Linux v2.6.13
[linux-2.6/next.git] / mm / filemap.c
blobc11418dd94e810f4c8d9c4aa7ed2fae6d8aba290
1 /*
2 * linux/mm/filemap.c
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/config.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/compiler.h>
16 #include <linux/fs.h>
17 #include <linux/aio.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/file.h>
24 #include <linux/uio.h>
25 #include <linux/hash.h>
26 #include <linux/writeback.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include "filemap.h"
33 * FIXME: remove all knowledge of the buffer layer from the core VM
35 #include <linux/buffer_head.h> /* for generic_osync_inode */
37 #include <asm/uaccess.h>
38 #include <asm/mman.h>
41 * Shared mappings implemented 30.11.1994. It's not fully working yet,
42 * though.
44 * Shared mappings now work. 15.8.1995 Bruno.
46 * finished 'unifying' the page and buffer cache and SMP-threaded the
47 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
49 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
53 * Lock ordering:
55 * ->i_mmap_lock (vmtruncate)
56 * ->private_lock (__free_pte->__set_page_dirty_buffers)
57 * ->swap_list_lock
58 * ->swap_device_lock (exclusive_swap_page, others)
59 * ->mapping->tree_lock
61 * ->i_sem
62 * ->i_mmap_lock (truncate->unmap_mapping_range)
64 * ->mmap_sem
65 * ->i_mmap_lock
66 * ->page_table_lock (various places, mainly in mmap.c)
67 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
69 * ->mmap_sem
70 * ->lock_page (access_process_vm)
72 * ->mmap_sem
73 * ->i_sem (msync)
75 * ->i_sem
76 * ->i_alloc_sem (various)
78 * ->inode_lock
79 * ->sb_lock (fs/fs-writeback.c)
80 * ->mapping->tree_lock (__sync_single_inode)
82 * ->i_mmap_lock
83 * ->anon_vma.lock (vma_adjust)
85 * ->anon_vma.lock
86 * ->page_table_lock (anon_vma_prepare and various)
88 * ->page_table_lock
89 * ->swap_device_lock (try_to_unmap_one)
90 * ->private_lock (try_to_unmap_one)
91 * ->tree_lock (try_to_unmap_one)
92 * ->zone.lru_lock (follow_page->mark_page_accessed)
93 * ->private_lock (page_remove_rmap->set_page_dirty)
94 * ->tree_lock (page_remove_rmap->set_page_dirty)
95 * ->inode_lock (page_remove_rmap->set_page_dirty)
96 * ->inode_lock (zap_pte_range->set_page_dirty)
97 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
99 * ->task->proc_lock
100 * ->dcache_lock (proc_pid_lookup)
104 * Remove a page from the page cache and free it. Caller has to make
105 * sure the page is locked and that nobody else uses it - or that usage
106 * is safe. The caller must hold a write_lock on the mapping's tree_lock.
108 void __remove_from_page_cache(struct page *page)
110 struct address_space *mapping = page->mapping;
112 radix_tree_delete(&mapping->page_tree, page->index);
113 page->mapping = NULL;
114 mapping->nrpages--;
115 pagecache_acct(-1);
118 void remove_from_page_cache(struct page *page)
120 struct address_space *mapping = page->mapping;
122 BUG_ON(!PageLocked(page));
124 write_lock_irq(&mapping->tree_lock);
125 __remove_from_page_cache(page);
126 write_unlock_irq(&mapping->tree_lock);
129 static int sync_page(void *word)
131 struct address_space *mapping;
132 struct page *page;
134 page = container_of((page_flags_t *)word, struct page, flags);
137 * page_mapping() is being called without PG_locked held.
138 * Some knowledge of the state and use of the page is used to
139 * reduce the requirements down to a memory barrier.
140 * The danger here is of a stale page_mapping() return value
141 * indicating a struct address_space different from the one it's
142 * associated with when it is associated with one.
