1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
53 #include <asm/uaccess.h>
55 #include <trace/events/vmscan.h>
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly
;
58 #define MEM_CGROUP_RECLAIM_RETRIES 5
59 struct mem_cgroup
*root_mem_cgroup __read_mostly
;
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly
;
65 /* for remember boot option*/
66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67 static int really_do_swap_account __initdata
= 1;
69 static int really_do_swap_account __initdata
= 0;
73 #define do_swap_account (0)
78 * Statistics for memory cgroup.
80 enum mem_cgroup_stat_index
{
82 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
84 MEM_CGROUP_STAT_CACHE
, /* # of pages charged as cache */
85 MEM_CGROUP_STAT_RSS
, /* # of pages charged as anon rss */
86 MEM_CGROUP_STAT_FILE_MAPPED
, /* # of pages charged as file rss */
87 MEM_CGROUP_STAT_SWAPOUT
, /* # of pages, swapped out */
88 MEM_CGROUP_STAT_DATA
, /* end of data requires synchronization */
89 MEM_CGROUP_ON_MOVE
, /* someone is moving account between groups */
90 MEM_CGROUP_STAT_NSTATS
,
93 enum mem_cgroup_events_index
{
94 MEM_CGROUP_EVENTS_PGPGIN
, /* # of pages paged in */
95 MEM_CGROUP_EVENTS_PGPGOUT
, /* # of pages paged out */
96 MEM_CGROUP_EVENTS_COUNT
, /* # of pages paged in/out */
97 MEM_CGROUP_EVENTS_NSTATS
,
100 * Per memcg event counter is incremented at every pagein/pageout. With THP,
101 * it will be incremated by the number of pages. This counter is used for
102 * for trigger some periodic events. This is straightforward and better
103 * than using jiffies etc. to handle periodic memcg event.
105 enum mem_cgroup_events_target
{
106 MEM_CGROUP_TARGET_THRESH
,
107 MEM_CGROUP_TARGET_SOFTLIMIT
,
110 #define THRESHOLDS_EVENTS_TARGET (128)
111 #define SOFTLIMIT_EVENTS_TARGET (1024)
113 struct mem_cgroup_stat_cpu
{
114 long count
[MEM_CGROUP_STAT_NSTATS
];
115 unsigned long events
[MEM_CGROUP_EVENTS_NSTATS
];
116 unsigned long targets
[MEM_CGROUP_NTARGETS
];
120 * per-zone information in memory controller.
122 struct mem_cgroup_per_zone
{
124 * spin_lock to protect the per cgroup LRU
126 struct list_head lists
[NR_LRU_LISTS
];
127 unsigned long count
[NR_LRU_LISTS
];
129 struct zone_reclaim_stat reclaim_stat
;
130 struct rb_node tree_node
; /* RB tree node */
131 unsigned long long usage_in_excess
;/* Set to the value by which */
132 /* the soft limit is exceeded*/
134 struct mem_cgroup
*mem
; /* Back pointer, we cannot */
135 /* use container_of */
137 /* Macro for accessing counter */
138 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
140 struct mem_cgroup_per_node
{
141 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
144 struct mem_cgroup_lru_info
{
145 struct mem_cgroup_per_node
*nodeinfo
[MAX_NUMNODES
];
149 * Cgroups above their limits are maintained in a RB-Tree, independent of
150 * their hierarchy representation
153 struct mem_cgroup_tree_per_zone
{
154 struct rb_root rb_root
;
158 struct mem_cgroup_tree_per_node
{
159 struct mem_cgroup_tree_per_zone rb_tree_per_zone
[MAX_NR_ZONES
];
162 struct mem_cgroup_tree
{
163 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
166 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
168 struct mem_cgroup_threshold
{
169 struct eventfd_ctx
*eventfd
;
174 struct mem_cgroup_threshold_ary
{
175 /* An array index points to threshold just below usage. */
176 int current_threshold
;
177 /* Size of entries[] */
179 /* Array of thresholds */
180 struct mem_cgroup_threshold entries
[0];
183 struct mem_cgroup_thresholds
{
184 /* Primary thresholds array */
185 struct mem_cgroup_threshold_ary
*primary
;
187 * Spare threshold array.
188 * This is needed to make mem_cgroup_unregister_event() "never fail".
189 * It must be able to store at least primary->size - 1 entries.
191 struct mem_cgroup_threshold_ary
*spare
;
195 struct mem_cgroup_eventfd_list
{
196 struct list_head list
;
197 struct eventfd_ctx
*eventfd
;
200 static void mem_cgroup_threshold(struct mem_cgroup
*mem
);
201 static void mem_cgroup_oom_notify(struct mem_cgroup
*mem
);
204 * The memory controller data structure. The memory controller controls both
205 * page cache and RSS per cgroup. We would eventually like to provide
206 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
207 * to help the administrator determine what knobs to tune.
209 * TODO: Add a water mark for the memory controller. Reclaim will begin when
210 * we hit the water mark. May be even add a low water mark, such that
211 * no reclaim occurs from a cgroup at it's low water mark, this is
212 * a feature that will be implemented much later in the future.
215 struct cgroup_subsys_state css
;
217 * the counter to account for memory usage
219 struct res_counter res
;
221 * the counter to account for mem+swap usage.
223 struct res_counter memsw
;
225 * Per cgroup active and inactive list, similar to the
226 * per zone LRU lists.
228 struct mem_cgroup_lru_info info
;
230 * While reclaiming in a hierarchy, we cache the last child we
233 int last_scanned_child
;
235 * Should the accounting and control be hierarchical, per subtree?
241 unsigned int swappiness
;
242 /* OOM-Killer disable */
243 int oom_kill_disable
;
245 /* set when res.limit == memsw.limit */
246 bool memsw_is_minimum
;
248 /* protect arrays of thresholds */
249 struct mutex thresholds_lock
;
251 /* thresholds for memory usage. RCU-protected */
252 struct mem_cgroup_thresholds thresholds
;
254 /* thresholds for mem+swap usage. RCU-protected */
255 struct mem_cgroup_thresholds memsw_thresholds
;
257 /* For oom notifier event fd */
258 struct list_head oom_notify
;
261 * Should we move charges of a task when a task is moved into this
262 * mem_cgroup ? And what type of charges should we move ?
264 unsigned long move_charge_at_immigrate
;
268 struct mem_cgroup_stat_cpu
*stat
;
270 * used when a cpu is offlined or other synchronizations
271 * See mem_cgroup_read_stat().
273 struct mem_cgroup_stat_cpu nocpu_base
;
274 spinlock_t pcp_counter_lock
;
277 /* Stuffs for move charges at task migration. */
279 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
280 * left-shifted bitmap of these types.
283 MOVE_CHARGE_TYPE_ANON
, /* private anonymous page and swap of it */
284 MOVE_CHARGE_TYPE_FILE
, /* file page(including tmpfs) and swap of it */
288 /* "mc" and its members are protected by cgroup_mutex */
289 static struct move_charge_struct
{
290 spinlock_t lock
; /* for from, to */
291 struct mem_cgroup
*from
;
292 struct mem_cgroup
*to
;
293 unsigned long precharge
;
294 unsigned long moved_charge
;
295 unsigned long moved_swap
;
296 struct task_struct
*moving_task
; /* a task moving charges */
297 wait_queue_head_t waitq
; /* a waitq for other context */
299 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
300 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
303 static bool move_anon(void)
305 return test_bit(MOVE_CHARGE_TYPE_ANON
,
306 &mc
.to
->move_charge_at_immigrate
);
309 static bool move_file(void)
311 return test_bit(MOVE_CHARGE_TYPE_FILE
,
312 &mc
.to
->move_charge_at_immigrate
);
316 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
317 * limit reclaim to prevent infinite loops, if they ever occur.
319 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
320 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
323 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
324 MEM_CGROUP_CHARGE_TYPE_MAPPED
,
325 MEM_CGROUP_CHARGE_TYPE_SHMEM
, /* used by page migration of shmem */
326 MEM_CGROUP_CHARGE_TYPE_FORCE
, /* used by force_empty */
327 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
328 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
332 /* for encoding cft->private value on file */
335 #define _OOM_TYPE (2)
336 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
337 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
338 #define MEMFILE_ATTR(val) ((val) & 0xffff)
339 /* Used for OOM nofiier */
340 #define OOM_CONTROL (0)
343 * Reclaim flags for mem_cgroup_hierarchical_reclaim
345 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
346 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
347 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
348 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
349 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
350 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
352 static void mem_cgroup_get(struct mem_cgroup
*mem
);
353 static void mem_cgroup_put(struct mem_cgroup
*mem
);
354 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*mem
);
355 static void drain_all_stock_async(void);
357 static struct mem_cgroup_per_zone
*
358 mem_cgroup_zoneinfo(struct mem_cgroup
*mem
, int nid
, int zid
)
360 return &mem
->info
.nodeinfo
[nid
]->zoneinfo
[zid
];
363 struct cgroup_subsys_state
*mem_cgroup_css(struct mem_cgroup
*mem
)
368 static struct mem_cgroup_per_zone
*
369 page_cgroup_zoneinfo(struct mem_cgroup
*mem
, struct page
*page
)
371 int nid
= page_to_nid(page
);
372 int zid
= page_zonenum(page
);
374 return mem_cgroup_zoneinfo(mem
, nid
, zid
);
377 static struct mem_cgroup_tree_per_zone
*
378 soft_limit_tree_node_zone(int nid
, int zid
)
380 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
383 static struct mem_cgroup_tree_per_zone
*
384 soft_limit_tree_from_page(struct page
*page
)
386 int nid
= page_to_nid(page
);
387 int zid
= page_zonenum(page
);
389 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
393 __mem_cgroup_insert_exceeded(struct mem_cgroup
*mem
,
394 struct mem_cgroup_per_zone
*mz
,
395 struct mem_cgroup_tree_per_zone
*mctz
,
396 unsigned long long new_usage_in_excess
)
398 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
399 struct rb_node
*parent
= NULL
;
400 struct mem_cgroup_per_zone
*mz_node
;
405 mz
->usage_in_excess
= new_usage_in_excess
;
406 if (!mz
->usage_in_excess
)
410 mz_node
= rb_entry(parent
, struct mem_cgroup_per_zone
,
412 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
)
415 * We can't avoid mem cgroups that are over their soft
416 * limit by the same amount
418 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
421 rb_link_node(&mz
->tree_node
, parent
, p
);
422 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
427 __mem_cgroup_remove_exceeded(struct mem_cgroup
*mem
,
428 struct mem_cgroup_per_zone
*mz
,
429 struct mem_cgroup_tree_per_zone
*mctz
)
433 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
438 mem_cgroup_remove_exceeded(struct mem_cgroup
*mem
,
439 struct mem_cgroup_per_zone
*mz
,
440 struct mem_cgroup_tree_per_zone
*mctz
)
442 spin_lock(&mctz
->lock
);
443 __mem_cgroup_remove_exceeded(mem
, mz
, mctz
);
444 spin_unlock(&mctz
->lock
);
448 static void mem_cgroup_update_tree(struct mem_cgroup
*mem
, struct page
*page
)
450 unsigned long long excess
;
451 struct mem_cgroup_per_zone
*mz
;
452 struct mem_cgroup_tree_per_zone
*mctz
;
453 int nid
= page_to_nid(page
);
454 int zid
= page_zonenum(page
);
455 mctz
= soft_limit_tree_from_page(page
);
458 * Necessary to update all ancestors when hierarchy is used.
459 * because their event counter is not touched.
461 for (; mem
; mem
= parent_mem_cgroup(mem
)) {
462 mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
463 excess
= res_counter_soft_limit_excess(&mem
->res
);
465 * We have to update the tree if mz is on RB-tree or
466 * mem is over its softlimit.
468 if (excess
|| mz
->on_tree
) {
469 spin_lock(&mctz
->lock
);
470 /* if on-tree, remove it */
472 __mem_cgroup_remove_exceeded(mem
, mz
, mctz
);
474 * Insert again. mz->usage_in_excess will be updated.
475 * If excess is 0, no tree ops.
477 __mem_cgroup_insert_exceeded(mem
, mz
, mctz
, excess
);
478 spin_unlock(&mctz
->lock
);
483 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*mem
)
486 struct mem_cgroup_per_zone
*mz
;
487 struct mem_cgroup_tree_per_zone
*mctz
;
489 for_each_node_state(node
, N_POSSIBLE
) {
490 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
491 mz
= mem_cgroup_zoneinfo(mem
, node
, zone
);
492 mctz
= soft_limit_tree_node_zone(node
, zone
);
493 mem_cgroup_remove_exceeded(mem
, mz
, mctz
);
498 static struct mem_cgroup_per_zone
*
499 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
501 struct rb_node
*rightmost
= NULL
;
502 struct mem_cgroup_per_zone
*mz
;
506 rightmost
= rb_last(&mctz
->rb_root
);
508 goto done
; /* Nothing to reclaim from */
510 mz
= rb_entry(rightmost
, struct mem_cgroup_per_zone
, tree_node
);
512 * Remove the node now but someone else can add it back,
513 * we will to add it back at the end of reclaim to its correct
514 * position in the tree.
516 __mem_cgroup_remove_exceeded(mz
->mem
, mz
, mctz
);
517 if (!res_counter_soft_limit_excess(&mz
->mem
->res
) ||
518 !css_tryget(&mz
->mem
->css
))
524 static struct mem_cgroup_per_zone
*
525 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
527 struct mem_cgroup_per_zone
*mz
;
529 spin_lock(&mctz
->lock
);
530 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
531 spin_unlock(&mctz
->lock
);
536 * Implementation Note: reading percpu statistics for memcg.
538 * Both of vmstat[] and percpu_counter has threshold and do periodic
539 * synchronization to implement "quick" read. There are trade-off between
540 * reading cost and precision of value. Then, we may have a chance to implement
541 * a periodic synchronizion of counter in memcg's counter.
543 * But this _read() function is used for user interface now. The user accounts
544 * memory usage by memory cgroup and he _always_ requires exact value because
545 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
546 * have to visit all online cpus and make sum. So, for now, unnecessary
547 * synchronization is not implemented. (just implemented for cpu hotplug)
549 * If there are kernel internal actions which can make use of some not-exact
550 * value, and reading all cpu value can be performance bottleneck in some
551 * common workload, threashold and synchonization as vmstat[] should be
554 static long mem_cgroup_read_stat(struct mem_cgroup
*mem
,
555 enum mem_cgroup_stat_index idx
)
561 for_each_online_cpu(cpu
)
562 val
+= per_cpu(mem
->stat
->count
[idx
], cpu
);
563 #ifdef CONFIG_HOTPLUG_CPU
564 spin_lock(&mem
->pcp_counter_lock
);
565 val
+= mem
->nocpu_base
.count
[idx
];
566 spin_unlock(&mem
->pcp_counter_lock
);
572 static long mem_cgroup_local_usage(struct mem_cgroup
*mem
)
576 ret
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_RSS
);
577 ret
+= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_CACHE
);
581 static void mem_cgroup_swap_statistics(struct mem_cgroup
*mem
,
584 int val
= (charge
) ? 1 : -1;
585 this_cpu_add(mem
->stat
->count
[MEM_CGROUP_STAT_SWAPOUT
], val
);
588 static unsigned long mem_cgroup_read_events(struct mem_cgroup
*mem
,
589 enum mem_cgroup_events_index idx
)
591 unsigned long val
= 0;
594 for_each_online_cpu(cpu
)
595 val
+= per_cpu(mem
->stat
->events
[idx
], cpu
);
596 #ifdef CONFIG_HOTPLUG_CPU
597 spin_lock(&mem
->pcp_counter_lock
);
598 val
+= mem
->nocpu_base
.events
[idx
];
599 spin_unlock(&mem
->pcp_counter_lock
);
604 static void mem_cgroup_charge_statistics(struct mem_cgroup
*mem
,
605 bool file
, int nr_pages
)
610 __this_cpu_add(mem
->stat
->count
[MEM_CGROUP_STAT_CACHE
], nr_pages
);
612 __this_cpu_add(mem
->stat
->count
[MEM_CGROUP_STAT_RSS
], nr_pages
);
614 /* pagein of a big page is an event. So, ignore page size */
616 __this_cpu_inc(mem
->stat
->events
[MEM_CGROUP_EVENTS_PGPGIN
]);
618 __this_cpu_inc(mem
->stat
->events
[MEM_CGROUP_EVENTS_PGPGOUT
]);
619 nr_pages
= -nr_pages
; /* for event */
622 __this_cpu_add(mem
->stat
->events
[MEM_CGROUP_EVENTS_COUNT
], nr_pages
);
627 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup
*mem
,
631 struct mem_cgroup_per_zone
*mz
;
634 for_each_online_node(nid
)
635 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
636 mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
637 total
+= MEM_CGROUP_ZSTAT(mz
, idx
);
642 static bool __memcg_event_check(struct mem_cgroup
*mem
, int target
)
644 unsigned long val
, next
;
646 val
= this_cpu_read(mem
->stat
->events
[MEM_CGROUP_EVENTS_COUNT
]);
647 next
= this_cpu_read(mem
->stat
->targets
[target
]);
648 /* from time_after() in jiffies.h */
649 return ((long)next
- (long)val
< 0);
652 static void __mem_cgroup_target_update(struct mem_cgroup
*mem
, int target
)
654 unsigned long val
, next
;
656 val
= this_cpu_read(mem
->stat
->events
[MEM_CGROUP_EVENTS_COUNT
]);
659 case MEM_CGROUP_TARGET_THRESH
:
660 next
= val
+ THRESHOLDS_EVENTS_TARGET
;
662 case MEM_CGROUP_TARGET_SOFTLIMIT
:
663 next
= val
+ SOFTLIMIT_EVENTS_TARGET
;
669 this_cpu_write(mem
->stat
->targets
[target
], next
);
673 * Check events in order.
