2 * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card
3 * and other Tigon based cards.
5 * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>.
7 * Thanks to Alteon and 3Com for providing hardware and documentation
8 * enabling me to write this driver.
10 * A mailing list for discussing the use of this driver has been
11 * setup, please subscribe to the lists if you have any questions
12 * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to
13 * see how to subscribe.
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
21 * Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace
22 * dump support. The trace dump support has not been
23 * integrated yet however.
24 * Troy Benjegerdes: Big Endian (PPC) patches.
25 * Nate Stahl: Better out of memory handling and stats support.
26 * Aman Singla: Nasty race between interrupt handler and tx code dealing
27 * with 'testing the tx_ret_csm and setting tx_full'
28 * David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping
29 * infrastructure and Sparc support
30 * Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the
31 * driver under Linux/Sparc64
32 * Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards
33 * ETHTOOL_GDRVINFO support
34 * Chip Salzenberg <chip@valinux.com>: Fix race condition between tx
35 * handler and close() cleanup.
36 * Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether
37 * memory mapped IO is enabled to
38 * make the driver work on RS/6000.
39 * Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem
40 * where the driver would disable
41 * bus master mode if it had to disable
42 * write and invalidate.
43 * Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little
45 * Val Henson <vhenson@esscom.com>: Reset Jumbo skb producer and
46 * rx producer index when
47 * flushing the Jumbo ring.
48 * Hans Grobler <grobh@sun.ac.za>: Memory leak fixes in the
50 * Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes.
53 #include <linux/config.h>
54 #include <linux/module.h>
55 #include <linux/moduleparam.h>
56 #include <linux/version.h>
57 #include <linux/types.h>
58 #include <linux/errno.h>
59 #include <linux/ioport.h>
60 #include <linux/pci.h>
61 #include <linux/dma-mapping.h>
62 #include <linux/kernel.h>
63 #include <linux/netdevice.h>
64 #include <linux/etherdevice.h>
65 #include <linux/skbuff.h>
66 #include <linux/init.h>
67 #include <linux/delay.h>
69 #include <linux/highmem.h>
70 #include <linux/sockios.h>
72 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
73 #include <linux/if_vlan.h>
77 #include <linux/ethtool.h>
83 #include <asm/system.h>
86 #include <asm/byteorder.h>
87 #include <asm/uaccess.h>
90 #define DRV_NAME "acenic"
94 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
95 #define ACE_IS_TIGON_I(ap) 0
96 #define ACE_TX_RING_ENTRIES(ap) MAX_TX_RING_ENTRIES
98 #define ACE_IS_TIGON_I(ap) (ap->version == 1)
99 #define ACE_TX_RING_ENTRIES(ap) ap->tx_ring_entries
102 #ifndef PCI_VENDOR_ID_ALTEON
103 #define PCI_VENDOR_ID_ALTEON 0x12ae
105 #ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
106 #define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE 0x0001
107 #define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002
109 #ifndef PCI_DEVICE_ID_3COM_3C985
110 #define PCI_DEVICE_ID_3COM_3C985 0x0001
112 #ifndef PCI_VENDOR_ID_NETGEAR
113 #define PCI_VENDOR_ID_NETGEAR 0x1385
114 #define PCI_DEVICE_ID_NETGEAR_GA620 0x620a
116 #ifndef PCI_DEVICE_ID_NETGEAR_GA620T
117 #define PCI_DEVICE_ID_NETGEAR_GA620T 0x630a
122 * Farallon used the DEC vendor ID by mistake and they seem not
125 #ifndef PCI_DEVICE_ID_FARALLON_PN9000SX
126 #define PCI_DEVICE_ID_FARALLON_PN9000SX 0x1a
128 #ifndef PCI_DEVICE_ID_FARALLON_PN9100T
129 #define PCI_DEVICE_ID_FARALLON_PN9100T 0xfa
131 #ifndef PCI_VENDOR_ID_SGI
132 #define PCI_VENDOR_ID_SGI 0x10a9
134 #ifndef PCI_DEVICE_ID_SGI_ACENIC
135 #define PCI_DEVICE_ID_SGI_ACENIC 0x0009
138 static struct pci_device_id acenic_pci_tbl
[] = {
139 { PCI_VENDOR_ID_ALTEON
, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
,
140 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
141 { PCI_VENDOR_ID_ALTEON
, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER
,
142 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
143 { PCI_VENDOR_ID_3COM
, PCI_DEVICE_ID_3COM_3C985
,
144 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
145 { PCI_VENDOR_ID_NETGEAR
, PCI_DEVICE_ID_NETGEAR_GA620
,
146 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
147 { PCI_VENDOR_ID_NETGEAR
, PCI_DEVICE_ID_NETGEAR_GA620T
,
148 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
150 * Farallon used the DEC vendor ID on their cards incorrectly,
151 * then later Alteon's ID.
153 { PCI_VENDOR_ID_DEC
, PCI_DEVICE_ID_FARALLON_PN9000SX
,
154 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
155 { PCI_VENDOR_ID_ALTEON
, PCI_DEVICE_ID_FARALLON_PN9100T
,
156 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
157 { PCI_VENDOR_ID_SGI
, PCI_DEVICE_ID_SGI_ACENIC
,
158 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
161 MODULE_DEVICE_TABLE(pci
, acenic_pci_tbl
);
163 #ifndef SET_NETDEV_DEV
164 #define SET_NETDEV_DEV(net, pdev) do{} while(0)
167 #if LINUX_VERSION_CODE >= 0x2051c
168 #define ace_sync_irq(irq) synchronize_irq(irq)
170 #define ace_sync_irq(irq) synchronize_irq()
173 #ifndef offset_in_page
174 #define offset_in_page(ptr) ((unsigned long)(ptr) & ~PAGE_MASK)
177 #define ACE_MAX_MOD_PARMS 8
178 #define BOARD_IDX_STATIC 0
179 #define BOARD_IDX_OVERFLOW -1
181 #if (defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)) && \
182 defined(NETIF_F_HW_VLAN_RX)
183 #define ACENIC_DO_VLAN 1
184 #define ACE_RCB_VLAN_FLAG RCB_FLG_VLAN_ASSIST
186 #define ACENIC_DO_VLAN 0
187 #define ACE_RCB_VLAN_FLAG 0
193 * These must be defined before the firmware is included.
195 #define MAX_TEXT_LEN 96*1024
196 #define MAX_RODATA_LEN 8*1024
197 #define MAX_DATA_LEN 2*1024
199 #include "acenic_firmware.h"
201 #ifndef tigon2FwReleaseLocal
202 #define tigon2FwReleaseLocal 0
206 * This driver currently supports Tigon I and Tigon II based cards
207 * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear
208 * GA620. The driver should also work on the SGI, DEC and Farallon
209 * versions of the card, however I have not been able to test that
212 * This card is really neat, it supports receive hardware checksumming
213 * and jumbo frames (up to 9000 bytes) and does a lot of work in the
214 * firmware. Also the programming interface is quite neat, except for
215 * the parts dealing with the i2c eeprom on the card ;-)
217 * Using jumbo frames:
219 * To enable jumbo frames, simply specify an mtu between 1500 and 9000
220 * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time
221 * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet
222 * interface number and <MTU> being the MTU value.
226 * When compiled as a loadable module, the driver allows for a number
227 * of module parameters to be specified. The driver supports the
228 * following module parameters:
230 * trace=<val> - Firmware trace level. This requires special traced
231 * firmware to replace the firmware supplied with
232 * the driver - for debugging purposes only.
234 * link=<val> - Link state. Normally you want to use the default link
235 * parameters set by the driver. This can be used to
236 * override these in case your switch doesn't negotiate
237 * the link properly. Valid values are:
238 * 0x0001 - Force half duplex link.
239 * 0x0002 - Do not negotiate line speed with the other end.
240 * 0x0010 - 10Mbit/sec link.
241 * 0x0020 - 100Mbit/sec link.
242 * 0x0040 - 1000Mbit/sec link.
243 * 0x0100 - Do not negotiate flow control.
244 * 0x0200 - Enable RX flow control Y
245 * 0x0400 - Enable TX flow control Y (Tigon II NICs only).
246 * Default value is 0x0270, ie. enable link+flow
247 * control negotiation. Negotiating the highest
248 * possible link speed with RX flow control enabled.
250 * When disabling link speed negotiation, only one link
251 * speed is allowed to be specified!
253 * tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
254 * to wait for more packets to arive before
255 * interrupting the host, from the time the first
258 * rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
259 * to wait for more packets to arive in the transmit ring,
260 * before interrupting the host, after transmitting the
261 * first packet in the ring.
263 * max_tx_desc=<val> - maximum number of transmit descriptors
264 * (packets) transmitted before interrupting the host.
266 * max_rx_desc=<val> - maximum number of receive descriptors
267 * (packets) received before interrupting the host.
269 * tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th
270 * increments of the NIC's on board memory to be used for
271 * transmit and receive buffers. For the 1MB NIC app. 800KB
272 * is available, on the 1/2MB NIC app. 300KB is available.
273 * 68KB will always be available as a minimum for both
274 * directions. The default value is a 50/50 split.
275 * dis_pci_mem_inval=<val> - disable PCI memory write and invalidate
276 * operations, default (1) is to always disable this as
277 * that is what Alteon does on NT. I have not been able
278 * to measure any real performance differences with
279 * this on my systems. Set <val>=0 if you want to
280 * enable these operations.
282 * If you use more than one NIC, specify the parameters for the
283 * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to
284 * run tracing on NIC #2 but not on NIC #1 and #3.
288 * - Proper multicast support.
289 * - NIC dump support.
290 * - More tuning parameters.
292 * The mini ring is not used under Linux and I am not sure it makes sense
293 * to actually use it.
295 * New interrupt handler strategy:
297 * The old interrupt handler worked using the traditional method of
298 * replacing an skbuff with a new one when a packet arrives. However
299 * the rx rings do not need to contain a static number of buffer
300 * descriptors, thus it makes sense to move the memory allocation out
301 * of the main interrupt handler and do it in a bottom half handler
302 * and only allocate new buffers when the number of buffers in the
303 * ring is below a certain threshold. In order to avoid starving the
304 * NIC under heavy load it is however necessary to force allocation
305 * when hitting a minimum threshold. The strategy for alloction is as
308 * RX_LOW_BUF_THRES - allocate buffers in the bottom half
309 * RX_PANIC_LOW_THRES - we are very low on buffers, allocate
310 * the buffers in the interrupt handler
311 * RX_RING_THRES - maximum number of buffers in the rx ring
312 * RX_MINI_THRES - maximum number of buffers in the mini ring
313 * RX_JUMBO_THRES - maximum number of buffers in the jumbo ring
315 * One advantagous side effect of this allocation approach is that the
316 * entire rx processing can be done without holding any spin lock
317 * since the rx rings and registers are totally independent of the tx
318 * ring and its registers. This of course includes the kmalloc's of
319 * new skb's. Thus start_xmit can run in parallel with rx processing
320 * and the memory allocation on SMP systems.
322 * Note that running the skb reallocation in a bottom half opens up
323 * another can of races which needs to be handled properly. In
324 * particular it can happen that the interrupt handler tries to run
325 * the reallocation while the bottom half is either running on another
326 * CPU or was interrupted on the same CPU. To get around this the
327 * driver uses bitops to prevent the reallocation routines from being
330 * TX handling can also be done without holding any spin lock, wheee
331 * this is fun! since tx_ret_csm is only written to by the interrupt
332 * handler. The case to be aware of is when shutting down the device
333 * and cleaning up where it is necessary to make sure that
334 * start_xmit() is not running while this is happening. Well DaveM
335 * informs me that this case is already protected against ... bye bye
336 * Mr. Spin Lock, it was nice to know you.
338 * TX interrupts are now partly disabled so the NIC will only generate
339 * TX interrupts for the number of coal ticks, not for the number of
340 * TX packets in the queue. This should reduce the number of TX only,
341 * ie. when no RX processing is done, interrupts seen.
345 * Threshold values for RX buffer allocation - the low water marks for
346 * when to start refilling the rings are set to 75% of the ring
347 * sizes. It seems to make sense to refill the rings entirely from the
348 * intrrupt handler once it gets below the panic threshold, that way
349 * we don't risk that the refilling is moved to another CPU when the
350 * one running the interrupt handler just got the slab code hot in its
353 #define RX_RING_SIZE 72
354 #define RX_MINI_SIZE 64
355 #define RX_JUMBO_SIZE 48
357 #define RX_PANIC_STD_THRES 16
358 #define RX_PANIC_STD_REFILL (3*RX_PANIC_STD_THRES)/2
359 #define RX_LOW_STD_THRES (3*RX_RING_SIZE)/4
360 #define RX_PANIC_MINI_THRES 12
361 #define RX_PANIC_MINI_REFILL (3*RX_PANIC_MINI_THRES)/2
362 #define RX_LOW_MINI_THRES (3*RX_MINI_SIZE)/4
363 #define RX_PANIC_JUMBO_THRES 6
364 #define RX_PANIC_JUMBO_REFILL (3*RX_PANIC_JUMBO_THRES)/2
365 #define RX_LOW_JUMBO_THRES (3*RX_JUMBO_SIZE)/4
369 * Size of the mini ring entries, basically these just should be big
370 * enough to take TCP ACKs
372 #define ACE_MINI_SIZE 100
374 #define ACE_MINI_BUFSIZE ACE_MINI_SIZE
375 #define ACE_STD_BUFSIZE (ACE_STD_MTU + ETH_HLEN + 4)
376 #define ACE_JUMBO_BUFSIZE (ACE_JUMBO_MTU + ETH_HLEN + 4)
379 * There seems to be a magic difference in the effect between 995 and 996
380 * but little difference between 900 and 995 ... no idea why.
382 * There is now a default set of tuning parameters which is set, depending
383 * on whether or not the user enables Jumbo frames. It's assumed that if
384 * Jumbo frames are enabled, the user wants optimal tuning for that case.