143 * After smp_mb(), it's either the correct page_mapping() for
144 * the page, or an old page_mapping() and the page's own
145 * page_mapping() has gone NULL.
146 * The ->sync_page() address_space operation must tolerate
147 * page_mapping() going NULL. By an amazing coincidence,
148 * this comes about because none of the users of the page
149 * in the ->sync_page() methods make essential use of the
150 * page_mapping(), merely passing the page down to the backing
151 * device's unplug functions when it's non-NULL, which in turn
152 * ignore it for all cases but swap, where only page->private is
153 * of interest. When page_mapping() does go NULL, the entire
154 * call stack gracefully ignores the page and returns.
155 * -- wli
157 smp_mb();
158 mapping = page_mapping(page);
159 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
160 mapping->a_ops->sync_page(page);
161 io_schedule();
162 return 0;
166 * filemap_fdatawrite_range - start writeback against all of a mapping's
167 * dirty pages that lie within the byte offsets <start, end>
168 * @mapping: address space structure to write
169 * @start: offset in bytes where the range starts
170 * @end: offset in bytes where the range ends
171 * @sync_mode: enable synchronous operation
173 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
174 * opposed to a regular memory * cleansing writeback. The difference between
175 * these two operations is that if a dirty page/buffer is encountered, it must
176 * be waited upon, and not just skipped over.
178 static int __filemap_fdatawrite_range(struct address_space *mapping,
179 loff_t start, loff_t end, int sync_mode)
181 int ret;
182 struct writeback_control wbc = {
183 .sync_mode = sync_mode,
184 .nr_to_write = mapping->nrpages * 2,
185 .start = start,
186 .end = end,
189 if (!mapping_cap_writeback_dirty(mapping))
190 return 0;
192 ret = do_writepages(mapping, &wbc);
193 return ret;
196 static inline int __filemap_fdatawrite(struct address_space *mapping,
197 int sync_mode)
199 return __filemap_fdatawrite_range(mapping, 0, 0, sync_mode);
202 int filemap_fdatawrite(struct address_space *mapping)
204 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
206 EXPORT_SYMBOL(filemap_fdatawrite);
208 static int filemap_fdatawrite_range(struct address_space *mapping,
209 loff_t start, loff_t end)
211 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
215 * This is a mostly non-blocking flush. Not suitable for data-integrity
216 * purposes - I/O may not be started against all dirty pages.
218 int filemap_flush(struct address_space *mapping)
220 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
222 EXPORT_SYMBOL(filemap_flush);
225 * Wait for writeback to complete against pages indexed by start->end
226 * inclusive
228 static int wait_on_page_writeback_range(struct address_space *mapping,
229 pgoff_t start, pgoff_t end)
231 struct pagevec pvec;
232 int nr_pages;
233 int ret = 0;
234 pgoff_t index;
236 if (end < start)
237 return 0;
239 pagevec_init(&pvec, 0);
240 index = start;
241 while ((index <= end) &&
242 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
243 PAGECACHE_TAG_WRITEBACK,
244 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
245 unsigned i;
247 for (i = 0; i < nr_pages; i++) {
248 struct page *page = pvec.pages[i];
250 /* until radix tree lookup accepts end_index */
251 if (page->index > end)
252 continue;
254 wait_on_page_writeback(page);
255 if (PageError(page))
256 ret = -EIO;
258 pagevec_release(&pvec);
259 cond_resched();
262 /* Check for outstanding write errors */
263 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
264 ret = -ENOSPC;
265 if (test_and_clear_bit(AS_EIO, &mapping->flags))
266 ret = -EIO;
268 return ret;
272 * Write and wait upon all the pages in the passed range. This is a "data
273 * integrity" operation. It waits upon in-flight writeout before starting and
274 * waiting upon new writeout. If there was an IO error, return it.
276 * We need to re-take i_sem during the generic_osync_inode list walk because
277 * it is otherwise livelockable.
