2 * linux/drivers/ide/ide-iops.c Version 0.37 Mar 05, 2003
4 * Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org>
5 * Copyright (C) 2003 Red Hat <alan@redhat.com>
9 #include <linux/config.h>
10 #include <linux/module.h>
11 #include <linux/types.h>
12 #include <linux/string.h>
13 #include <linux/kernel.h>
14 #include <linux/timer.h>
16 #include <linux/interrupt.h>
17 #include <linux/major.h>
18 #include <linux/errno.h>
19 #include <linux/genhd.h>
20 #include <linux/blkpg.h>
21 #include <linux/slab.h>
22 #include <linux/pci.h>
23 #include <linux/delay.h>
24 #include <linux/hdreg.h>
25 #include <linux/ide.h>
26 #include <linux/bitops.h>
28 #include <asm/byteorder.h>
30 #include <asm/uaccess.h>
34 * Conventional PIO operations for ATA devices
37 static u8
ide_inb (unsigned long port
)
39 return (u8
) inb(port
);
42 static u16
ide_inw (unsigned long port
)
44 return (u16
) inw(port
);
47 static void ide_insw (unsigned long port
, void *addr
, u32 count
)
49 insw(port
, addr
, count
);
52 static u32
ide_inl (unsigned long port
)
54 return (u32
) inl(port
);
57 static void ide_insl (unsigned long port
, void *addr
, u32 count
)
59 insl(port
, addr
, count
);
62 static void ide_outb (u8 val
, unsigned long port
)
67 static void ide_outbsync (ide_drive_t
*drive
, u8 addr
, unsigned long port
)
72 static void ide_outw (u16 val
, unsigned long port
)
77 static void ide_outsw (unsigned long port
, void *addr
, u32 count
)
79 outsw(port
, addr
, count
);
82 static void ide_outl (u32 val
, unsigned long port
)
87 static void ide_outsl (unsigned long port
, void *addr
, u32 count
)
89 outsl(port
, addr
, count
);
92 void default_hwif_iops (ide_hwif_t
*hwif
)
94 hwif
->OUTB
= ide_outb
;
95 hwif
->OUTBSYNC
= ide_outbsync
;
96 hwif
->OUTW
= ide_outw
;
97 hwif
->OUTL
= ide_outl
;
98 hwif
->OUTSW
= ide_outsw
;
99 hwif
->OUTSL
= ide_outsl
;
103 hwif
->INSW
= ide_insw
;
104 hwif
->INSL
= ide_insl
;
107 EXPORT_SYMBOL(default_hwif_iops
);
110 * MMIO operations, typically used for SATA controllers
113 static u8
ide_mm_inb (unsigned long port
)
115 return (u8
) readb((void __iomem
*) port
);
118 static u16
ide_mm_inw (unsigned long port
)
120 return (u16
) readw((void __iomem
*) port
);
123 static void ide_mm_insw (unsigned long port
, void *addr
, u32 count
)
125 __ide_mm_insw((void __iomem
*) port
, addr
, count
);
128 static u32
ide_mm_inl (unsigned long port
)
130 return (u32
) readl((void __iomem
*) port
);
133 static void ide_mm_insl (unsigned long port
, void *addr
, u32 count
)
135 __ide_mm_insl((void __iomem
*) port
, addr
, count
);
138 static void ide_mm_outb (u8 value
, unsigned long port
)
140 writeb(value
, (void __iomem
*) port
);
143 static void ide_mm_outbsync (ide_drive_t
*drive
, u8 value
, unsigned long port
)
145 writeb(value
, (void __iomem
*) port
);
148 static void ide_mm_outw (u16 value
, unsigned long port
)
150 writew(value
, (void __iomem
*) port
);
153 static void ide_mm_outsw (unsigned long port
, void *addr
, u32 count
)
155 __ide_mm_outsw((void __iomem
*) port
, addr
, count
);
158 static void ide_mm_outl (u32 value
, unsigned long port
)
160 writel(value
, (void __iomem
*) port
);
163 static void ide_mm_outsl (unsigned long port
, void *addr
, u32 count
)
165 __ide_mm_outsl((void __iomem
*) port
, addr
, count
);
168 void default_hwif_mmiops (ide_hwif_t
*hwif
)
170 hwif
->OUTB
= ide_mm_outb
;
171 /* Most systems will need to override OUTBSYNC, alas however
172 this one is controller specific! */
173 hwif
->OUTBSYNC
= ide_mm_outbsync
;
174 hwif
->OUTW
= ide_mm_outw
;
175 hwif
->OUTL
= ide_mm_outl
;
176 hwif
->OUTSW
= ide_mm_outsw
;
177 hwif
->OUTSL
= ide_mm_outsl
;
178 hwif
->INB
= ide_mm_inb
;
179 hwif
->INW
= ide_mm_inw
;
180 hwif
->INL
= ide_mm_inl
;
181 hwif
->INSW
= ide_mm_insw
;
182 hwif
->INSL
= ide_mm_insl
;
185 EXPORT_SYMBOL(default_hwif_mmiops
);
187 u32
ide_read_24 (ide_drive_t
*drive
)
189 u8 hcyl
= HWIF(drive
)->INB(IDE_HCYL_REG
);
190 u8 lcyl
= HWIF(drive
)->INB(IDE_LCYL_REG
);
191 u8 sect
= HWIF(drive
)->INB(IDE_SECTOR_REG
);
192 return (hcyl
<<16)|(lcyl
<<8)|sect
;
195 void SELECT_DRIVE (ide_drive_t
*drive
)
197 if (HWIF(drive
)->selectproc
)
198 HWIF(drive
)->selectproc(drive
);
199 HWIF(drive
)->OUTB(drive
->select
.all
, IDE_SELECT_REG
);
202 EXPORT_SYMBOL(SELECT_DRIVE
);
204 void SELECT_INTERRUPT (ide_drive_t
*drive
)
206 if (HWIF(drive
)->intrproc
)
207 HWIF(drive
)->intrproc(drive
);
209 HWIF(drive
)->OUTB(drive
->ctl
|2, IDE_CONTROL_REG
);
212 void SELECT_MASK (ide_drive_t
*drive
, int mask
)
214 if (HWIF(drive
)->maskproc
)
215 HWIF(drive
)->maskproc(drive
, mask
);
218 void QUIRK_LIST (ide_drive_t
*drive
)
220 if (HWIF(drive
)->quirkproc
)
221 drive
->quirk_list
= HWIF(drive
)->quirkproc(drive
);
225 * Some localbus EIDE interfaces require a special access sequence
226 * when using 32-bit I/O instructions to transfer data. We call this
227 * the "vlb_sync" sequence, which consists of three successive reads
228 * of the sector count register location, with interrupts disabled
229 * to ensure that the reads all happen together.