386 #define DEF_TX_COAL 400 /* 996 */
387 #define DEF_TX_MAX_DESC 60 /* was 40 */
388 #define DEF_RX_COAL 120 /* 1000 */
389 #define DEF_RX_MAX_DESC 25
390 #define DEF_TX_RATIO 21 /* 24 */
392 #define DEF_JUMBO_TX_COAL 20
393 #define DEF_JUMBO_TX_MAX_DESC 60
394 #define DEF_JUMBO_RX_COAL 30
395 #define DEF_JUMBO_RX_MAX_DESC 6
396 #define DEF_JUMBO_TX_RATIO 21
398 #if tigon2FwReleaseLocal < 20001118
400 * Standard firmware and early modifications duplicate
401 * IRQ load without this flag (coal timer is never reset).
402 * Note that with this flag tx_coal should be less than
403 * time to xmit full tx ring.
404 * 400usec is not so bad for tx ring size of 128.
406 #define TX_COAL_INTS_ONLY 1 /* worth it */
409 * With modified firmware, this is not necessary, but still useful.
411 #define TX_COAL_INTS_ONLY 1
415 #define DEF_STAT (2 * TICKS_PER_SEC)
418 static int link
[ACE_MAX_MOD_PARMS
];
419 static int trace
[ACE_MAX_MOD_PARMS
];
420 static int tx_coal_tick
[ACE_MAX_MOD_PARMS
];
421 static int rx_coal_tick
[ACE_MAX_MOD_PARMS
];
422 static int max_tx_desc
[ACE_MAX_MOD_PARMS
];
423 static int max_rx_desc
[ACE_MAX_MOD_PARMS
];
424 static int tx_ratio
[ACE_MAX_MOD_PARMS
];
425 static int dis_pci_mem_inval
[ACE_MAX_MOD_PARMS
] = {1, 1, 1, 1, 1, 1, 1, 1};
427 MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>");
428 MODULE_LICENSE("GPL");
429 MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver");
431 module_param_array(link
, int, NULL
, 0);
432 module_param_array(trace
, int, NULL
, 0);
433 module_param_array(tx_coal_tick
, int, NULL
, 0);
434 module_param_array(max_tx_desc
, int, NULL
, 0);
435 module_param_array(rx_coal_tick
, int, NULL
, 0);
436 module_param_array(max_rx_desc
, int, NULL
, 0);
437 module_param_array(tx_ratio
, int, NULL
, 0);
438 MODULE_PARM_DESC(link
, "AceNIC/3C985/NetGear link state");
439 MODULE_PARM_DESC(trace
, "AceNIC/3C985/NetGear firmware trace level");
440 MODULE_PARM_DESC(tx_coal_tick
, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives");
441 MODULE_PARM_DESC(max_tx_desc
, "AceNIC/3C985/GA620 max number of transmit descriptors to wait");
442 MODULE_PARM_DESC(rx_coal_tick
, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives");
443 MODULE_PARM_DESC(max_rx_desc
, "AceNIC/3C985/GA620 max number of receive descriptors to wait");
444 MODULE_PARM_DESC(tx_ratio
, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)");
447 static char version
[] __devinitdata
=
448 "acenic.c: v0.92 08/05/2002 Jes Sorensen, linux-acenic@SunSITE.dk\n"
449 " http://home.cern.ch/~jes/gige/acenic.html\n";
451 static int ace_get_settings(struct net_device
*, struct ethtool_cmd
*);
452 static int ace_set_settings(struct net_device
*, struct ethtool_cmd
*);
453 static void ace_get_drvinfo(struct net_device
*, struct ethtool_drvinfo
*);
455 static struct ethtool_ops ace_ethtool_ops
= {
456 .get_settings
= ace_get_settings
,
457 .set_settings
= ace_set_settings
,
458 .get_drvinfo
= ace_get_drvinfo
,
461 static void ace_watchdog(struct net_device
*dev
);
463 static int __devinit
acenic_probe_one(struct pci_dev
*pdev
,
464 const struct pci_device_id
*id
)
466 struct net_device
*dev
;
467 struct ace_private
*ap
;
468 static int boards_found
;
470 dev
= alloc_etherdev(sizeof(struct ace_private
));
472 printk(KERN_ERR
"acenic: Unable to allocate "
473 "net_device structure!\n");
477 SET_MODULE_OWNER(dev
);
478 SET_NETDEV_DEV(dev
, &pdev
->dev
);
482 ap
->name
= pci_name(pdev
);
484 dev
->features
|= NETIF_F_SG
| NETIF_F_IP_CSUM
;
486 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
487 dev
->vlan_rx_register
= ace_vlan_rx_register
;
488 dev
->vlan_rx_kill_vid
= ace_vlan_rx_kill_vid
;
491 dev
->tx_timeout
= &ace_watchdog
;
492 dev
->watchdog_timeo
= 5*HZ
;
495 dev
->open
= &ace_open
;
496 dev
->stop
= &ace_close
;
497 dev
->hard_start_xmit
= &ace_start_xmit
;
498 dev
->get_stats
= &ace_get_stats
;
499 dev
->set_multicast_list
= &ace_set_multicast_list
;
500 SET_ETHTOOL_OPS(dev
, &ace_ethtool_ops
);
501 dev
->set_mac_address
= &ace_set_mac_addr
;
502 dev
->change_mtu
= &ace_change_mtu
;
504 /* we only display this string ONCE */
508 if (pci_enable_device(pdev
))
509 goto fail_free_netdev
;
512 * Enable master mode before we start playing with the
513 * pci_command word since pci_set_master() will modify
516 pci_set_master(pdev
);
518 pci_read_config_word(pdev
, PCI_COMMAND
, &ap
->pci_command
);
520 /* OpenFirmware on Mac's does not set this - DOH.. */
521 if (!(ap
->pci_command
& PCI_COMMAND_MEMORY
)) {
522 printk(KERN_INFO
"%s: Enabling PCI Memory Mapped "
523 "access - was not enabled by BIOS/Firmware\n",
525 ap
->pci_command
= ap
->pci_command
| PCI_COMMAND_MEMORY
;
526 pci_write_config_word(ap
->pdev
, PCI_COMMAND
,
531 pci_read_config_byte(pdev
, PCI_LATENCY_TIMER
, &ap
->pci_latency
);
532 if (ap
->pci_latency
<= 0x40) {
533 ap
->pci_latency
= 0x40;
534 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, ap
->pci_latency
);
538 * Remap the regs into kernel space - this is abuse of
539 * dev->base_addr since it was means for I/O port
540 * addresses but who gives a damn.
542 dev
->base_addr
= pci_resource_start(pdev
, 0);
543 ap
->regs
= ioremap(dev
->base_addr
, 0x4000);
545 printk(KERN_ERR
"%s: Unable to map I/O register, "
546 "AceNIC %i will be disabled.\n",
547 ap
->name
, boards_found
);
548 goto fail_free_netdev
;
551 switch(pdev
->vendor
) {
552 case PCI_VENDOR_ID_ALTEON
:
553 if (pdev
->device
== PCI_DEVICE_ID_FARALLON_PN9100T
) {
554 printk(KERN_INFO
"%s: Farallon PN9100-T ",
557 printk(KERN_INFO
"%s: Alteon AceNIC ",
561 case PCI_VENDOR_ID_3COM
:
562 printk(KERN_INFO
"%s: 3Com 3C985 ", ap
->name
);
564 case PCI_VENDOR_ID_NETGEAR
:
565 printk(KERN_INFO
"%s: NetGear GA620 ", ap
->name
);
567 case PCI_VENDOR_ID_DEC
:
568 if (pdev
->device
== PCI_DEVICE_ID_FARALLON_PN9000SX
) {
569 printk(KERN_INFO
"%s: Farallon PN9000-SX ",
573 case PCI_VENDOR_ID_SGI
:
574 printk(KERN_INFO
"%s: SGI AceNIC ", ap
->name
);
577 printk(KERN_INFO
"%s: Unknown AceNIC ", ap
->name
);
581 printk("Gigabit Ethernet at 0x%08lx, ", dev
->base_addr
);
583 printk("irq %s\n", __irq_itoa(pdev
->irq
));
585 printk("irq %i\n", pdev
->irq
);
588 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
589 if ((readl(&ap
->regs
->HostCtrl
) >> 28) == 4) {
590 printk(KERN_ERR
"%s: Driver compiled without Tigon I"
591 " support - NIC disabled\n", dev
->name
);
596 if (ace_allocate_descriptors(dev
))
597 goto fail_free_netdev
;
600 if (boards_found
>= ACE_MAX_MOD_PARMS
)
601 ap
->board_idx
= BOARD_IDX_OVERFLOW
;
603 ap
->board_idx
= boards_found
;
605 ap
->board_idx
= BOARD_IDX_STATIC
;
609 goto fail_free_netdev
;
611 if (register_netdev(dev
)) {
612 printk(KERN_ERR
"acenic: device registration failed\n");
615 ap
->name
= dev
->name
;
617 if (ap
->pci_using_dac
)
618 dev
->features
|= NETIF_F_HIGHDMA
;
620 pci_set_drvdata(pdev
, dev
);
626 ace_init_cleanup(dev
);
632 static void __devexit
acenic_remove_one(struct pci_dev
*pdev
)
634 struct net_device
*dev
= pci_get_drvdata(pdev
);
635 struct ace_private
*ap
= netdev_priv(dev
);
636 struct ace_regs __iomem
*regs
= ap
->regs
;
639 unregister_netdev(dev
);
641 writel(readl(®s
->CpuCtrl
) | CPU_HALT
, ®s
->CpuCtrl
);
642 if (ap
->version
>= 2)
643 writel(readl(®s
->CpuBCtrl
) | CPU_HALT
, ®s
->CpuBCtrl
);
646 * This clears any pending interrupts
648 writel(1, ®s
->Mb0Lo
);
649 readl(®s
->CpuCtrl
); /* flush */
652 * Make sure no other CPUs are processing interrupts
653 * on the card before the buffers are being released.
654 * Otherwise one might experience some `interesting'
657 * Then release the RX buffers - jumbo buffers were
658 * already released in ace_close().
660 ace_sync_irq(dev
->irq
);
662 for (i
= 0; i
< RX_STD_RING_ENTRIES
; i
++) {
663 struct sk_buff
*skb
= ap
->skb
->rx_std_skbuff
[i
].skb
;
666 struct ring_info
*ringp
;
669 ringp
= &ap
->skb
->rx_std_skbuff
[i
];
670 mapping
= pci_unmap_addr(ringp
, mapping
);
671 pci_unmap_page(ap
->pdev
, mapping
,
675 ap
->rx_std_ring
[i
].size
= 0;
676 ap
->skb
->rx_std_skbuff
[i
].skb
= NULL
;
681 if (ap
->version
>= 2) {
682 for (i
= 0; i
< RX_MINI_RING_ENTRIES
; i
++) {
683 struct sk_buff
*skb
= ap
->skb
->rx_mini_skbuff
[i
].skb
;
686 struct ring_info
*ringp
;
689 ringp
= &ap
->skb
->rx_mini_skbuff
[i
];
690 mapping
= pci_unmap_addr(ringp
,mapping
);
691 pci_unmap_page(ap
->pdev
, mapping
,
695 ap
->rx_mini_ring
[i
].size
= 0;
696 ap
->skb
->rx_mini_skbuff
[i
].skb
= NULL
;
702 for (i
= 0; i
< RX_JUMBO_RING_ENTRIES
; i
++) {
703 struct sk_buff
*skb
= ap
->skb
->rx_jumbo_skbuff
[i
].skb
;
705 struct ring_info
*ringp
;
708 ringp
= &ap
->skb
->rx_jumbo_skbuff
[i
];
709 mapping
= pci_unmap_addr(ringp
, mapping
);
710 pci_unmap_page(ap
->pdev
, mapping
,
714 ap
->rx_jumbo_ring
[i
].size
= 0;
715 ap
->skb
->rx_jumbo_skbuff
[i
].skb
= NULL
;
720 ace_init_cleanup(dev
);
724 static struct pci_driver acenic_pci_driver
= {
726 .id_table
= acenic_pci_tbl
,
727 .probe
= acenic_probe_one
,
728 .remove
= __devexit_p(acenic_remove_one
),
731 static int __init
acenic_init(void)
733 return pci_module_init(&acenic_pci_driver
);
736 static void __exit
acenic_exit(void)
738 pci_unregister_driver(&acenic_pci_driver
);
741 module_init(acenic_init
);
742 module_exit(acenic_exit
);
744 static void ace_free_descriptors(struct net_device
*dev
)
746 struct ace_private
*ap
= netdev_priv(dev
);
749 if (ap
->rx_std_ring
!= NULL
) {
750 size
= (sizeof(struct rx_desc
) *
751 (RX_STD_RING_ENTRIES
+
752 RX_JUMBO_RING_ENTRIES
+
753 RX_MINI_RING_ENTRIES
+
754 RX_RETURN_RING_ENTRIES
));
755 pci_free_consistent(ap
->pdev
, size
, ap
->rx_std_ring
,
756 ap
->rx_ring_base_dma
);
757 ap
->rx_std_ring
= NULL
;
758 ap
->rx_jumbo_ring
= NULL
;
759 ap
->rx_mini_ring
= NULL
;
760 ap
->rx_return_ring
= NULL
;
762 if (ap
->evt_ring
!= NULL
) {
763 size
= (sizeof(struct event
) * EVT_RING_ENTRIES
);
764 pci_free_consistent(ap
->pdev
, size
, ap
->evt_ring
,
768 if (ap
->tx_ring
!= NULL
&& !ACE_IS_TIGON_I(ap
)) {
769 size
= (sizeof(struct tx_desc
) * MAX_TX_RING_ENTRIES
);
770 pci_free_consistent(ap
->pdev
, size
, ap
->tx_ring
,
775 if (ap
->evt_prd
!= NULL
) {
776 pci_free_consistent(ap
->pdev
, sizeof(u32
),
777 (void *)ap
->evt_prd
, ap
->evt_prd_dma
);
780 if (ap
->rx_ret_prd
!= NULL
) {
781 pci_free_consistent(ap
->pdev
, sizeof(u32
),
782 (void *)ap
->rx_ret_prd
,
784 ap
->rx_ret_prd
= NULL
;
786 if (ap
->tx_csm
!= NULL
) {
787 pci_free_consistent(ap
->pdev
, sizeof(u32
),
788 (void *)ap
->tx_csm
, ap
->tx_csm_dma
);
794 static int ace_allocate_descriptors(struct net_device
*dev
)
796 struct ace_private
*ap
= netdev_priv(dev
);
799 size
= (sizeof(struct rx_desc
) *
800 (RX_STD_RING_ENTRIES
+
801 RX_JUMBO_RING_ENTRIES
+
802 RX_MINI_RING_ENTRIES
+
803 RX_RETURN_RING_ENTRIES
));
805 ap
->rx_std_ring
= pci_alloc_consistent(ap
->pdev
, size
,
806 &ap
->rx_ring_base_dma
);
807 if (ap
->rx_std_ring
== NULL
)
810 ap
->rx_jumbo_ring
= ap
->rx_std_ring
+ RX_STD_RING_ENTRIES
;
811 ap
->rx_mini_ring
= ap
->rx_jumbo_ring
+ RX_JUMBO_RING_ENTRIES
;
812 ap
->rx_return_ring
= ap
->rx_mini_ring
+ RX_MINI_RING_ENTRIES
;
814 size
= (sizeof(struct event
) * EVT_RING_ENTRIES
);
816 ap
->evt_ring
= pci_alloc_consistent(ap
->pdev
, size
, &ap
->evt_ring_dma
);
818 if (ap
->evt_ring
== NULL
)
822 * Only allocate a host TX ring for the Tigon II, the Tigon I
823 * has to use PCI registers for this ;-(
825 if (!ACE_IS_TIGON_I(ap
)) {
826 size
= (sizeof(struct tx_desc
) * MAX_TX_RING_ENTRIES
);
828 ap
->tx_ring
= pci_alloc_consistent(ap
->pdev
, size
,
831 if (ap
->tx_ring
== NULL
)
835 ap
->evt_prd
= pci_alloc_consistent(ap
->pdev
, sizeof(u32
),
837 if (ap
->evt_prd
== NULL
)
840 ap
->rx_ret_prd
= pci_alloc_consistent(ap
->pdev
, sizeof(u32
),
841 &ap
->rx_ret_prd_dma
);
842 if (ap
->rx_ret_prd
== NULL
)
845 ap
->tx_csm
= pci_alloc_consistent(ap
->pdev
, sizeof(u32
),
847 if (ap
->tx_csm
== NULL
)
854 ace_init_cleanup(dev
);
860 * Generic cleanup handling data allocated during init. Used when the
861 * module is unloaded or if an error occurs during initialization
863 static void ace_init_cleanup(struct net_device
*dev
)
865 struct ace_private
*ap
;
867 ap
= netdev_priv(dev
);
869 ace_free_descriptors(dev
);
872 pci_free_consistent(ap
->pdev
, sizeof(struct ace_info
),
873 ap
->info
, ap
->info_dma
);
877 kfree(ap
->trace_buf
);
880 free_irq(dev
->irq
, dev
);
887 * Commands are considered to be slow.