279 int sync_page_range(struct inode *inode, struct address_space *mapping,
280 loff_t pos, size_t count)
282 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
283 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
284 int ret;
286 if (!mapping_cap_writeback_dirty(mapping) || !count)
287 return 0;
288 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
289 if (ret == 0) {
290 down(&inode->i_sem);
291 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
292 up(&inode->i_sem);
294 if (ret == 0)
295 ret = wait_on_page_writeback_range(mapping, start, end);
296 return ret;
298 EXPORT_SYMBOL(sync_page_range);
301 * Note: Holding i_sem across sync_page_range_nolock is not a good idea
302 * as it forces O_SYNC writers to different parts of the same file
303 * to be serialised right until io completion.
305 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
306 loff_t pos, size_t count)
308 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
309 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
310 int ret;
312 if (!mapping_cap_writeback_dirty(mapping) || !count)
313 return 0;
314 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
315 if (ret == 0)
316 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
317 if (ret == 0)
318 ret = wait_on_page_writeback_range(mapping, start, end);
319 return ret;
321 EXPORT_SYMBOL(sync_page_range_nolock);
324 * filemap_fdatawait - walk the list of under-writeback pages of the given
325 * address space and wait for all of them.
327 * @mapping: address space structure to wait for
329 int filemap_fdatawait(struct address_space *mapping)
331 loff_t i_size = i_size_read(mapping->host);
333 if (i_size == 0)
334 return 0;
336 return wait_on_page_writeback_range(mapping, 0,
337 (i_size - 1) >> PAGE_CACHE_SHIFT);
339 EXPORT_SYMBOL(filemap_fdatawait);
341 int filemap_write_and_wait(struct address_space *mapping)
343 int retval = 0;
345 if (mapping->nrpages) {
346 retval = filemap_fdatawrite(mapping);
347 if (retval == 0)
348 retval = filemap_fdatawait(mapping);
350 return retval;
353 int filemap_write_and_wait_range(struct address_space *mapping,
354 loff_t lstart, loff_t lend)
356 int retval = 0;
358 if (mapping->nrpages) {
359 retval = __filemap_fdatawrite_range(mapping, lstart, lend,
360 WB_SYNC_ALL);
361 if (retval == 0)
362 retval = wait_on_page_writeback_range(mapping,
363 lstart >> PAGE_CACHE_SHIFT,
364 lend >> PAGE_CACHE_SHIFT);
366 return retval;
370 * This function is used to add newly allocated pagecache pages:
371 * the page is new, so we can just run SetPageLocked() against it.
372 * The other page state flags were set by rmqueue().
374 * This function does not add the page to the LRU. The caller must do that.
376 int add_to_page_cache(struct page *page, struct address_space *mapping,
377 pgoff_t offset, int gfp_mask)
379 int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
381 if (error == 0) {
382 write_lock_irq(&mapping->tree_lock);
383 error = radix_tree_insert(&mapping->page_tree, offset, page);
384 if (!error) {
385 page_cache_get(page);
386 SetPageLocked(page);
387 page->mapping = mapping;
388 page->index = offset;
389 mapping->nrpages++;
390 pagecache_acct(1);
392 write_unlock_irq(&mapping->tree_lock);
393 radix_tree_preload_end();
395 return error;
398 EXPORT_SYMBOL(add_to_page_cache);
400 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
401 pgoff_t offset, int gfp_mask)
403 int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
404 if (ret == 0)
405 lru_cache_add(page);
406 return ret;
410 * In order to wait for pages to become available there must be
411 * waitqueues associated with pages. By using a hash table of
412 * waitqueues where the bucket discipline is to maintain all
413 * waiters on the same queue and wake all when any of the pages
414 * become available, and for the woken contexts to check to be
415 * sure the appropriate page became available, this saves space
416 * at a cost of "thundering herd" phenomena during rare hash
417 * collisions.