676 static void memcg_check_events(struct mem_cgroup
*mem
, struct page
*page
)
678 /* threshold event is triggered in finer grain than soft limit */
679 if (unlikely(__memcg_event_check(mem
, MEM_CGROUP_TARGET_THRESH
))) {
680 mem_cgroup_threshold(mem
);
681 __mem_cgroup_target_update(mem
, MEM_CGROUP_TARGET_THRESH
);
682 if (unlikely(__memcg_event_check(mem
,
683 MEM_CGROUP_TARGET_SOFTLIMIT
))){
684 mem_cgroup_update_tree(mem
, page
);
685 __mem_cgroup_target_update(mem
,
686 MEM_CGROUP_TARGET_SOFTLIMIT
);
691 static struct mem_cgroup
*mem_cgroup_from_cont(struct cgroup
*cont
)
693 return container_of(cgroup_subsys_state(cont
,
694 mem_cgroup_subsys_id
), struct mem_cgroup
,
698 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
701 * mm_update_next_owner() may clear mm->owner to NULL
702 * if it races with swapoff, page migration, etc.
703 * So this can be called with p == NULL.
708 return container_of(task_subsys_state(p
, mem_cgroup_subsys_id
),
709 struct mem_cgroup
, css
);
712 static struct mem_cgroup
*try_get_mem_cgroup_from_mm(struct mm_struct
*mm
)
714 struct mem_cgroup
*mem
= NULL
;
719 * Because we have no locks, mm->owner's may be being moved to other
720 * cgroup. We use css_tryget() here even if this looks
721 * pessimistic (rather than adding locks here).
725 mem
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
728 } while (!css_tryget(&mem
->css
));
733 /* The caller has to guarantee "mem" exists before calling this */
734 static struct mem_cgroup
*mem_cgroup_start_loop(struct mem_cgroup
*mem
)
736 struct cgroup_subsys_state
*css
;
739 if (!mem
) /* ROOT cgroup has the smallest ID */
740 return root_mem_cgroup
; /*css_put/get against root is ignored*/
741 if (!mem
->use_hierarchy
) {
742 if (css_tryget(&mem
->css
))
748 * searching a memory cgroup which has the smallest ID under given
749 * ROOT cgroup. (ID >= 1)
751 css
= css_get_next(&mem_cgroup_subsys
, 1, &mem
->css
, &found
);
752 if (css
&& css_tryget(css
))
753 mem
= container_of(css
, struct mem_cgroup
, css
);
760 static struct mem_cgroup
*mem_cgroup_get_next(struct mem_cgroup
*iter
,
761 struct mem_cgroup
*root
,
764 int nextid
= css_id(&iter
->css
) + 1;
767 struct cgroup_subsys_state
*css
;
769 hierarchy_used
= iter
->use_hierarchy
;
772 /* If no ROOT, walk all, ignore hierarchy */
773 if (!cond
|| (root
&& !hierarchy_used
))
777 root
= root_mem_cgroup
;
783 css
= css_get_next(&mem_cgroup_subsys
, nextid
,
785 if (css
&& css_tryget(css
))
786 iter
= container_of(css
, struct mem_cgroup
, css
);
788 /* If css is NULL, no more cgroups will be found */
790 } while (css
&& !iter
);
795 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
796 * be careful that "break" loop is not allowed. We have reference count.
797 * Instead of that modify "cond" to be false and "continue" to exit the loop.
799 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
800 for (iter = mem_cgroup_start_loop(root);\
802 iter = mem_cgroup_get_next(iter, root, cond))
804 #define for_each_mem_cgroup_tree(iter, root) \
805 for_each_mem_cgroup_tree_cond(iter, root, true)
807 #define for_each_mem_cgroup_all(iter) \
808 for_each_mem_cgroup_tree_cond(iter, NULL, true)
811 static inline bool mem_cgroup_is_root(struct mem_cgroup
*mem
)
813 return (mem
== root_mem_cgroup
);
817 * Following LRU functions are allowed to be used without PCG_LOCK.
818 * Operations are called by routine of global LRU independently from memcg.
819 * What we have to take care of here is validness of pc->mem_cgroup.
821 * Changes to pc->mem_cgroup happens when
824 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
825 * It is added to LRU before charge.
826 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
827 * When moving account, the page is not on LRU. It's isolated.
830 void mem_cgroup_del_lru_list(struct page
*page
, enum lru_list lru
)
832 struct page_cgroup
*pc
;
833 struct mem_cgroup_per_zone
*mz
;
835 if (mem_cgroup_disabled())
837 pc
= lookup_page_cgroup(page
);
838 /* can happen while we handle swapcache. */
839 if (!TestClearPageCgroupAcctLRU(pc
))
841 VM_BUG_ON(!pc
->mem_cgroup
);
843 * We don't check PCG_USED bit. It's cleared when the "page" is finally
844 * removed from global LRU.
846 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
847 /* huge page split is done under lru_lock. so, we have no races. */
848 MEM_CGROUP_ZSTAT(mz
, lru
) -= 1 << compound_order(page
);
849 if (mem_cgroup_is_root(pc
->mem_cgroup
))
851 VM_BUG_ON(list_empty(&pc
->lru
));
852 list_del_init(&pc
->lru
);
855 void mem_cgroup_del_lru(struct page
*page
)
857 mem_cgroup_del_lru_list(page
, page_lru(page
));
861 * Writeback is about to end against a page which has been marked for immediate
862 * reclaim. If it still appears to be reclaimable, move it to the tail of the
865 void mem_cgroup_rotate_reclaimable_page(struct page
*page
)
867 struct mem_cgroup_per_zone
*mz
;
868 struct page_cgroup
*pc
;
869 enum lru_list lru
= page_lru(page
);
871 if (mem_cgroup_disabled())
874 pc
= lookup_page_cgroup(page
);
875 /* unused or root page is not rotated. */
876 if (!PageCgroupUsed(pc
))
878 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
880 if (mem_cgroup_is_root(pc
->mem_cgroup
))
882 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
883 list_move_tail(&pc
->lru
, &mz
->lists
[lru
]);
886 void mem_cgroup_rotate_lru_list(struct page
*page
, enum lru_list lru
)
888 struct mem_cgroup_per_zone
*mz
;
889 struct page_cgroup
*pc
;
891 if (mem_cgroup_disabled())
894 pc
= lookup_page_cgroup(page
);
895 /* unused or root page is not rotated. */
896 if (!PageCgroupUsed(pc
))
898 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
900 if (mem_cgroup_is_root(pc
->mem_cgroup
))
902 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
903 list_move(&pc
->lru
, &mz
->lists
[lru
]);
906 void mem_cgroup_add_lru_list(struct page
*page
, enum lru_list lru
)
908 struct page_cgroup
*pc
;
909 struct mem_cgroup_per_zone
*mz
;
911 if (mem_cgroup_disabled())
913 pc
= lookup_page_cgroup(page
);
914 VM_BUG_ON(PageCgroupAcctLRU(pc
));
915 if (!PageCgroupUsed(pc
))
917 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
919 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
920 /* huge page split is done under lru_lock. so, we have no races. */
921 MEM_CGROUP_ZSTAT(mz
, lru
) += 1 << compound_order(page
);
922 SetPageCgroupAcctLRU(pc
);
923 if (mem_cgroup_is_root(pc
->mem_cgroup
))
925 list_add(&pc
->lru
, &mz
->lists
[lru
]);
929 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
930 * while it's linked to lru because the page may be reused after it's fully
931 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
932 * It's done under lock_page and expected that zone->lru_lock isnever held.
934 static void mem_cgroup_lru_del_before_commit(struct page
*page
)
937 struct zone
*zone
= page_zone(page
);
938 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
941 * Doing this check without taking ->lru_lock seems wrong but this
942 * is safe. Because if page_cgroup's USED bit is unset, the page
943 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
944 * set, the commit after this will fail, anyway.
945 * This all charge/uncharge is done under some mutual execustion.
946 * So, we don't need to taking care of changes in USED bit.
948 if (likely(!PageLRU(page
)))
951 spin_lock_irqsave(&zone
->lru_lock
, flags
);
953 * Forget old LRU when this page_cgroup is *not* used. This Used bit
954 * is guarded by lock_page() because the page is SwapCache.
956 if (!PageCgroupUsed(pc
))
957 mem_cgroup_del_lru_list(page
, page_lru(page
));
958 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
961 static void mem_cgroup_lru_add_after_commit(struct page
*page
)
964 struct zone
*zone
= page_zone(page
);
965 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
967 /* taking care of that the page is added to LRU while we commit it */
968 if (likely(!PageLRU(page
)))
970 spin_lock_irqsave(&zone
->lru_lock
, flags
);
971 /* link when the page is linked to LRU but page_cgroup isn't */
972 if (PageLRU(page
) && !PageCgroupAcctLRU(pc
))
973 mem_cgroup_add_lru_list(page
, page_lru(page
));
974 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
978 void mem_cgroup_move_lists(struct page
*page
,
979 enum lru_list from
, enum lru_list to
)
981 if (mem_cgroup_disabled())
983 mem_cgroup_del_lru_list(page
, from
);
984 mem_cgroup_add_lru_list(page
, to
);
987 int task_in_mem_cgroup(struct task_struct
*task
, const struct mem_cgroup
*mem
)
990 struct mem_cgroup
*curr
= NULL
;
991 struct task_struct
*p
;
993 p
= find_lock_task_mm(task
);
996 curr
= try_get_mem_cgroup_from_mm(p
->mm
);
1001 * We should check use_hierarchy of "mem" not "curr". Because checking
1002 * use_hierarchy of "curr" here make this function true if hierarchy is
1003 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
1004 * hierarchy(even if use_hierarchy is disabled in "mem").
1006 if (mem
->use_hierarchy
)
1007 ret
= css_is_ancestor(&curr
->css
, &mem
->css
);
1009 ret
= (curr
== mem
);
1010 css_put(&curr
->css
);
1014 static int calc_inactive_ratio(struct mem_cgroup
*memcg
, unsigned long *present_pages
)
1016 unsigned long active
;
1017 unsigned long inactive
;
1019 unsigned long inactive_ratio
;
1021 inactive
= mem_cgroup_get_local_zonestat(memcg
, LRU_INACTIVE_ANON
);
1022 active
= mem_cgroup_get_local_zonestat(memcg
, LRU_ACTIVE_ANON
);
1024 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
1026 inactive_ratio
= int_sqrt(10 * gb
);
1030 if (present_pages
) {
1031 present_pages
[0] = inactive
;
1032 present_pages
[1] = active
;
1035 return inactive_ratio
;
1038 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup
*memcg
)
1040 unsigned long active
;
1041 unsigned long inactive
;
1042 unsigned long present_pages
[2];
1043 unsigned long inactive_ratio
;
1045 inactive_ratio
= calc_inactive_ratio(memcg
, present_pages
);
1047 inactive
= present_pages
[0];
1048 active
= present_pages
[1];
1050 if (inactive
* inactive_ratio
< active
)
1056 int mem_cgroup_inactive_file_is_low(struct mem_cgroup
*memcg
)
1058 unsigned long active
;
1059 unsigned long inactive
;
1061 inactive
= mem_cgroup_get_local_zonestat(memcg
, LRU_INACTIVE_FILE
);
1062 active
= mem_cgroup_get_local_zonestat(memcg
, LRU_ACTIVE_FILE
);
1064 return (active
> inactive
);
1067 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup
*memcg
,
1071 int nid
= zone_to_nid(zone
);
1072 int zid
= zone_idx(zone
);
1073 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
1075 return MEM_CGROUP_ZSTAT(mz
, lru
);
1078 struct zone_reclaim_stat
*mem_cgroup_get_reclaim_stat(struct mem_cgroup
*memcg
,
1081 int nid
= zone_to_nid(zone
);
1082 int zid
= zone_idx(zone
);
1083 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
1085 return &mz
->reclaim_stat
;
1088 struct zone_reclaim_stat
*
1089 mem_cgroup_get_reclaim_stat_from_page(struct page
*page
)
1091 struct page_cgroup
*pc
;
1092 struct mem_cgroup_per_zone
*mz
;
1094 if (mem_cgroup_disabled())
1097 pc
= lookup_page_cgroup(page
);
1098 if (!PageCgroupUsed(pc
))
1100 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1102 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
1103 return &mz
->reclaim_stat
;
1106 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan
,
1107 struct list_head
*dst
,
1108 unsigned long *scanned
, int order
,
1109 int mode
, struct zone
*z
,
1110 struct mem_cgroup
*mem_cont
,
1111 int active
, int file
)
1113 unsigned long nr_taken
= 0;
1117 struct list_head
*src
;
1118 struct page_cgroup
*pc
, *tmp
;
1119 int nid
= zone_to_nid(z
);
1120 int zid
= zone_idx(z
);
1121 struct mem_cgroup_per_zone
*mz
;
1122 int lru
= LRU_FILE
* file
+ active
;
1126 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
1127 src
= &mz
->lists
[lru
];
1130 list_for_each_entry_safe_reverse(pc
, tmp
, src
, lru
) {
1131 if (scan
>= nr_to_scan
)
1134 if (unlikely(!PageCgroupUsed(pc
)))
1137 page
= lookup_cgroup_page(pc
);
1139 if (unlikely(!PageLRU(page
)))
1143 ret
= __isolate_lru_page(page
, mode
, file
);
1146 list_move(&page
->lru
, dst
);
1147 mem_cgroup_del_lru(page
);
1148 nr_taken
+= hpage_nr_pages(page
);
1151 /* we don't affect global LRU but rotate in our LRU */
1152 mem_cgroup_rotate_lru_list(page
, page_lru(page
));
1161 trace_mm_vmscan_memcg_isolate(0, nr_to_scan
, scan
, nr_taken
,
1167 #define mem_cgroup_from_res_counter(counter, member) \
1168 container_of(counter, struct mem_cgroup, member)
1171 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1172 * @mem: the memory cgroup
1174 * Returns the maximum amount of memory @mem can be charged with, in
1177 static unsigned long mem_cgroup_margin(struct mem_cgroup
*mem
)
1179 unsigned long long margin
;
1181 margin
= res_counter_margin(&mem
->res
);
1182 if (do_swap_account
)
1183 margin
= min(margin
, res_counter_margin(&mem
->memsw
));
1184 return margin
>> PAGE_SHIFT
;
1187 static unsigned int get_swappiness(struct mem_cgroup
*memcg
)
1189 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
1192 if (cgrp
->parent
== NULL
)
1193 return vm_swappiness
;
1195 return memcg
->swappiness
;
1198 static void mem_cgroup_start_move(struct mem_cgroup
*mem
)
1203 spin_lock(&mem
->pcp_counter_lock
);
1204 for_each_online_cpu(cpu
)
1205 per_cpu(mem
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) += 1;
1206 mem
->nocpu_base
.count
[MEM_CGROUP_ON_MOVE
] += 1;
1207 spin_unlock(&mem
->pcp_counter_lock
);
1213 static void mem_cgroup_end_move(struct mem_cgroup
*mem
)
1220 spin_lock(&mem
->pcp_counter_lock
);
1221 for_each_online_cpu(cpu
)
1222 per_cpu(mem
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) -= 1;
1223 mem
->nocpu_base
.count
[MEM_CGROUP_ON_MOVE
] -= 1;
1224 spin_unlock(&mem
->pcp_counter_lock
);
1228 * 2 routines for checking "mem" is under move_account() or not.
1230 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1231 * for avoiding race in accounting. If true,
1232 * pc->mem_cgroup may be overwritten.
1234 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1235 * under hierarchy of moving cgroups. This is for
1236 * waiting at hith-memory prressure caused by "move".
1239 static bool mem_cgroup_stealed(struct mem_cgroup
*mem
)
1241 VM_BUG_ON(!rcu_read_lock_held());
1242 return this_cpu_read(mem
->stat
->count
[MEM_CGROUP_ON_MOVE
]) > 0;
1245 static bool mem_cgroup_under_move(struct mem_cgroup
*mem
)
1247 struct mem_cgroup
*from
;
1248 struct mem_cgroup
*to
;
1251 * Unlike task_move routines, we access mc.to, mc.from not under
1252 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1254 spin_lock(&mc
.lock
);
1259 if (from
== mem
|| to
== mem
1260 || (mem
->use_hierarchy
&& css_is_ancestor(&from
->css
, &mem
->css
))
1261 || (mem
->use_hierarchy
&& css_is_ancestor(&to
->css
, &mem
->css
)))
1264 spin_unlock(&mc
.lock
);
1268 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*mem
)
1270 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1271 if (mem_cgroup_under_move(mem
)) {
1273 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1274 /* moving charge context might have finished. */
1277 finish_wait(&mc
.waitq
, &wait
);
1285 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1286 * @memcg: The memory cgroup that went over limit
1287 * @p: Task that is going to be killed
1289 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1292 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1294 struct cgroup
*task_cgrp
;
1295 struct cgroup
*mem_cgrp
;
1297 * Need a buffer in BSS, can't rely on allocations. The code relies
1298 * on the assumption that OOM is serialized for memory controller.
1299 * If this assumption is broken, revisit this code.