889 static inline void ace_issue_cmd(struct ace_regs __iomem
*regs
, struct cmd
*cmd
)
893 idx
= readl(®s
->CmdPrd
);
895 writel(*(u32
*)(cmd
), ®s
->CmdRng
[idx
]);
896 idx
= (idx
+ 1) % CMD_RING_ENTRIES
;
898 writel(idx
, ®s
->CmdPrd
);
902 static int __devinit
ace_init(struct net_device
*dev
)
904 struct ace_private
*ap
;
905 struct ace_regs __iomem
*regs
;
906 struct ace_info
*info
= NULL
;
907 struct pci_dev
*pdev
;
910 u32 tig_ver
, mac1
, mac2
, tmp
, pci_state
;
911 int board_idx
, ecode
= 0;
913 unsigned char cache_size
;
915 ap
= netdev_priv(dev
);
918 board_idx
= ap
->board_idx
;
921 * aman@sgi.com - its useful to do a NIC reset here to
922 * address the `Firmware not running' problem subsequent
923 * to any crashes involving the NIC
925 writel(HW_RESET
| (HW_RESET
<< 24), ®s
->HostCtrl
);
926 readl(®s
->HostCtrl
); /* PCI write posting */
930 * Don't access any other registers before this point!
934 * This will most likely need BYTE_SWAP once we switch
935 * to using __raw_writel()
937 writel((WORD_SWAP
| CLR_INT
| ((WORD_SWAP
| CLR_INT
) << 24)),
940 writel((CLR_INT
| WORD_SWAP
| ((CLR_INT
| WORD_SWAP
) << 24)),
943 readl(®s
->HostCtrl
); /* PCI write posting */
946 * Stop the NIC CPU and clear pending interrupts
948 writel(readl(®s
->CpuCtrl
) | CPU_HALT
, ®s
->CpuCtrl
);
949 readl(®s
->CpuCtrl
); /* PCI write posting */
950 writel(0, ®s
->Mb0Lo
);
952 tig_ver
= readl(®s
->HostCtrl
) >> 28;
955 #ifndef CONFIG_ACENIC_OMIT_TIGON_I
958 printk(KERN_INFO
" Tigon I (Rev. %i), Firmware: %i.%i.%i, ",
959 tig_ver
, tigonFwReleaseMajor
, tigonFwReleaseMinor
,
961 writel(0, ®s
->LocalCtrl
);
963 ap
->tx_ring_entries
= TIGON_I_TX_RING_ENTRIES
;
967 printk(KERN_INFO
" Tigon II (Rev. %i), Firmware: %i.%i.%i, ",
968 tig_ver
, tigon2FwReleaseMajor
, tigon2FwReleaseMinor
,
970 writel(readl(®s
->CpuBCtrl
) | CPU_HALT
, ®s
->CpuBCtrl
);
971 readl(®s
->CpuBCtrl
); /* PCI write posting */
973 * The SRAM bank size does _not_ indicate the amount
974 * of memory on the card, it controls the _bank_ size!
975 * Ie. a 1MB AceNIC will have two banks of 512KB.
977 writel(SRAM_BANK_512K
, ®s
->LocalCtrl
);
978 writel(SYNC_SRAM_TIMING
, ®s
->MiscCfg
);
980 ap
->tx_ring_entries
= MAX_TX_RING_ENTRIES
;
983 printk(KERN_WARNING
" Unsupported Tigon version detected "
990 * ModeStat _must_ be set after the SRAM settings as this change
991 * seems to corrupt the ModeStat and possible other registers.
992 * The SRAM settings survive resets and setting it to the same
993 * value a second time works as well. This is what caused the
994 * `Firmware not running' problem on the Tigon II.
997 writel(ACE_BYTE_SWAP_DMA
| ACE_WARN
| ACE_FATAL
| ACE_BYTE_SWAP_BD
|
998 ACE_WORD_SWAP_BD
| ACE_NO_JUMBO_FRAG
, ®s
->ModeStat
);
1000 writel(ACE_BYTE_SWAP_DMA
| ACE_WARN
| ACE_FATAL
|
1001 ACE_WORD_SWAP_BD
| ACE_NO_JUMBO_FRAG
, ®s
->ModeStat
);
1003 readl(®s
->ModeStat
); /* PCI write posting */
1006 for(i
= 0; i
< 4; i
++) {
1008 tmp
= read_eeprom_byte(dev
, 0x8c+i
);
1013 mac1
|= (tmp
& 0xff);
1016 for(i
= 4; i
< 8; i
++) {
1018 tmp
= read_eeprom_byte(dev
, 0x8c+i
);
1023 mac2
|= (tmp
& 0xff);
1026 writel(mac1
, ®s
->MacAddrHi
);
1027 writel(mac2
, ®s
->MacAddrLo
);
1029 printk("MAC: %02x:%02x:%02x:%02x:%02x:%02x\n",
1030 (mac1
>> 8) & 0xff, mac1
& 0xff, (mac2
>> 24) &0xff,
1031 (mac2
>> 16) & 0xff, (mac2
>> 8) & 0xff, mac2
& 0xff);
1033 dev
->dev_addr
[0] = (mac1
>> 8) & 0xff;
1034 dev
->dev_addr
[1] = mac1
& 0xff;
1035 dev
->dev_addr
[2] = (mac2
>> 24) & 0xff;
1036 dev
->dev_addr
[3] = (mac2
>> 16) & 0xff;
1037 dev
->dev_addr
[4] = (mac2
>> 8) & 0xff;
1038 dev
->dev_addr
[5] = mac2
& 0xff;
1041 * Looks like this is necessary to deal with on all architectures,
1042 * even this %$#%$# N440BX Intel based thing doesn't get it right.
1043 * Ie. having two NICs in the machine, one will have the cache
1044 * line set at boot time, the other will not.
1047 pci_read_config_byte(pdev
, PCI_CACHE_LINE_SIZE
, &cache_size
);
1049 if (cache_size
!= SMP_CACHE_BYTES
) {
1050 printk(KERN_INFO
" PCI cache line size set incorrectly "
1051 "(%i bytes) by BIOS/FW, ", cache_size
);
1052 if (cache_size
> SMP_CACHE_BYTES
)
1053 printk("expecting %i\n", SMP_CACHE_BYTES
);
1055 printk("correcting to %i\n", SMP_CACHE_BYTES
);
1056 pci_write_config_byte(pdev
, PCI_CACHE_LINE_SIZE
,
1057 SMP_CACHE_BYTES
>> 2);
1061 pci_state
= readl(®s
->PciState
);
1062 printk(KERN_INFO
" PCI bus width: %i bits, speed: %iMHz, "
1063 "latency: %i clks\n",
1064 (pci_state
& PCI_32BIT
) ? 32 : 64,
1065 (pci_state
& PCI_66MHZ
) ? 66 : 33,
1069 * Set the max DMA transfer size. Seems that for most systems
1070 * the performance is better when no MAX parameter is
1071 * set. However for systems enabling PCI write and invalidate,
1072 * DMA writes must be set to the L1 cache line size to get
1073 * optimal performance.
1075 * The default is now to turn the PCI write and invalidate off
1076 * - that is what Alteon does for NT.
1078 tmp
= READ_CMD_MEM
| WRITE_CMD_MEM
;
1079 if (ap
->version
>= 2) {
1080 tmp
|= (MEM_READ_MULTIPLE
| (pci_state
& PCI_66MHZ
));
1082 * Tuning parameters only supported for 8 cards
1084 if (board_idx
== BOARD_IDX_OVERFLOW
||
1085 dis_pci_mem_inval
[board_idx
]) {
1086 if (ap
->pci_command
& PCI_COMMAND_INVALIDATE
) {
1087 ap
->pci_command
&= ~PCI_COMMAND_INVALIDATE
;
1088 pci_write_config_word(pdev
, PCI_COMMAND
,
1090 printk(KERN_INFO
" Disabling PCI memory "
1091 "write and invalidate\n");
1093 } else if (ap
->pci_command
& PCI_COMMAND_INVALIDATE
) {
1094 printk(KERN_INFO
" PCI memory write & invalidate "
1095 "enabled by BIOS, enabling counter measures\n");
1097 switch(SMP_CACHE_BYTES
) {
1099 tmp
|= DMA_WRITE_MAX_16
;
1102 tmp
|= DMA_WRITE_MAX_32
;
1105 tmp
|= DMA_WRITE_MAX_64
;
1108 tmp
|= DMA_WRITE_MAX_128
;
1111 printk(KERN_INFO
" Cache line size %i not "
1112 "supported, PCI write and invalidate "
1113 "disabled\n", SMP_CACHE_BYTES
);
1114 ap
->pci_command
&= ~PCI_COMMAND_INVALIDATE
;
1115 pci_write_config_word(pdev
, PCI_COMMAND
,
1123 * On this platform, we know what the best dma settings
1124 * are. We use 64-byte maximum bursts, because if we
1125 * burst larger than the cache line size (or even cross
1126 * a 64byte boundary in a single burst) the UltraSparc
1127 * PCI controller will disconnect at 64-byte multiples.
1129 * Read-multiple will be properly enabled above, and when
1130 * set will give the PCI controller proper hints about
1133 tmp
&= ~DMA_READ_WRITE_MASK
;
1134 tmp
|= DMA_READ_MAX_64
;
1135 tmp
|= DMA_WRITE_MAX_64
;
1138 tmp
&= ~DMA_READ_WRITE_MASK
;
1139 tmp
|= DMA_READ_MAX_128
;
1141 * All the docs say MUST NOT. Well, I did.
1142 * Nothing terrible happens, if we load wrong size.
1143 * Bit w&i still works better!
1145 tmp
|= DMA_WRITE_MAX_128
;
1147 writel(tmp
, ®s
->PciState
);
1151 * The Host PCI bus controller driver has to set FBB.
1152 * If all devices on that PCI bus support FBB, then the controller
1153 * can enable FBB support in the Host PCI Bus controller (or on
1154 * the PCI-PCI bridge if that applies).
1158 * I have received reports from people having problems when this
1161 if (!(ap
->pci_command
& PCI_COMMAND_FAST_BACK
)) {
1162 printk(KERN_INFO
" Enabling PCI Fast Back to Back\n");
1163 ap
->pci_command
|= PCI_COMMAND_FAST_BACK
;
1164 pci_write_config_word(pdev
, PCI_COMMAND
, ap
->pci_command
);
1169 * Configure DMA attributes.
1171 if (!pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) {
1172 ap
->pci_using_dac
= 1;
1173 } else if (!pci_set_dma_mask(pdev
, DMA_32BIT_MASK
)) {
1174 ap
->pci_using_dac
= 0;
1181 * Initialize the generic info block and the command+event rings
1182 * and the control blocks for the transmit and receive rings
1183 * as they need to be setup once and for all.
1185 if (!(info
= pci_alloc_consistent(ap
->pdev
, sizeof(struct ace_info
),
1193 * Get the memory for the skb rings.