419 static wait_queue_head_t *page_waitqueue(struct page *page)
421 const struct zone *zone = page_zone(page);
423 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
426 static inline void wake_up_page(struct page *page, int bit)
428 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
431 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
433 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
435 if (test_bit(bit_nr, &page->flags))
436 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
437 TASK_UNINTERRUPTIBLE);
439 EXPORT_SYMBOL(wait_on_page_bit);
442 * unlock_page() - unlock a locked page
444 * @page: the page
446 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
447 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
448 * mechananism between PageLocked pages and PageWriteback pages is shared.
449 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
451 * The first mb is necessary to safely close the critical section opened by the
452 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
453 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
454 * parallel wait_on_page_locked()).
456 void fastcall unlock_page(struct page *page)
458 smp_mb__before_clear_bit();
459 if (!TestClearPageLocked(page))
460 BUG();
461 smp_mb__after_clear_bit();
462 wake_up_page(page, PG_locked);
464 EXPORT_SYMBOL(unlock_page);
467 * End writeback against a page.
469 void end_page_writeback(struct page *page)
471 if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
472 if (!test_clear_page_writeback(page))
473 BUG();
475 smp_mb__after_clear_bit();
476 wake_up_page(page, PG_writeback);
478 EXPORT_SYMBOL(end_page_writeback);
481 * Get a lock on the page, assuming we need to sleep to get it.
483 * Ugly: running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
484 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
485 * chances are that on the second loop, the block layer's plug list is empty,
486 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
488 void fastcall __lock_page(struct page *page)
490 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
492 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
493 TASK_UNINTERRUPTIBLE);
495 EXPORT_SYMBOL(__lock_page);
498 * a rather lightweight function, finding and getting a reference to a
499 * hashed page atomically.
501 struct page * find_get_page(struct address_space *mapping, unsigned long offset)
503 struct page *page;
505 read_lock_irq(&mapping->tree_lock);
506 page = radix_tree_lookup(&mapping->page_tree, offset);
507 if (page)
508 page_cache_get(page);
509 read_unlock_irq(&mapping->tree_lock);
510 return page;
513 EXPORT_SYMBOL(find_get_page);
516 * Same as above, but trylock it instead of incrementing the count.
518 struct page *find_trylock_page(struct address_space *mapping, unsigned long offset)
520 struct page *page;
522 read_lock_irq(&mapping->tree_lock);
523 page = radix_tree_lookup(&mapping->page_tree, offset);
524 if (page && TestSetPageLocked(page))
525 page = NULL;
526 read_unlock_irq(&mapping->tree_lock);
527 return page;
530 EXPORT_SYMBOL(find_trylock_page);
533 * find_lock_page - locate, pin and lock a pagecache page
535 * @mapping: the address_space to search
536 * @offset: the page index
538 * Locates the desired pagecache page, locks it, increments its reference
539 * count and returns its address.
541 * Returns zero if the page was not present. find_lock_page() may sleep.
543 struct page *find_lock_page(struct address_space *mapping,
544 unsigned long offset)
546 struct page *page;
548 read_lock_irq(&mapping->tree_lock);
549 repeat:
550 page = radix_tree_lookup(&mapping->page_tree, offset);
551 if (page) {
552 page_cache_get(page);
553 if (TestSetPageLocked(page)) {
554 read_unlock_irq(&mapping->tree_lock);
555 lock_page(page);
556 read_lock_irq(&mapping->tree_lock);
558 /* Has the page been truncated while we slept? */
559 if (page->mapping != mapping || page->index != offset) {
560 unlock_page(page);
561 page_cache_release(page);
562 goto repeat;
566 read_unlock_irq(&mapping->tree_lock);
567 return page;
570 EXPORT_SYMBOL(find_lock_page);
573 * find_or_create_page - locate or add a pagecache page
575 * @mapping: the page's address_space
576 * @index: the page's index into the mapping
577 * @gfp_mask: page allocation mode
579 * Locates a page in the pagecache. If the page is not present, a new page
580 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
581 * LRU list. The returned page is locked and has its reference count
582 * incremented.
