi_level
== 1)
2133 ratr_bitmap
&= 0x00000f00;
2134 else if (rssi_level
== 2)
2135 ratr_bitmap
&= 0x00000ff0;
2137 ratr_bitmap
&= 0x00000ff5;
2139 case WIRELESS_MODE_A
:
2140 band
|= WIRELESS_11A
;
2141 ratr_index
= RATR_INX_WIRELESS_A
;
2142 ratr_bitmap
&= 0x00000ff0;
2144 case WIRELESS_MODE_N_24G
:
2145 case WIRELESS_MODE_N_5G
:
2146 band
|= (WIRELESS_11N
| WIRELESS_11G
| WIRELESS_11B
);
2147 ratr_index
= RATR_INX_WIRELESS_NGB
;
2149 if (mimo_ps
== IEEE80211_SMPS_STATIC
) {
2150 if (rssi_level
== 1)
2151 ratr_bitmap
&= 0x00070000;
2152 else if (rssi_level
== 2)
2153 ratr_bitmap
&= 0x0007f000;
2155 ratr_bitmap
&= 0x0007f005;
2157 if (rtlphy
->rf_type
== RF_1T2R
||
2158 rtlphy
->rf_type
== RF_1T1R
) {
2159 if (rssi_level
== 1) {
2160 ratr_bitmap
&= 0x000f0000;
2161 } else if (rssi_level
== 3) {
2162 ratr_bitmap
&= 0x000fc000;
2163 } else if (rssi_level
== 5) {
2164 ratr_bitmap
&= 0x000ff000;
2167 ratr_bitmap
&= 0x000ff015;
2169 ratr_bitmap
&= 0x000ff005;
2172 if (rssi_level
== 1) {
2173 ratr_bitmap
&= 0x0f8f0000;
2174 } else if (rssi_level
== 3) {
2175 ratr_bitmap
&= 0x0f8fc000;
2176 } else if (rssi_level
== 5) {
2177 ratr_bitmap
&= 0x0f8ff000;
2180 ratr_bitmap
&= 0x0f8ff015;
2182 ratr_bitmap
&= 0x0f8ff005;
2187 if ((curtxbw_40mhz
&& curshortgi_40mhz
) ||
2188 (!curtxbw_40mhz
&& curshortgi_20mhz
)) {
2191 else if (macid
== 1)
2196 band
|= (WIRELESS_11N
| WIRELESS_11G
| WIRELESS_11B
);
2197 ratr_index
= RATR_INX_WIRELESS_NGB
;
2199 if (rtlphy
->rf_type
== RF_1T2R
)
2200 ratr_bitmap
&= 0x000ff0ff;
2202 ratr_bitmap
&= 0x0f8ff0ff;
2206 if (rtlpriv
->rtlhal
.version
>= VERSION_8192S_BCUT
)
2207 ratr_bitmap
&= 0x0FFFFFFF;
2208 else if (rtlpriv
->rtlhal
.version
== VERSION_8192S_ACUT
)
2209 ratr_bitmap
&= 0x0FFFFFF0;
2212 ratr_bitmap
|= 0x10000000;
2213 /* Get MAX MCS available. */
2214 ratr_value
= (ratr_bitmap
>> 12);
2215 for (shortgi_rate
= 15; shortgi_rate
> 0; shortgi_rate
--) {
2216 if ((1 << shortgi_rate
) & ratr_value
)
2220 shortgi_rate
= (shortgi_rate
<< 12) | (shortgi_rate
<< 8) |
2221 (shortgi_rate
<< 4) | (shortgi_rate
);
2222 rtl_write_byte(rtlpriv
, SG_RATE
, shortgi_rate
);
2225 mask
|= (bmulticast
? 1 : 0) << 9 | (macid
& 0x1f) << 4 | (band
& 0xf);
2227 RT_TRACE(rtlpriv
, COMP_RATR
, DBG_TRACE
, ("mask = %x, bitmap = %x\n",
2228 mask
, ratr_bitmap
));
2229 rtl_write_dword(rtlpriv
, 0x2c4, ratr_bitmap
);
2230 rtl_write_dword(rtlpriv
, WFM5
, (FW_RA_UPDATE_MASK
| (mask
<< 8)));
2233 sta_entry
->ratr_index
= ratr_index
;
2236 void rtl92se_update_hal_rate_tbl(struct ieee80211_hw
*hw
,
2237 struct ieee80211_sta
*sta
, u8 rssi_level
)
2239 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
2241 if (rtlpriv
->dm
.useramask
)
2242 rtl92se_update_hal_rate_mask(hw
, sta
, rssi_level
);
2244 rtl92se_update_hal_rate_table(hw
, sta
);
2247 void rtl92se_update_channel_access_setting(struct ieee80211_hw
*hw
)
2249 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
2250 struct rtl_mac
*mac
= rtl_mac(rtl_priv(hw
));
2253 rtlpriv
->cfg
->ops
->set_hw_reg(hw
, HW_VAR_SLOT_TIME
,
2254 (u8
*)&mac
->slot_time
);
2255 sifs_timer
= 0x0e0e;
2256 rtlpriv
->cfg
->ops
->set_hw_reg(hw
, HW_VAR_SIFS
, (u8
*)&sifs_timer
);
2260 /* this ifunction is for RFKILL, it's different with windows,
2261 * because UI will disable wireless when GPIO Radio Off.