1195 if (!(ap
->skb
= kmalloc(sizeof(struct ace_skb
), GFP_KERNEL
))) {
1200 ecode
= request_irq(pdev
->irq
, ace_interrupt
, SA_SHIRQ
,
1203 printk(KERN_WARNING
"%s: Requested IRQ %d is busy\n",
1204 DRV_NAME
, pdev
->irq
);
1207 dev
->irq
= pdev
->irq
;
1210 spin_lock_init(&ap
->debug_lock
);
1211 ap
->last_tx
= ACE_TX_RING_ENTRIES(ap
) - 1;
1212 ap
->last_std_rx
= 0;
1213 ap
->last_mini_rx
= 0;
1216 memset(ap
->info
, 0, sizeof(struct ace_info
));
1217 memset(ap
->skb
, 0, sizeof(struct ace_skb
));
1219 ace_load_firmware(dev
);
1222 tmp_ptr
= ap
->info_dma
;
1223 writel(tmp_ptr
>> 32, ®s
->InfoPtrHi
);
1224 writel(tmp_ptr
& 0xffffffff, ®s
->InfoPtrLo
);
1226 memset(ap
->evt_ring
, 0, EVT_RING_ENTRIES
* sizeof(struct event
));
1228 set_aceaddr(&info
->evt_ctrl
.rngptr
, ap
->evt_ring_dma
);
1229 info
->evt_ctrl
.flags
= 0;
1233 set_aceaddr(&info
->evt_prd_ptr
, ap
->evt_prd_dma
);
1234 writel(0, ®s
->EvtCsm
);
1236 set_aceaddr(&info
->cmd_ctrl
.rngptr
, 0x100);
1237 info
->cmd_ctrl
.flags
= 0;
1238 info
->cmd_ctrl
.max_len
= 0;
1240 for (i
= 0; i
< CMD_RING_ENTRIES
; i
++)
1241 writel(0, ®s
->CmdRng
[i
]);
1243 writel(0, ®s
->CmdPrd
);
1244 writel(0, ®s
->CmdCsm
);
1246 tmp_ptr
= ap
->info_dma
;
1247 tmp_ptr
+= (unsigned long) &(((struct ace_info
*)0)->s
.stats
);
1248 set_aceaddr(&info
->stats2_ptr
, (dma_addr_t
) tmp_ptr
);
1250 set_aceaddr(&info
->rx_std_ctrl
.rngptr
, ap
->rx_ring_base_dma
);
1251 info
->rx_std_ctrl
.max_len
= ACE_STD_BUFSIZE
;
1252 info
->rx_std_ctrl
.flags
=
1253 RCB_FLG_TCP_UDP_SUM
| RCB_FLG_NO_PSEUDO_HDR
| ACE_RCB_VLAN_FLAG
;
1255 memset(ap
->rx_std_ring
, 0,
1256 RX_STD_RING_ENTRIES
* sizeof(struct rx_desc
));
1258 for (i
= 0; i
< RX_STD_RING_ENTRIES
; i
++)
1259 ap
->rx_std_ring
[i
].flags
= BD_FLG_TCP_UDP_SUM
;
1261 ap
->rx_std_skbprd
= 0;
1262 atomic_set(&ap
->cur_rx_bufs
, 0);
1264 set_aceaddr(&info
->rx_jumbo_ctrl
.rngptr
,
1265 (ap
->rx_ring_base_dma
+
1266 (sizeof(struct rx_desc
) * RX_STD_RING_ENTRIES
)));
1267 info
->rx_jumbo_ctrl
.max_len
= 0;
1268 info
->rx_jumbo_ctrl
.flags
=
1269 RCB_FLG_TCP_UDP_SUM
| RCB_FLG_NO_PSEUDO_HDR
| ACE_RCB_VLAN_FLAG
;
1271 memset(ap
->rx_jumbo_ring
, 0,
1272 RX_JUMBO_RING_ENTRIES
* sizeof(struct rx_desc
));
1274 for (i
= 0; i
< RX_JUMBO_RING_ENTRIES
; i
++)
1275 ap
->rx_jumbo_ring
[i
].flags
= BD_FLG_TCP_UDP_SUM
| BD_FLG_JUMBO
;
1277 ap
->rx_jumbo_skbprd
= 0;
1278 atomic_set(&ap
->cur_jumbo_bufs
, 0);
1280 memset(ap
->rx_mini_ring
, 0,
1281 RX_MINI_RING_ENTRIES
* sizeof(struct rx_desc
));
1283 if (ap
->version
>= 2) {
1284 set_aceaddr(&info
->rx_mini_ctrl
.rngptr
,
1285 (ap
->rx_ring_base_dma
+
1286 (sizeof(struct rx_desc
) *
1287 (RX_STD_RING_ENTRIES
+
1288 RX_JUMBO_RING_ENTRIES
))));
1289 info
->rx_mini_ctrl
.max_len
= ACE_MINI_SIZE
;
1290 info
->rx_mini_ctrl
.flags
=
1291 RCB_FLG_TCP_UDP_SUM
|RCB_FLG_NO_PSEUDO_HDR
|ACE_RCB_VLAN_FLAG
;
1293 for (i
= 0; i
< RX_MINI_RING_ENTRIES
; i
++)
1294 ap
->rx_mini_ring
[i
].flags
=
1295 BD_FLG_TCP_UDP_SUM
| BD_FLG_MINI
;
1297 set_aceaddr(&info
->rx_mini_ctrl
.rngptr
, 0);
1298 info
->rx_mini_ctrl
.flags
= RCB_FLG_RNG_DISABLE
;
1299 info
->rx_mini_ctrl
.max_len
= 0;
1302 ap
->rx_mini_skbprd
= 0;
1303 atomic_set(&ap
->cur_mini_bufs
, 0);
1305 set_aceaddr(&info
->rx_return_ctrl
.rngptr
,
1306 (ap
->rx_ring_base_dma
+
1307 (sizeof(struct rx_desc
) *
1308 (RX_STD_RING_ENTRIES
+
1309 RX_JUMBO_RING_ENTRIES
+
1310 RX_MINI_RING_ENTRIES
))));
1311 info
->rx_return_ctrl
.flags
= 0;
1312 info
->rx_return_ctrl
.max_len
= RX_RETURN_RING_ENTRIES
;
1314 memset(ap
->rx_return_ring
, 0,
1315 RX_RETURN_RING_ENTRIES
* sizeof(struct rx_desc
));
1317 set_aceaddr(&info
->rx_ret_prd_ptr
, ap
->rx_ret_prd_dma
);
1318 *(ap
->rx_ret_prd
) = 0;
1320 writel(TX_RING_BASE
, ®s
->WinBase
);
1322 if (ACE_IS_TIGON_I(ap
)) {
1323 ap
->tx_ring
= (struct tx_desc
*) regs
->Window
;
1324 for (i
= 0; i
< (TIGON_I_TX_RING_ENTRIES
1325 * sizeof(struct tx_desc
)) / sizeof(u32
); i
++)
1326 writel(0, (void __iomem
*)ap
->tx_ring
+ i
* 4);
1328 set_aceaddr(&info
->tx_ctrl
.rngptr
, TX_RING_BASE
);
1330 memset(ap
->tx_ring
, 0,
1331 MAX_TX_RING_ENTRIES
* sizeof(struct tx_desc
));
1333 set_aceaddr(&info
->tx_ctrl
.rngptr
, ap
->tx_ring_dma
);
1336 info
->tx_ctrl
.max_len
= ACE_TX_RING_ENTRIES(ap
);
1337 tmp
= RCB_FLG_TCP_UDP_SUM
| RCB_FLG_NO_PSEUDO_HDR
| ACE_RCB_VLAN_FLAG
;
1340 * The Tigon I does not like having the TX ring in host memory ;-(
1342 if (!ACE_IS_TIGON_I(ap
))
1343 tmp
|= RCB_FLG_TX_HOST_RING
;
1344 #if TX_COAL_INTS_ONLY
1345 tmp
|= RCB_FLG_COAL_INT_ONLY
;
1347 info
->tx_ctrl
.flags
= tmp
;
1349 set_aceaddr(&info
->tx_csm_ptr
, ap
->tx_csm_dma
);
1352 * Potential item for tuning parameter
1355 writel(DMA_THRESH_16W
, ®s
->DmaReadCfg
);
1356 writel(DMA_THRESH_16W
, ®s
->DmaWriteCfg
);
1358 writel(DMA_THRESH_8W
, ®s
->DmaReadCfg
);
1359 writel(DMA_THRESH_8W
, ®s
->DmaWriteCfg
);
1362 writel(0, ®s
->MaskInt
);
1363 writel(1, ®s
->IfIdx
);
1366 * McKinley boxes do not like us fiddling with AssistState
1369 writel(1, ®s
->AssistState
);
1372 writel(DEF_STAT
, ®s
->TuneStatTicks
);
1373 writel(DEF_TRACE
, ®s
->TuneTrace
);
1375 ace_set_rxtx_parms(dev
, 0);
1377 if (board_idx
== BOARD_IDX_OVERFLOW
) {
1378 printk(KERN_WARNING
"%s: more than %i NICs detected, "
1379 "ignoring module parameters!\n",
1380 ap
->name
, ACE_MAX_MOD_PARMS
);
1381 } else if (board_idx
>= 0) {
1382 if (tx_coal_tick
[board_idx
])
1383 writel(tx_coal_tick
[board_idx
],
1384 ®s
->TuneTxCoalTicks
);
1385 if (max_tx_desc
[board_idx
])
1386 writel(max_tx_desc
[board_idx
], ®s
->TuneMaxTxDesc
);
1388 if (rx_coal_tick
[board_idx
])
1389 writel(rx_coal_tick
[board_idx
],
1390 ®s
->TuneRxCoalTicks
);
1391 if (max_rx_desc
[board_idx
])
1392 writel(max_rx_desc
[board_idx
], ®s
->TuneMaxRxDesc
);
1394 if (trace
[board_idx
])
1395 writel(trace
[board_idx
], ®s
->TuneTrace
);
1397 if ((tx_ratio
[board_idx
] > 0) && (tx_ratio
[board_idx
] < 64))
1398 writel(tx_ratio
[board_idx
], ®s
->TxBufRat
);
1402 * Default link parameters
1404 tmp
= LNK_ENABLE
| LNK_FULL_DUPLEX
| LNK_1000MB
| LNK_100MB
|
1405 LNK_10MB
| LNK_RX_FLOW_CTL_Y
| LNK_NEG_FCTL
| LNK_NEGOTIATE
;
1406 if(ap
->version
>= 2)
1407 tmp
|= LNK_TX_FLOW_CTL_Y
;
1410 * Override link default parameters
1412 if ((board_idx
>= 0) && link
[board_idx
]) {
1413 int option
= link
[board_idx
];
1417 if (option
& 0x01) {
1418 printk(KERN_INFO
"%s: Setting half duplex link\n",
1420 tmp
&= ~LNK_FULL_DUPLEX
;
1423 tmp
&= ~LNK_NEGOTIATE
;
1430 if ((option
& 0x70) == 0) {
1431 printk(KERN_WARNING
"%s: No media speed specified, "
1432 "forcing auto negotiation\n", ap
->name
);
1433 tmp
|= LNK_NEGOTIATE
| LNK_1000MB
|
1434 LNK_100MB
| LNK_10MB
;
1436 if ((option
& 0x100) == 0)
1437 tmp
|= LNK_NEG_FCTL
;
1439 printk(KERN_INFO
"%s: Disabling flow control "
1440 "negotiation\n", ap
->name
);
1442 tmp
|= LNK_RX_FLOW_CTL_Y
;
1443 if ((option
& 0x400) && (ap
->version
>= 2)) {
1444 printk(KERN_INFO
"%s: Enabling TX flow control\n",
1446 tmp
|= LNK_TX_FLOW_CTL_Y
;
1451 writel(tmp
, ®s
->TuneLink
);
1452 if (ap
->version
>= 2)
1453 writel(tmp
, ®s
->TuneFastLink
);
1455 if (ACE_IS_TIGON_I(ap
))
1456 writel(tigonFwStartAddr
, ®s
->Pc
);
1457 if (ap
->version
== 2)
1458 writel(tigon2FwStartAddr
, ®s
->Pc
);
1460 writel(0, ®s
->Mb0Lo
);
1463 * Set tx_csm before we start receiving interrupts, otherwise
1464 * the interrupt handler might think it is supposed to process
1465 * tx ints before we are up and running, which may cause a null
1466 * pointer access in the int handler.
1469 ap
->tx_prd
= *(ap
->tx_csm
) = ap
->tx_ret_csm
= 0;
1472 ace_set_txprd(regs
, ap
, 0);
1473 writel(0, ®s
->RxRetCsm
);
1476 * Zero the stats before starting the interface
1478 memset(&ap
->stats
, 0, sizeof(ap
->stats
));
1481 * Enable DMA engine now.
1482 * If we do this sooner, Mckinley box pukes.
1483 * I assume it's because Tigon II DMA engine wants to check
1484 * *something* even before the CPU is started.
1486 writel(1, ®s
->AssistState
); /* enable DMA */
1491 writel(readl(®s
->CpuCtrl
) & ~(CPU_HALT
|CPU_TRACE
), ®s
->CpuCtrl
);
1492 readl(®s
->CpuCtrl
);
1495 * Wait for the firmware to spin up - max 3 seconds.
1497 myjif
= jiffies
+ 3 * HZ
;
1498 while (time_before(jiffies
, myjif
) && !ap
->fw_running
)
1501 if (!ap
->fw_running
) {
1502 printk(KERN_ERR
"%s: Firmware NOT running!\n", ap
->name
);
1505 writel(readl(®s
->CpuCtrl
) | CPU_HALT
, ®s
->CpuCtrl
);
1506 readl(®s
->CpuCtrl
);
1508 /* aman@sgi.com - account for badly behaving firmware/NIC:
1509 * - have observed that the NIC may continue to generate
1510 * interrupts for some reason; attempt to stop it - halt
1511 * second CPU for Tigon II cards, and also clear Mb0
1512 * - if we're a module, we'll fail to load if this was
1513 * the only GbE card in the system => if the kernel does
1514 * see an interrupt from the NIC, code to handle it is
1515 * gone and OOps! - so free_irq also
1517 if (ap
->version
>= 2)
1518 writel(readl(®s
->CpuBCtrl
) | CPU_HALT
,
1520 writel(0, ®s
->Mb0Lo
);
1521 readl(®s
->Mb0Lo
);
1528 * We load the ring here as there seem to be no way to tell the
1529 * firmware to wipe the ring without re-initializing it.