1301 static char memcg_name
[PATH_MAX
];
1310 mem_cgrp
= memcg
->css
.cgroup
;
1311 task_cgrp
= task_cgroup(p
, mem_cgroup_subsys_id
);
1313 ret
= cgroup_path(task_cgrp
, memcg_name
, PATH_MAX
);
1316 * Unfortunately, we are unable to convert to a useful name
1317 * But we'll still print out the usage information
1324 printk(KERN_INFO
"Task in %s killed", memcg_name
);
1327 ret
= cgroup_path(mem_cgrp
, memcg_name
, PATH_MAX
);
1335 * Continues from above, so we don't need an KERN_ level
1337 printk(KERN_CONT
" as a result of limit of %s\n", memcg_name
);
1340 printk(KERN_INFO
"memory: usage %llukB, limit %llukB, failcnt %llu\n",
1341 res_counter_read_u64(&memcg
->res
, RES_USAGE
) >> 10,
1342 res_counter_read_u64(&memcg
->res
, RES_LIMIT
) >> 10,
1343 res_counter_read_u64(&memcg
->res
, RES_FAILCNT
));
1344 printk(KERN_INFO
"memory+swap: usage %llukB, limit %llukB, "
1346 res_counter_read_u64(&memcg
->memsw
, RES_USAGE
) >> 10,
1347 res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
) >> 10,
1348 res_counter_read_u64(&memcg
->memsw
, RES_FAILCNT
));
1352 * This function returns the number of memcg under hierarchy tree. Returns
1353 * 1(self count) if no children.
1355 static int mem_cgroup_count_children(struct mem_cgroup
*mem
)
1358 struct mem_cgroup
*iter
;
1360 for_each_mem_cgroup_tree(iter
, mem
)
1366 * Return the memory (and swap, if configured) limit for a memcg.
1368 u64
mem_cgroup_get_limit(struct mem_cgroup
*memcg
)
1373 limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
1374 limit
+= total_swap_pages
<< PAGE_SHIFT
;
1376 memsw
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1378 * If memsw is finite and limits the amount of swap space available
1379 * to this memcg, return that limit.
1381 return min(limit
, memsw
);
1385 * Visit the first child (need not be the first child as per the ordering
1386 * of the cgroup list, since we track last_scanned_child) of @mem and use
1387 * that to reclaim free pages from.
1389 static struct mem_cgroup
*
1390 mem_cgroup_select_victim(struct mem_cgroup
*root_mem
)
1392 struct mem_cgroup
*ret
= NULL
;
1393 struct cgroup_subsys_state
*css
;
1396 if (!root_mem
->use_hierarchy
) {
1397 css_get(&root_mem
->css
);
1403 nextid
= root_mem
->last_scanned_child
+ 1;
1404 css
= css_get_next(&mem_cgroup_subsys
, nextid
, &root_mem
->css
,
1406 if (css
&& css_tryget(css
))
1407 ret
= container_of(css
, struct mem_cgroup
, css
);
1410 /* Updates scanning parameter */
1412 /* this means start scan from ID:1 */
1413 root_mem
->last_scanned_child
= 0;
1415 root_mem
->last_scanned_child
= found
;
1422 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1423 * we reclaimed from, so that we don't end up penalizing one child extensively
1424 * based on its position in the children list.
1426 * root_mem is the original ancestor that we've been reclaim from.
1428 * We give up and return to the caller when we visit root_mem twice.
1429 * (other groups can be removed while we're walking....)
1431 * If shrink==true, for avoiding to free too much, this returns immedieately.
1433 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup
*root_mem
,
1436 unsigned long reclaim_options
)
1438 struct mem_cgroup
*victim
;
1441 bool noswap
= reclaim_options
& MEM_CGROUP_RECLAIM_NOSWAP
;
1442 bool shrink
= reclaim_options
& MEM_CGROUP_RECLAIM_SHRINK
;
1443 bool check_soft
= reclaim_options
& MEM_CGROUP_RECLAIM_SOFT
;
1444 unsigned long excess
;
1446 excess
= res_counter_soft_limit_excess(&root_mem
->res
) >> PAGE_SHIFT
;
1448 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1449 if (root_mem
->memsw_is_minimum
)
1453 victim
= mem_cgroup_select_victim(root_mem
);
1454 if (victim
== root_mem
) {
1457 drain_all_stock_async();
1460 * If we have not been able to reclaim
1461 * anything, it might because there are
1462 * no reclaimable pages under this hierarchy
1464 if (!check_soft
|| !total
) {
1465 css_put(&victim
->css
);
1469 * We want to do more targeted reclaim.
1470 * excess >> 2 is not to excessive so as to
1471 * reclaim too much, nor too less that we keep
1472 * coming back to reclaim from this cgroup
1474 if (total
>= (excess
>> 2) ||
1475 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
)) {
1476 css_put(&victim
->css
);
1481 if (!mem_cgroup_local_usage(victim
)) {
1482 /* this cgroup's local usage == 0 */
1483 css_put(&victim
->css
);
1486 /* we use swappiness of local cgroup */
1488 ret
= mem_cgroup_shrink_node_zone(victim
, gfp_mask
,
1489 noswap
, get_swappiness(victim
), zone
);
1491 ret
= try_to_free_mem_cgroup_pages(victim
, gfp_mask
,
1492 noswap
, get_swappiness(victim
));
1493 css_put(&victim
->css
);
1495 * At shrinking usage, we can't check we should stop here or
1496 * reclaim more. It's depends on callers. last_scanned_child
1497 * will work enough for keeping fairness under tree.
1503 if (!res_counter_soft_limit_excess(&root_mem
->res
))
1505 } else if (mem_cgroup_margin(root_mem
))
1512 * Check OOM-Killer is already running under our hierarchy.
1513 * If someone is running, return false.
1515 static bool mem_cgroup_oom_lock(struct mem_cgroup
*mem
)
1517 int x
, lock_count
= 0;
1518 struct mem_cgroup
*iter
;
1520 for_each_mem_cgroup_tree(iter
, mem
) {
1521 x
= atomic_inc_return(&iter
->oom_lock
);
1522 lock_count
= max(x
, lock_count
);
1525 if (lock_count
== 1)
1530 static int mem_cgroup_oom_unlock(struct mem_cgroup
*mem
)
1532 struct mem_cgroup
*iter
;
1535 * When a new child is created while the hierarchy is under oom,
1536 * mem_cgroup_oom_lock() may not be called. We have to use
1537 * atomic_add_unless() here.
1539 for_each_mem_cgroup_tree(iter
, mem
)
1540 atomic_add_unless(&iter
->oom_lock
, -1, 0);
1545 static DEFINE_MUTEX(memcg_oom_mutex
);
1546 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
1548 struct oom_wait_info
{
1549 struct mem_cgroup
*mem
;
1553 static int memcg_oom_wake_function(wait_queue_t
*wait
,
1554 unsigned mode
, int sync
, void *arg
)
1556 struct mem_cgroup
*wake_mem
= (struct mem_cgroup
*)arg
;
1557 struct oom_wait_info
*oom_wait_info
;
1559 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
1561 if (oom_wait_info
->mem
== wake_mem
)
1563 /* if no hierarchy, no match */
1564 if (!oom_wait_info
->mem
->use_hierarchy
|| !wake_mem
->use_hierarchy
)
1567 * Both of oom_wait_info->mem and wake_mem are stable under us.
1568 * Then we can use css_is_ancestor without taking care of RCU.
1570 if (!css_is_ancestor(&oom_wait_info
->mem
->css
, &wake_mem
->css
) &&
1571 !css_is_ancestor(&wake_mem
->css
, &oom_wait_info
->mem
->css
))
1575 return autoremove_wake_function(wait
, mode
, sync
, arg
);
1578 static void memcg_wakeup_oom(struct mem_cgroup
*mem
)
1580 /* for filtering, pass "mem" as argument. */
1581 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, mem
);
1584 static void memcg_oom_recover(struct mem_cgroup
*mem
)
1586 if (mem
&& atomic_read(&mem
->oom_lock
))
1587 memcg_wakeup_oom(mem
);
1591 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1593 bool mem_cgroup_handle_oom(struct mem_cgroup
*mem
, gfp_t mask
)
1595 struct oom_wait_info owait
;
1596 bool locked
, need_to_kill
;
1599 owait
.wait
.flags
= 0;
1600 owait
.wait
.func
= memcg_oom_wake_function
;
1601 owait
.wait
.private = current
;
1602 INIT_LIST_HEAD(&owait
.wait
.task_list
);
1603 need_to_kill
= true;
1604 /* At first, try to OOM lock hierarchy under mem.*/
1605 mutex_lock(&memcg_oom_mutex
);
1606 locked
= mem_cgroup_oom_lock(mem
);
1608 * Even if signal_pending(), we can't quit charge() loop without
1609 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1610 * under OOM is always welcomed, use TASK_KILLABLE here.
1612 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
1613 if (!locked
|| mem
->oom_kill_disable
)
1614 need_to_kill
= false;
1616 mem_cgroup_oom_notify(mem
);
1617 mutex_unlock(&memcg_oom_mutex
);
1620 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1621 mem_cgroup_out_of_memory(mem
, mask
);
1624 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1626 mutex_lock(&memcg_oom_mutex
);
1627 mem_cgroup_oom_unlock(mem
);
1628 memcg_wakeup_oom(mem
);
1629 mutex_unlock(&memcg_oom_mutex
);
1631 if (test_thread_flag(TIF_MEMDIE
) || fatal_signal_pending(current
))
1633 /* Give chance to dying process */
1634 schedule_timeout(1);
1639 * Currently used to update mapped file statistics, but the routine can be
1640 * generalized to update other statistics as well.
1642 * Notes: Race condition
1644 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1645 * it tends to be costly. But considering some conditions, we doesn't need
1646 * to do so _always_.
1648 * Considering "charge", lock_page_cgroup() is not required because all
1649 * file-stat operations happen after a page is attached to radix-tree. There
1650 * are no race with "charge".
1652 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1653 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1654 * if there are race with "uncharge". Statistics itself is properly handled
1657 * Considering "move", this is an only case we see a race. To make the race
1658 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1659 * possibility of race condition. If there is, we take a lock.
1662 void mem_cgroup_update_page_stat(struct page
*page
,
1663 enum mem_cgroup_page_stat_item idx
, int val
)
1665 struct mem_cgroup
*mem
;
1666 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
1667 bool need_unlock
= false;
1668 unsigned long uninitialized_var(flags
);
1674 mem
= pc
->mem_cgroup
;
1675 if (unlikely(!mem
|| !PageCgroupUsed(pc
)))
1677 /* pc->mem_cgroup is unstable ? */
1678 if (unlikely(mem_cgroup_stealed(mem
)) || PageTransHuge(page
)) {
1679 /* take a lock against to access pc->mem_cgroup */
1680 move_lock_page_cgroup(pc
, &flags
);
1682 mem
= pc
->mem_cgroup
;
1683 if (!mem
|| !PageCgroupUsed(pc
))
1688 case MEMCG_NR_FILE_MAPPED
:
1690 SetPageCgroupFileMapped(pc
);
1691 else if (!page_mapped(page
))
1692 ClearPageCgroupFileMapped(pc
);
1693 idx
= MEM_CGROUP_STAT_FILE_MAPPED
;
1699 this_cpu_add(mem
->stat
->count
[idx
], val
);
1702 if (unlikely(need_unlock
))
1703 move_unlock_page_cgroup(pc
, &flags
);
1707 EXPORT_SYMBOL(mem_cgroup_update_page_stat
);
1710 * size of first charge trial. "32" comes from vmscan.c's magic value.
1711 * TODO: maybe necessary to use big numbers in big irons.
1713 #define CHARGE_BATCH 32U
1714 struct memcg_stock_pcp
{
1715 struct mem_cgroup
*cached
; /* this never be root cgroup */
1716 unsigned int nr_pages
;
1717 struct work_struct work
;
1719 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
1720 static atomic_t memcg_drain_count
;
1723 * Try to consume stocked charge on this cpu. If success, one page is consumed
1724 * from local stock and true is returned. If the stock is 0 or charges from a
1725 * cgroup which is not current target, returns false. This stock will be
1728 static bool consume_stock(struct mem_cgroup
*mem
)
1730 struct memcg_stock_pcp
*stock
;
1733 stock
= &get_cpu_var(memcg_stock
);
1734 if (mem
== stock
->cached
&& stock
->nr_pages
)
1736 else /* need to call res_counter_charge */
1738 put_cpu_var(memcg_stock
);
1743 * Returns stocks cached in percpu to res_counter and reset cached information.
1745 static void drain_stock(struct memcg_stock_pcp
*stock
)
1747 struct mem_cgroup
*old
= stock
->cached
;
1749 if (stock
->nr_pages
) {
1750 unsigned long bytes
= stock
->nr_pages
* PAGE_SIZE
;
1752 res_counter_uncharge(&old
->res
, bytes
);
1753 if (do_swap_account
)
1754 res_counter_uncharge(&old
->memsw
, bytes
);
1755 stock
->nr_pages
= 0;
1757 stock
->cached
= NULL
;
1761 * This must be called under preempt disabled or must be called by
1762 * a thread which is pinned to local cpu.
1764 static void drain_local_stock(struct work_struct
*dummy
)
1766 struct memcg_stock_pcp
*stock
= &__get_cpu_var(memcg_stock
);
1771 * Cache charges(val) which is from res_counter, to local per_cpu area.
1772 * This will be consumed by consume_stock() function, later.
1774 static void refill_stock(struct mem_cgroup
*mem
, unsigned int nr_pages
)
1776 struct memcg_stock_pcp
*stock
= &get_cpu_var(memcg_stock
);
1778 if (stock
->cached
!= mem
) { /* reset if necessary */
1780 stock
->cached
= mem
;
1782 stock
->nr_pages
+= nr_pages
;
1783 put_cpu_var(memcg_stock
);
1787 * Tries to drain stocked charges in other cpus. This function is asynchronous
1788 * and just put a work per cpu for draining localy on each cpu. Caller can
1789 * expects some charges will be back to res_counter later but cannot wait for
1792 static void drain_all_stock_async(void)
1795 /* This function is for scheduling "drain" in asynchronous way.
1796 * The result of "drain" is not directly handled by callers. Then,
1797 * if someone is calling drain, we don't have to call drain more.
1798 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1799 * there is a race. We just do loose check here.
1801 if (atomic_read(&memcg_drain_count
))
1803 /* Notify other cpus that system-wide "drain" is running */
1804 atomic_inc(&memcg_drain_count
);
1806 for_each_online_cpu(cpu
) {
1807 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
1808 schedule_work_on(cpu
, &stock
->work
);
1811 atomic_dec(&memcg_drain_count
);
1812 /* We don't wait for flush_work */
1815 /* This is a synchronous drain interface. */
1816 static void drain_all_stock_sync(void)
1818 /* called when force_empty is called */
1819 atomic_inc(&memcg_drain_count
);
1820 schedule_on_each_cpu(drain_local_stock
);
1821 atomic_dec(&memcg_drain_count
);
1825 * This function drains percpu counter value from DEAD cpu and
1826 * move it to local cpu. Note that this function can be preempted.
1828 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup
*mem
, int cpu
)
1832 spin_lock(&mem
->pcp_counter_lock
);
1833 for (i
= 0; i
< MEM_CGROUP_STAT_DATA
; i
++) {
1834 long x
= per_cpu(mem
->stat
->count
[i
], cpu
);
1836 per_cpu(mem
->stat
->count
[i
], cpu
) = 0;
1837 mem
->nocpu_base
.count
[i
] += x
;
1839 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++) {
1840 unsigned long x
= per_cpu(mem
->stat
->events
[i
], cpu
);
1842 per_cpu(mem
->stat
->events
[i
], cpu
) = 0;
1843 mem
->nocpu_base
.events
[i
] += x
;
1845 /* need to clear ON_MOVE value, works as a kind of lock. */
1846 per_cpu(mem
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) = 0;
1847 spin_unlock(&mem
->pcp_counter_lock
);
1850 static void synchronize_mem_cgroup_on_move(struct mem_cgroup
*mem
, int cpu
)
1852 int idx
= MEM_CGROUP_ON_MOVE
;
1854 spin_lock(&mem
->pcp_counter_lock
);
1855 per_cpu(mem
->stat
->count
[idx
], cpu
) = mem
->nocpu_base
.count
[idx
];
1856 spin_unlock(&mem
->pcp_counter_lock
);
1859 static int __cpuinit
memcg_cpu_hotplug_callback(struct notifier_block
*nb
,
1860 unsigned long action
,
1863 int cpu
= (unsigned long)hcpu
;
1864 struct memcg_stock_pcp
*stock
;
1865 struct mem_cgroup
*iter
;
1867 if ((action
== CPU_ONLINE
)) {
1868 for_each_mem_cgroup_all(iter
)
1869 synchronize_mem_cgroup_on_move(iter
, cpu
);
1873 if ((action
!= CPU_DEAD
) || action
!= CPU_DEAD_FROZEN
)
1876 for_each_mem_cgroup_all(iter
)
1877 mem_cgroup_drain_pcp_counter(iter
, cpu
);
1879 stock
= &per_cpu(memcg_stock
, cpu
);
1885 /* See __mem_cgroup_try_charge() for details */
1887 CHARGE_OK
, /* success */
1888 CHARGE_RETRY
, /* need to retry but retry is not bad */
1889 CHARGE_NOMEM
, /* we can't do more. return -ENOMEM */
1890 CHARGE_WOULDBLOCK
, /* GFP_WAIT wasn't set and no enough res. */
1891 CHARGE_OOM_DIE
, /* the current is killed because of OOM */
1894 static int mem_cgroup_do_charge(struct mem_cgroup
*mem
, gfp_t gfp_mask
,
1895 unsigned int nr_pages
, bool oom_check
)
1897 unsigned long csize
= nr_pages
* PAGE_SIZE
;
1898 struct mem_cgroup
*mem_over_limit
;
1899 struct res_counter
*fail_res
;
1900 unsigned long flags
= 0;
1903 ret
= res_counter_charge(&mem
->res
, csize
, &fail_res
);
1906 if (!do_swap_account
)
1908 ret
= res_counter_charge(&mem
->memsw
, csize
, &fail_res
);
1912 res_counter_uncharge(&mem
->res
, csize
);
1913 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, memsw
);
1914 flags
|= MEM_CGROUP_RECLAIM_NOSWAP
;
1916 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, res
);
1918 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
1919 * of regular pages (CHARGE_BATCH), or a single regular page (1).