584 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
585 * allocation!
587 * find_or_create_page() returns the desired page's address, or zero on
588 * memory exhaustion.
590 struct page *find_or_create_page(struct address_space *mapping,
591 unsigned long index, unsigned int gfp_mask)
593 struct page *page, *cached_page = NULL;
594 int err;
595 repeat:
596 page = find_lock_page(mapping, index);
597 if (!page) {
598 if (!cached_page) {
599 cached_page = alloc_page(gfp_mask);
600 if (!cached_page)
601 return NULL;
603 err = add_to_page_cache_lru(cached_page, mapping,
604 index, gfp_mask);
605 if (!err) {
606 page = cached_page;
607 cached_page = NULL;
608 } else if (err == -EEXIST)
609 goto repeat;
611 if (cached_page)
612 page_cache_release(cached_page);
613 return page;
616 EXPORT_SYMBOL(find_or_create_page);
619 * find_get_pages - gang pagecache lookup
620 * @mapping: The address_space to search
621 * @start: The starting page index
622 * @nr_pages: The maximum number of pages
623 * @pages: Where the resulting pages are placed
625 * find_get_pages() will search for and return a group of up to
626 * @nr_pages pages in the mapping. The pages are placed at @pages.
627 * find_get_pages() takes a reference against the returned pages.
629 * The search returns a group of mapping-contiguous pages with ascending
630 * indexes. There may be holes in the indices due to not-present pages.
632 * find_get_pages() returns the number of pages which were found.
634 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
635 unsigned int nr_pages, struct page **pages)
637 unsigned int i;
638 unsigned int ret;
640 read_lock_irq(&mapping->tree_lock);
641 ret = radix_tree_gang_lookup(&mapping->page_tree,
642 (void **)pages, start, nr_pages);
643 for (i = 0; i < ret; i++)
644 page_cache_get(pages[i]);
645 read_unlock_irq(&mapping->tree_lock);
646 return ret;
650 * Like find_get_pages, except we only return pages which are tagged with
651 * `tag'. We update *index to index the next page for the traversal.
653 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
654 int tag, unsigned int nr_pages, struct page **pages)
656 unsigned int i;
657 unsigned int ret;
659 read_lock_irq(&mapping->tree_lock);
660 ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
661 (void **)pages, *index, nr_pages, tag);
662 for (i = 0; i < ret; i++)
663 page_cache_get(pages[i]);
664 if (ret)
665 *index = pages[ret - 1]->index + 1;
666 read_unlock_irq(&mapping->tree_lock);
667 return ret;
671 * Same as grab_cache_page, but do not wait if the page is unavailable.
672 * This is intended for speculative data generators, where the data can
673 * be regenerated if the page couldn't be grabbed. This routine should
674 * be safe to call while holding the lock for another page.
676 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
677 * and deadlock against the caller's locked page.
679 struct page *
680 grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
682 struct page *page = find_get_page(mapping, index);
683 unsigned int gfp_mask;
685 if (page) {
686 if (!TestSetPageLocked(page))
687 return page;
688 page_cache_release(page);
689 return NULL;
691 gfp_mask = mapping_gfp_mask(mapping) & ~__GFP_FS;
692 page = alloc_pages(gfp_mask, 0);
693 if (page && add_to_page_cache_lru(page, mapping, index, gfp_mask)) {
694 page_cache_release(page);
695 page = NULL;
697 return page;
700 EXPORT_SYMBOL(grab_cache_page_nowait);
703 * This is a generic file read routine, and uses the
704 * mapping->a_ops->readpage() function for the actual low-level
705 * stuff.
707 * This is really ugly. But the goto's actually try to clarify some
708 * of the logic when it comes to error handling etc.
710 * Note the struct file* is only passed for the use of readpage. It may be
711 * NULL.