1531 if (!test_and_set_bit(0, &ap
->std_refill_busy
))
1532 ace_load_std_rx_ring(ap
, RX_RING_SIZE
);
1534 printk(KERN_ERR
"%s: Someone is busy refilling the RX ring\n",
1536 if (ap
->version
>= 2) {
1537 if (!test_and_set_bit(0, &ap
->mini_refill_busy
))
1538 ace_load_mini_rx_ring(ap
, RX_MINI_SIZE
);
1540 printk(KERN_ERR
"%s: Someone is busy refilling "
1541 "the RX mini ring\n", ap
->name
);
1546 ace_init_cleanup(dev
);
1551 static void ace_set_rxtx_parms(struct net_device
*dev
, int jumbo
)
1553 struct ace_private
*ap
= netdev_priv(dev
);
1554 struct ace_regs __iomem
*regs
= ap
->regs
;
1555 int board_idx
= ap
->board_idx
;
1557 if (board_idx
>= 0) {
1559 if (!tx_coal_tick
[board_idx
])
1560 writel(DEF_TX_COAL
, ®s
->TuneTxCoalTicks
);
1561 if (!max_tx_desc
[board_idx
])
1562 writel(DEF_TX_MAX_DESC
, ®s
->TuneMaxTxDesc
);
1563 if (!rx_coal_tick
[board_idx
])
1564 writel(DEF_RX_COAL
, ®s
->TuneRxCoalTicks
);
1565 if (!max_rx_desc
[board_idx
])
1566 writel(DEF_RX_MAX_DESC
, ®s
->TuneMaxRxDesc
);
1567 if (!tx_ratio
[board_idx
])
1568 writel(DEF_TX_RATIO
, ®s
->TxBufRat
);
1570 if (!tx_coal_tick
[board_idx
])
1571 writel(DEF_JUMBO_TX_COAL
,
1572 ®s
->TuneTxCoalTicks
);
1573 if (!max_tx_desc
[board_idx
])
1574 writel(DEF_JUMBO_TX_MAX_DESC
,
1575 ®s
->TuneMaxTxDesc
);
1576 if (!rx_coal_tick
[board_idx
])
1577 writel(DEF_JUMBO_RX_COAL
,
1578 ®s
->TuneRxCoalTicks
);
1579 if (!max_rx_desc
[board_idx
])
1580 writel(DEF_JUMBO_RX_MAX_DESC
,
1581 ®s
->TuneMaxRxDesc
);
1582 if (!tx_ratio
[board_idx
])
1583 writel(DEF_JUMBO_TX_RATIO
, ®s
->TxBufRat
);
1589 static void ace_watchdog(struct net_device
*data
)
1591 struct net_device
*dev
= data
;
1592 struct ace_private
*ap
= netdev_priv(dev
);
1593 struct ace_regs __iomem
*regs
= ap
->regs
;
1596 * We haven't received a stats update event for more than 2.5
1597 * seconds and there is data in the transmit queue, thus we
1598 * asume the card is stuck.
1600 if (*ap
->tx_csm
!= ap
->tx_ret_csm
) {
1601 printk(KERN_WARNING
"%s: Transmitter is stuck, %08x\n",
1602 dev
->name
, (unsigned int)readl(®s
->HostCtrl
));
1603 /* This can happen due to ieee flow control. */
1605 printk(KERN_DEBUG
"%s: BUG... transmitter died. Kicking it.\n",
1608 netif_wake_queue(dev
);
1614 static void ace_tasklet(unsigned long dev
)
1616 struct ace_private
*ap
= netdev_priv((struct net_device
*)dev
);
1619 cur_size
= atomic_read(&ap
->cur_rx_bufs
);
1620 if ((cur_size
< RX_LOW_STD_THRES
) &&
1621 !test_and_set_bit(0, &ap
->std_refill_busy
)) {
1623 printk("refilling buffers (current %i)\n", cur_size
);
1625 ace_load_std_rx_ring(ap
, RX_RING_SIZE
- cur_size
);
1628 if (ap
->version
>= 2) {
1629 cur_size
= atomic_read(&ap
->cur_mini_bufs
);
1630 if ((cur_size
< RX_LOW_MINI_THRES
) &&
1631 !test_and_set_bit(0, &ap
->mini_refill_busy
)) {
1633 printk("refilling mini buffers (current %i)\n",
1636 ace_load_mini_rx_ring(ap
, RX_MINI_SIZE
- cur_size
);
1640 cur_size
= atomic_read(&ap
->cur_jumbo_bufs
);
1641 if (ap
->jumbo
&& (cur_size
< RX_LOW_JUMBO_THRES
) &&
1642 !test_and_set_bit(0, &ap
->jumbo_refill_busy
)) {
1644 printk("refilling jumbo buffers (current %i)\n", cur_size
);
1646 ace_load_jumbo_rx_ring(ap
, RX_JUMBO_SIZE
- cur_size
);
1648 ap
->tasklet_pending
= 0;
1653 * Copy the contents of the NIC's trace buffer to kernel memory.
1655 static void ace_dump_trace(struct ace_private
*ap
)
1659 if (!(ap
->trace_buf
= kmalloc(ACE_TRACE_SIZE
, GFP_KERNEL
)))
1666 * Load the standard rx ring.
1668 * Loading rings is safe without holding the spin lock since this is
1669 * done only before the device is enabled, thus no interrupts are
1670 * generated and by the interrupt handler/tasklet handler.
1672 static void ace_load_std_rx_ring(struct ace_private
*ap
, int nr_bufs
)
1674 struct ace_regs __iomem
*regs
= ap
->regs
;
1678 prefetchw(&ap
->cur_rx_bufs
);
1680 idx
= ap
->rx_std_skbprd
;
1682 for (i
= 0; i
< nr_bufs
; i
++) {
1683 struct sk_buff
*skb
;
1687 skb
= alloc_skb(ACE_STD_BUFSIZE
+ NET_IP_ALIGN
, GFP_ATOMIC
);
1691 skb_reserve(skb
, NET_IP_ALIGN
);
1692 mapping
= pci_map_page(ap
->pdev
, virt_to_page(skb
->data
),
1693 offset_in_page(skb
->data
),
1695 PCI_DMA_FROMDEVICE
);
1696 ap
->skb
->rx_std_skbuff
[idx
].skb
= skb
;
1697 pci_unmap_addr_set(&ap
->skb
->rx_std_skbuff
[idx
],
1700 rd
= &ap
->rx_std_ring
[idx
];
1701 set_aceaddr(&rd
->addr
, mapping
);
1702 rd
->size
= ACE_STD_BUFSIZE
;
1704 idx
= (idx
+ 1) % RX_STD_RING_ENTRIES
;
1710 atomic_add(i
, &ap
->cur_rx_bufs
);
1711 ap
->rx_std_skbprd
= idx
;
1713 if (ACE_IS_TIGON_I(ap
)) {
1715 cmd
.evt
= C_SET_RX_PRD_IDX
;
1717 cmd
.idx
= ap
->rx_std_skbprd
;
1718 ace_issue_cmd(regs
, &cmd
);
1720 writel(idx
, ®s
->RxStdPrd
);
1725 clear_bit(0, &ap
->std_refill_busy
);
1729 printk(KERN_INFO
"Out of memory when allocating "
1730 "standard receive buffers\n");
1735 static void ace_load_mini_rx_ring(struct ace_private
*ap
, int nr_bufs
)
1737 struct ace_regs __iomem
*regs
= ap
->regs
;
1740 prefetchw(&ap
->cur_mini_bufs
);
1742 idx
= ap
->rx_mini_skbprd
;
1743 for (i
= 0; i
< nr_bufs
; i
++) {
1744 struct sk_buff
*skb
;
1748 skb
= alloc_skb(ACE_MINI_BUFSIZE
+ NET_IP_ALIGN
, GFP_ATOMIC
);
1752 skb_reserve(skb
, NET_IP_ALIGN
);
1753 mapping
= pci_map_page(ap
->pdev
, virt_to_page(skb
->data
),
1754 offset_in_page(skb
->data
),
1756 PCI_DMA_FROMDEVICE
);
1757 ap
->skb
->rx_mini_skbuff
[idx
].skb
= skb
;
1758 pci_unmap_addr_set(&ap
->skb
->rx_mini_skbuff
[idx
],
1761 rd
= &ap
->rx_mini_ring
[idx
];
1762 set_aceaddr(&rd
->addr
, mapping
);
1763 rd
->size
= ACE_MINI_BUFSIZE
;
1765 idx
= (idx
+ 1) % RX_MINI_RING_ENTRIES
;
1771 atomic_add(i
, &ap
->cur_mini_bufs
);
1773 ap
->rx_mini_skbprd
= idx
;
1775 writel(idx
, ®s
->RxMiniPrd
);
1779 clear_bit(0, &ap
->mini_refill_busy
);
1782 printk(KERN_INFO
"Out of memory when allocating "
1783 "mini receive buffers\n");
1789 * Load the jumbo rx ring, this may happen at any time if the MTU
1790 * is changed to a value > 1500.
1792 static void ace_load_jumbo_rx_ring(struct ace_private
*ap
, int nr_bufs
)
1794 struct ace_regs __iomem
*regs
= ap
->regs
;
1797 idx
= ap
->rx_jumbo_skbprd
;
1799 for (i
= 0; i
< nr_bufs
; i
++) {
1800 struct sk_buff
*skb
;
1804 skb
= alloc_skb(ACE_JUMBO_BUFSIZE
+ NET_IP_ALIGN
, GFP_ATOMIC
);
1808 skb_reserve(skb
, NET_IP_ALIGN
);
1809 mapping
= pci_map_page(ap
->pdev
, virt_to_page(skb
->data
),
1810 offset_in_page(skb
->data
),
1812 PCI_DMA_FROMDEVICE
);
1813 ap
->skb
->rx_jumbo_skbuff
[idx
].skb
= skb
;
1814 pci_unmap_addr_set(&ap
->skb
->rx_jumbo_skbuff
[idx
],
1817 rd
= &ap
->rx_jumbo_ring
[idx
];
1818 set_aceaddr(&rd
->addr
, mapping
);
1819 rd
->size
= ACE_JUMBO_BUFSIZE
;
1821 idx
= (idx
+ 1) % RX_JUMBO_RING_ENTRIES
;
1827 atomic_add(i
, &ap
->cur_jumbo_bufs
);
1828 ap
->rx_jumbo_skbprd
= idx
;
1830 if (ACE_IS_TIGON_I(ap
)) {
1832 cmd
.evt
= C_SET_RX_JUMBO_PRD_IDX
;
1834 cmd
.idx
= ap
->rx_jumbo_skbprd
;
1835 ace_issue_cmd(regs
, &cmd
);
1837 writel(idx
, ®s
->RxJumboPrd
);
1842 clear_bit(0, &ap
->jumbo_refill_busy
);
1845 if (net_ratelimit())
1846 printk(KERN_INFO
"Out of memory when allocating "
1847 "jumbo receive buffers\n");
1853 * All events are considered to be slow (RX/TX ints do not generate
1854 * events) and are handled here, outside the main interrupt handler,
1855 * to reduce the size of the handler.
1857 static u32
ace_handle_event(struct net_device
*dev
, u32 evtcsm
, u32 evtprd
)
1859 struct ace_private
*ap
;
1861 ap
= netdev_priv(dev
);
1863 while (evtcsm
!= evtprd
) {
1864 switch (ap
->evt_ring
[evtcsm
].evt
) {
1866 printk(KERN_INFO
"%s: Firmware up and running\n",
1871 case E_STATS_UPDATED
:
1875 u16 code
= ap
->evt_ring
[evtcsm
].code
;
1879 u32 state
= readl(&ap
->regs
->GigLnkState
);
1880 printk(KERN_WARNING
"%s: Optical link UP "
1881 "(%s Duplex, Flow Control: %s%s)\n",
1883 state
& LNK_FULL_DUPLEX
? "Full":"Half",
1884 state
& LNK_TX_FLOW_CTL_Y
? "TX " : "",
1885 state
& LNK_RX_FLOW_CTL_Y
? "RX" : "");
1889 printk(KERN_WARNING
"%s: Optical link DOWN\n",
1892 case E_C_LINK_10_100
:
1893 printk(KERN_WARNING
"%s: 10/100BaseT link "
1897 printk(KERN_ERR
"%s: Unknown optical link "
1898 "state %02x\n", ap
->name
, code
);
1903 switch(ap
->evt_ring
[evtcsm
].code
) {
1904 case E_C_ERR_INVAL_CMD
:
1905 printk(KERN_ERR
"%s: invalid command error\n",
1908 case E_C_ERR_UNIMP_CMD
:
1909 printk(KERN_ERR
"%s: unimplemented command "
1910 "error\n", ap
->name
);
1912 case E_C_ERR_BAD_CFG
:
1913 printk(KERN_ERR
"%s: bad config error\n",
1917 printk(KERN_ERR
"%s: unknown error %02x\n",
1918 ap
->name
, ap
->evt_ring
[evtcsm
].code
);
1921 case E_RESET_JUMBO_RNG
:
1924 for (i
= 0; i
< RX_JUMBO_RING_ENTRIES
; i
++) {
1925 if (ap
->skb
->rx_jumbo_skbuff
[i
].skb
) {
1926 ap
->rx_jumbo_ring
[i
].size
= 0;
1927 set_aceaddr(&ap
->rx_jumbo_ring
[i
].addr
, 0);
1928 dev_kfree_skb(ap
->skb
->rx_jumbo_skbuff
[i
].skb
);
1929 ap
->skb
->rx_jumbo_skbuff
[i
].skb
= NULL
;
1933 if (ACE_IS_TIGON_I(ap
)) {
1935 cmd
.evt
= C_SET_RX_JUMBO_PRD_IDX
;
1938 ace_issue_cmd(ap
->regs
, &cmd
);
1940 writel(0, &((ap
->regs
)->RxJumboPrd
));
1945 ap
->rx_jumbo_skbprd
= 0;
1946 printk(KERN_INFO
"%s: Jumbo ring flushed\n",
1948 clear_bit(0, &ap
->jumbo_refill_busy
);
1952 printk(KERN_ERR
"%s: Unhandled event 0x%02x\n",
1953 ap
->name
, ap
->evt_ring
[evtcsm
].evt
);
1955 evtcsm
= (evtcsm
+ 1) % EVT_RING_ENTRIES
;
1962 static void ace_rx_int(struct net_device
*dev
, u32 rxretprd
, u32 rxretcsm
)
1964 struct ace_private
*ap
= netdev_priv(dev
);
1966 int mini_count
= 0, std_count
= 0;
1970 prefetchw(&ap
->cur_rx_bufs
);
1971 prefetchw(&ap
->cur_mini_bufs
);
1973 while (idx
!= rxretprd
) {
1974 struct ring_info
*rip
;
1975 struct sk_buff
*skb
;
1976 struct rx_desc
*rxdesc
, *retdesc
;
1978 int bd_flags
, desc_type
, mapsize
;
1982 /* make sure the rx descriptor isn't read before rxretprd */
1983 if (idx
== rxretcsm
)
1986 retdesc
= &ap
->rx_return_ring
[idx
];
1987 skbidx
= retdesc
->idx
;
1988 bd_flags
= retdesc
->flags
;
1989 desc_type
= bd_flags
& (BD_FLG_JUMBO
| BD_FLG_MINI
);
1993 * Normal frames do not have any flags set
1995 * Mini and normal frames arrive frequently,
1996 * so use a local counter to avoid doing
1997 * atomic operations for each packet arriving.