1921 * Never reclaim on behalf of optional batching, retry with a
1922 * single page instead.
1924 if (nr_pages
== CHARGE_BATCH
)
1925 return CHARGE_RETRY
;
1927 if (!(gfp_mask
& __GFP_WAIT
))
1928 return CHARGE_WOULDBLOCK
;
1930 ret
= mem_cgroup_hierarchical_reclaim(mem_over_limit
, NULL
,
1932 if (mem_cgroup_margin(mem_over_limit
) >= nr_pages
)
1933 return CHARGE_RETRY
;
1935 * Even though the limit is exceeded at this point, reclaim
1936 * may have been able to free some pages. Retry the charge
1937 * before killing the task.
1939 * Only for regular pages, though: huge pages are rather
1940 * unlikely to succeed so close to the limit, and we fall back
1941 * to regular pages anyway in case of failure.
1943 if (nr_pages
== 1 && ret
)
1944 return CHARGE_RETRY
;
1947 * At task move, charge accounts can be doubly counted. So, it's
1948 * better to wait until the end of task_move if something is going on.
1950 if (mem_cgroup_wait_acct_move(mem_over_limit
))
1951 return CHARGE_RETRY
;
1953 /* If we don't need to call oom-killer at el, return immediately */
1955 return CHARGE_NOMEM
;
1957 if (!mem_cgroup_handle_oom(mem_over_limit
, gfp_mask
))
1958 return CHARGE_OOM_DIE
;
1960 return CHARGE_RETRY
;
1964 * Unlike exported interface, "oom" parameter is added. if oom==true,
1965 * oom-killer can be invoked.
1967 static int __mem_cgroup_try_charge(struct mm_struct
*mm
,
1969 unsigned int nr_pages
,
1970 struct mem_cgroup
**memcg
,
1973 unsigned int batch
= max(CHARGE_BATCH
, nr_pages
);
1974 int nr_oom_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
1975 struct mem_cgroup
*mem
= NULL
;
1979 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1980 * in system level. So, allow to go ahead dying process in addition to
1983 if (unlikely(test_thread_flag(TIF_MEMDIE
)
1984 || fatal_signal_pending(current
)))
1988 * We always charge the cgroup the mm_struct belongs to.
1989 * The mm_struct's mem_cgroup changes on task migration if the
1990 * thread group leader migrates. It's possible that mm is not
1991 * set, if so charge the init_mm (happens for pagecache usage).
1996 if (*memcg
) { /* css should be a valid one */
1998 VM_BUG_ON(css_is_removed(&mem
->css
));
1999 if (mem_cgroup_is_root(mem
))
2001 if (nr_pages
== 1 && consume_stock(mem
))
2005 struct task_struct
*p
;
2008 p
= rcu_dereference(mm
->owner
);
2010 * Because we don't have task_lock(), "p" can exit.
2011 * In that case, "mem" can point to root or p can be NULL with
2012 * race with swapoff. Then, we have small risk of mis-accouning.
2013 * But such kind of mis-account by race always happens because
2014 * we don't have cgroup_mutex(). It's overkill and we allo that
2016 * (*) swapoff at el will charge against mm-struct not against
2017 * task-struct. So, mm->owner can be NULL.
2019 mem
= mem_cgroup_from_task(p
);
2020 if (!mem
|| mem_cgroup_is_root(mem
)) {
2024 if (nr_pages
== 1 && consume_stock(mem
)) {
2026 * It seems dagerous to access memcg without css_get().
2027 * But considering how consume_stok works, it's not
2028 * necessary. If consume_stock success, some charges
2029 * from this memcg are cached on this cpu. So, we
2030 * don't need to call css_get()/css_tryget() before
2031 * calling consume_stock().
2036 /* after here, we may be blocked. we need to get refcnt */
2037 if (!css_tryget(&mem
->css
)) {
2047 /* If killed, bypass charge */
2048 if (fatal_signal_pending(current
)) {
2054 if (oom
&& !nr_oom_retries
) {
2056 nr_oom_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2059 ret
= mem_cgroup_do_charge(mem
, gfp_mask
, batch
, oom_check
);
2063 case CHARGE_RETRY
: /* not in OOM situation but retry */
2068 case CHARGE_WOULDBLOCK
: /* !__GFP_WAIT */
2071 case CHARGE_NOMEM
: /* OOM routine works */
2076 /* If oom, we never return -ENOMEM */
2079 case CHARGE_OOM_DIE
: /* Killed by OOM Killer */
2083 } while (ret
!= CHARGE_OK
);
2085 if (batch
> nr_pages
)
2086 refill_stock(mem
, batch
- nr_pages
);
2100 * Somemtimes we have to undo a charge we got by try_charge().
2101 * This function is for that and do uncharge, put css's refcnt.
2102 * gotten by try_charge().
2104 static void __mem_cgroup_cancel_charge(struct mem_cgroup
*mem
,
2105 unsigned int nr_pages
)
2107 if (!mem_cgroup_is_root(mem
)) {
2108 unsigned long bytes
= nr_pages
* PAGE_SIZE
;
2110 res_counter_uncharge(&mem
->res
, bytes
);
2111 if (do_swap_account
)
2112 res_counter_uncharge(&mem
->memsw
, bytes
);
2117 * A helper function to get mem_cgroup from ID. must be called under
2118 * rcu_read_lock(). The caller must check css_is_removed() or some if
2119 * it's concern. (dropping refcnt from swap can be called against removed
2122 static struct mem_cgroup
*mem_cgroup_lookup(unsigned short id
)
2124 struct cgroup_subsys_state
*css
;
2126 /* ID 0 is unused ID */
2129 css
= css_lookup(&mem_cgroup_subsys
, id
);
2132 return container_of(css
, struct mem_cgroup
, css
);
2135 struct mem_cgroup
*try_get_mem_cgroup_from_page(struct page
*page
)
2137 struct mem_cgroup
*mem
= NULL
;
2138 struct page_cgroup
*pc
;
2142 VM_BUG_ON(!PageLocked(page
));
2144 pc
= lookup_page_cgroup(page
);
2145 lock_page_cgroup(pc
);
2146 if (PageCgroupUsed(pc
)) {
2147 mem
= pc
->mem_cgroup
;
2148 if (mem
&& !css_tryget(&mem
->css
))
2150 } else if (PageSwapCache(page
)) {
2151 ent
.val
= page_private(page
);
2152 id
= lookup_swap_cgroup(ent
);
2154 mem
= mem_cgroup_lookup(id
);
2155 if (mem
&& !css_tryget(&mem
->css
))
2159 unlock_page_cgroup(pc
);
2163 static void __mem_cgroup_commit_charge(struct mem_cgroup
*mem
,
2165 unsigned int nr_pages
,
2166 struct page_cgroup
*pc
,
2167 enum charge_type ctype
)
2169 lock_page_cgroup(pc
);
2170 if (unlikely(PageCgroupUsed(pc
))) {
2171 unlock_page_cgroup(pc
);
2172 __mem_cgroup_cancel_charge(mem
, nr_pages
);
2176 * we don't need page_cgroup_lock about tail pages, becase they are not
2177 * accessed by any other context at this point.
2179 pc
->mem_cgroup
= mem
;
2181 * We access a page_cgroup asynchronously without lock_page_cgroup().
2182 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2183 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2184 * before USED bit, we need memory barrier here.
2185 * See mem_cgroup_add_lru_list(), etc.
2189 case MEM_CGROUP_CHARGE_TYPE_CACHE
:
2190 case MEM_CGROUP_CHARGE_TYPE_SHMEM
:
2191 SetPageCgroupCache(pc
);
2192 SetPageCgroupUsed(pc
);
2194 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
2195 ClearPageCgroupCache(pc
);
2196 SetPageCgroupUsed(pc
);
2202 mem_cgroup_charge_statistics(mem
, PageCgroupCache(pc
), nr_pages
);
2203 unlock_page_cgroup(pc
);
2205 * "charge_statistics" updated event counter. Then, check it.
2206 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2207 * if they exceeds softlimit.
2209 memcg_check_events(mem
, page
);
2212 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2214 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2215 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2217 * Because tail pages are not marked as "used", set it. We're under
2218 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2220 void mem_cgroup_split_huge_fixup(struct page
*head
, struct page
*tail
)
2222 struct page_cgroup
*head_pc
= lookup_page_cgroup(head
);
2223 struct page_cgroup
*tail_pc
= lookup_page_cgroup(tail
);
2224 unsigned long flags
;
2226 if (mem_cgroup_disabled())
2229 * We have no races with charge/uncharge but will have races with
2230 * page state accounting.
2232 move_lock_page_cgroup(head_pc
, &flags
);
2234 tail_pc
->mem_cgroup
= head_pc
->mem_cgroup
;
2235 smp_wmb(); /* see __commit_charge() */
2236 if (PageCgroupAcctLRU(head_pc
)) {
2238 struct mem_cgroup_per_zone
*mz
;
2241 * LRU flags cannot be copied because we need to add tail
2242 *.page to LRU by generic call and our hook will be called.
2243 * We hold lru_lock, then, reduce counter directly.
2245 lru
= page_lru(head
);
2246 mz
= page_cgroup_zoneinfo(head_pc
->mem_cgroup
, head
);
2247 MEM_CGROUP_ZSTAT(mz
, lru
) -= 1;
2249 tail_pc
->flags
= head_pc
->flags
& ~PCGF_NOCOPY_AT_SPLIT
;
2250 move_unlock_page_cgroup(head_pc
, &flags
);
2255 * mem_cgroup_move_account - move account of the page
2257 * @nr_pages: number of regular pages (>1 for huge pages)
2258 * @pc: page_cgroup of the page.
2259 * @from: mem_cgroup which the page is moved from.
2260 * @to: mem_cgroup which the page is moved to. @from != @to.
2261 * @uncharge: whether we should call uncharge and css_put against @from.
2263 * The caller must confirm following.
2264 * - page is not on LRU (isolate_page() is useful.)
2265 * - compound_lock is held when nr_pages > 1
2267 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2268 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2269 * true, this function does "uncharge" from old cgroup, but it doesn't if
2270 * @uncharge is false, so a caller should do "uncharge".
2272 static int mem_cgroup_move_account(struct page
*page
,
2273 unsigned int nr_pages
,
2274 struct page_cgroup
*pc
,
2275 struct mem_cgroup
*from
,
2276 struct mem_cgroup
*to
,
2279 unsigned long flags
;
2282 VM_BUG_ON(from
== to
);
2283 VM_BUG_ON(PageLRU(page
));
2285 * The page is isolated from LRU. So, collapse function
2286 * will not handle this page. But page splitting can happen.
2287 * Do this check under compound_page_lock(). The caller should
2291 if (nr_pages
> 1 && !PageTransHuge(page
))
2294 lock_page_cgroup(pc
);
2297 if (!PageCgroupUsed(pc
) || pc
->mem_cgroup
!= from
)
2300 move_lock_page_cgroup(pc
, &flags
);
2302 if (PageCgroupFileMapped(pc
)) {
2303 /* Update mapped_file data for mem_cgroup */
2305 __this_cpu_dec(from
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
2306 __this_cpu_inc(to
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
2309 mem_cgroup_charge_statistics(from
, PageCgroupCache(pc
), -nr_pages
);
2311 /* This is not "cancel", but cancel_charge does all we need. */
2312 __mem_cgroup_cancel_charge(from
, nr_pages
);
2314 /* caller should have done css_get */
2315 pc
->mem_cgroup
= to
;
2316 mem_cgroup_charge_statistics(to
, PageCgroupCache(pc
), nr_pages
);
2318 * We charges against "to" which may not have any tasks. Then, "to"
2319 * can be under rmdir(). But in current implementation, caller of
2320 * this function is just force_empty() and move charge, so it's
2321 * guaranteed that "to" is never removed. So, we don't check rmdir
2324 move_unlock_page_cgroup(pc
, &flags
);
2327 unlock_page_cgroup(pc
);
2331 memcg_check_events(to
, page
);
2332 memcg_check_events(from
, page
);
2338 * move charges to its parent.
2341 static int mem_cgroup_move_parent(struct page
*page
,
2342 struct page_cgroup
*pc
,
2343 struct mem_cgroup
*child
,
2346 struct cgroup
*cg
= child
->css
.cgroup
;
2347 struct cgroup
*pcg
= cg
->parent
;
2348 struct mem_cgroup
*parent
;
2349 unsigned int nr_pages
;
2350 unsigned long uninitialized_var(flags
);
2358 if (!get_page_unless_zero(page
))
2360 if (isolate_lru_page(page
))
2363 nr_pages
= hpage_nr_pages(page
);
2365 parent
= mem_cgroup_from_cont(pcg
);
2366 ret
= __mem_cgroup_try_charge(NULL
, gfp_mask
, nr_pages
, &parent
, false);
2371 flags
= compound_lock_irqsave(page
);
2373 ret
= mem_cgroup_move_account(page
, nr_pages
, pc
, child
, parent
, true);
2375 __mem_cgroup_cancel_charge(parent
, nr_pages
);
2378 compound_unlock_irqrestore(page
, flags
);
2380 putback_lru_page(page
);
2388 * Charge the memory controller for page usage.
2390 * 0 if the charge was successful
2391 * < 0 if the cgroup is over its limit
2393 static int mem_cgroup_charge_common(struct page
*page
, struct mm_struct
*mm
,
2394 gfp_t gfp_mask
, enum charge_type ctype
)
2396 struct mem_cgroup
*mem
= NULL
;
2397 unsigned int nr_pages
= 1;
2398 struct page_cgroup
*pc
;
2402 if (PageTransHuge(page
)) {
2403 nr_pages
<<= compound_order(page
);
2404 VM_BUG_ON(!PageTransHuge(page
));
2406 * Never OOM-kill a process for a huge page. The
2407 * fault handler will fall back to regular pages.
2412 pc
= lookup_page_cgroup(page
);
2413 BUG_ON(!pc
); /* XXX: remove this and move pc lookup into commit */
2415 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, nr_pages
, &mem
, oom
);
2419 __mem_cgroup_commit_charge(mem
, page
, nr_pages
, pc
, ctype
);
2423 int mem_cgroup_newpage_charge(struct page
*page
,
2424 struct mm_struct
*mm
, gfp_t gfp_mask
)
2426 if (mem_cgroup_disabled())
2429 * If already mapped, we don't have to account.
2430 * If page cache, page->mapping has address_space.
2431 * But page->mapping may have out-of-use anon_vma pointer,
2432 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2435 if (page_mapped(page
) || (page
->mapping
&& !PageAnon(page
)))
2439 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
2440 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2444 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
2445 enum charge_type ctype
);
2448 __mem_cgroup_commit_charge_lrucare(struct page
*page
, struct mem_cgroup
*mem
,
2449 enum charge_type ctype
)
2451 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
2453 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2454 * is already on LRU. It means the page may on some other page_cgroup's
2455 * LRU. Take care of it.
2457 mem_cgroup_lru_del_before_commit(page
);
2458 __mem_cgroup_commit_charge(mem
, page
, 1, pc
, ctype
);
2459 mem_cgroup_lru_add_after_commit(page
);
2463 int mem_cgroup_cache_charge(struct page
*page
, struct mm_struct
*mm
,
2466 struct mem_cgroup
*mem
= NULL
;
2469 if (mem_cgroup_disabled())
2471 if (PageCompound(page
))
2474 * Corner case handling. This is called from add_to_page_cache()
2475 * in usual. But some FS (shmem) precharges this page before calling it
2476 * and call add_to_page_cache() with GFP_NOWAIT.
2478 * For GFP_NOWAIT case, the page may be pre-charged before calling
2479 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2480 * charge twice. (It works but has to pay a bit larger cost.)
2481 * And when the page is SwapCache, it should take swap information
2482 * into account. This is under lock_page() now.
2484 if (!(gfp_mask
& __GFP_WAIT
)) {
2485 struct page_cgroup
*pc
;
2487 pc
= lookup_page_cgroup(page
);
2490 lock_page_cgroup(pc
);
2491 if (PageCgroupUsed(pc
)) {
2492 unlock_page_cgroup(pc
);
2495 unlock_page_cgroup(pc
);
2501 if (page_is_file_cache(page
)) {
2502 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, 1, &mem
, true);
2507 * FUSE reuses pages without going through the final
2508 * put that would remove them from the LRU list, make
2509 * sure that they get relinked properly.
2511 __mem_cgroup_commit_charge_lrucare(page
, mem
,
2512 MEM_CGROUP_CHARGE_TYPE_CACHE
);
2516 if (PageSwapCache(page
)) {
2517 ret
= mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, &mem
);
2519 __mem_cgroup_commit_charge_swapin(page
, mem
,
2520 MEM_CGROUP_CHARGE_TYPE_SHMEM
);
2522 ret
= mem_cgroup_charge_common(page
, mm
, gfp_mask
,
2523 MEM_CGROUP_CHARGE_TYPE_SHMEM
);
2529 * While swap-in, try_charge -> commit or cancel, the page is locked.