231 static void ata_vlb_sync(ide_drive_t
*drive
, unsigned long port
)
233 (void) HWIF(drive
)->INB(port
);
234 (void) HWIF(drive
)->INB(port
);
235 (void) HWIF(drive
)->INB(port
);
239 * This is used for most PIO data transfers *from* the IDE interface
241 static void ata_input_data(ide_drive_t
*drive
, void *buffer
, u32 wcount
)
243 ide_hwif_t
*hwif
= HWIF(drive
);
244 u8 io_32bit
= drive
->io_32bit
;
249 local_irq_save(flags
);
250 ata_vlb_sync(drive
, IDE_NSECTOR_REG
);
251 hwif
->INSL(IDE_DATA_REG
, buffer
, wcount
);
252 local_irq_restore(flags
);
254 hwif
->INSL(IDE_DATA_REG
, buffer
, wcount
);
256 hwif
->INSW(IDE_DATA_REG
, buffer
, wcount
<<1);
261 * This is used for most PIO data transfers *to* the IDE interface
263 static void ata_output_data(ide_drive_t
*drive
, void *buffer
, u32 wcount
)
265 ide_hwif_t
*hwif
= HWIF(drive
);
266 u8 io_32bit
= drive
->io_32bit
;
271 local_irq_save(flags
);
272 ata_vlb_sync(drive
, IDE_NSECTOR_REG
);
273 hwif
->OUTSL(IDE_DATA_REG
, buffer
, wcount
);
274 local_irq_restore(flags
);
276 hwif
->OUTSL(IDE_DATA_REG
, buffer
, wcount
);
278 hwif
->OUTSW(IDE_DATA_REG
, buffer
, wcount
<<1);
283 * The following routines are mainly used by the ATAPI drivers.
285 * These routines will round up any request for an odd number of bytes,
286 * so if an odd bytecount is specified, be sure that there's at least one
287 * extra byte allocated for the buffer.
290 static void atapi_input_bytes(ide_drive_t
*drive
, void *buffer
, u32 bytecount
)
292 ide_hwif_t
*hwif
= HWIF(drive
);
295 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
296 if (MACH_IS_ATARI
|| MACH_IS_Q40
) {
297 /* Atari has a byte-swapped IDE interface */
298 insw_swapw(IDE_DATA_REG
, buffer
, bytecount
/ 2);
301 #endif /* CONFIG_ATARI || CONFIG_Q40 */
302 hwif
->ata_input_data(drive
, buffer
, bytecount
/ 4);
303 if ((bytecount
& 0x03) >= 2)
304 hwif
->INSW(IDE_DATA_REG
, ((u8
*)buffer
)+(bytecount
& ~0x03), 1);
307 static void atapi_output_bytes(ide_drive_t
*drive
, void *buffer
, u32 bytecount
)
309 ide_hwif_t
*hwif
= HWIF(drive
);
312 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
313 if (MACH_IS_ATARI
|| MACH_IS_Q40
) {
314 /* Atari has a byte-swapped IDE interface */
315 outsw_swapw(IDE_DATA_REG
, buffer
, bytecount
/ 2);
318 #endif /* CONFIG_ATARI || CONFIG_Q40 */
319 hwif
->ata_output_data(drive
, buffer
, bytecount
/ 4);
320 if ((bytecount
& 0x03) >= 2)
321 hwif
->OUTSW(IDE_DATA_REG
, ((u8
*)buffer
)+(bytecount
& ~0x03), 1);
324 void default_hwif_transport(ide_hwif_t
*hwif
)
326 hwif
->ata_input_data
= ata_input_data
;
327 hwif
->ata_output_data
= ata_output_data
;
328 hwif
->atapi_input_bytes
= atapi_input_bytes
;
329 hwif
->atapi_output_bytes
= atapi_output_bytes
;
332 EXPORT_SYMBOL(default_hwif_transport
);
335 * Beginning of Taskfile OPCODE Library and feature sets.