2000 rip
= &ap
->skb
->rx_std_skbuff
[skbidx
];
2001 mapsize
= ACE_STD_BUFSIZE
;
2002 rxdesc
= &ap
->rx_std_ring
[skbidx
];
2006 rip
= &ap
->skb
->rx_jumbo_skbuff
[skbidx
];
2007 mapsize
= ACE_JUMBO_BUFSIZE
;
2008 rxdesc
= &ap
->rx_jumbo_ring
[skbidx
];
2009 atomic_dec(&ap
->cur_jumbo_bufs
);
2012 rip
= &ap
->skb
->rx_mini_skbuff
[skbidx
];
2013 mapsize
= ACE_MINI_BUFSIZE
;
2014 rxdesc
= &ap
->rx_mini_ring
[skbidx
];
2018 printk(KERN_INFO
"%s: unknown frame type (0x%02x) "
2019 "returned by NIC\n", dev
->name
,
2026 pci_unmap_page(ap
->pdev
,
2027 pci_unmap_addr(rip
, mapping
),
2029 PCI_DMA_FROMDEVICE
);
2030 skb_put(skb
, retdesc
->size
);
2035 csum
= retdesc
->tcp_udp_csum
;
2038 skb
->protocol
= eth_type_trans(skb
, dev
);
2041 * Instead of forcing the poor tigon mips cpu to calculate
2042 * pseudo hdr checksum, we do this ourselves.
2044 if (bd_flags
& BD_FLG_TCP_UDP_SUM
) {
2045 skb
->csum
= htons(csum
);
2046 skb
->ip_summed
= CHECKSUM_HW
;
2048 skb
->ip_summed
= CHECKSUM_NONE
;
2053 if (ap
->vlgrp
&& (bd_flags
& BD_FLG_VLAN_TAG
)) {
2054 vlan_hwaccel_rx(skb
, ap
->vlgrp
, retdesc
->vlan
);
2059 dev
->last_rx
= jiffies
;
2060 ap
->stats
.rx_packets
++;
2061 ap
->stats
.rx_bytes
+= retdesc
->size
;
2063 idx
= (idx
+ 1) % RX_RETURN_RING_ENTRIES
;
2066 atomic_sub(std_count
, &ap
->cur_rx_bufs
);
2067 if (!ACE_IS_TIGON_I(ap
))
2068 atomic_sub(mini_count
, &ap
->cur_mini_bufs
);
2072 * According to the documentation RxRetCsm is obsolete with
2073 * the 12.3.x Firmware - my Tigon I NICs seem to disagree!
2075 if (ACE_IS_TIGON_I(ap
)) {
2076 writel(idx
, &ap
->regs
->RxRetCsm
);
2087 static inline void ace_tx_int(struct net_device
*dev
,
2090 struct ace_private
*ap
= netdev_priv(dev
);
2093 struct sk_buff
*skb
;
2095 struct tx_ring_info
*info
;
2097 info
= ap
->skb
->tx_skbuff
+ idx
;
2099 mapping
= pci_unmap_addr(info
, mapping
);
2102 pci_unmap_page(ap
->pdev
, mapping
,
2103 pci_unmap_len(info
, maplen
),
2105 pci_unmap_addr_set(info
, mapping
, 0);
2109 ap
->stats
.tx_packets
++;
2110 ap
->stats
.tx_bytes
+= skb
->len
;
2111 dev_kfree_skb_irq(skb
);
2115 idx
= (idx
+ 1) % ACE_TX_RING_ENTRIES(ap
);
2116 } while (idx
!= txcsm
);
2118 if (netif_queue_stopped(dev
))
2119 netif_wake_queue(dev
);
2122 ap
->tx_ret_csm
= txcsm
;
2124 /* So... tx_ret_csm is advanced _after_ check for device wakeup.
2126 * We could try to make it before. In this case we would get
2127 * the following race condition: hard_start_xmit on other cpu
2128 * enters after we advanced tx_ret_csm and fills space,
2129 * which we have just freed, so that we make illegal device wakeup.
2130 * There is no good way to workaround this (at entry
2131 * to ace_start_xmit detects this condition and prevents
2132 * ring corruption, but it is not a good workaround.)
2134 * When tx_ret_csm is advanced after, we wake up device _only_
2135 * if we really have some space in ring (though the core doing
2136 * hard_start_xmit can see full ring for some period and has to
2137 * synchronize.) Superb.
2138 * BUT! We get another subtle race condition. hard_start_xmit
2139 * may think that ring is full between wakeup and advancing
2140 * tx_ret_csm and will stop device instantly! It is not so bad.
2141 * We are guaranteed that there is something in ring, so that
2142 * the next irq will resume transmission. To speedup this we could
2143 * mark descriptor, which closes ring with BD_FLG_COAL_NOW
2144 * (see ace_start_xmit).
2146 * Well, this dilemma exists in all lock-free devices.
2147 * We, following scheme used in drivers by Donald Becker,
2148 * select the least dangerous.
2154 static irqreturn_t
ace_interrupt(int irq
, void *dev_id
, struct pt_regs
*ptregs
)
2156 struct net_device
*dev
= (struct net_device
*)dev_id
;
2157 struct ace_private
*ap
= netdev_priv(dev
);
2158 struct ace_regs __iomem
*regs
= ap
->regs
;
2160 u32 txcsm
, rxretcsm
, rxretprd
;
2164 * In case of PCI shared interrupts or spurious interrupts,
2165 * we want to make sure it is actually our interrupt before
2166 * spending any time in here.
2168 if (!(readl(®s
->HostCtrl
) & IN_INT
))
2172 * ACK intr now. Otherwise we will lose updates to rx_ret_prd,
2173 * which happened _after_ rxretprd = *ap->rx_ret_prd; but before
2174 * writel(0, ®s->Mb0Lo).
2176 * "IRQ avoidance" recommended in docs applies to IRQs served
2177 * threads and it is wrong even for that case.
2179 writel(0, ®s
->Mb0Lo
);
2180 readl(®s
->Mb0Lo
);
2183 * There is no conflict between transmit handling in
2184 * start_xmit and receive processing, thus there is no reason
2185 * to take a spin lock for RX handling. Wait until we start
2186 * working on the other stuff - hey we don't need a spin lock
2189 rxretprd
= *ap
->rx_ret_prd
;
2190 rxretcsm
= ap
->cur_rx
;
2192 if (rxretprd
!= rxretcsm
)
2193 ace_rx_int(dev
, rxretprd
, rxretcsm
);
2195 txcsm
= *ap
->tx_csm
;
2196 idx
= ap
->tx_ret_csm
;
2200 * If each skb takes only one descriptor this check degenerates
2201 * to identity, because new space has just been opened.
2202 * But if skbs are fragmented we must check that this index
2203 * update releases enough of space, otherwise we just
2204 * wait for device to make more work.
2206 if (!tx_ring_full(ap
, txcsm
, ap
->tx_prd
))
2207 ace_tx_int(dev
, txcsm
, idx
);
2210 evtcsm
= readl(®s
->EvtCsm
);
2211 evtprd
= *ap
->evt_prd
;
2213 if (evtcsm
!= evtprd
) {
2214 evtcsm
= ace_handle_event(dev
, evtcsm
, evtprd
);
2215 writel(evtcsm
, ®s
->EvtCsm
);
2219 * This has to go last in the interrupt handler and run with
2220 * the spin lock released ... what lock?
2222 if (netif_running(dev
)) {
2224 int run_tasklet
= 0;
2226 cur_size
= atomic_read(&ap
->cur_rx_bufs
);
2227 if (cur_size
< RX_LOW_STD_THRES
) {
2228 if ((cur_size
< RX_PANIC_STD_THRES
) &&
2229 !test_and_set_bit(0, &ap
->std_refill_busy
)) {
2231 printk("low on std buffers %i\n", cur_size
);
2233 ace_load_std_rx_ring(ap
,
2234 RX_RING_SIZE
- cur_size
);
2239 if (!ACE_IS_TIGON_I(ap
)) {
2240 cur_size
= atomic_read(&ap
->cur_mini_bufs
);
2241 if (cur_size
< RX_LOW_MINI_THRES
) {
2242 if ((cur_size
< RX_PANIC_MINI_THRES
) &&
2243 !test_and_set_bit(0,
2244 &ap
->mini_refill_busy
)) {
2246 printk("low on mini buffers %i\n",
2249 ace_load_mini_rx_ring(ap
, RX_MINI_SIZE
- cur_size
);
2256 cur_size
= atomic_read(&ap
->cur_jumbo_bufs
);
2257 if (cur_size
< RX_LOW_JUMBO_THRES
) {
2258 if ((cur_size
< RX_PANIC_JUMBO_THRES
) &&
2259 !test_and_set_bit(0,
2260 &ap
->jumbo_refill_busy
)){
2262 printk("low on jumbo buffers %i\n",
2265 ace_load_jumbo_rx_ring(ap
, RX_JUMBO_SIZE
- cur_size
);
2270 if (run_tasklet
&& !ap
->tasklet_pending
) {
2271 ap
->tasklet_pending
= 1;
2272 tasklet_schedule(&ap
->ace_tasklet
);
2281 static void ace_vlan_rx_register(struct net_device
*dev
, struct vlan_group
*grp
)
2283 struct ace_private
*ap
= netdev_priv(dev
);
2284 unsigned long flags
;
2286 local_irq_save(flags
);
2291 ace_unmask_irq(dev
);
2292 local_irq_restore(flags
);
2296 static void ace_vlan_rx_kill_vid(struct net_device
*dev
, unsigned short vid
)
2298 struct ace_private
*ap
= netdev_priv(dev
);
2299 unsigned long flags
;
2301 local_irq_save(flags
);
2305 ap
->vlgrp
->vlan_devices
[vid
] = NULL
;
2307 ace_unmask_irq(dev
);
2308 local_irq_restore(flags
);
2310 #endif /* ACENIC_DO_VLAN */
2313 static int ace_open(struct net_device
*dev
)
2315 struct ace_private
*ap
= netdev_priv(dev
);
2316 struct ace_regs __iomem
*regs
= ap
->regs
;
2319 if (!(ap
->fw_running
)) {
2320 printk(KERN_WARNING
"%s: Firmware not running!\n", dev
->name
);
2324 writel(dev
->mtu
+ ETH_HLEN
+ 4, ®s
->IfMtu
);
2326 cmd
.evt
= C_CLEAR_STATS
;
2329 ace_issue_cmd(regs
, &cmd
);
2331 cmd
.evt
= C_HOST_STATE
;
2332 cmd
.code
= C_C_STACK_UP
;
2334 ace_issue_cmd(regs
, &cmd
);
2337 !test_and_set_bit(0, &ap
->jumbo_refill_busy
))
2338 ace_load_jumbo_rx_ring(ap
, RX_JUMBO_SIZE
);
2340 if (dev
->flags
& IFF_PROMISC
) {
2341 cmd
.evt
= C_SET_PROMISC_MODE
;
2342 cmd
.code
= C_C_PROMISC_ENABLE
;
2344 ace_issue_cmd(regs
, &cmd
);
2352 cmd
.evt
= C_LNK_NEGOTIATION
;
2355 ace_issue_cmd(regs
, &cmd
);
2358 netif_start_queue(dev
);
2361 * Setup the bottom half rx ring refill handler
2363 tasklet_init(&ap
->ace_tasklet
, ace_tasklet
, (unsigned long)dev
);
2368 static int ace_close(struct net_device
*dev
)
2370 struct ace_private
*ap
= netdev_priv(dev
);
2371 struct ace_regs __iomem
*regs
= ap
->regs
;
2373 unsigned long flags
;
2377 * Without (or before) releasing irq and stopping hardware, this
2378 * is an absolute non-sense, by the way. It will be reset instantly
2381 netif_stop_queue(dev
);
2385 cmd
.evt
= C_SET_PROMISC_MODE
;
2386 cmd
.code
= C_C_PROMISC_DISABLE
;
2388 ace_issue_cmd(regs
, &cmd
);
2392 cmd
.evt
= C_HOST_STATE
;
2393 cmd
.code
= C_C_STACK_DOWN
;
2395 ace_issue_cmd(regs
, &cmd
);
2397 tasklet_kill(&ap
->ace_tasklet
);
2400 * Make sure one CPU is not processing packets while
2401 * buffers are being released by another.