2262 * And here we not check or Disable/Enable ASPM like windows*/
2263 bool rtl92se_gpio_radio_on_off_checking(struct ieee80211_hw
*hw
, u8
*valid
)
2265 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
2266 struct rtl_ps_ctl
*ppsc
= rtl_psc(rtl_priv(hw
));
2267 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
2268 enum rf_pwrstate rfpwr_toset
/*, cur_rfstate */;
2269 unsigned long flag
= 0;
2270 bool actuallyset
= false;
2271 bool turnonbypowerdomain
= false;
2273 /* just 8191se can check gpio before firstup, 92c/92d have fixed it */
2274 if ((rtlpci
->up_first_time
== 1) || (rtlpci
->being_init_adapter
))
2277 if (ppsc
->swrf_processing
)
2280 spin_lock_irqsave(&rtlpriv
->locks
.rf_ps_lock
, flag
);
2281 if (ppsc
->rfchange_inprogress
) {
2282 spin_unlock_irqrestore(&rtlpriv
->locks
.rf_ps_lock
, flag
);
2285 ppsc
->rfchange_inprogress
= true;
2286 spin_unlock_irqrestore(&rtlpriv
->locks
.rf_ps_lock
, flag
);
2289 /* cur_rfstate = ppsc->rfpwr_state;*/
2291 /* because after _rtl92s_phy_set_rfhalt, all power
2292 * closed, so we must open some power for GPIO check,
2293 * or we will always check GPIO RFOFF here,
2294 * And we should close power after GPIO check */
2295 if (RT_IN_PS_LEVEL(ppsc
, RT_RF_OFF_LEVL_HALT_NIC
)) {
2296 _rtl92se_power_domain_init(hw
);
2297 turnonbypowerdomain
= true;
2300 rfpwr_toset
= _rtl92se_rf_onoff_detect(hw
);
2302 if ((ppsc
->hwradiooff
) && (rfpwr_toset
== ERFON
)) {
2303 RT_TRACE(rtlpriv
, COMP_RF
, DBG_DMESG
,
2304 ("RFKILL-HW Radio ON, RF ON\n"));
2306 rfpwr_toset
= ERFON
;
2307 ppsc
->hwradiooff
= false;
2309 } else if ((ppsc
->hwradiooff
== false) && (rfpwr_toset
== ERFOFF
)) {
2310 RT_TRACE(rtlpriv
, COMP_RF
, DBG_DMESG
,
2311 ("RFKILL-HW Radio OFF, RF OFF\n"));
2313 rfpwr_toset
= ERFOFF
;
2314 ppsc
->hwradiooff
= true;
2319 spin_lock_irqsave(&rtlpriv
->locks
.rf_ps_lock
, flag
);
2320 ppsc
->rfchange_inprogress
= false;
2321 spin_unlock_irqrestore(&rtlpriv
->locks
.rf_ps_lock
, flag
);
2323 /* this not include ifconfig wlan0 down case */
2324 /* } else if (rfpwr_toset == ERFOFF || cur_rfstate == ERFOFF) { */
2326 /* because power_domain_init may be happen when
2327 * _rtl92s_phy_set_rfhalt, this will open some powers
2328 * and cause current increasing about 40 mA for ips,
2329 * rfoff and ifconfig down, so we set
2330 * _rtl92s_phy_set_rfhalt again here */
2331 if (ppsc
->reg_rfps_level
& RT_RF_OFF_LEVL_HALT_NIC
&&
2332 turnonbypowerdomain
) {
2333 _rtl92s_phy_set_rfhalt(hw
);
2334 RT_SET_PS_LEVEL(ppsc
, RT_RF_OFF_LEVL_HALT_NIC
);
2337 spin_lock_irqsave(&rtlpriv
->locks
.rf_ps_lock
, flag
);
2338 ppsc
->rfchange_inprogress
= false;
2339 spin_unlock_irqrestore(&rtlpriv
->locks
.rf_ps_lock
, flag
);
2343 return !ppsc
->hwradiooff
;
2347 /* Is_wepkey just used for WEP used as group & pairwise key
2348 * if pairwise is AES ang group is WEP Is_wepkey == false.*/
2349 void rtl92se_set_key(struct ieee80211_hw
*hw
, u32 key_index
, u8
*p_macaddr
,
2350 bool is_group
, u8 enc_algo
, bool is_wepkey
, bool clear_all
)
2352 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
2353 struct rtl_mac
*mac
= rtl_mac(rtl_priv(hw
));
2354 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
2355 u8
*macaddr
= p_macaddr
;
2358 bool is_pairwise
= false;
2360 static u8 cam_const_addr
[4][6] = {