337 void ide_fix_driveid (struct hd_driveid
*id
)
339 #ifndef __LITTLE_ENDIAN
344 id
->config
= __le16_to_cpu(id
->config
);
345 id
->cyls
= __le16_to_cpu(id
->cyls
);
346 id
->reserved2
= __le16_to_cpu(id
->reserved2
);
347 id
->heads
= __le16_to_cpu(id
->heads
);
348 id
->track_bytes
= __le16_to_cpu(id
->track_bytes
);
349 id
->sector_bytes
= __le16_to_cpu(id
->sector_bytes
);
350 id
->sectors
= __le16_to_cpu(id
->sectors
);
351 id
->vendor0
= __le16_to_cpu(id
->vendor0
);
352 id
->vendor1
= __le16_to_cpu(id
->vendor1
);
353 id
->vendor2
= __le16_to_cpu(id
->vendor2
);
354 stringcast
= (u16
*)&id
->serial_no
[0];
355 for (i
= 0; i
< (20/2); i
++)
356 stringcast
[i
] = __le16_to_cpu(stringcast
[i
]);
357 id
->buf_type
= __le16_to_cpu(id
->buf_type
);
358 id
->buf_size
= __le16_to_cpu(id
->buf_size
);
359 id
->ecc_bytes
= __le16_to_cpu(id
->ecc_bytes
);
360 stringcast
= (u16
*)&id
->fw_rev
[0];
361 for (i
= 0; i
< (8/2); i
++)
362 stringcast
[i
] = __le16_to_cpu(stringcast
[i
]);
363 stringcast
= (u16
*)&id
->model
[0];
364 for (i
= 0; i
< (40/2); i
++)
365 stringcast
[i
] = __le16_to_cpu(stringcast
[i
]);
366 id
->dword_io
= __le16_to_cpu(id
->dword_io
);
367 id
->reserved50
= __le16_to_cpu(id
->reserved50
);
368 id
->field_valid
= __le16_to_cpu(id
->field_valid
);
369 id
->cur_cyls
= __le16_to_cpu(id
->cur_cyls
);
370 id
->cur_heads
= __le16_to_cpu(id
->cur_heads
);
371 id
->cur_sectors
= __le16_to_cpu(id
->cur_sectors
);
372 id
->cur_capacity0
= __le16_to_cpu(id
->cur_capacity0
);
373 id
->cur_capacity1
= __le16_to_cpu(id
->cur_capacity1
);
374 id
->lba_capacity
= __le32_to_cpu(id
->lba_capacity
);
375 id
->dma_1word
= __le16_to_cpu(id
->dma_1word
);
376 id
->dma_mword
= __le16_to_cpu(id
->dma_mword
);
377 id
->eide_pio_modes
= __le16_to_cpu(id
->eide_pio_modes
);
378 id
->eide_dma_min
= __le16_to_cpu(id
->eide_dma_min
);
379 id
->eide_dma_time
= __le16_to_cpu(id
->eide_dma_time
);
380 id
->eide_pio
= __le16_to_cpu(id
->eide_pio
);
381 id
->eide_pio_iordy
= __le16_to_cpu(id
->eide_pio_iordy
);
382 for (i
= 0; i
< 2; ++i
)
383 id
->words69_70
[i
] = __le16_to_cpu(id
->words69_70
[i
]);
384 for (i
= 0; i
< 4; ++i
)
385 id
->words71_74
[i
] = __le16_to_cpu(id
->words71_74
[i
]);
386 id
->queue_depth
= __le16_to_cpu(id
->queue_depth
);
387 for (i
= 0; i
< 4; ++i
)
388 id
->words76_79
[i
] = __le16_to_cpu(id
->words76_79
[i
]);
389 id
->major_rev_num
= __le16_to_cpu(id
->major_rev_num
);
390 id
->minor_rev_num
= __le16_to_cpu(id
->minor_rev_num
);
391 id
->command_set_1
= __le16_to_cpu(id
->command_set_1
);
392 id
->command_set_2
= __le16_to_cpu(id
->command_set_2
);
393 id
->cfsse
= __le16_to_cpu(id
->cfsse
);
394 id
->cfs_enable_1
= __le16_to_cpu(id
->cfs_enable_1
);
395 id
->cfs_enable_2
= __le16_to_cpu(id
->cfs_enable_2
);
396 id
->csf_default
= __le16_to_cpu(id
->csf_default
);
397 id
->dma_ultra
= __le16_to_cpu(id
->dma_ultra
);
398 id
->trseuc
= __le16_to_cpu(id
->trseuc
);
399 id
->trsEuc
= __le16_to_cpu(id
->trsEuc
);
400 id
->CurAPMvalues
= __le16_to_cpu(id
->CurAPMvalues
);
401 id
->mprc
= __le16_to_cpu(id
->mprc
);
402 id
->hw_config
= __le16_to_cpu(id
->hw_config
);
403 id
->acoustic
= __le16_to_cpu(id
->acoustic
);
404 id
->msrqs
= __le16_to_cpu(id
->msrqs
);
405 id
->sxfert
= __le16_to_cpu(id
->sxfert
);
406 id
->sal
= __le16_to_cpu(id
->sal
);
407 id
->spg
= __le32_to_cpu(id
->spg
);
408 id
->lba_capacity_2
= __le64_to_cpu(id
->lba_capacity_2
);
409 for (i
= 0; i
< 22; i
++)
410 id
->words104_125
[i
] = __le16_to_cpu(id
->words104_125
[i
]);
411 id
->last_lun
= __le16_to_cpu(id
->last_lun
);
412 id
->word127
= __le16_to_cpu(id
->word127
);
413 id
->dlf
= __le16_to_cpu(id
->dlf
);
414 id
->csfo
= __le16_to_cpu(id
->csfo
);
415 for (i
= 0; i
< 26; i
++)
416 id
->words130_155
[i
] = __le16_to_cpu(id
->words130_155
[i
]);
417 id
->word156
= __le16_to_cpu(id
->word156
);
418 for (i
= 0; i
< 3; i
++)
419 id
->words157_159
[i
] = __le16_to_cpu(id
->words157_159
[i
]);
420 id
->cfa_power
= __le16_to_cpu(id
->cfa_power
);
421 for (i
= 0; i
< 14; i
++)
422 id
->words161_175
[i
] = __le16_to_cpu(id
->words161_175
[i
]);
423 for (i
= 0; i
< 31; i
++)
424 id
->words176_205
[i
] = __le16_to_cpu(id
->words176_205
[i
]);
425 for (i
= 0; i
< 48; i
++)
426 id
->words206_254
[i
] = __le16_to_cpu(id
->words206_254
[i
]);
427 id
->integrity_word
= __le16_to_cpu(id
->integrity_word
);
429 # error "Please fix <asm/byteorder.h>"
434 /* FIXME: exported for use by the USB storage (isd200.c) code only */
435 EXPORT_SYMBOL(ide_fix_driveid
);
437 void ide_fixstring (u8
*s
, const int bytecount
, const int byteswap
)
439 u8
*p
= s
, *end
= &s
[bytecount
& ~1]; /* bytecount must be even */
442 /* convert from big-endian to host byte order */
443 for (p
= end
; p
!= s
;) {
444 unsigned short *pp
= (unsigned short *) (p
-= 2);
448 /* strip leading blanks */
449 while (s
!= end
&& *s
== ' ')
451 /* compress internal blanks and strip trailing blanks */
452 while (s
!= end
&& *s
) {
453 if (*s
++ != ' ' || (s
!= end
&& *s
&& *s
!= ' '))
456 /* wipe out trailing garbage */
461 EXPORT_SYMBOL(ide_fixstring
);
464 * Needed for PCI irq sharing
466 int drive_is_ready (ide_drive_t
*drive
)
468 ide_hwif_t
*hwif
= HWIF(drive
);
471 if (drive
->waiting_for_dma
)
472 return hwif
->ide_dma_test_irq(drive
);
475 /* need to guarantee 400ns since last command was issued */
479 #ifdef CONFIG_IDEPCI_SHARE_IRQ
481 * We do a passive status test under shared PCI interrupts on
482 * cards that truly share the ATA side interrupt, but may also share
483 * an interrupt with another pci card/device. We make no assumptions
484 * about possible isa-pnp and pci-pnp issues yet.