2404 local_irq_save(flags
);
2407 for (i
= 0; i
< ACE_TX_RING_ENTRIES(ap
); i
++) {
2408 struct sk_buff
*skb
;
2410 struct tx_ring_info
*info
;
2412 info
= ap
->skb
->tx_skbuff
+ i
;
2414 mapping
= pci_unmap_addr(info
, mapping
);
2417 if (ACE_IS_TIGON_I(ap
)) {
2418 struct tx_desc __iomem
*tx
2419 = (struct tx_desc __iomem
*) &ap
->tx_ring
[i
];
2420 writel(0, &tx
->addr
.addrhi
);
2421 writel(0, &tx
->addr
.addrlo
);
2422 writel(0, &tx
->flagsize
);
2424 memset(ap
->tx_ring
+ i
, 0,
2425 sizeof(struct tx_desc
));
2426 pci_unmap_page(ap
->pdev
, mapping
,
2427 pci_unmap_len(info
, maplen
),
2429 pci_unmap_addr_set(info
, mapping
, 0);
2438 cmd
.evt
= C_RESET_JUMBO_RNG
;
2441 ace_issue_cmd(regs
, &cmd
);
2444 ace_unmask_irq(dev
);
2445 local_irq_restore(flags
);
2451 static inline dma_addr_t
2452 ace_map_tx_skb(struct ace_private
*ap
, struct sk_buff
*skb
,
2453 struct sk_buff
*tail
, u32 idx
)
2456 struct tx_ring_info
*info
;
2458 mapping
= pci_map_page(ap
->pdev
, virt_to_page(skb
->data
),
2459 offset_in_page(skb
->data
),
2460 skb
->len
, PCI_DMA_TODEVICE
);
2462 info
= ap
->skb
->tx_skbuff
+ idx
;
2464 pci_unmap_addr_set(info
, mapping
, mapping
);
2465 pci_unmap_len_set(info
, maplen
, skb
->len
);
2471 ace_load_tx_bd(struct ace_private
*ap
, struct tx_desc
*desc
, u64 addr
,
2472 u32 flagsize
, u32 vlan_tag
)
2474 #if !USE_TX_COAL_NOW
2475 flagsize
&= ~BD_FLG_COAL_NOW
;
2478 if (ACE_IS_TIGON_I(ap
)) {
2479 struct tx_desc __iomem
*io
= (struct tx_desc __iomem
*) desc
;
2480 writel(addr
>> 32, &io
->addr
.addrhi
);
2481 writel(addr
& 0xffffffff, &io
->addr
.addrlo
);
2482 writel(flagsize
, &io
->flagsize
);
2484 writel(vlan_tag
, &io
->vlanres
);
2487 desc
->addr
.addrhi
= addr
>> 32;
2488 desc
->addr
.addrlo
= addr
;
2489 desc
->flagsize
= flagsize
;
2491 desc
->vlanres
= vlan_tag
;
2497 static int ace_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
2499 struct ace_private
*ap
= netdev_priv(dev
);
2500 struct ace_regs __iomem
*regs
= ap
->regs
;
2501 struct tx_desc
*desc
;
2503 unsigned long maxjiff
= jiffies
+ 3*HZ
;
2508 if (tx_ring_full(ap
, ap
->tx_ret_csm
, idx
))
2511 if (!skb_shinfo(skb
)->nr_frags
) {
2515 mapping
= ace_map_tx_skb(ap
, skb
, skb
, idx
);
2516 flagsize
= (skb
->len
<< 16) | (BD_FLG_END
);
2517 if (skb
->ip_summed
== CHECKSUM_HW
)
2518 flagsize
|= BD_FLG_TCP_UDP_SUM
;
2520 if (vlan_tx_tag_present(skb
)) {
2521 flagsize
|= BD_FLG_VLAN_TAG
;
2522 vlan_tag
= vlan_tx_tag_get(skb
);
2525 desc
= ap
->tx_ring
+ idx
;
2526 idx
= (idx
+ 1) % ACE_TX_RING_ENTRIES(ap
);
2528 /* Look at ace_tx_int for explanations. */
2529 if (tx_ring_full(ap
, ap
->tx_ret_csm
, idx
))
2530 flagsize
|= BD_FLG_COAL_NOW
;
2532 ace_load_tx_bd(ap
, desc
, mapping
, flagsize
, vlan_tag
);
2538 mapping
= ace_map_tx_skb(ap
, skb
, NULL
, idx
);
2539 flagsize
= (skb_headlen(skb
) << 16);
2540 if (skb
->ip_summed
== CHECKSUM_HW
)
2541 flagsize
|= BD_FLG_TCP_UDP_SUM
;
2543 if (vlan_tx_tag_present(skb
)) {
2544 flagsize
|= BD_FLG_VLAN_TAG
;
2545 vlan_tag
= vlan_tx_tag_get(skb
);
2549 ace_load_tx_bd(ap
, ap
->tx_ring
+ idx
, mapping
, flagsize
, vlan_tag
);
2551 idx
= (idx
+ 1) % ACE_TX_RING_ENTRIES(ap
);
2553 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2554 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2555 struct tx_ring_info
*info
;
2558 info
= ap
->skb
->tx_skbuff
+ idx
;
2559 desc
= ap
->tx_ring
+ idx
;
2561 mapping
= pci_map_page(ap
->pdev
, frag
->page
,
2562 frag
->page_offset
, frag
->size
,
2565 flagsize
= (frag
->size
<< 16);
2566 if (skb
->ip_summed
== CHECKSUM_HW
)
2567 flagsize
|= BD_FLG_TCP_UDP_SUM
;
2568 idx
= (idx
+ 1) % ACE_TX_RING_ENTRIES(ap
);
2570 if (i
== skb_shinfo(skb
)->nr_frags
- 1) {
2571 flagsize
|= BD_FLG_END
;
2572 if (tx_ring_full(ap
, ap
->tx_ret_csm
, idx
))
2573 flagsize
|= BD_FLG_COAL_NOW
;
2576 * Only the last fragment frees
2583 pci_unmap_addr_set(info
, mapping
, mapping
);
2584 pci_unmap_len_set(info
, maplen
, frag
->size
);
2585 ace_load_tx_bd(ap
, desc
, mapping
, flagsize
, vlan_tag
);
2591 ace_set_txprd(regs
, ap
, idx
);
2593 if (flagsize
& BD_FLG_COAL_NOW
) {
2594 netif_stop_queue(dev
);
2597 * A TX-descriptor producer (an IRQ) might have gotten
2598 * inbetween, making the ring free again. Since xmit is
2599 * serialized, this is the only situation we have to
2602 if (!tx_ring_full(ap
, ap
->tx_ret_csm
, idx
))
2603 netif_wake_queue(dev
);
2606 dev
->trans_start
= jiffies
;
2607 return NETDEV_TX_OK
;
2611 * This race condition is unavoidable with lock-free drivers.
2612 * We wake up the queue _before_ tx_prd is advanced, so that we can
2613 * enter hard_start_xmit too early, while tx ring still looks closed.
2614 * This happens ~1-4 times per 100000 packets, so that we can allow
2615 * to loop syncing to other CPU. Probably, we need an additional
2616 * wmb() in ace_tx_intr as well.
2618 * Note that this race is relieved by reserving one more entry
2619 * in tx ring than it is necessary (see original non-SG driver).
2620 * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which
2621 * is already overkill.
2623 * Alternative is to return with 1 not throttling queue. In this
2624 * case loop becomes longer, no more useful effects.
2626 if (time_before(jiffies
, maxjiff
)) {
2632 /* The ring is stuck full. */
2633 printk(KERN_WARNING
"%s: Transmit ring stuck full\n", dev
->name
);
2634 return NETDEV_TX_BUSY
;
2638 static int ace_change_mtu(struct net_device
*dev
, int new_mtu
)
2640 struct ace_private
*ap
= netdev_priv(dev
);
2641 struct ace_regs __iomem
*regs
= ap
->regs
;
2643 if (new_mtu
> ACE_JUMBO_MTU
)
2646 writel(new_mtu
+ ETH_HLEN
+ 4, ®s
->IfMtu
);
2649 if (new_mtu
> ACE_STD_MTU
) {
2651 printk(KERN_INFO
"%s: Enabling Jumbo frame "
2652 "support\n", dev
->name
);
2654 if (!test_and_set_bit(0, &ap
->jumbo_refill_busy
))
2655 ace_load_jumbo_rx_ring(ap
, RX_JUMBO_SIZE
);
2656 ace_set_rxtx_parms(dev
, 1);
2659 while (test_and_set_bit(0, &ap
->jumbo_refill_busy
));
2660 ace_sync_irq(dev
->irq
);
2661 ace_set_rxtx_parms(dev
, 0);
2665 cmd
.evt
= C_RESET_JUMBO_RNG
;
2668 ace_issue_cmd(regs
, &cmd
);
2675 static int ace_get_settings(struct net_device
*dev
, struct ethtool_cmd
*ecmd
)
2677 struct ace_private
*ap
= netdev_priv(dev
);
2678 struct ace_regs __iomem
*regs
= ap
->regs
;
2681 memset(ecmd
, 0, sizeof(struct ethtool_cmd
));
2683 (SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
|
2684 SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
|
2685 SUPPORTED_1000baseT_Half
| SUPPORTED_1000baseT_Full
|
2686 SUPPORTED_Autoneg
| SUPPORTED_FIBRE
);
2688 ecmd
->port
= PORT_FIBRE
;
2689 ecmd
->transceiver
= XCVR_INTERNAL
;
2691 link
= readl(®s
->GigLnkState
);
2692 if (link
& LNK_1000MB
)
2693 ecmd
->speed
= SPEED_1000
;
2695 link
= readl(®s
->FastLnkState
);
2696 if (link
& LNK_100MB
)
2697 ecmd
->speed
= SPEED_100
;
2698 else if (link
& LNK_10MB
)
2699 ecmd
->speed
= SPEED_10
;
2703 if (link
& LNK_FULL_DUPLEX
)
2704 ecmd
->duplex
= DUPLEX_FULL
;
2706 ecmd
->duplex
= DUPLEX_HALF
;
2708 if (link
& LNK_NEGOTIATE
)
2709 ecmd
->autoneg
= AUTONEG_ENABLE
;
2711 ecmd
->autoneg
= AUTONEG_DISABLE
;
2715 * Current struct ethtool_cmd is insufficient
2717 ecmd
->trace
= readl(®s
->TuneTrace
);
2719 ecmd
->txcoal
= readl(®s
->TuneTxCoalTicks
);
2720 ecmd
->rxcoal
= readl(®s
->TuneRxCoalTicks
);
2722 ecmd
->maxtxpkt
= readl(®s
->TuneMaxTxDesc
);
2723 ecmd
->maxrxpkt
= readl(®s
->TuneMaxRxDesc
);
2728 static int ace_set_settings(struct net_device
*dev
, struct ethtool_cmd
*ecmd
)
2730 struct ace_private
*ap
= netdev_priv(dev
);
2731 struct ace_regs __iomem
*regs
= ap
->regs
;
2734 link
= readl(®s
->GigLnkState
);
2735 if (link
& LNK_1000MB
)
2738 link
= readl(®s
->FastLnkState
);
2739 if (link
& LNK_100MB
)
2741 else if (link
& LNK_10MB
)
2747 link
= LNK_ENABLE
| LNK_1000MB
| LNK_100MB
| LNK_10MB
|
2748 LNK_RX_FLOW_CTL_Y
| LNK_NEG_FCTL
;
2749 if (!ACE_IS_TIGON_I(ap
))
2750 link
|= LNK_TX_FLOW_CTL_Y
;
2751 if (ecmd
->autoneg
== AUTONEG_ENABLE
)
2752 link
|= LNK_NEGOTIATE
;
2753 if (ecmd
->speed
!= speed
) {
2754 link
&= ~(LNK_1000MB
| LNK_100MB
| LNK_10MB
);
2768 if (ecmd
->duplex
== DUPLEX_FULL
)
2769 link
|= LNK_FULL_DUPLEX
;
2771 if (link
!= ap
->link
) {
2773 printk(KERN_INFO
"%s: Renegotiating link state\n",
2777 writel(link
, ®s
->TuneLink
);
2778 if (!ACE_IS_TIGON_I(ap
))
2779 writel(link
, ®s
->TuneFastLink
);
2782 cmd
.evt
= C_LNK_NEGOTIATION
;
2785 ace_issue_cmd(regs
, &cmd
);
2790 static void ace_get_drvinfo(struct net_device
*dev
,
2791 struct ethtool_drvinfo
*info
)
2793 struct ace_private
*ap
= netdev_priv(dev
);
2795 strlcpy(info
->driver
, "acenic", sizeof(info
->driver
));
2796 snprintf(info
->version
, sizeof(info
->version
), "%i.%i.%i",
2797 tigonFwReleaseMajor
, tigonFwReleaseMinor
,
2801 strlcpy(info
->bus_info
, pci_name(ap
->pdev
),
2802 sizeof(info
->bus_info
));
2807 * Set the hardware MAC address.
2809 static int ace_set_mac_addr(struct net_device
*dev
, void *p
)
2811 struct ace_private
*ap
= netdev_priv(dev
);
2812 struct ace_regs __iomem
*regs
= ap
->regs
;
2813 struct sockaddr
*addr
=p
;
2817 if(netif_running(dev
))
2820 memcpy(dev
->dev_addr
, addr
->sa_data
,dev
->addr_len
);
2822 da
= (u8
*)dev
->dev_addr
;
2824 writel(da
[0] << 8 | da
[1], ®s
->MacAddrHi
);
2825 writel((da
[2] << 24) | (da
[3] << 16) | (da
[4] << 8) | da
[5],
2828 cmd
.evt
= C_SET_MAC_ADDR
;
2831 ace_issue_cmd(regs
, &cmd
);
2837 static void ace_set_multicast_list(struct net_device
*dev
)
2839 struct ace_private
*ap
= netdev_priv(dev
);
2840 struct ace_regs __iomem
*regs
= ap
->regs
;
2843 if ((dev
->flags
& IFF_ALLMULTI
) && !(ap
->mcast_all
)) {
2844 cmd
.evt
= C_SET_MULTICAST_MODE
;
2845 cmd
.code
= C_C_MCAST_ENABLE
;
2847 ace_issue_cmd(regs
, &cmd
);
2849 } else if (ap
->mcast_all
) {
2850 cmd
.evt
= C_SET_MULTICAST_MODE
;
2851 cmd
.code
= C_C_MCAST_DISABLE
;
2853 ace_issue_cmd(regs
, &cmd
);
2857 if ((dev
->flags
& IFF_PROMISC
) && !(ap
->promisc
)) {
2858 cmd
.evt
= C_SET_PROMISC_MODE
;
2859 cmd
.code
= C_C_PROMISC_ENABLE
;
2861 ace_issue_cmd(regs
, &cmd
);
2863 }else if (!(dev
->flags
& IFF_PROMISC
) && (ap
->promisc
)) {
2864 cmd
.evt
= C_SET_PROMISC_MODE
;
2865 cmd
.code
= C_C_PROMISC_DISABLE
;
2867 ace_issue_cmd(regs
, &cmd
);
2872 * For the time being multicast relies on the upper layers
2873 * filtering it properly. The Firmware does not allow one to
2874 * set the entire multicast list at a time and keeping track of
2875 * it here is going to be messy.