2530 * And when try_charge() successfully returns, one refcnt to memcg without
2531 * struct page_cgroup is acquired. This refcnt will be consumed by
2532 * "commit()" or removed by "cancel()"
2534 int mem_cgroup_try_charge_swapin(struct mm_struct
*mm
,
2536 gfp_t mask
, struct mem_cgroup
**ptr
)
2538 struct mem_cgroup
*mem
;
2543 if (mem_cgroup_disabled())
2546 if (!do_swap_account
)
2549 * A racing thread's fault, or swapoff, may have already updated
2550 * the pte, and even removed page from swap cache: in those cases
2551 * do_swap_page()'s pte_same() test will fail; but there's also a
2552 * KSM case which does need to charge the page.
2554 if (!PageSwapCache(page
))
2556 mem
= try_get_mem_cgroup_from_page(page
);
2560 ret
= __mem_cgroup_try_charge(NULL
, mask
, 1, ptr
, true);
2566 return __mem_cgroup_try_charge(mm
, mask
, 1, ptr
, true);
2570 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
2571 enum charge_type ctype
)
2573 if (mem_cgroup_disabled())
2577 cgroup_exclude_rmdir(&ptr
->css
);
2579 __mem_cgroup_commit_charge_lrucare(page
, ptr
, ctype
);
2581 * Now swap is on-memory. This means this page may be
2582 * counted both as mem and swap....double count.
2583 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2584 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2585 * may call delete_from_swap_cache() before reach here.
2587 if (do_swap_account
&& PageSwapCache(page
)) {
2588 swp_entry_t ent
= {.val
= page_private(page
)};
2590 struct mem_cgroup
*memcg
;
2592 id
= swap_cgroup_record(ent
, 0);
2594 memcg
= mem_cgroup_lookup(id
);
2597 * This recorded memcg can be obsolete one. So, avoid
2598 * calling css_tryget
2600 if (!mem_cgroup_is_root(memcg
))
2601 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
2602 mem_cgroup_swap_statistics(memcg
, false);
2603 mem_cgroup_put(memcg
);
2608 * At swapin, we may charge account against cgroup which has no tasks.
2609 * So, rmdir()->pre_destroy() can be called while we do this charge.
2610 * In that case, we need to call pre_destroy() again. check it here.
2612 cgroup_release_and_wakeup_rmdir(&ptr
->css
);
2615 void mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
)
2617 __mem_cgroup_commit_charge_swapin(page
, ptr
,
2618 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2621 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup
*mem
)
2623 if (mem_cgroup_disabled())
2627 __mem_cgroup_cancel_charge(mem
, 1);
2630 static void mem_cgroup_do_uncharge(struct mem_cgroup
*mem
,
2631 unsigned int nr_pages
,
2632 const enum charge_type ctype
)
2634 struct memcg_batch_info
*batch
= NULL
;
2635 bool uncharge_memsw
= true;
2637 /* If swapout, usage of swap doesn't decrease */
2638 if (!do_swap_account
|| ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
2639 uncharge_memsw
= false;
2641 batch
= ¤t
->memcg_batch
;
2643 * In usual, we do css_get() when we remember memcg pointer.
2644 * But in this case, we keep res->usage until end of a series of
2645 * uncharges. Then, it's ok to ignore memcg's refcnt.
2650 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2651 * In those cases, all pages freed continuously can be expected to be in
2652 * the same cgroup and we have chance to coalesce uncharges.
2653 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2654 * because we want to do uncharge as soon as possible.
2657 if (!batch
->do_batch
|| test_thread_flag(TIF_MEMDIE
))
2658 goto direct_uncharge
;
2661 goto direct_uncharge
;
2664 * In typical case, batch->memcg == mem. This means we can
2665 * merge a series of uncharges to an uncharge of res_counter.
2666 * If not, we uncharge res_counter ony by one.
2668 if (batch
->memcg
!= mem
)
2669 goto direct_uncharge
;
2670 /* remember freed charge and uncharge it later */
2673 batch
->memsw_nr_pages
++;
2676 res_counter_uncharge(&mem
->res
, nr_pages
* PAGE_SIZE
);
2678 res_counter_uncharge(&mem
->memsw
, nr_pages
* PAGE_SIZE
);
2679 if (unlikely(batch
->memcg
!= mem
))
2680 memcg_oom_recover(mem
);
2685 * uncharge if !page_mapped(page)
2687 static struct mem_cgroup
*
2688 __mem_cgroup_uncharge_common(struct page
*page
, enum charge_type ctype
)
2690 struct mem_cgroup
*mem
= NULL
;
2691 unsigned int nr_pages
= 1;
2692 struct page_cgroup
*pc
;
2694 if (mem_cgroup_disabled())
2697 if (PageSwapCache(page
))
2700 if (PageTransHuge(page
)) {
2701 nr_pages
<<= compound_order(page
);
2702 VM_BUG_ON(!PageTransHuge(page
));
2705 * Check if our page_cgroup is valid
2707 pc
= lookup_page_cgroup(page
);
2708 if (unlikely(!pc
|| !PageCgroupUsed(pc
)))
2711 lock_page_cgroup(pc
);
2713 mem
= pc
->mem_cgroup
;
2715 if (!PageCgroupUsed(pc
))
2719 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
2720 case MEM_CGROUP_CHARGE_TYPE_DROP
:
2721 /* See mem_cgroup_prepare_migration() */
2722 if (page_mapped(page
) || PageCgroupMigration(pc
))
2725 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT
:
2726 if (!PageAnon(page
)) { /* Shared memory */
2727 if (page
->mapping
&& !page_is_file_cache(page
))
2729 } else if (page_mapped(page
)) /* Anon */
2736 mem_cgroup_charge_statistics(mem
, PageCgroupCache(pc
), -nr_pages
);
2738 ClearPageCgroupUsed(pc
);
2740 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2741 * freed from LRU. This is safe because uncharged page is expected not
2742 * to be reused (freed soon). Exception is SwapCache, it's handled by
2743 * special functions.
2746 unlock_page_cgroup(pc
);
2748 * even after unlock, we have mem->res.usage here and this memcg
2749 * will never be freed.
2751 memcg_check_events(mem
, page
);
2752 if (do_swap_account
&& ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
) {
2753 mem_cgroup_swap_statistics(mem
, true);
2754 mem_cgroup_get(mem
);
2756 if (!mem_cgroup_is_root(mem
))
2757 mem_cgroup_do_uncharge(mem
, nr_pages
, ctype
);
2762 unlock_page_cgroup(pc
);
2766 void mem_cgroup_uncharge_page(struct page
*page
)
2769 if (page_mapped(page
))
2771 if (page
->mapping
&& !PageAnon(page
))
2773 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2776 void mem_cgroup_uncharge_cache_page(struct page
*page
)
2778 VM_BUG_ON(page_mapped(page
));
2779 VM_BUG_ON(page
->mapping
);
2780 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_CACHE
);
2784 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2785 * In that cases, pages are freed continuously and we can expect pages
2786 * are in the same memcg. All these calls itself limits the number of
2787 * pages freed at once, then uncharge_start/end() is called properly.
2788 * This may be called prural(2) times in a context,
2791 void mem_cgroup_uncharge_start(void)
2793 current
->memcg_batch
.do_batch
++;
2794 /* We can do nest. */
2795 if (current
->memcg_batch
.do_batch
== 1) {
2796 current
->memcg_batch
.memcg
= NULL
;
2797 current
->memcg_batch
.nr_pages
= 0;
2798 current
->memcg_batch
.memsw_nr_pages
= 0;
2802 void mem_cgroup_uncharge_end(void)
2804 struct memcg_batch_info
*batch
= ¤t
->memcg_batch
;
2806 if (!batch
->do_batch
)
2810 if (batch
->do_batch
) /* If stacked, do nothing. */
2816 * This "batch->memcg" is valid without any css_get/put etc...
2817 * bacause we hide charges behind us.
2819 if (batch
->nr_pages
)
2820 res_counter_uncharge(&batch
->memcg
->res
,
2821 batch
->nr_pages
* PAGE_SIZE
);
2822 if (batch
->memsw_nr_pages
)
2823 res_counter_uncharge(&batch
->memcg
->memsw
,
2824 batch
->memsw_nr_pages
* PAGE_SIZE
);
2825 memcg_oom_recover(batch
->memcg
);
2826 /* forget this pointer (for sanity check) */
2827 batch
->memcg
= NULL
;
2832 * called after __delete_from_swap_cache() and drop "page" account.
2833 * memcg information is recorded to swap_cgroup of "ent"
2836 mem_cgroup_uncharge_swapcache(struct page
*page
, swp_entry_t ent
, bool swapout
)
2838 struct mem_cgroup
*memcg
;
2839 int ctype
= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
;
2841 if (!swapout
) /* this was a swap cache but the swap is unused ! */
2842 ctype
= MEM_CGROUP_CHARGE_TYPE_DROP
;
2844 memcg
= __mem_cgroup_uncharge_common(page
, ctype
);
2847 * record memcg information, if swapout && memcg != NULL,
2848 * mem_cgroup_get() was called in uncharge().
2850 if (do_swap_account
&& swapout
&& memcg
)
2851 swap_cgroup_record(ent
, css_id(&memcg
->css
));
2855 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2857 * called from swap_entry_free(). remove record in swap_cgroup and
2858 * uncharge "memsw" account.
2860 void mem_cgroup_uncharge_swap(swp_entry_t ent
)
2862 struct mem_cgroup
*memcg
;
2865 if (!do_swap_account
)
2868 id
= swap_cgroup_record(ent
, 0);
2870 memcg
= mem_cgroup_lookup(id
);
2873 * We uncharge this because swap is freed.
2874 * This memcg can be obsolete one. We avoid calling css_tryget
2876 if (!mem_cgroup_is_root(memcg
))
2877 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
2878 mem_cgroup_swap_statistics(memcg
, false);
2879 mem_cgroup_put(memcg
);
2885 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2886 * @entry: swap entry to be moved
2887 * @from: mem_cgroup which the entry is moved from
2888 * @to: mem_cgroup which the entry is moved to
2889 * @need_fixup: whether we should fixup res_counters and refcounts.
2891 * It succeeds only when the swap_cgroup's record for this entry is the same
2892 * as the mem_cgroup's id of @from.
2894 * Returns 0 on success, -EINVAL on failure.
2896 * The caller must have charged to @to, IOW, called res_counter_charge() about
2897 * both res and memsw, and called css_get().
2899 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
2900 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool need_fixup
)
2902 unsigned short old_id
, new_id
;
2904 old_id
= css_id(&from
->css
);
2905 new_id
= css_id(&to
->css
);
2907 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
2908 mem_cgroup_swap_statistics(from
, false);
2909 mem_cgroup_swap_statistics(to
, true);
2911 * This function is only called from task migration context now.
2912 * It postpones res_counter and refcount handling till the end
2913 * of task migration(mem_cgroup_clear_mc()) for performance
2914 * improvement. But we cannot postpone mem_cgroup_get(to)
2915 * because if the process that has been moved to @to does
2916 * swap-in, the refcount of @to might be decreased to 0.
2920 if (!mem_cgroup_is_root(from
))
2921 res_counter_uncharge(&from
->memsw
, PAGE_SIZE
);
2922 mem_cgroup_put(from
);
2924 * we charged both to->res and to->memsw, so we should
2927 if (!mem_cgroup_is_root(to
))
2928 res_counter_uncharge(&to
->res
, PAGE_SIZE
);
2935 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
2936 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool need_fixup
)
2943 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2946 int mem_cgroup_prepare_migration(struct page
*page
,
2947 struct page
*newpage
, struct mem_cgroup
**ptr
, gfp_t gfp_mask
)
2949 struct mem_cgroup
*mem
= NULL
;
2950 struct page_cgroup
*pc
;
2951 enum charge_type ctype
;
2956 VM_BUG_ON(PageTransHuge(page
));
2957 if (mem_cgroup_disabled())
2960 pc
= lookup_page_cgroup(page
);
2961 lock_page_cgroup(pc
);
2962 if (PageCgroupUsed(pc
)) {
2963 mem
= pc
->mem_cgroup
;
2966 * At migrating an anonymous page, its mapcount goes down
2967 * to 0 and uncharge() will be called. But, even if it's fully
2968 * unmapped, migration may fail and this page has to be
2969 * charged again. We set MIGRATION flag here and delay uncharge
2970 * until end_migration() is called
2972 * Corner Case Thinking
2974 * When the old page was mapped as Anon and it's unmap-and-freed
2975 * while migration was ongoing.
2976 * If unmap finds the old page, uncharge() of it will be delayed
2977 * until end_migration(). If unmap finds a new page, it's
2978 * uncharged when it make mapcount to be 1->0. If unmap code
2979 * finds swap_migration_entry, the new page will not be mapped
2980 * and end_migration() will find it(mapcount==0).
2983 * When the old page was mapped but migraion fails, the kernel
2984 * remaps it. A charge for it is kept by MIGRATION flag even
2985 * if mapcount goes down to 0. We can do remap successfully
2986 * without charging it again.
2989 * The "old" page is under lock_page() until the end of
2990 * migration, so, the old page itself will not be swapped-out.
2991 * If the new page is swapped out before end_migraton, our
2992 * hook to usual swap-out path will catch the event.
2995 SetPageCgroupMigration(pc
);
2997 unlock_page_cgroup(pc
);
2999 * If the page is not charged at this point,
3006 ret
= __mem_cgroup_try_charge(NULL
, gfp_mask
, 1, ptr
, false);
3007 css_put(&mem
->css
);/* drop extra refcnt */
3008 if (ret
|| *ptr
== NULL
) {
3009 if (PageAnon(page
)) {
3010 lock_page_cgroup(pc
);
3011 ClearPageCgroupMigration(pc
);
3012 unlock_page_cgroup(pc
);
3014 * The old page may be fully unmapped while we kept it.
3016 mem_cgroup_uncharge_page(page
);
3021 * We charge new page before it's used/mapped. So, even if unlock_page()
3022 * is called before end_migration, we can catch all events on this new
3023 * page. In the case new page is migrated but not remapped, new page's
3024 * mapcount will be finally 0 and we call uncharge in end_migration().
3026 pc
= lookup_page_cgroup(newpage
);
3028 ctype
= MEM_CGROUP_CHARGE_TYPE_MAPPED
;
3029 else if (page_is_file_cache(page
))
3030 ctype
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
3032 ctype
= MEM_CGROUP_CHARGE_TYPE_SHMEM
;
3033 __mem_cgroup_commit_charge(mem
, page
, 1, pc
, ctype
);
3037 /* remove redundant charge if migration failed*/
3038 void mem_cgroup_end_migration(struct mem_cgroup
*mem
,
3039 struct page
*oldpage
, struct page
*newpage
, bool migration_ok
)
3041 struct page
*used
, *unused
;
3042 struct page_cgroup
*pc
;
3046 /* blocks rmdir() */
3047 cgroup_exclude_rmdir(&mem
->css
);
3048 if (!migration_ok
) {
3056 * We disallowed uncharge of pages under migration because mapcount
3057 * of the page goes down to zero, temporarly.
3058 * Clear the flag and check the page should be charged.
3060 pc
= lookup_page_cgroup(oldpage
);
3061 lock_page_cgroup(pc
);
3062 ClearPageCgroupMigration(pc
);
3063 unlock_page_cgroup(pc
);
3065 __mem_cgroup_uncharge_common(unused
, MEM_CGROUP_CHARGE_TYPE_FORCE
);
3068 * If a page is a file cache, radix-tree replacement is very atomic
3069 * and we can skip this check. When it was an Anon page, its mapcount
3070 * goes down to 0. But because we added MIGRATION flage, it's not
3071 * uncharged yet. There are several case but page->mapcount check
3072 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3073 * check. (see prepare_charge() also)
3076 mem_cgroup_uncharge_page(used
);
3078 * At migration, we may charge account against cgroup which has no
3080 * So, rmdir()->pre_destroy() can be called while we do this charge.
3081 * In that case, we need to call pre_destroy() again. check it here.
3083 cgroup_release_and_wakeup_rmdir(&mem
->css
);
3087 * A call to try to shrink memory usage on charge failure at shmem's swapin.
3088 * Calling hierarchical_reclaim is not enough because we should update
3089 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3090 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3091 * not from the memcg which this page would be charged to.
3092 * try_charge_swapin does all of these works properly.
3094 int mem_cgroup_shmem_charge_fallback(struct page
*page
,
3095 struct mm_struct
*mm
,
3098 struct mem_cgroup
*mem
;
3101 if (mem_cgroup_disabled())
3104 ret
= mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, &mem
);
3106 mem_cgroup_cancel_charge_swapin(mem
); /* it does !mem check */
3111 #ifdef CONFIG_DEBUG_VM
3112 static struct page_cgroup
*lookup_page_cgroup_used(struct page
*page
)
3114 struct page_cgroup
*pc
;
3116 pc
= lookup_page_cgroup(page
);
3117 if (likely(pc
) && PageCgroupUsed(pc
))
3122 bool mem_cgroup_bad_page_check(struct page
*page
)
3124 if (mem_cgroup_disabled())
3127 return lookup_page_cgroup_used(page
) != NULL
;
3130 void mem_cgroup_print_bad_page(struct page
*page
)
3132 struct page_cgroup
*pc
;
3134 pc
= lookup_page_cgroup_used(page
);
3139 printk(KERN_ALERT
"pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3140 pc
, pc
->flags
, pc
->mem_cgroup
);
3142 path
= kmalloc(PATH_MAX
, GFP_KERNEL
);
3145 ret
= cgroup_path(pc
->mem_cgroup
->css
.cgroup
,
3150 printk(KERN_CONT
"(%s)\n",
3151 (ret
< 0) ? "cannot get the path" : path
);
3157 static DEFINE_MUTEX(set_limit_mutex
);
3159 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
3160 unsigned long long val
)
3163 u64 memswlimit
, memlimit
;
3165 int children
= mem_cgroup_count_children(memcg
);
3166 u64 curusage
, oldusage
;
3170 * For keeping hierarchical_reclaim simple, how long we should retry
3171 * is depends on callers. We set our retry-count to be function
3172 * of # of children which we should visit in this loop.