713 void do_generic_mapping_read(struct address_space *mapping,
714 struct file_ra_state *_ra,
715 struct file *filp,
716 loff_t *ppos,
717 read_descriptor_t *desc,
718 read_actor_t actor)
720 struct inode *inode = mapping->host;
721 unsigned long index;
722 unsigned long end_index;
723 unsigned long offset;
724 unsigned long last_index;
725 unsigned long next_index;
726 unsigned long prev_index;
727 loff_t isize;
728 struct page *cached_page;
729 int error;
730 struct file_ra_state ra = *_ra;
732 cached_page = NULL;
733 index = *ppos >> PAGE_CACHE_SHIFT;
734 next_index = index;
735 prev_index = ra.prev_page;
736 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
737 offset = *ppos & ~PAGE_CACHE_MASK;
739 isize = i_size_read(inode);
740 if (!isize)
741 goto out;
743 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
744 for (;;) {
745 struct page *page;
746 unsigned long nr, ret;
748 /* nr is the maximum number of bytes to copy from this page */
749 nr = PAGE_CACHE_SIZE;
750 if (index >= end_index) {
751 if (index > end_index)
752 goto out;
753 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
754 if (nr <= offset) {
755 goto out;
758 nr = nr - offset;
760 cond_resched();
761 if (index == next_index)
762 next_index = page_cache_readahead(mapping, &ra, filp,
763 index, last_index - index);
765 find_page:
766 page = find_get_page(mapping, index);
767 if (unlikely(page == NULL)) {
768 handle_ra_miss(mapping, &ra, index);
769 goto no_cached_page;
771 if (!PageUptodate(page))
772 goto page_not_up_to_date;
773 page_ok:
775 /* If users can be writing to this page using arbitrary
776 * virtual addresses, take care about potential aliasing
777 * before reading the page on the kernel side.
779 if (mapping_writably_mapped(mapping))
780 flush_dcache_page(page);
783 * When (part of) the same page is read multiple times
784 * in succession, only mark it as accessed the first time.
786 if (prev_index != index)
787 mark_page_accessed(page);
788 prev_index = index;
791 * Ok, we have the page, and it's up-to-date, so
792 * now we can copy it to user space...
794 * The actor routine returns how many bytes were actually used..
795 * NOTE! This may not be the same as how much of a user buffer
796 * we filled up (we may be padding etc), so we can only update
797 * "pos" here (the actor routine has to update the user buffer
798 * pointers and the remaining count).
800 ret = actor(desc, page, offset, nr);
801 offset += ret;
802 index += offset >> PAGE_CACHE_SHIFT;
803 offset &= ~PAGE_CACHE_MASK;
805 page_cache_release(page);
806 if (ret == nr && desc->count)
807 continue;
808 goto out;
810 page_not_up_to_date:
811 /* Get exclusive access to the page ... */
812 lock_page(page);
814 /* Did it get unhashed before we got the lock? */
815 if (!page->mapping) {
816 unlock_page(page);
817 page_cache_release(page);
818 continue;
821 /* Did somebody else fill it already? */
822 if (PageUptodate(page)) {
823 unlock_page(page);
824 goto page_ok;
827 readpage:
828 /* Start the actual read. The read will unlock the page. */
829 error = mapping->a_ops->readpage(filp, page);
831 if (unlikely(error))
832 goto readpage_error;
834 if (!PageUptodate(page)) {
835 lock_page(page);
836 if (!PageUptodate(page)) {
837 if (page->mapping == NULL) {
839 * invalidate_inode_pages got it
841 unlock_page(page);
842 page_cache_release(page);
843 goto find_page;
845 unlock_page(page);
846 error = -EIO;
847 goto readpage_error;
849 unlock_page(page);
853 * i_size must be checked after we have done ->readpage.
855 * Checking i_size after the readpage allows us to calculate
856 * the correct value for "nr", which means the zero-filled
857 * part of the page is not copied back to userspace (unless
858 * another truncate extends the file - this is desired though).