2877 if ((dev
->mc_count
) && !(ap
->mcast_all
)) {
2878 cmd
.evt
= C_SET_MULTICAST_MODE
;
2879 cmd
.code
= C_C_MCAST_ENABLE
;
2881 ace_issue_cmd(regs
, &cmd
);
2882 }else if (!ap
->mcast_all
) {
2883 cmd
.evt
= C_SET_MULTICAST_MODE
;
2884 cmd
.code
= C_C_MCAST_DISABLE
;
2886 ace_issue_cmd(regs
, &cmd
);
2891 static struct net_device_stats
*ace_get_stats(struct net_device
*dev
)
2893 struct ace_private
*ap
= netdev_priv(dev
);
2894 struct ace_mac_stats __iomem
*mac_stats
=
2895 (struct ace_mac_stats __iomem
*)ap
->regs
->Stats
;
2897 ap
->stats
.rx_missed_errors
= readl(&mac_stats
->drop_space
);
2898 ap
->stats
.multicast
= readl(&mac_stats
->kept_mc
);
2899 ap
->stats
.collisions
= readl(&mac_stats
->coll
);
2905 static void __devinit
ace_copy(struct ace_regs __iomem
*regs
, void *src
,
2908 void __iomem
*tdest
;
2916 tsize
= min_t(u32
, ((~dest
& (ACE_WINDOW_SIZE
- 1)) + 1),
2917 min_t(u32
, size
, ACE_WINDOW_SIZE
));
2918 tdest
= (void __iomem
*) ®s
->Window
+
2919 (dest
& (ACE_WINDOW_SIZE
- 1));
2920 writel(dest
& ~(ACE_WINDOW_SIZE
- 1), ®s
->WinBase
);
2922 * This requires byte swapping on big endian, however
2923 * writel does that for us
2926 for (i
= 0; i
< (tsize
/ 4); i
++) {
2927 writel(wsrc
[i
], tdest
+ i
*4);
2938 static void __devinit
ace_clear(struct ace_regs __iomem
*regs
, u32 dest
, int size
)
2940 void __iomem
*tdest
;
2947 tsize
= min_t(u32
, ((~dest
& (ACE_WINDOW_SIZE
- 1)) + 1),
2948 min_t(u32
, size
, ACE_WINDOW_SIZE
));
2949 tdest
= (void __iomem
*) ®s
->Window
+
2950 (dest
& (ACE_WINDOW_SIZE
- 1));
2951 writel(dest
& ~(ACE_WINDOW_SIZE
- 1), ®s
->WinBase
);
2953 for (i
= 0; i
< (tsize
/ 4); i
++) {
2954 writel(0, tdest
+ i
*4);
2966 * Download the firmware into the SRAM on the NIC
2968 * This operation requires the NIC to be halted and is performed with
2969 * interrupts disabled and with the spinlock hold.
2971 int __devinit
ace_load_firmware(struct net_device
*dev
)
2973 struct ace_private
*ap
= netdev_priv(dev
);
2974 struct ace_regs __iomem
*regs
= ap
->regs
;
2976 if (!(readl(®s
->CpuCtrl
) & CPU_HALTED
)) {
2977 printk(KERN_ERR
"%s: trying to download firmware while the "
2978 "CPU is running!\n", ap
->name
);
2983 * Do not try to clear more than 512KB or we end up seeing
2984 * funny things on NICs with only 512KB SRAM
2986 ace_clear(regs
, 0x2000, 0x80000-0x2000);
2987 if (ACE_IS_TIGON_I(ap
)) {
2988 ace_copy(regs
, tigonFwText
, tigonFwTextAddr
, tigonFwTextLen
);
2989 ace_copy(regs
, tigonFwData
, tigonFwDataAddr
, tigonFwDataLen
);
2990 ace_copy(regs
, tigonFwRodata
, tigonFwRodataAddr
,
2992 ace_clear(regs
, tigonFwBssAddr
, tigonFwBssLen
);
2993 ace_clear(regs
, tigonFwSbssAddr
, tigonFwSbssLen
);
2994 }else if (ap
->version
== 2) {
2995 ace_clear(regs
, tigon2FwBssAddr
, tigon2FwBssLen
);
2996 ace_clear(regs
, tigon2FwSbssAddr
, tigon2FwSbssLen
);
2997 ace_copy(regs
, tigon2FwText
, tigon2FwTextAddr
,tigon2FwTextLen
);
2998 ace_copy(regs
, tigon2FwRodata
, tigon2FwRodataAddr
,
3000 ace_copy(regs
, tigon2FwData
, tigon2FwDataAddr
,tigon2FwDataLen
);
3008 * The eeprom on the AceNIC is an Atmel i2c EEPROM.
3010 * Accessing the EEPROM is `interesting' to say the least - don't read
3011 * this code right after dinner.
3013 * This is all about black magic and bit-banging the device .... I
3014 * wonder in what hospital they have put the guy who designed the i2c
3017 * Oh yes, this is only the beginning!
3019 * Thanks to Stevarino Webinski for helping tracking down the bugs in the
3020 * code i2c readout code by beta testing all my hacks.
3022 static void __devinit
eeprom_start(struct ace_regs __iomem
*regs
)
3026 readl(®s
->LocalCtrl
);
3027 udelay(ACE_SHORT_DELAY
);
3028 local
= readl(®s
->LocalCtrl
);
3029 local
|= EEPROM_DATA_OUT
| EEPROM_WRITE_ENABLE
;
3030 writel(local
, ®s
->LocalCtrl
);
3031 readl(®s
->LocalCtrl
);
3033 udelay(ACE_SHORT_DELAY
);
3034 local
|= EEPROM_CLK_OUT
;
3035 writel(local
, ®s
->LocalCtrl
);
3036 readl(®s
->LocalCtrl
);
3038 udelay(ACE_SHORT_DELAY
);
3039 local
&= ~EEPROM_DATA_OUT
;
3040 writel(local
, ®s
->LocalCtrl
);
3041 readl(®s
->LocalCtrl
);
3043 udelay(ACE_SHORT_DELAY
);
3044 local
&= ~EEPROM_CLK_OUT
;
3045 writel(local
, ®s
->LocalCtrl
);
3046 readl(®s
->LocalCtrl
);
3051 static void __devinit
eeprom_prep(struct ace_regs __iomem
*regs
, u8 magic
)
3056 udelay(ACE_SHORT_DELAY
);
3057 local
= readl(®s
->LocalCtrl
);
3058 local
&= ~EEPROM_DATA_OUT
;
3059 local
|= EEPROM_WRITE_ENABLE
;
3060 writel(local
, ®s
->LocalCtrl
);
3061 readl(®s
->LocalCtrl
);
3064 for (i
= 0; i
< 8; i
++, magic
<<= 1) {
3065 udelay(ACE_SHORT_DELAY
);
3067 local
|= EEPROM_DATA_OUT
;
3069 local
&= ~EEPROM_DATA_OUT
;
3070 writel(local
, ®s
->LocalCtrl
);
3071 readl(®s
->LocalCtrl
);
3074 udelay(ACE_SHORT_DELAY
);
3075 local
|= EEPROM_CLK_OUT
;
3076 writel(local
, ®s
->LocalCtrl
);
3077 readl(®s
->LocalCtrl
);
3079 udelay(ACE_SHORT_DELAY
);
3080 local
&= ~(EEPROM_CLK_OUT
| EEPROM_DATA_OUT
);
3081 writel(local
, ®s
->LocalCtrl
);
3082 readl(®s
->LocalCtrl
);
3088 static int __devinit
eeprom_check_ack(struct ace_regs __iomem
*regs
)
3093 local
= readl(®s
->LocalCtrl
);
3094 local
&= ~EEPROM_WRITE_ENABLE
;
3095 writel(local
, ®s
->LocalCtrl
);
3096 readl(®s
->LocalCtrl
);
3098 udelay(ACE_LONG_DELAY
);
3099 local
|= EEPROM_CLK_OUT
;
3100 writel(local
, ®s
->LocalCtrl
);
3101 readl(®s
->LocalCtrl
);
3103 udelay(ACE_SHORT_DELAY
);
3104 /* sample data in middle of high clk */
3105 state
= (readl(®s
->LocalCtrl
) & EEPROM_DATA_IN
) != 0;
3106 udelay(ACE_SHORT_DELAY
);
3108 writel(readl(®s
->LocalCtrl
) & ~EEPROM_CLK_OUT
, ®s
->LocalCtrl
);
3109 readl(®s
->LocalCtrl
);
3116 static void __devinit
eeprom_stop(struct ace_regs __iomem
*regs
)
3120 udelay(ACE_SHORT_DELAY
);
3121 local
= readl(®s
->LocalCtrl
);
3122 local
|= EEPROM_WRITE_ENABLE
;
3123 writel(local
, ®s
->LocalCtrl
);
3124 readl(®s
->LocalCtrl
);
3126 udelay(ACE_SHORT_DELAY
);
3127 local
&= ~EEPROM_DATA_OUT
;
3128 writel(local
, ®s
->LocalCtrl
);
3129 readl(®s
->LocalCtrl
);
3131 udelay(ACE_SHORT_DELAY
);
3132 local
|= EEPROM_CLK_OUT
;
3133 writel(local
, ®s
->LocalCtrl
);
3134 readl(®s
->LocalCtrl
);
3136 udelay(ACE_SHORT_DELAY
);
3137 local
|= EEPROM_DATA_OUT
;
3138 writel(local
, ®s
->LocalCtrl
);
3139 readl(®s
->LocalCtrl
);
3141 udelay(ACE_LONG_DELAY
);
3142 local
&= ~EEPROM_CLK_OUT
;
3143 writel(local
, ®s
->LocalCtrl
);
3149 * Read a whole byte from the EEPROM.
3151 static int __devinit
read_eeprom_byte(struct net_device
*dev
,
3152 unsigned long offset
)
3154 struct ace_private
*ap
= netdev_priv(dev
);
3155 struct ace_regs __iomem
*regs
= ap
->regs
;
3156 unsigned long flags
;
3162 printk(KERN_ERR
"No device!\n");
3168 * Don't take interrupts on this CPU will bit banging
3169 * the %#%#@$ I2C device
3171 local_irq_save(flags
);
3175 eeprom_prep(regs
, EEPROM_WRITE_SELECT
);
3176 if (eeprom_check_ack(regs
)) {
3177 local_irq_restore(flags
);
3178 printk(KERN_ERR
"%s: Unable to sync eeprom\n", ap
->name
);
3180 goto eeprom_read_error
;
3183 eeprom_prep(regs
, (offset
>> 8) & 0xff);
3184 if (eeprom_check_ack(regs
)) {
3185 local_irq_restore(flags
);
3186 printk(KERN_ERR
"%s: Unable to set address byte 0\n",
3189 goto eeprom_read_error
;
3192 eeprom_prep(regs
, offset
& 0xff);
3193 if (eeprom_check_ack(regs
)) {
3194 local_irq_restore(flags
);
3195 printk(KERN_ERR
"%s: Unable to set address byte 1\n",
3198 goto eeprom_read_error
;
3202 eeprom_prep(regs
, EEPROM_READ_SELECT
);
3203 if (eeprom_check_ack(regs
)) {
3204 local_irq_restore(flags
);
3205 printk(KERN_ERR
"%s: Unable to set READ_SELECT\n",
3208 goto eeprom_read_error
;
3211 for (i
= 0; i
< 8; i
++) {
3212 local
= readl(®s
->LocalCtrl
);
3213 local
&= ~EEPROM_WRITE_ENABLE
;
3214 writel(local
, ®s
->LocalCtrl
);
3215 readl(®s
->LocalCtrl
);
3216 udelay(ACE_LONG_DELAY
);
3218 local
|= EEPROM_CLK_OUT
;
3219 writel(local
, ®s
->LocalCtrl
);
3220 readl(®s
->LocalCtrl
);
3222 udelay(ACE_SHORT_DELAY
);
3223 /* sample data mid high clk */
3224 result
= (result
<< 1) |
3225 ((readl(®s
->LocalCtrl
) & EEPROM_DATA_IN
) != 0);
3226 udelay(ACE_SHORT_DELAY
);
3228 local
= readl(®s
->LocalCtrl
);
3229 local
&= ~EEPROM_CLK_OUT
;
3230 writel(local
, ®s
->LocalCtrl
);
3231 readl(®s
->LocalCtrl
);
3232 udelay(ACE_SHORT_DELAY
);
3235 local
|= EEPROM_WRITE_ENABLE
;
3236 writel(local
, ®s
->LocalCtrl
);
3237 readl(®s
->LocalCtrl
);
3239 udelay(ACE_SHORT_DELAY
);
3243 local
|= EEPROM_DATA_OUT
;
3244 writel(local
, ®s
->LocalCtrl
);
3245 readl(®s
->LocalCtrl
);
3247 udelay(ACE_SHORT_DELAY
);
3248 writel(readl(®s
->LocalCtrl
) | EEPROM_CLK_OUT
, ®s
->LocalCtrl
);
3249 readl(®s
->LocalCtrl
);
3250 udelay(ACE_LONG_DELAY
);
3251 writel(readl(®s
->LocalCtrl
) & ~EEPROM_CLK_OUT
, ®s
->LocalCtrl
);
3252 readl(®s
->LocalCtrl
);
3254 udelay(ACE_SHORT_DELAY
);
3257 local_irq_restore(flags
);
3262 printk(KERN_ERR
"%s: Unable to read eeprom byte 0x%02lx\n",
3270 * compile-command: "gcc -D__SMP__ -D__KERNEL__ -DMODULE -I../../include -Wall -Wstrict-prototypes -O2 -fomit-frame-pointer -pipe -fno-strength-reduce -DMODVERSIONS -include ../../include/linux/modversions.h -c -o acenic.o acenic.c"