3174 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
* children
;
3176 oldusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
3179 while (retry_count
) {
3180 if (signal_pending(current
)) {
3185 * Rather than hide all in some function, I do this in
3186 * open coded manner. You see what this really does.
3187 * We have to guarantee mem->res.limit < mem->memsw.limit.
3189 mutex_lock(&set_limit_mutex
);
3190 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3191 if (memswlimit
< val
) {
3193 mutex_unlock(&set_limit_mutex
);
3197 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3201 ret
= res_counter_set_limit(&memcg
->res
, val
);
3203 if (memswlimit
== val
)
3204 memcg
->memsw_is_minimum
= true;
3206 memcg
->memsw_is_minimum
= false;
3208 mutex_unlock(&set_limit_mutex
);
3213 mem_cgroup_hierarchical_reclaim(memcg
, NULL
, GFP_KERNEL
,
3214 MEM_CGROUP_RECLAIM_SHRINK
);
3215 curusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
3216 /* Usage is reduced ? */
3217 if (curusage
>= oldusage
)
3220 oldusage
= curusage
;
3222 if (!ret
&& enlarge
)
3223 memcg_oom_recover(memcg
);
3228 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
3229 unsigned long long val
)
3232 u64 memlimit
, memswlimit
, oldusage
, curusage
;
3233 int children
= mem_cgroup_count_children(memcg
);
3237 /* see mem_cgroup_resize_res_limit */
3238 retry_count
= children
* MEM_CGROUP_RECLAIM_RETRIES
;
3239 oldusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3240 while (retry_count
) {
3241 if (signal_pending(current
)) {
3246 * Rather than hide all in some function, I do this in
3247 * open coded manner. You see what this really does.
3248 * We have to guarantee mem->res.limit < mem->memsw.limit.
3250 mutex_lock(&set_limit_mutex
);
3251 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3252 if (memlimit
> val
) {
3254 mutex_unlock(&set_limit_mutex
);
3257 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3258 if (memswlimit
< val
)
3260 ret
= res_counter_set_limit(&memcg
->memsw
, val
);
3262 if (memlimit
== val
)
3263 memcg
->memsw_is_minimum
= true;
3265 memcg
->memsw_is_minimum
= false;
3267 mutex_unlock(&set_limit_mutex
);
3272 mem_cgroup_hierarchical_reclaim(memcg
, NULL
, GFP_KERNEL
,
3273 MEM_CGROUP_RECLAIM_NOSWAP
|
3274 MEM_CGROUP_RECLAIM_SHRINK
);
3275 curusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3276 /* Usage is reduced ? */
3277 if (curusage
>= oldusage
)
3280 oldusage
= curusage
;
3282 if (!ret
&& enlarge
)
3283 memcg_oom_recover(memcg
);
3287 unsigned long mem_cgroup_soft_limit_reclaim(struct zone
*zone
, int order
,
3290 unsigned long nr_reclaimed
= 0;
3291 struct mem_cgroup_per_zone
*mz
, *next_mz
= NULL
;
3292 unsigned long reclaimed
;
3294 struct mem_cgroup_tree_per_zone
*mctz
;
3295 unsigned long long excess
;
3300 mctz
= soft_limit_tree_node_zone(zone_to_nid(zone
), zone_idx(zone
));
3302 * This loop can run a while, specially if mem_cgroup's continuously
3303 * keep exceeding their soft limit and putting the system under
3310 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
3314 reclaimed
= mem_cgroup_hierarchical_reclaim(mz
->mem
, zone
,
3316 MEM_CGROUP_RECLAIM_SOFT
);
3317 nr_reclaimed
+= reclaimed
;
3318 spin_lock(&mctz
->lock
);
3321 * If we failed to reclaim anything from this memory cgroup
3322 * it is time to move on to the next cgroup
3328 * Loop until we find yet another one.
3330 * By the time we get the soft_limit lock
3331 * again, someone might have aded the
3332 * group back on the RB tree. Iterate to
3333 * make sure we get a different mem.
3334 * mem_cgroup_largest_soft_limit_node returns
3335 * NULL if no other cgroup is present on
3339 __mem_cgroup_largest_soft_limit_node(mctz
);
3340 if (next_mz
== mz
) {
3341 css_put(&next_mz
->mem
->css
);
3343 } else /* next_mz == NULL or other memcg */
3347 __mem_cgroup_remove_exceeded(mz
->mem
, mz
, mctz
);
3348 excess
= res_counter_soft_limit_excess(&mz
->mem
->res
);
3350 * One school of thought says that we should not add
3351 * back the node to the tree if reclaim returns 0.
3352 * But our reclaim could return 0, simply because due
3353 * to priority we are exposing a smaller subset of
3354 * memory to reclaim from. Consider this as a longer
3357 /* If excess == 0, no tree ops */
3358 __mem_cgroup_insert_exceeded(mz
->mem
, mz
, mctz
, excess
);
3359 spin_unlock(&mctz
->lock
);
3360 css_put(&mz
->mem
->css
);
3363 * Could not reclaim anything and there are no more
3364 * mem cgroups to try or we seem to be looping without
3365 * reclaiming anything.
3367 if (!nr_reclaimed
&&
3369 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
3371 } while (!nr_reclaimed
);
3373 css_put(&next_mz
->mem
->css
);
3374 return nr_reclaimed
;
3378 * This routine traverse page_cgroup in given list and drop them all.
3379 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3381 static int mem_cgroup_force_empty_list(struct mem_cgroup
*mem
,
3382 int node
, int zid
, enum lru_list lru
)
3385 struct mem_cgroup_per_zone
*mz
;
3386 struct page_cgroup
*pc
, *busy
;
3387 unsigned long flags
, loop
;
3388 struct list_head
*list
;
3391 zone
= &NODE_DATA(node
)->node_zones
[zid
];
3392 mz
= mem_cgroup_zoneinfo(mem
, node
, zid
);
3393 list
= &mz
->lists
[lru
];
3395 loop
= MEM_CGROUP_ZSTAT(mz
, lru
);
3396 /* give some margin against EBUSY etc...*/
3403 spin_lock_irqsave(&zone
->lru_lock
, flags
);
3404 if (list_empty(list
)) {
3405 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3408 pc
= list_entry(list
->prev
, struct page_cgroup
, lru
);
3410 list_move(&pc
->lru
, list
);
3412 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3415 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3417 page
= lookup_cgroup_page(pc
);
3419 ret
= mem_cgroup_move_parent(page
, pc
, mem
, GFP_KERNEL
);
3423 if (ret
== -EBUSY
|| ret
== -EINVAL
) {
3424 /* found lock contention or "pc" is obsolete. */
3431 if (!ret
&& !list_empty(list
))
3437 * make mem_cgroup's charge to be 0 if there is no task.
3438 * This enables deleting this mem_cgroup.
3440 static int mem_cgroup_force_empty(struct mem_cgroup
*mem
, bool free_all
)
3443 int node
, zid
, shrink
;
3444 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
3445 struct cgroup
*cgrp
= mem
->css
.cgroup
;
3450 /* should free all ? */
3456 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
))
3459 if (signal_pending(current
))
3461 /* This is for making all *used* pages to be on LRU. */
3462 lru_add_drain_all();
3463 drain_all_stock_sync();
3465 mem_cgroup_start_move(mem
);
3466 for_each_node_state(node
, N_HIGH_MEMORY
) {
3467 for (zid
= 0; !ret
&& zid
< MAX_NR_ZONES
; zid
++) {
3470 ret
= mem_cgroup_force_empty_list(mem
,
3479 mem_cgroup_end_move(mem
);
3480 memcg_oom_recover(mem
);
3481 /* it seems parent cgroup doesn't have enough mem */
3485 /* "ret" should also be checked to ensure all lists are empty. */
3486 } while (mem
->res
.usage
> 0 || ret
);
3492 /* returns EBUSY if there is a task or if we come here twice. */
3493 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
) || shrink
) {
3497 /* we call try-to-free pages for make this cgroup empty */
3498 lru_add_drain_all();
3499 /* try to free all pages in this cgroup */
3501 while (nr_retries
&& mem
->res
.usage
> 0) {
3504 if (signal_pending(current
)) {
3508 progress
= try_to_free_mem_cgroup_pages(mem
, GFP_KERNEL
,
3509 false, get_swappiness(mem
));
3512 /* maybe some writeback is necessary */
3513 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
3518 /* try move_account...there may be some *locked* pages. */
3522 int mem_cgroup_force_empty_write(struct cgroup
*cont
, unsigned int event
)
3524 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont
), true);
3528 static u64
mem_cgroup_hierarchy_read(struct cgroup
*cont
, struct cftype
*cft
)
3530 return mem_cgroup_from_cont(cont
)->use_hierarchy
;
3533 static int mem_cgroup_hierarchy_write(struct cgroup
*cont
, struct cftype
*cft
,
3537 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
3538 struct cgroup
*parent
= cont
->parent
;
3539 struct mem_cgroup
*parent_mem
= NULL
;
3542 parent_mem
= mem_cgroup_from_cont(parent
);
3546 * If parent's use_hierarchy is set, we can't make any modifications
3547 * in the child subtrees. If it is unset, then the change can
3548 * occur, provided the current cgroup has no children.
3550 * For the root cgroup, parent_mem is NULL, we allow value to be
3551 * set if there are no children.
3553 if ((!parent_mem
|| !parent_mem
->use_hierarchy
) &&
3554 (val
== 1 || val
== 0)) {
3555 if (list_empty(&cont
->children
))
3556 mem
->use_hierarchy
= val
;
3567 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup
*mem
,
3568 enum mem_cgroup_stat_index idx
)
3570 struct mem_cgroup
*iter
;
3573 /* Per-cpu values can be negative, use a signed accumulator */
3574 for_each_mem_cgroup_tree(iter
, mem
)
3575 val
+= mem_cgroup_read_stat(iter
, idx
);
3577 if (val
< 0) /* race ? */
3582 static inline u64
mem_cgroup_usage(struct mem_cgroup
*mem
, bool swap
)
3586 if (!mem_cgroup_is_root(mem
)) {
3588 return res_counter_read_u64(&mem
->res
, RES_USAGE
);
3590 return res_counter_read_u64(&mem
->memsw
, RES_USAGE
);
3593 val
= mem_cgroup_recursive_stat(mem
, MEM_CGROUP_STAT_CACHE
);
3594 val
+= mem_cgroup_recursive_stat(mem
, MEM_CGROUP_STAT_RSS
);
3597 val
+= mem_cgroup_recursive_stat(mem
, MEM_CGROUP_STAT_SWAPOUT
);
3599 return val
<< PAGE_SHIFT
;
3602 static u64
mem_cgroup_read(struct cgroup
*cont
, struct cftype
*cft
)
3604 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
3608 type
= MEMFILE_TYPE(cft
->private);
3609 name
= MEMFILE_ATTR(cft
->private);
3612 if (name
== RES_USAGE
)
3613 val
= mem_cgroup_usage(mem
, false);
3615 val
= res_counter_read_u64(&mem
->res
, name
);
3618 if (name
== RES_USAGE
)
3619 val
= mem_cgroup_usage(mem
, true);
3621 val
= res_counter_read_u64(&mem
->memsw
, name
);
3630 * The user of this function is...
3633 static int mem_cgroup_write(struct cgroup
*cont
, struct cftype
*cft
,
3636 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
3638 unsigned long long val
;
3641 type
= MEMFILE_TYPE(cft
->private);
3642 name
= MEMFILE_ATTR(cft
->private);
3645 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
3649 /* This function does all necessary parse...reuse it */
3650 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
3654 ret
= mem_cgroup_resize_limit(memcg
, val
);
3656 ret
= mem_cgroup_resize_memsw_limit(memcg
, val
);
3658 case RES_SOFT_LIMIT
:
3659 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
3663 * For memsw, soft limits are hard to implement in terms
3664 * of semantics, for now, we support soft limits for
3665 * control without swap
3668 ret
= res_counter_set_soft_limit(&memcg
->res
, val
);
3673 ret
= -EINVAL
; /* should be BUG() ? */
3679 static void memcg_get_hierarchical_limit(struct mem_cgroup
*memcg
,
3680 unsigned long long *mem_limit
, unsigned long long *memsw_limit
)
3682 struct cgroup
*cgroup
;
3683 unsigned long long min_limit
, min_memsw_limit
, tmp
;
3685 min_limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3686 min_memsw_limit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3687 cgroup
= memcg
->css
.cgroup
;
3688 if (!memcg
->use_hierarchy
)
3691 while (cgroup
->parent
) {
3692 cgroup
= cgroup
->parent
;
3693 memcg
= mem_cgroup_from_cont(cgroup
);
3694 if (!memcg
->use_hierarchy
)
3696 tmp
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3697 min_limit
= min(min_limit
, tmp
);
3698 tmp
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3699 min_memsw_limit
= min(min_memsw_limit
, tmp
);
3702 *mem_limit
= min_limit
;
3703 *memsw_limit
= min_memsw_limit
;
3707 static int mem_cgroup_reset(struct cgroup
*cont
, unsigned int event
)
3709 struct mem_cgroup
*mem
;
3712 mem
= mem_cgroup_from_cont(cont
);
3713 type
= MEMFILE_TYPE(event
);
3714 name
= MEMFILE_ATTR(event
);
3718 res_counter_reset_max(&mem
->res
);
3720 res_counter_reset_max(&mem
->memsw
);
3724 res_counter_reset_failcnt(&mem
->res
);
3726 res_counter_reset_failcnt(&mem
->memsw
);
3733 static u64
mem_cgroup_move_charge_read(struct cgroup
*cgrp
,
3736 return mem_cgroup_from_cont(cgrp
)->move_charge_at_immigrate
;
3740 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
3741 struct cftype
*cft
, u64 val
)
3743 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
3745 if (val
>= (1 << NR_MOVE_TYPE
))
3748 * We check this value several times in both in can_attach() and
3749 * attach(), so we need cgroup lock to prevent this value from being
3753 mem
->move_charge_at_immigrate
= val
;
3759 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
3760 struct cftype
*cft
, u64 val
)
3767 /* For read statistics */
3783 struct mcs_total_stat
{
3784 s64 stat
[NR_MCS_STAT
];
3790 } memcg_stat_strings
[NR_MCS_STAT
] = {
3791 {"cache", "total_cache"},
3792 {"rss", "total_rss"},
3793 {"mapped_file", "total_mapped_file"},
3794 {"pgpgin", "total_pgpgin"},
3795 {"pgpgout", "total_pgpgout"},
3796 {"swap", "total_swap"},
3797 {"inactive_anon", "total_inactive_anon"},
3798 {"active_anon", "total_active_anon"},
3799 {"inactive_file", "total_inactive_file"},
3800 {"active_file", "total_active_file"},
3801 {"unevictable", "total_unevictable"}
3806 mem_cgroup_get_local_stat(struct mem_cgroup
*mem
, struct mcs_total_stat
*s
)
3811 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_CACHE
);
3812 s
->stat
[MCS_CACHE
] += val
* PAGE_SIZE
;
3813 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_RSS
);
3814 s
->stat
[MCS_RSS
] += val
* PAGE_SIZE
;
3815 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_FILE_MAPPED
);
3816 s
->stat
[MCS_FILE_MAPPED
] += val
* PAGE_SIZE
;
3817 val
= mem_cgroup_read_events(mem
, MEM_CGROUP_EVENTS_PGPGIN
);
3818 s
->stat
[MCS_PGPGIN
] += val
;
3819 val
= mem_cgroup_read_events(mem
, MEM_CGROUP_EVENTS_PGPGOUT
);
3820 s
->stat
[MCS_PGPGOUT
] += val
;
3821 if (do_swap_account
) {
3822 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_SWAPOUT
);
3823 s
->stat
[MCS_SWAP
] += val
* PAGE_SIZE
;
3827 val
= mem_cgroup_get_local_zonestat(mem
, LRU_INACTIVE_ANON
);
3828 s
->stat
[MCS_INACTIVE_ANON
] += val
* PAGE_SIZE
;
3829 val
= mem_cgroup_get_local_zonestat(mem
, LRU_ACTIVE_ANON
);
3830 s
->stat
[MCS_ACTIVE_ANON
] += val
* PAGE_SIZE
;
3831 val
= mem_cgroup_get_local_zonestat(mem
, LRU_INACTIVE_FILE
);
3832 s
->stat
[MCS_INACTIVE_FILE
] += val
* PAGE_SIZE
;
3833 val
= mem_cgroup_get_local_zonestat(mem
, LRU_ACTIVE_FILE
);
3834 s
->stat
[MCS_ACTIVE_FILE
] += val
* PAGE_SIZE
;
3835 val
= mem_cgroup_get_local_zonestat(mem
, LRU_UNEVICTABLE
);
3836 s
->stat
[MCS_UNEVICTABLE
] += val
* PAGE_SIZE
;
3840 mem_cgroup_get_total_stat(struct mem_cgroup
*mem
, struct mcs_total_stat
*s
)
3842 struct mem_cgroup
*iter
;
3844 for_each_mem_cgroup_tree(iter
, mem
)
3845 mem_cgroup_get_local_stat(iter
, s
);
3848 static int mem_control_stat_show(struct cgroup
*cont
, struct cftype
*cft
,
3849 struct cgroup_map_cb
*cb
)
3851 struct mem_cgroup
*mem_cont
= mem_cgroup_from_cont(cont
);
3852 struct mcs_total_stat mystat
;
3855 memset(&mystat
, 0, sizeof(mystat
));
3856 mem_cgroup_get_local_stat(mem_cont
, &mystat
);
3858 for (i
= 0; i
< NR_MCS_STAT
; i
++) {
3859 if (i
== MCS_SWAP
&& !do_swap_account
)
3861 cb
->fill(cb
, memcg_stat_strings
[i
].local_name
, mystat
.stat
[i
]);
3864 /* Hierarchical information */
3866 unsigned long long limit
, memsw_limit
;
3867 memcg_get_hierarchical_limit(mem_cont
, &limit
, &memsw_limit
);
3868 cb
->fill(cb
, "hierarchical_memory_limit", limit
);
3869 if (do_swap_account
)
3870 cb
->fill(cb
, "hierarchical_memsw_limit", memsw_limit
);
3873 memset(&mystat
, 0, sizeof(mystat
));
3874 mem_cgroup_get_total_stat(mem_cont
, &mystat
);
3875 for (i
= 0; i
< NR_MCS_STAT
; i
++) {
3876 if (i
== MCS_SWAP
&& !do_swap_account
)
3878 cb
->fill(cb
, memcg_stat_strings
[i
].total_name
, mystat
.stat
[i
]);
3881 #ifdef CONFIG_DEBUG_VM
3882 cb
->fill(cb
, "inactive_ratio", calc_inactive_ratio(mem_cont
, NULL
));
3886 struct mem_cgroup_per_zone
*mz
;
3887 unsigned long recent_rotated
[2] = {0, 0};
3888 unsigned long recent_scanned
[2] = {0, 0};
3890 for_each_online_node(nid
)
3891 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
3892 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
3894 recent_rotated
[0] +=
3895 mz
->reclaim_stat
.recent_rotated
[0];
3896 recent_rotated
[1] +=
3897 mz
->reclaim_stat
.recent_rotated
[1];
3898 recent_scanned
[0] +=
3899 mz
->reclaim_stat
.recent_scanned
[0];
3900 recent_scanned
[1] +=
3901 mz
->reclaim_stat
.recent_scanned
[1];
3903 cb
->fill(cb
, "recent_rotated_anon", recent_rotated
[0]);
3904 cb
->fill(cb
, "recent_rotated_file", recent_rotated
[1]);
3905 cb
->fill(cb
, "recent_scanned_anon", recent_scanned
[0]);
3906 cb
->fill(cb
, "recent_scanned_file", recent_scanned
[1]);
3913 static u64
mem_cgroup_swappiness_read(struct cgroup
*cgrp
, struct cftype
*cft
)
3915 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
3917 return get_swappiness(memcg
);
3920 static int mem_cgroup_swappiness_write(struct cgroup
*cgrp
, struct cftype
*cft
,
3923 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
3924 struct mem_cgroup
*parent
;
3929 if (cgrp
->parent
== NULL
)
3932 parent
= mem_cgroup_from_cont(cgrp
->parent
);
3936 /* If under hierarchy, only empty-root can set this value */
3937 if ((parent
->use_hierarchy
) ||
3938 (memcg
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
3943 memcg
->swappiness
= val
;
3950 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
3952 struct mem_cgroup_threshold_ary
*t
;
3958 t
= rcu_dereference(memcg
->thresholds
.primary
);
3960 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
3965 usage
= mem_cgroup_usage(memcg
, swap
);
3968 * current_threshold points to threshold just below usage.