487 stat
= hwif
->INB(IDE_ALTSTATUS_REG
);
489 #endif /* CONFIG_IDEPCI_SHARE_IRQ */
490 /* Note: this may clear a pending IRQ!! */
491 stat
= hwif
->INB(IDE_STATUS_REG
);
493 if (stat
& BUSY_STAT
)
494 /* drive busy: definitely not interrupting */
497 /* drive ready: *might* be interrupting */
501 EXPORT_SYMBOL(drive_is_ready
);
504 * Global for All, and taken from ide-pmac.c. Can be called
505 * with spinlock held & IRQs disabled, so don't schedule !
507 int wait_for_ready (ide_drive_t
*drive
, int timeout
)
509 ide_hwif_t
*hwif
= HWIF(drive
);
513 stat
= hwif
->INB(IDE_STATUS_REG
);
514 if (!(stat
& BUSY_STAT
)) {
515 if (drive
->ready_stat
== 0)
517 else if ((stat
& drive
->ready_stat
)||(stat
& ERR_STAT
))
522 if ((stat
& ERR_STAT
) || timeout
<= 0) {
523 if (stat
& ERR_STAT
) {
524 printk(KERN_ERR
"%s: wait_for_ready, "
525 "error status: %x\n", drive
->name
, stat
);
532 EXPORT_SYMBOL(wait_for_ready
);
535 * This routine busy-waits for the drive status to be not "busy".
536 * It then checks the status for all of the "good" bits and none
537 * of the "bad" bits, and if all is okay it returns 0. All other
538 * cases return 1 after invoking ide_error() -- caller should just return.
540 * This routine should get fixed to not hog the cpu during extra long waits..
541 * That could be done by busy-waiting for the first jiffy or two, and then
542 * setting a timer to wake up at half second intervals thereafter,
543 * until timeout is achieved, before timing out.
545 int ide_wait_stat (ide_startstop_t
*startstop
, ide_drive_t
*drive
, u8 good
, u8 bad
, unsigned long timeout
)
547 ide_hwif_t
*hwif
= HWIF(drive
);
552 /* bail early if we've exceeded max_failures */
553 if (drive
->max_failures
&& (drive
->failures
> drive
->max_failures
)) {
554 *startstop
= ide_stopped
;
558 udelay(1); /* spec allows drive 400ns to assert "BUSY" */
559 if ((stat
= hwif
->INB(IDE_STATUS_REG
)) & BUSY_STAT
) {
560 local_irq_set(flags
);
562 while ((stat
= hwif
->INB(IDE_STATUS_REG
)) & BUSY_STAT
) {
563 if (time_after(jiffies
, timeout
)) {
565 * One last read after the timeout in case
566 * heavy interrupt load made us not make any
567 * progress during the timeout..
569 stat
= hwif
->INB(IDE_STATUS_REG
);
570 if (!(stat
& BUSY_STAT
))
573 local_irq_restore(flags
);
574 *startstop
= ide_error(drive
, "status timeout", stat
);
578 local_irq_restore(flags
);
581 * Allow status to settle, then read it again.
582 * A few rare drives vastly violate the 400ns spec here,
583 * so we'll wait up to 10usec for a "good" status
584 * rather than expensively fail things immediately.
585 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
587 for (i
= 0; i
< 10; i
++) {
589 if (OK_STAT((stat
= hwif
->INB(IDE_STATUS_REG
)), good
, bad
))
592 *startstop
= ide_error(drive
, "status error", stat
);
596 EXPORT_SYMBOL(ide_wait_stat
);
599 * All hosts that use the 80c ribbon must use!
600 * The name is derived from upper byte of word 93 and the 80c ribbon.