2361 {0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
2362 {0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
2363 {0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
2364 {0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
2366 static u8 cam_const_broad
[] = {
2367 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2373 u8 clear_number
= 5;
2375 RT_TRACE(rtlpriv
, COMP_SEC
, DBG_DMESG
, ("clear_all\n"));
2377 for (idx
= 0; idx
< clear_number
; idx
++) {
2378 rtl_cam_mark_invalid(hw
, cam_offset
+ idx
);
2379 rtl_cam_empty_entry(hw
, cam_offset
+ idx
);
2382 memset(rtlpriv
->sec
.key_buf
[idx
], 0,
2384 rtlpriv
->sec
.key_len
[idx
] = 0;
2390 case WEP40_ENCRYPTION
:
2391 enc_algo
= CAM_WEP40
;
2393 case WEP104_ENCRYPTION
:
2394 enc_algo
= CAM_WEP104
;
2396 case TKIP_ENCRYPTION
:
2397 enc_algo
= CAM_TKIP
;
2399 case AESCCMP_ENCRYPTION
:
2403 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_EMERG
,
2404 ("switch case not process\n"));
2405 enc_algo
= CAM_TKIP
;
2409 if (is_wepkey
|| rtlpriv
->sec
.use_defaultkey
) {
2410 macaddr
= cam_const_addr
[key_index
];
2411 entry_id
= key_index
;
2414 macaddr
= cam_const_broad
;
2415 entry_id
= key_index
;
2417 if (mac
->opmode
== NL80211_IFTYPE_AP
) {
2418 entry_id
= rtl_cam_get_free_entry(hw
,
2420 if (entry_id
>= TOTAL_CAM_ENTRY
) {
2422 COMP_SEC
, DBG_EMERG
,
2423 ("Can not find free hw"
2424 " security cam entry\n"));
2428 entry_id
= CAM_PAIRWISE_KEY_POSITION
;
2431 key_index
= PAIRWISE_KEYIDX
;
2436 if (rtlpriv
->sec
.key_len
[key_index
] == 0) {
2437 RT_TRACE(rtlpriv
, COMP_SEC
, DBG_DMESG
,
2438 ("delete one entry, entry_id is %d\n",
2440 if (mac
->opmode
== NL80211_IFTYPE_AP
)
2441 rtl_cam_del_entry(hw
, p_macaddr
);
2442 rtl_cam_delete_one_entry(hw
, p_macaddr
, entry_id
);
2444 RT_TRACE(rtlpriv
, COMP_SEC
, DBG_LOUD
,
2445 ("The insert KEY length is %d\n",
2446 rtlpriv
->sec
.key_len
[PAIRWISE_KEYIDX
]));
2447 RT_TRACE(rtlpriv
, COMP_SEC
, DBG_LOUD
,
2448 ("The insert KEY is %x %x\n",
2449 rtlpriv
->sec
.key_buf
[0][0],
2450 rtlpriv
->sec
.key_buf
[0][1]));
2452 RT_TRACE(rtlpriv
, COMP_SEC
, DBG_DMESG
,
2453 ("add one entry\n"));
2455 RT_PRINT_DATA(rtlpriv
, COMP_SEC
, DBG_LOUD
,
2456 "Pairwiase Key content :",
2457 rtlpriv
->sec
.pairwise_key
,
2458 rtlpriv
->sec
.key_len
[PAIRWISE_KEYIDX
]);
2460 RT_TRACE(rtlpriv
, COMP_SEC
, DBG_DMESG
,
2461 ("set Pairwiase key\n"));
2463 rtl_cam_add_one_entry(hw
, macaddr
, key_index
,
2465 CAM_CONFIG_NO_USEDK
,
2466 rtlpriv
->sec
.key_buf
[key_index
]);
2468 RT_TRACE(rtlpriv
, COMP_SEC
, DBG_DMESG
,
2469 ("set group key\n"));
2471 if (mac
->opmode
== NL80211_IFTYPE_ADHOC
) {
2472 rtl_cam_add_one_entry(hw
,
2475 CAM_PAIRWISE_KEY_POSITION
,
2476 enc_algo
, CAM_CONFIG_NO_USEDK
,
2477 rtlpriv
->sec
.key_buf
[entry_id
]);
2480 rtl_cam_add_one_entry(hw
, macaddr
, key_index
,
2482 CAM_CONFIG_NO_USEDK
,
2483 rtlpriv
->sec
.key_buf
[entry_id
]);
2490 void rtl92se_suspend(struct ieee80211_hw
*hw
)
2492 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
2494 rtlpci
->up_first_time
= true;
2497 void rtl92se_resume(struct ieee80211_hw
*hw
)
2499 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
2502 pci_read_config_dword(rtlpci
->pdev
, 0x40, &val
);
2503 if ((val
& 0x0000ff00) != 0)
2504 pci_write_config_dword(rtlpci
->pdev
, 0x40,