3969 * If it's not true, a threshold was crossed after last
3970 * call of __mem_cgroup_threshold().
3972 i
= t
->current_threshold
;
3975 * Iterate backward over array of thresholds starting from
3976 * current_threshold and check if a threshold is crossed.
3977 * If none of thresholds below usage is crossed, we read
3978 * only one element of the array here.
3980 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
3981 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3983 /* i = current_threshold + 1 */
3987 * Iterate forward over array of thresholds starting from
3988 * current_threshold+1 and check if a threshold is crossed.
3989 * If none of thresholds above usage is crossed, we read
3990 * only one element of the array here.
3992 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
3993 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3995 /* Update current_threshold */
3996 t
->current_threshold
= i
- 1;
4001 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
4004 __mem_cgroup_threshold(memcg
, false);
4005 if (do_swap_account
)
4006 __mem_cgroup_threshold(memcg
, true);
4008 memcg
= parent_mem_cgroup(memcg
);
4012 static int compare_thresholds(const void *a
, const void *b
)
4014 const struct mem_cgroup_threshold
*_a
= a
;
4015 const struct mem_cgroup_threshold
*_b
= b
;
4017 return _a
->threshold
- _b
->threshold
;
4020 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*mem
)
4022 struct mem_cgroup_eventfd_list
*ev
;
4024 list_for_each_entry(ev
, &mem
->oom_notify
, list
)
4025 eventfd_signal(ev
->eventfd
, 1);
4029 static void mem_cgroup_oom_notify(struct mem_cgroup
*mem
)
4031 struct mem_cgroup
*iter
;
4033 for_each_mem_cgroup_tree(iter
, mem
)
4034 mem_cgroup_oom_notify_cb(iter
);
4037 static int mem_cgroup_usage_register_event(struct cgroup
*cgrp
,
4038 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
4040 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4041 struct mem_cgroup_thresholds
*thresholds
;
4042 struct mem_cgroup_threshold_ary
*new;
4043 int type
= MEMFILE_TYPE(cft
->private);
4044 u64 threshold
, usage
;
4047 ret
= res_counter_memparse_write_strategy(args
, &threshold
);
4051 mutex_lock(&memcg
->thresholds_lock
);
4054 thresholds
= &memcg
->thresholds
;
4055 else if (type
== _MEMSWAP
)
4056 thresholds
= &memcg
->memsw_thresholds
;
4060 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
4062 /* Check if a threshold crossed before adding a new one */
4063 if (thresholds
->primary
)
4064 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
4066 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
4068 /* Allocate memory for new array of thresholds */
4069 new = kmalloc(sizeof(*new) + size
* sizeof(struct mem_cgroup_threshold
),
4077 /* Copy thresholds (if any) to new array */
4078 if (thresholds
->primary
) {
4079 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
4080 sizeof(struct mem_cgroup_threshold
));
4083 /* Add new threshold */
4084 new->entries
[size
- 1].eventfd
= eventfd
;
4085 new->entries
[size
- 1].threshold
= threshold
;
4087 /* Sort thresholds. Registering of new threshold isn't time-critical */
4088 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
4089 compare_thresholds
, NULL
);
4091 /* Find current threshold */
4092 new->current_threshold
= -1;
4093 for (i
= 0; i
< size
; i
++) {
4094 if (new->entries
[i
].threshold
< usage
) {
4096 * new->current_threshold will not be used until
4097 * rcu_assign_pointer(), so it's safe to increment
4100 ++new->current_threshold
;
4104 /* Free old spare buffer and save old primary buffer as spare */
4105 kfree(thresholds
->spare
);
4106 thresholds
->spare
= thresholds
->primary
;
4108 rcu_assign_pointer(thresholds
->primary
, new);
4110 /* To be sure that nobody uses thresholds */
4114 mutex_unlock(&memcg
->thresholds_lock
);
4119 static void mem_cgroup_usage_unregister_event(struct cgroup
*cgrp
,
4120 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
4122 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4123 struct mem_cgroup_thresholds
*thresholds
;
4124 struct mem_cgroup_threshold_ary
*new;
4125 int type
= MEMFILE_TYPE(cft
->private);
4129 mutex_lock(&memcg
->thresholds_lock
);
4131 thresholds
= &memcg
->thresholds
;
4132 else if (type
== _MEMSWAP
)
4133 thresholds
= &memcg
->memsw_thresholds
;
4138 * Something went wrong if we trying to unregister a threshold
4139 * if we don't have thresholds
4141 BUG_ON(!thresholds
);
4143 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
4145 /* Check if a threshold crossed before removing */
4146 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
4148 /* Calculate new number of threshold */
4150 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
4151 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
4155 new = thresholds
->spare
;
4157 /* Set thresholds array to NULL if we don't have thresholds */
4166 /* Copy thresholds and find current threshold */
4167 new->current_threshold
= -1;
4168 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
4169 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
4172 new->entries
[j
] = thresholds
->primary
->entries
[i
];
4173 if (new->entries
[j
].threshold
< usage
) {
4175 * new->current_threshold will not be used
4176 * until rcu_assign_pointer(), so it's safe to increment
4179 ++new->current_threshold
;
4185 /* Swap primary and spare array */
4186 thresholds
->spare
= thresholds
->primary
;
4187 rcu_assign_pointer(thresholds
->primary
, new);
4189 /* To be sure that nobody uses thresholds */
4192 mutex_unlock(&memcg
->thresholds_lock
);
4195 static int mem_cgroup_oom_register_event(struct cgroup
*cgrp
,
4196 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
4198 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4199 struct mem_cgroup_eventfd_list
*event
;
4200 int type
= MEMFILE_TYPE(cft
->private);
4202 BUG_ON(type
!= _OOM_TYPE
);
4203 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
4207 mutex_lock(&memcg_oom_mutex
);
4209 event
->eventfd
= eventfd
;
4210 list_add(&event
->list
, &memcg
->oom_notify
);
4212 /* already in OOM ? */
4213 if (atomic_read(&memcg
->oom_lock
))
4214 eventfd_signal(eventfd
, 1);
4215 mutex_unlock(&memcg_oom_mutex
);
4220 static void mem_cgroup_oom_unregister_event(struct cgroup
*cgrp
,
4221 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
4223 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
4224 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
4225 int type
= MEMFILE_TYPE(cft
->private);
4227 BUG_ON(type
!= _OOM_TYPE
);
4229 mutex_lock(&memcg_oom_mutex
);
4231 list_for_each_entry_safe(ev
, tmp
, &mem
->oom_notify
, list
) {
4232 if (ev
->eventfd
== eventfd
) {
4233 list_del(&ev
->list
);
4238 mutex_unlock(&memcg_oom_mutex
);
4241 static int mem_cgroup_oom_control_read(struct cgroup
*cgrp
,
4242 struct cftype
*cft
, struct cgroup_map_cb
*cb
)
4244 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
4246 cb
->fill(cb
, "oom_kill_disable", mem
->oom_kill_disable
);
4248 if (atomic_read(&mem
->oom_lock
))
4249 cb
->fill(cb
, "under_oom", 1);
4251 cb
->fill(cb
, "under_oom", 0);
4255 static int mem_cgroup_oom_control_write(struct cgroup
*cgrp
,
4256 struct cftype
*cft
, u64 val
)
4258 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
4259 struct mem_cgroup
*parent
;
4261 /* cannot set to root cgroup and only 0 and 1 are allowed */
4262 if (!cgrp
->parent
|| !((val
== 0) || (val
== 1)))
4265 parent
= mem_cgroup_from_cont(cgrp
->parent
);
4268 /* oom-kill-disable is a flag for subhierarchy. */
4269 if ((parent
->use_hierarchy
) ||
4270 (mem
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
4274 mem
->oom_kill_disable
= val
;
4276 memcg_oom_recover(mem
);
4281 static struct cftype mem_cgroup_files
[] = {
4283 .name
= "usage_in_bytes",
4284 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
4285 .read_u64
= mem_cgroup_read
,
4286 .register_event
= mem_cgroup_usage_register_event
,
4287 .unregister_event
= mem_cgroup_usage_unregister_event
,
4290 .name
= "max_usage_in_bytes",
4291 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
4292 .trigger
= mem_cgroup_reset
,
4293 .read_u64
= mem_cgroup_read
,
4296 .name
= "limit_in_bytes",
4297 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
4298 .write_string
= mem_cgroup_write
,
4299 .read_u64
= mem_cgroup_read
,
4302 .name
= "soft_limit_in_bytes",
4303 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
4304 .write_string
= mem_cgroup_write
,
4305 .read_u64
= mem_cgroup_read
,
4309 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
4310 .trigger
= mem_cgroup_reset
,
4311 .read_u64
= mem_cgroup_read
,
4315 .read_map
= mem_control_stat_show
,
4318 .name
= "force_empty",
4319 .trigger
= mem_cgroup_force_empty_write
,
4322 .name
= "use_hierarchy",
4323 .write_u64
= mem_cgroup_hierarchy_write
,
4324 .read_u64
= mem_cgroup_hierarchy_read
,
4327 .name
= "swappiness",
4328 .read_u64
= mem_cgroup_swappiness_read
,
4329 .write_u64
= mem_cgroup_swappiness_write
,
4332 .name
= "move_charge_at_immigrate",
4333 .read_u64
= mem_cgroup_move_charge_read
,
4334 .write_u64
= mem_cgroup_move_charge_write
,
4337 .name
= "oom_control",
4338 .read_map
= mem_cgroup_oom_control_read
,
4339 .write_u64
= mem_cgroup_oom_control_write
,
4340 .register_event
= mem_cgroup_oom_register_event
,
4341 .unregister_event
= mem_cgroup_oom_unregister_event
,
4342 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
4346 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4347 static struct cftype memsw_cgroup_files
[] = {
4349 .name
= "memsw.usage_in_bytes",
4350 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
4351 .read_u64
= mem_cgroup_read
,
4352 .register_event
= mem_cgroup_usage_register_event
,
4353 .unregister_event
= mem_cgroup_usage_unregister_event
,
4356 .name
= "memsw.max_usage_in_bytes",
4357 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
4358 .trigger
= mem_cgroup_reset
,
4359 .read_u64
= mem_cgroup_read
,
4362 .name
= "memsw.limit_in_bytes",
4363 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
4364 .write_string
= mem_cgroup_write
,
4365 .read_u64
= mem_cgroup_read
,
4368 .name
= "memsw.failcnt",
4369 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
4370 .trigger
= mem_cgroup_reset
,
4371 .read_u64
= mem_cgroup_read
,
4375 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
4377 if (!do_swap_account
)
4379 return cgroup_add_files(cont
, ss
, memsw_cgroup_files
,
4380 ARRAY_SIZE(memsw_cgroup_files
));
4383 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
4389 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
4391 struct mem_cgroup_per_node
*pn
;
4392 struct mem_cgroup_per_zone
*mz
;
4394 int zone
, tmp
= node
;
4396 * This routine is called against possible nodes.
4397 * But it's BUG to call kmalloc() against offline node.
4399 * TODO: this routine can waste much memory for nodes which will
4400 * never be onlined. It's better to use memory hotplug callback
4403 if (!node_state(node
, N_NORMAL_MEMORY
))
4405 pn
= kzalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
4409 mem
->info
.nodeinfo
[node
] = pn
;
4410 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
4411 mz
= &pn
->zoneinfo
[zone
];
4413 INIT_LIST_HEAD(&mz
->lists
[l
]);
4414 mz
->usage_in_excess
= 0;
4415 mz
->on_tree
= false;
4421 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
4423 kfree(mem
->info
.nodeinfo
[node
]);
4426 static struct mem_cgroup
*mem_cgroup_alloc(void)
4428 struct mem_cgroup
*mem
;
4429 int size
= sizeof(struct mem_cgroup
);
4431 /* Can be very big if MAX_NUMNODES is very big */
4432 if (size
< PAGE_SIZE
)
4433 mem
= kzalloc(size
, GFP_KERNEL
);
4435 mem
= vzalloc(size
);
4440 mem
->stat
= alloc_percpu(struct mem_cgroup_stat_cpu
);
4443 spin_lock_init(&mem
->pcp_counter_lock
);
4447 if (size
< PAGE_SIZE
)
4455 * At destroying mem_cgroup, references from swap_cgroup can remain.
4456 * (scanning all at force_empty is too costly...)
4458 * Instead of clearing all references at force_empty, we remember
4459 * the number of reference from swap_cgroup and free mem_cgroup when
4460 * it goes down to 0.
4462 * Removal of cgroup itself succeeds regardless of refs from swap.