602 u8
eighty_ninty_three (ide_drive_t
*drive
)
605 if (!HWIF(drive
)->udma_four
)
608 if (drive
->id
->major_rev_num
) {
612 * Determine highest Supported SPEC
614 for (i
=1; i
<=15; i
++)
615 if (drive
->id
->major_rev_num
& (1<<i
))
622 /* ATA-4 and older do not support above Ultra 33 */
629 #ifndef CONFIG_IDEDMA_IVB
630 (drive
->id
->hw_config
& 0x4000) &&
631 #endif /* CONFIG_IDEDMA_IVB */
632 (drive
->id
->hw_config
& 0x6000)) ? 1 : 0);
636 return ((u8
) ((HWIF(drive
)->udma_four
) &&
637 #ifndef CONFIG_IDEDMA_IVB
638 (drive
->id
->hw_config
& 0x4000) &&
639 #endif /* CONFIG_IDEDMA_IVB */
640 (drive
->id
->hw_config
& 0x6000)) ? 1 : 0);
644 EXPORT_SYMBOL(eighty_ninty_three
);
646 int ide_ata66_check (ide_drive_t
*drive
, ide_task_t
*args
)
648 if ((args
->tfRegister
[IDE_COMMAND_OFFSET
] == WIN_SETFEATURES
) &&
649 (args
->tfRegister
[IDE_SECTOR_OFFSET
] > XFER_UDMA_2
) &&
650 (args
->tfRegister
[IDE_FEATURE_OFFSET
] == SETFEATURES_XFER
)) {
651 #ifndef CONFIG_IDEDMA_IVB
652 if ((drive
->id
->hw_config
& 0x6000) == 0) {
653 #else /* !CONFIG_IDEDMA_IVB */
654 if (((drive
->id
->hw_config
& 0x2000) == 0) ||
655 ((drive
->id
->hw_config
& 0x4000) == 0)) {
656 #endif /* CONFIG_IDEDMA_IVB */
657 printk("%s: Speed warnings UDMA 3/4/5 is not "
658 "functional.\n", drive
->name
);
661 if (!HWIF(drive
)->udma_four
) {
662 printk("%s: Speed warnings UDMA 3/4/5 is not "
672 * Backside of HDIO_DRIVE_CMD call of SETFEATURES_XFER.
673 * 1 : Safe to update drive->id DMA registers.
674 * 0 : OOPs not allowed.
676 int set_transfer (ide_drive_t
*drive
, ide_task_t
*args
)
678 if ((args
->tfRegister
[IDE_COMMAND_OFFSET
] == WIN_SETFEATURES
) &&
679 (args
->tfRegister
[IDE_SECTOR_OFFSET
] >= XFER_SW_DMA_0
) &&
680 (args
->tfRegister
[IDE_FEATURE_OFFSET
] == SETFEATURES_XFER
) &&
681 (drive
->id
->dma_ultra
||
682 drive
->id
->dma_mword
||
683 drive
->id
->dma_1word
))
689 #ifdef CONFIG_BLK_DEV_IDEDMA
690 static u8
ide_auto_reduce_xfer (ide_drive_t
*drive
)
692 if (!drive
->crc_count
)
693 return drive
->current_speed
;
694 drive
->crc_count
= 0;
696 switch(drive
->current_speed
) {
697 case XFER_UDMA_7
: return XFER_UDMA_6
;
698 case XFER_UDMA_6
: return XFER_UDMA_5
;
699 case XFER_UDMA_5
: return XFER_UDMA_4
;
700 case XFER_UDMA_4
: return XFER_UDMA_3
;
701 case XFER_UDMA_3
: return XFER_UDMA_2
;
702 case XFER_UDMA_2
: return XFER_UDMA_1
;
703 case XFER_UDMA_1
: return XFER_UDMA_0
;
705 * OOPS we do not goto non Ultra DMA modes
706 * without iCRC's available we force
707 * the system to PIO and make the user
708 * invoke the ATA-1 ATA-2 DMA modes.
711 default: return XFER_PIO_4
;
714 #endif /* CONFIG_BLK_DEV_IDEDMA */
719 int ide_driveid_update (ide_drive_t
*drive
)
721 ide_hwif_t
*hwif
= HWIF(drive
);
722 struct hd_driveid
*id
;
724 id
= kmalloc(SECTOR_WORDS
*4, GFP_ATOMIC
);
728 taskfile_lib_get_identify(drive
, (char *)&id
);
732 drive
->id
->dma_ultra
= id
->dma_ultra
;
733 drive
->id
->dma_mword
= id
->dma_mword
;
734 drive
->id
->dma_1word
= id
->dma_1word
;
735 /* anything more ? */
741 * Re-read drive->id for possible DMA mode
742 * change (copied from ide-probe.c)
744 unsigned long timeout
, flags
;
746 SELECT_MASK(drive
, 1);
748 hwif
->OUTB(drive
->ctl
,IDE_CONTROL_REG
);
750 hwif
->OUTB(WIN_IDENTIFY
, IDE_COMMAND_REG
);
751 timeout
= jiffies
+ WAIT_WORSTCASE
;
753 if (time_after(jiffies
, timeout
)) {
754 SELECT_MASK(drive
, 0);
755 return 0; /* drive timed-out */
757 msleep(50); /* give drive a breather */
758 } while (hwif
->INB(IDE_ALTSTATUS_REG
) & BUSY_STAT
);
759 msleep(50); /* wait for IRQ and DRQ_STAT */
760 if (!OK_STAT(hwif
->INB(IDE_STATUS_REG
),DRQ_STAT
,BAD_R_STAT
)) {
761 SELECT_MASK(drive
, 0);
762 printk("%s: CHECK for good STATUS\n", drive
->name
);
765 local_irq_save(flags
);
766 SELECT_MASK(drive
, 0);
767 id
= kmalloc(SECTOR_WORDS
*4, GFP_ATOMIC
);
769 local_irq_restore(flags
);
772 ata_input_data(drive
, id
, SECTOR_WORDS
);
773 (void) hwif
->INB(IDE_STATUS_REG
); /* clear drive IRQ */
775 local_irq_restore(flags
);
778 drive
->id
->dma_ultra
= id
->dma_ultra
;
779 drive
->id
->dma_mword
= id
->dma_mword
;
780 drive
->id
->dma_1word
= id
->dma_1word
;
781 /* anything more ? */
790 * Similar to ide_wait_stat(), except it never calls ide_error internally.