4465 static void __mem_cgroup_free(struct mem_cgroup
*mem
)
4469 mem_cgroup_remove_from_trees(mem
);
4470 free_css_id(&mem_cgroup_subsys
, &mem
->css
);
4472 for_each_node_state(node
, N_POSSIBLE
)
4473 free_mem_cgroup_per_zone_info(mem
, node
);
4475 free_percpu(mem
->stat
);
4476 if (sizeof(struct mem_cgroup
) < PAGE_SIZE
)
4482 static void mem_cgroup_get(struct mem_cgroup
*mem
)
4484 atomic_inc(&mem
->refcnt
);
4487 static void __mem_cgroup_put(struct mem_cgroup
*mem
, int count
)
4489 if (atomic_sub_and_test(count
, &mem
->refcnt
)) {
4490 struct mem_cgroup
*parent
= parent_mem_cgroup(mem
);
4491 __mem_cgroup_free(mem
);
4493 mem_cgroup_put(parent
);
4497 static void mem_cgroup_put(struct mem_cgroup
*mem
)
4499 __mem_cgroup_put(mem
, 1);
4503 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4505 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*mem
)
4507 if (!mem
->res
.parent
)
4509 return mem_cgroup_from_res_counter(mem
->res
.parent
, res
);
4512 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4513 static void __init
enable_swap_cgroup(void)
4515 if (!mem_cgroup_disabled() && really_do_swap_account
)
4516 do_swap_account
= 1;
4519 static void __init
enable_swap_cgroup(void)
4524 static int mem_cgroup_soft_limit_tree_init(void)
4526 struct mem_cgroup_tree_per_node
*rtpn
;
4527 struct mem_cgroup_tree_per_zone
*rtpz
;
4528 int tmp
, node
, zone
;
4530 for_each_node_state(node
, N_POSSIBLE
) {
4532 if (!node_state(node
, N_NORMAL_MEMORY
))
4534 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
, tmp
);
4538 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
4540 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
4541 rtpz
= &rtpn
->rb_tree_per_zone
[zone
];
4542 rtpz
->rb_root
= RB_ROOT
;
4543 spin_lock_init(&rtpz
->lock
);
4549 static struct cgroup_subsys_state
* __ref
4550 mem_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
4552 struct mem_cgroup
*mem
, *parent
;
4553 long error
= -ENOMEM
;
4556 mem
= mem_cgroup_alloc();
4558 return ERR_PTR(error
);
4560 for_each_node_state(node
, N_POSSIBLE
)
4561 if (alloc_mem_cgroup_per_zone_info(mem
, node
))
4565 if (cont
->parent
== NULL
) {
4567 enable_swap_cgroup();
4569 root_mem_cgroup
= mem
;
4570 if (mem_cgroup_soft_limit_tree_init())
4572 for_each_possible_cpu(cpu
) {
4573 struct memcg_stock_pcp
*stock
=
4574 &per_cpu(memcg_stock
, cpu
);
4575 INIT_WORK(&stock
->work
, drain_local_stock
);
4577 hotcpu_notifier(memcg_cpu_hotplug_callback
, 0);
4579 parent
= mem_cgroup_from_cont(cont
->parent
);
4580 mem
->use_hierarchy
= parent
->use_hierarchy
;
4581 mem
->oom_kill_disable
= parent
->oom_kill_disable
;
4584 if (parent
&& parent
->use_hierarchy
) {
4585 res_counter_init(&mem
->res
, &parent
->res
);
4586 res_counter_init(&mem
->memsw
, &parent
->memsw
);
4588 * We increment refcnt of the parent to ensure that we can
4589 * safely access it on res_counter_charge/uncharge.
4590 * This refcnt will be decremented when freeing this
4591 * mem_cgroup(see mem_cgroup_put).
4593 mem_cgroup_get(parent
);
4595 res_counter_init(&mem
->res
, NULL
);
4596 res_counter_init(&mem
->memsw
, NULL
);
4598 mem
->last_scanned_child
= 0;
4599 INIT_LIST_HEAD(&mem
->oom_notify
);
4602 mem
->swappiness
= get_swappiness(parent
);
4603 atomic_set(&mem
->refcnt
, 1);
4604 mem
->move_charge_at_immigrate
= 0;
4605 mutex_init(&mem
->thresholds_lock
);
4608 __mem_cgroup_free(mem
);
4609 root_mem_cgroup
= NULL
;
4610 return ERR_PTR(error
);
4613 static int mem_cgroup_pre_destroy(struct cgroup_subsys
*ss
,
4614 struct cgroup
*cont
)
4616 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
4618 return mem_cgroup_force_empty(mem
, false);
4621 static void mem_cgroup_destroy(struct cgroup_subsys
*ss
,
4622 struct cgroup
*cont
)
4624 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
4626 mem_cgroup_put(mem
);
4629 static int mem_cgroup_populate(struct cgroup_subsys
*ss
,
4630 struct cgroup
*cont
)
4634 ret
= cgroup_add_files(cont
, ss
, mem_cgroup_files
,
4635 ARRAY_SIZE(mem_cgroup_files
));
4638 ret
= register_memsw_files(cont
, ss
);
4643 /* Handlers for move charge at task migration. */
4644 #define PRECHARGE_COUNT_AT_ONCE 256
4645 static int mem_cgroup_do_precharge(unsigned long count
)
4648 int batch_count
= PRECHARGE_COUNT_AT_ONCE
;
4649 struct mem_cgroup
*mem
= mc
.to
;
4651 if (mem_cgroup_is_root(mem
)) {
4652 mc
.precharge
+= count
;
4653 /* we don't need css_get for root */
4656 /* try to charge at once */
4658 struct res_counter
*dummy
;
4660 * "mem" cannot be under rmdir() because we've already checked
4661 * by cgroup_lock_live_cgroup() that it is not removed and we
4662 * are still under the same cgroup_mutex. So we can postpone
4665 if (res_counter_charge(&mem
->res
, PAGE_SIZE
* count
, &dummy
))
4667 if (do_swap_account
&& res_counter_charge(&mem
->memsw
,
4668 PAGE_SIZE
* count
, &dummy
)) {
4669 res_counter_uncharge(&mem
->res
, PAGE_SIZE
* count
);
4672 mc
.precharge
+= count
;
4676 /* fall back to one by one charge */
4678 if (signal_pending(current
)) {
4682 if (!batch_count
--) {
4683 batch_count
= PRECHARGE_COUNT_AT_ONCE
;
4686 ret
= __mem_cgroup_try_charge(NULL
, GFP_KERNEL
, 1, &mem
, false);
4688 /* mem_cgroup_clear_mc() will do uncharge later */
4696 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4697 * @vma: the vma the pte to be checked belongs
4698 * @addr: the address corresponding to the pte to be checked
4699 * @ptent: the pte to be checked
4700 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4703 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4704 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4705 * move charge. if @target is not NULL, the page is stored in target->page
4706 * with extra refcnt got(Callers should handle it).
4707 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4708 * target for charge migration. if @target is not NULL, the entry is stored
4711 * Called with pte lock held.
4718 enum mc_target_type
{
4719 MC_TARGET_NONE
, /* not used */
4724 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
4725 unsigned long addr
, pte_t ptent
)
4727 struct page
*page
= vm_normal_page(vma
, addr
, ptent
);
4729 if (!page
|| !page_mapped(page
))
4731 if (PageAnon(page
)) {
4732 /* we don't move shared anon */
4733 if (!move_anon() || page_mapcount(page
) > 2)
4735 } else if (!move_file())
4736 /* we ignore mapcount for file pages */
4738 if (!get_page_unless_zero(page
))
4744 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
4745 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
4748 struct page
*page
= NULL
;
4749 swp_entry_t ent
= pte_to_swp_entry(ptent
);
4751 if (!move_anon() || non_swap_entry(ent
))
4753 usage_count
= mem_cgroup_count_swap_user(ent
, &page
);
4754 if (usage_count
> 1) { /* we don't move shared anon */
4759 if (do_swap_account
)
4760 entry
->val
= ent
.val
;
4765 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
4766 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
4768 struct page
*page
= NULL
;
4769 struct inode
*inode
;
4770 struct address_space
*mapping
;
4773 if (!vma
->vm_file
) /* anonymous vma */
4778 inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
4779 mapping
= vma
->vm_file
->f_mapping
;
4780 if (pte_none(ptent
))
4781 pgoff
= linear_page_index(vma
, addr
);
4782 else /* pte_file(ptent) is true */
4783 pgoff
= pte_to_pgoff(ptent
);
4785 /* page is moved even if it's not RSS of this task(page-faulted). */
4786 if (!mapping_cap_swap_backed(mapping
)) { /* normal file */
4787 page
= find_get_page(mapping
, pgoff
);
4788 } else { /* shmem/tmpfs file. we should take account of swap too. */
4790 mem_cgroup_get_shmem_target(inode
, pgoff
, &page
, &ent
);
4791 if (do_swap_account
)
4792 entry
->val
= ent
.val
;
4798 static int is_target_pte_for_mc(struct vm_area_struct
*vma
,
4799 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
4801 struct page
*page
= NULL
;
4802 struct page_cgroup
*pc
;
4804 swp_entry_t ent
= { .val
= 0 };
4806 if (pte_present(ptent
))
4807 page
= mc_handle_present_pte(vma
, addr
, ptent
);
4808 else if (is_swap_pte(ptent
))
4809 page
= mc_handle_swap_pte(vma
, addr
, ptent
, &ent
);
4810 else if (pte_none(ptent
) || pte_file(ptent
))
4811 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
4813 if (!page
&& !ent
.val
)
4816 pc
= lookup_page_cgroup(page
);
4818 * Do only loose check w/o page_cgroup lock.
4819 * mem_cgroup_move_account() checks the pc is valid or not under
4822 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== mc
.from
) {
4823 ret
= MC_TARGET_PAGE
;
4825 target
->page
= page
;
4827 if (!ret
|| !target
)
4830 /* There is a swap entry and a page doesn't exist or isn't charged */
4831 if (ent
.val
&& !ret
&&
4832 css_id(&mc
.from
->css
) == lookup_swap_cgroup(ent
)) {
4833 ret
= MC_TARGET_SWAP
;
4840 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
4841 unsigned long addr
, unsigned long end
,
4842 struct mm_walk
*walk
)
4844 struct vm_area_struct
*vma
= walk
->private;
4848 split_huge_page_pmd(walk
->mm
, pmd
);
4850 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
4851 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
4852 if (is_target_pte_for_mc(vma
, addr
, *pte
, NULL
))
4853 mc
.precharge
++; /* increment precharge temporarily */
4854 pte_unmap_unlock(pte
- 1, ptl
);
4860 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
4862 unsigned long precharge
;
4863 struct vm_area_struct
*vma
;
4865 down_read(&mm
->mmap_sem
);
4866 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
4867 struct mm_walk mem_cgroup_count_precharge_walk
= {
4868 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
4872 if (is_vm_hugetlb_page(vma
))
4874 walk_page_range(vma
->vm_start
, vma
->vm_end
,
4875 &mem_cgroup_count_precharge_walk
);
4877 up_read(&mm
->mmap_sem
);
4879 precharge
= mc
.precharge
;
4885 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
4887 unsigned long precharge
= mem_cgroup_count_precharge(mm
);
4889 VM_BUG_ON(mc
.moving_task
);
4890 mc
.moving_task
= current
;
4891 return mem_cgroup_do_precharge(precharge
);
4894 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4895 static void __mem_cgroup_clear_mc(void)
4897 struct mem_cgroup
*from
= mc
.from
;
4898 struct mem_cgroup
*to
= mc
.to
;
4900 /* we must uncharge all the leftover precharges from mc.to */
4902 __mem_cgroup_cancel_charge(mc
.to
, mc
.precharge
);
4906 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4907 * we must uncharge here.
4909 if (mc
.moved_charge
) {
4910 __mem_cgroup_cancel_charge(mc
.from
, mc
.moved_charge
);
4911 mc
.moved_charge
= 0;
4913 /* we must fixup refcnts and charges */
4914 if (mc
.moved_swap
) {
4915 /* uncharge swap account from the old cgroup */
4916 if (!mem_cgroup_is_root(mc
.from
))
4917 res_counter_uncharge(&mc
.from
->memsw
,
4918 PAGE_SIZE
* mc
.moved_swap
);
4919 __mem_cgroup_put(mc
.from
, mc
.moved_swap
);
4921 if (!mem_cgroup_is_root(mc
.to
)) {
4923 * we charged both to->res and to->memsw, so we should
4926 res_counter_uncharge(&mc
.to
->res
,
4927 PAGE_SIZE
* mc
.moved_swap
);
4929 /* we've already done mem_cgroup_get(mc.to) */
4932 memcg_oom_recover(from
);
4933 memcg_oom_recover(to
);
4934 wake_up_all(&mc
.waitq
);
4937 static void mem_cgroup_clear_mc(void)
4939 struct mem_cgroup
*from
= mc
.from
;
4942 * we must clear moving_task before waking up waiters at the end of
4945 mc
.moving_task
= NULL
;
4946 __mem_cgroup_clear_mc();
4947 spin_lock(&mc
.lock
);
4950 spin_unlock(&mc
.lock
);
4951 mem_cgroup_end_move(from
);
4954 static int mem_cgroup_can_attach(struct cgroup_subsys
*ss
,
4955 struct cgroup
*cgroup
,
4956 struct task_struct
*p
,
4960 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgroup
);
4962 if (mem
->move_charge_at_immigrate
) {
4963 struct mm_struct
*mm
;
4964 struct mem_cgroup
*from
= mem_cgroup_from_task(p
);
4966 VM_BUG_ON(from
== mem
);
4968 mm
= get_task_mm(p
);
4971 /* We move charges only when we move a owner of the mm */
4972 if (mm
->owner
== p
) {
4975 VM_BUG_ON(mc
.precharge
);
4976 VM_BUG_ON(mc
.moved_charge
);
4977 VM_BUG_ON(mc
.moved_swap
);
4978 mem_cgroup_start_move(from
);
4979 spin_lock(&mc
.lock
);
4982 spin_unlock(&mc
.lock
);
4983 /* We set mc.moving_task later */
4985 ret
= mem_cgroup_precharge_mc(mm
);
4987 mem_cgroup_clear_mc();
4994 static void mem_cgroup_cancel_attach(struct cgroup_subsys
*ss
,
4995 struct cgroup
*cgroup
,
4996 struct task_struct
*p
,
4999 mem_cgroup_clear_mc();
5002 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
5003 unsigned long addr
, unsigned long end
,
5004 struct mm_walk
*walk
)
5007 struct vm_area_struct
*vma
= walk
->private;
5011 split_huge_page_pmd(walk
->mm
, pmd
);
5013 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
5014 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
5015 pte_t ptent
= *(pte
++);
5016 union mc_target target
;
5019 struct page_cgroup
*pc
;
5025 type
= is_target_pte_for_mc(vma
, addr
, ptent
, &target
);
5027 case MC_TARGET_PAGE
:
5029 if (isolate_lru_page(page
))
5031 pc
= lookup_page_cgroup(page
);
5032 if (!mem_cgroup_move_account(page
, 1, pc
,
5033 mc
.from
, mc
.to
, false)) {
5035 /* we uncharge from mc.from later. */
5038 putback_lru_page(page
);
5039 put
: /* is_target_pte_for_mc() gets the page */
5042 case MC_TARGET_SWAP
:
5044 if (!mem_cgroup_move_swap_account(ent
,
5045 mc
.from
, mc
.to
, false)) {
5047 /* we fixup refcnts and charges later. */
5055 pte_unmap_unlock(pte
- 1, ptl
);
5060 * We have consumed all precharges we got in can_attach().
5061 * We try charge one by one, but don't do any additional
5062 * charges to mc.to if we have failed in charge once in attach()
5065 ret
= mem_cgroup_do_precharge(1);
5073 static void mem_cgroup_move_charge(struct mm_struct
*mm
)
5075 struct vm_area_struct
*vma
;
5077 lru_add_drain_all();
5079 if (unlikely(!down_read_trylock(&mm
->mmap_sem
))) {
5081 * Someone who are holding the mmap_sem might be waiting in
5082 * waitq. So we cancel all extra charges, wake up all waiters,
5083 * and retry. Because we cancel precharges, we might not be able
5084 * to move enough charges, but moving charge is a best-effort
5085 * feature anyway, so it wouldn't be a big problem.
5087 __mem_cgroup_clear_mc();
5091 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
5093 struct mm_walk mem_cgroup_move_charge_walk
= {
5094 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
5098 if (is_vm_hugetlb_page(vma
))
5100 ret
= walk_page_range(vma
->vm_start
, vma
->vm_end
,
5101 &mem_cgroup_move_charge_walk
);
5104 * means we have consumed all precharges and failed in
5105 * doing additional charge. Just abandon here.
5109 up_read(&mm
->mmap_sem
);
5112 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
5113 struct cgroup
*cont
,
5114 struct cgroup
*old_cont
,
5115 struct task_struct
*p
,
5118 struct mm_struct
*mm
;
5121 /* no need to move charge */
5124 mm
= get_task_mm(p
);
5126 mem_cgroup_move_charge(mm
);
5129 mem_cgroup_clear_mc();
5131 #else /* !CONFIG_MMU */
5132 static int mem_cgroup_can_attach(struct cgroup_subsys
*ss
,
5133 struct cgroup
*cgroup
,
5134 struct task_struct
*p
,
5139 static void mem_cgroup_cancel_attach(struct cgroup_subsys
*ss
,
5140 struct cgroup
*cgroup
,
5141 struct task_struct
*p
,
5145 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
5146 struct cgroup
*cont
,
5147 struct cgroup
*old_cont
,
5148 struct task_struct
*p
,
5154 struct cgroup_subsys mem_cgroup_subsys
= {
5156 .subsys_id
= mem_cgroup_subsys_id
,
5157 .create
= mem_cgroup_create
,
5158 .pre_destroy
= mem_cgroup_pre_destroy
,
5159 .destroy
= mem_cgroup_destroy
,
5160 .populate
= mem_cgroup_populate
,
5161 .can_attach
= mem_cgroup_can_attach
,
5162 .cancel_attach
= mem_cgroup_cancel_attach
,
5163 .attach
= mem_cgroup_move_task
,
5168 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5169 static int __init
enable_swap_account(char *s
)
5171 /* consider enabled if no parameter or 1 is given */
5172 if (!strcmp(s
, "1"))
5173 really_do_swap_account
= 1;
5174 else if (!strcmp(s
, "0"))
5175 really_do_swap_account
= 0;
5178 __setup("swapaccount=", enable_swap_account
);