791 * This is a kludge to handle the new ide_config_drive_speed() function,
792 * and should not otherwise be used anywhere. Eventually, the tuneproc's
793 * should be updated to return ide_startstop_t, in which case we can get
794 * rid of this abomination again. :) -ml
796 * It is gone..........
798 * const char *msg == consider adding for verbose errors.
800 int ide_config_drive_speed (ide_drive_t
*drive
, u8 speed
)
802 ide_hwif_t
*hwif
= HWIF(drive
);
806 // while (HWGROUP(drive)->busy)
809 #ifdef CONFIG_BLK_DEV_IDEDMA
810 if (hwif
->ide_dma_check
) /* check if host supports DMA */
811 hwif
->ide_dma_host_off(drive
);
815 * Don't use ide_wait_cmd here - it will
816 * attempt to set_geometry and recalibrate,
817 * but for some reason these don't work at
818 * this point (lost interrupt).
821 * Select the drive, and issue the SETFEATURES command
823 disable_irq_nosync(hwif
->irq
);
826 * FIXME: we race against the running IRQ here if
827 * this is called from non IRQ context. If we use
828 * disable_irq() we hang on the error path. Work
834 SELECT_MASK(drive
, 0);
837 hwif
->OUTB(drive
->ctl
| 2, IDE_CONTROL_REG
);
838 hwif
->OUTB(speed
, IDE_NSECTOR_REG
);
839 hwif
->OUTB(SETFEATURES_XFER
, IDE_FEATURE_REG
);
840 hwif
->OUTB(WIN_SETFEATURES
, IDE_COMMAND_REG
);
841 if ((IDE_CONTROL_REG
) && (drive
->quirk_list
== 2))
842 hwif
->OUTB(drive
->ctl
, IDE_CONTROL_REG
);
845 * Wait for drive to become non-BUSY
847 if ((stat
= hwif
->INB(IDE_STATUS_REG
)) & BUSY_STAT
) {
848 unsigned long flags
, timeout
;
849 local_irq_set(flags
);
850 timeout
= jiffies
+ WAIT_CMD
;
851 while ((stat
= hwif
->INB(IDE_STATUS_REG
)) & BUSY_STAT
) {
852 if (time_after(jiffies
, timeout
))
855 local_irq_restore(flags
);
859 * Allow status to settle, then read it again.
860 * A few rare drives vastly violate the 400ns spec here,
861 * so we'll wait up to 10usec for a "good" status
862 * rather than expensively fail things immediately.
863 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
865 for (i
= 0; i
< 10; i
++) {
867 if (OK_STAT((stat
= hwif
->INB(IDE_STATUS_REG
)), DRIVE_READY
, BUSY_STAT
|DRQ_STAT
|ERR_STAT
)) {
873 SELECT_MASK(drive
, 0);
875 enable_irq(hwif
->irq
);
878 (void) ide_dump_status(drive
, "set_drive_speed_status", stat
);
882 drive
->id
->dma_ultra
&= ~0xFF00;
883 drive
->id
->dma_mword
&= ~0x0F00;
884 drive
->id
->dma_1word
&= ~0x0F00;
886 #ifdef CONFIG_BLK_DEV_IDEDMA
887 if (speed
>= XFER_SW_DMA_0
)
888 hwif
->ide_dma_host_on(drive
);
889 else if (hwif
->ide_dma_check
) /* check if host supports DMA */
890 hwif
->ide_dma_off_quietly(drive
);
894 case XFER_UDMA_7
: drive
->id
->dma_ultra
|= 0x8080; break;
895 case XFER_UDMA_6
: drive
->id
->dma_ultra
|= 0x4040; break;
896 case XFER_UDMA_5
: drive
->id
->dma_ultra
|= 0x2020; break;
897 case XFER_UDMA_4
: drive
->id
->dma_ultra
|= 0x1010; break;
898 case XFER_UDMA_3
: drive
->id
->dma_ultra
|= 0x0808; break;
899 case XFER_UDMA_2
: drive
->id
->dma_ultra
|= 0x0404; break;
900 case XFER_UDMA_1
: drive
->id
->dma_ultra
|= 0x0202; break;
901 case XFER_UDMA_0
: drive
->id
->dma_ultra
|= 0x0101; break;
902 case XFER_MW_DMA_2
: drive
->id
->dma_mword
|= 0x0404; break;
903 case XFER_MW_DMA_1
: drive
->id
->dma_mword
|= 0x0202; break;
904 case XFER_MW_DMA_0
: drive
->id
->dma_mword
|= 0x0101; break;
905 case XFER_SW_DMA_2
: drive
->id
->dma_1word
|= 0x0404; break;
906 case XFER_SW_DMA_1
: drive
->id
->dma_1word
|= 0x0202; break;
907 case XFER_SW_DMA_0
: drive
->id
->dma_1word
|= 0x0101; break;
910 if (!drive
->init_speed
)
911 drive
->init_speed
= speed
;
912 drive
->current_speed
= speed
;
916 EXPORT_SYMBOL(ide_config_drive_speed
);
920 * This should get invoked any time we exit the driver to
921 * wait for an interrupt response from a drive. handler() points
922 * at the appropriate code to handle the next interrupt, and a
923 * timer is started to prevent us from waiting forever in case
924 * something goes wrong (see the ide_timer_expiry() handler later on).
926 * See also ide_execute_command
928 static void __ide_set_handler (ide_drive_t
*drive
, ide_handler_t
*handler
,
929 unsigned int timeout
, ide_expiry_t
*expiry
)
931 ide_hwgroup_t
*hwgroup
= HWGROUP(drive
);
933 if (hwgroup
->handler
!= NULL
) {
934 printk(KERN_CRIT
"%s: ide_set_handler: handler not null; "
936 drive
->name
, hwgroup
->handler
, handler
);
938 hwgroup
->handler
= handler
;
939 hwgroup
->expiry
= expiry
;
940 hwgroup
->timer
.expires
= jiffies
+ timeout
;
941 add_timer(&hwgroup
->timer
);
944 void ide_set_handler (ide_drive_t
*drive
, ide_handler_t
*handler
,
945 unsigned int timeout
, ide_expiry_t
*expiry
)
948 spin_lock_irqsave(&ide_lock
, flags
);
949 __ide_set_handler(drive
, handler
, timeout
, expiry
);
950 spin_unlock_irqrestore(&ide_lock
, flags
);
953 EXPORT_SYMBOL(ide_set_handler
);
956 * ide_execute_command - execute an IDE command
957 * @drive: IDE drive to issue the command against
958 * @command: command byte to write
959 * @handler: handler for next phase
960 * @timeout: timeout for command
961 * @expiry: handler to run on timeout
963 * Helper function to issue an IDE command. This handles the
964 * atomicity requirements, command timing and ensures that the
965 * handler and IRQ setup do not race. All IDE command kick off
966 * should go via this function or do equivalent locking.
969 void ide_execute_command(ide_drive_t
*drive
, task_ioreg_t cmd
, ide_handler_t
*handler
, unsigned timeout
, ide_expiry_t
*expiry
)
972 ide_hwgroup_t
*hwgroup
= HWGROUP(drive
);
973 ide_hwif_t
*hwif
= HWIF(drive
);
975 spin_lock_irqsave(&ide_lock
, flags
);
979 hwgroup
->handler
= handler
;
980 hwgroup
->expiry
= expiry
;
981 hwgroup
->timer
.expires
= jiffies
+ timeout
;
982 add_timer(&hwgroup
->timer
);
983 hwif
->OUTBSYNC(drive
, cmd
, IDE_COMMAND_REG
);
984 /* Drive takes 400nS to respond, we must avoid the IRQ being
985 serviced before that.
987 FIXME: we could skip this delay with care on non shared
991 spin_unlock_irqrestore(&ide_lock
, flags
);
994 EXPORT_SYMBOL(ide_execute_command
);
998 static ide_startstop_t
do_reset1 (ide_drive_t
*, int);
1001 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
1002 * during an atapi drive reset operation. If the drive has not yet responded,
1003 * and we have not yet hit our maximum waiting time, then the timer is restarted
1006 static ide_startstop_t
atapi_reset_pollfunc (ide_drive_t
*drive
)
1008 ide_hwgroup_t
*hwgroup
= HWGROUP(drive
);
1009 ide_hwif_t
*hwif
= HWIF(drive
);
1012 SELECT_DRIVE(drive
);
1015 if (OK_STAT(stat
= hwif
->INB(IDE_STATUS_REG
), 0, BUSY_STAT
)) {
1016 printk("%s: ATAPI reset complete\n", drive
->name
);
1018 if (time_before(jiffies
, hwgroup
->poll_timeout
)) {
1019 if (HWGROUP(drive
)->handler
!= NULL
)
1021 ide_set_handler(drive
, &atapi_reset_pollfunc
, HZ
/20, NULL
);
1022 /* continue polling */
1025 /* end of polling */
1026 hwgroup
->polling
= 0;
1027 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
1029 /* do it the old fashioned way */
1030 return do_reset1(drive
, 1);
1033 hwgroup
->polling
= 0;
1038 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
1039 * during an ide reset operation. If the drives have not yet responded,
1040 * and we have not yet hit our maximum waiting time, then the timer is restarted
1043 static ide_startstop_t
reset_pollfunc (ide_drive_t
*drive
)
1045 ide_hwgroup_t
*hwgroup
= HWGROUP(drive
);
1046 ide_hwif_t
*hwif
= HWIF(drive
);
1049 if (hwif
->reset_poll
!= NULL
) {
1050 if (hwif
->reset_poll(drive
)) {
1051 printk(KERN_ERR
"%s: host reset_poll failure for %s.\n",
1052 hwif
->name
, drive
->name
);
1057 if (!OK_STAT(tmp
= hwif
->INB(IDE_STATUS_REG
), 0, BUSY_STAT
)) {
1058 if (time_before(jiffies
, hwgroup
->poll_timeout
)) {
1059 if (HWGROUP(drive
)->handler
!= NULL
)
1061 ide_set_handler(drive
, &reset_pollfunc
, HZ
/20, NULL
);
1062 /* continue polling */
1065 printk("%s: reset timed-out, status=0x%02x\n", hwif
->name
, tmp
);
1068 printk("%s: reset: ", hwif
->name
);
1069 if ((tmp
= hwif
->INB(IDE_ERROR_REG
)) == 1) {
1070 printk("success\n");
1071 drive
->failures
= 0;
1075 switch (tmp
& 0x7f) {
1076 case 1: printk("passed");
1078 case 2: printk("formatter device error");
1080 case 3: printk("sector buffer error");
1082 case 4: printk("ECC circuitry error");
1084 case 5: printk("controlling MPU error");
1086 default:printk("error (0x%02x?)", tmp
);
1089 printk("; slave: failed");
1093 hwgroup
->polling
= 0; /* done polling */
1097 static void check_dma_crc(ide_drive_t
*drive
)
1099 #ifdef CONFIG_BLK_DEV_IDEDMA
1100 if (drive
->crc_count
) {
1101 (void) HWIF(drive
)->ide_dma_off_quietly(drive
);
1102 ide_set_xfer_rate(drive
, ide_auto_reduce_xfer(drive
));
1103 if (drive
->current_speed
>= XFER_SW_DMA_0
)
1104 (void) HWIF(drive
)->ide_dma_on(drive
);
1106 (void)__ide_dma_off(drive
);
1110 static void ide_disk_pre_reset(ide_drive_t
*drive
)
1112 int legacy
= (drive
->id
->cfs_enable_2
& 0x0400) ? 0 : 1;
1114 drive
->special
.all
= 0;
1115 drive
->special
.b
.set_geometry
= legacy
;
1116 drive
->special
.b
.recalibrate
= legacy
;
1117 if (OK_TO_RESET_CONTROLLER
)
1118 drive
->mult_count
= 0;
1119 if (!drive
->keep_settings
&& !drive
->using_dma
)
1120 drive
->mult_req
= 0;
1121 if (drive
->mult_req
!= drive
->mult_count
)
1122 drive
->special
.b
.set_multmode
= 1;
1125 static void pre_reset(ide_drive_t
*drive
)
1127 if (drive
->media
== ide_disk
)
1128 ide_disk_pre_reset(drive
);
1130 drive
->post_reset
= 1;
1132 if (!drive
->keep_settings
) {
1133 if (drive
->using_dma
) {
1134 check_dma_crc(drive
);
1137 drive
->io_32bit
= 0;
1141 if (drive
->using_dma
)
1142 check_dma_crc(drive
);
1144 if (HWIF(drive
)->pre_reset
!= NULL
)
1145 HWIF(drive
)->pre_reset(drive
);
1150 * do_reset1() attempts to recover a confused drive by resetting it.
1151 * Unfortunately, resetting a disk drive actually resets all devices on
1152 * the same interface, so it can really be thought of as resetting the
1153 * interface rather than resetting the drive.
1155 * ATAPI devices have their own reset mechanism which allows them to be
1156 * individually reset without clobbering other devices on the same interface.
1158 * Unfortunately, the IDE interface does not generate an interrupt to let
1159 * us know when the reset operation has finished, so we must poll for this.
1160 * Equally poor, though, is the fact that this may a very long time to complete,
1161 * (up to 30 seconds worstcase). So, instead of busy-waiting here for it,
1162 * we set a timer to poll at 50ms intervals.
1164 static ide_startstop_t
do_reset1 (ide_drive_t
*drive
, int do_not_try_atapi
)
1167 unsigned long flags
;
1169 ide_hwgroup_t
*hwgroup
;
1171 spin_lock_irqsave(&ide_lock
, flags
);
1173 hwgroup
= HWGROUP(drive
);
1175 /* We must not reset with running handlers */
1176 if(hwgroup
->handler
!= NULL
)
1179 /* For an ATAPI device, first try an ATAPI SRST. */
1180 if (drive
->media
!= ide_disk
&& !do_not_try_atapi
) {
1182 SELECT_DRIVE(drive
);
1184 hwif
->OUTBSYNC(drive
, WIN_SRST
, IDE_COMMAND_REG
);
1186 hwgroup
->poll_timeout
= jiffies
+ WAIT_WORSTCASE
;
1187 hwgroup
->polling
= 1;
1188 __ide_set_handler(drive
, &atapi_reset_pollfunc
, HZ
/20, NULL
);
1189 spin_unlock_irqrestore(&ide_lock
, flags
);
1194 * First, reset any device state data we were maintaining
1195 * for any of the drives on this interface.
1197 for (unit
= 0; unit
< MAX_DRIVES
; ++unit
)
1198 pre_reset(&hwif
->drives
[unit
]);
1200 #if OK_TO_RESET_CONTROLLER
1201 if (!IDE_CONTROL_REG
) {
1202 spin_unlock_irqrestore(&ide_lock
, flags
);
1207 * Note that we also set nIEN while resetting the device,
1208 * to mask unwanted interrupts from the interface during the reset.
1209 * However, due to the design of PC hardware, this will cause an
1210 * immediate interrupt due to the edge transition it produces.
1211 * This single interrupt gives us a "fast poll" for drives that
1212 * recover from reset very quickly, saving us the first 50ms wait time.
1214 /* set SRST and nIEN */
1215 hwif
->OUTBSYNC(drive
, drive
->ctl
|6,IDE_CONTROL_REG
);
1216 /* more than enough time */
1218 if (drive
->quirk_list
== 2) {
1219 /* clear SRST and nIEN */
1220 hwif
->OUTBSYNC(drive
, drive
->ctl
, IDE_CONTROL_REG
);
1222 /* clear SRST, leave nIEN */
1223 hwif
->OUTBSYNC(drive
, drive
->ctl
|2, IDE_CONTROL_REG
);
1225 /* more than enough time */
1227 hwgroup
->poll_timeout
= jiffies
+ WAIT_WORSTCASE
;
1228 hwgroup
->polling
= 1;
1229 __ide_set_handler(drive
, &reset_pollfunc
, HZ
/20, NULL
);
1232 * Some weird controller like resetting themselves to a strange
1233 * state when the disks are reset this way. At least, the Winbond
1234 * 553 documentation says that
1236 if (hwif
->resetproc
!= NULL
) {
1237 hwif
->resetproc(drive
);
1240 #endif /* OK_TO_RESET_CONTROLLER */
1242 spin_unlock_irqrestore(&ide_lock
, flags
);
1247 * ide_do_reset() is the entry point to the drive/interface reset code.
1250 ide_startstop_t
ide_do_reset (ide_drive_t
*drive
)
1252 return do_reset1(drive
, 0);
1255 EXPORT_SYMBOL(ide_do_reset
);
1258 * ide_wait_not_busy() waits for the currently selected device on the hwif
1259 * to report a non-busy status, see comments in probe_hwif().
1261 int ide_wait_not_busy(ide_hwif_t
*hwif
, unsigned long timeout
)
1267 * Turn this into a schedule() sleep once I'm sure
1268 * about locking issues (2.5 work ?).
1271 stat
= hwif
->INB(hwif
->io_ports
[IDE_STATUS_OFFSET
]);
1272 if ((stat
& BUSY_STAT
) == 0)
1275 * Assume a value of 0xff means nothing is connected to
1276 * the interface and it doesn't implement the pull-down
1285 EXPORT_SYMBOL_GPL(ide_wait_not_busy
);