860 isize = i_size_read(inode);
861 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
862 if (unlikely(!isize || index > end_index)) {
863 page_cache_release(page);
864 goto out;
867 /* nr is the maximum number of bytes to copy from this page */
868 nr = PAGE_CACHE_SIZE;
869 if (index == end_index) {
870 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
871 if (nr <= offset) {
872 page_cache_release(page);
873 goto out;
876 nr = nr - offset;
877 goto page_ok;
879 readpage_error:
880 /* UHHUH! A synchronous read error occurred. Report it */
881 desc->error = error;
882 page_cache_release(page);
883 goto out;
885 no_cached_page:
887 * Ok, it wasn't cached, so we need to create a new
888 * page..
890 if (!cached_page) {
891 cached_page = page_cache_alloc_cold(mapping);
892 if (!cached_page) {
893 desc->error = -ENOMEM;
894 goto out;
897 error = add_to_page_cache_lru(cached_page, mapping,
898 index, GFP_KERNEL);
899 if (error) {
900 if (error == -EEXIST)
901 goto find_page;
902 desc->error = error;
903 goto out;
905 page = cached_page;
906 cached_page = NULL;
907 goto readpage;
910 out:
911 *_ra = ra;
913 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
914 if (cached_page)
915 page_cache_release(cached_page);
916 if (filp)
917 file_accessed(filp);
920 EXPORT_SYMBOL(do_generic_mapping_read);
922 int file_read_actor(read_descriptor_t *desc, struct page *page,
923 unsigned long offset, unsigned long size)
925 char *kaddr;
926 unsigned long left, count = desc->count;
928 if (size > count)
929 size = count;
932 * Faults on the destination of a read are common, so do it before
933 * taking the kmap.
935 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
936 kaddr = kmap_atomic(page, KM_USER0);
937 left = __copy_to_user_inatomic(desc->arg.buf,
938 kaddr + offset, size);
939 kunmap_atomic(kaddr, KM_USER0);
940 if (left == 0)
941 goto success;
944 /* Do it the slow way */
945 kaddr = kmap(page);
946 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
947 kunmap(page);
949 if (left) {
950 size -= left;
951 desc->error = -EFAULT;
953 success:
954 desc->count = count - size;
955 desc->written += size;
956 desc->arg.buf += size;
957 return size;
961 * This is the "read()" routine for all filesystems
962 * that can use the page cache directly.
964 ssize_t
965 __generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
966 unsigned long nr_segs, loff_t *ppos)
968 struct file *filp = iocb->ki_filp;
969 ssize_t retval;
970 unsigned long seg;
971 size_t count;
973 count = 0;
974 for (seg = 0; seg < nr_segs; seg++) {
975 const struct iovec *iv = &iov[seg];
978 * If any segment has a negative length, or the cumulative
979 * length ever wraps negative then return -EINVAL.
981 count += iv->iov_len;
982 if (unlikely((ssize_t)(count|iv->iov_len) < 0))
983 return -EINVAL;
984 if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len))
985 continue;
986 if (seg == 0)
987 return -EFAULT;
988 nr_segs = seg;
989 count -= iv->iov_len; /* This segment is no good */
990 break;
993 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
994 if (filp->f_flags & O_DIRECT) {
995 loff_t pos = *ppos, size;
996 struct address_space *mapping;
997 struct inode *inode;
999 mapping = filp->f_mapping;
1000 inode = mapping->host;
1001 retval = 0;
1002 if (!count)
1003 goto out; /* skip atime */
1004 size = i_size_read(inode);
1005 if (pos < size) {
1006 retval = generic_file_direct_IO(READ, iocb,
1007 iov, pos, nr_segs);
1008 if (retval > 0 && !is_sync_kiocb(iocb))
1009 retval = -EIOCBQUEUED;
1010 if (retval > 0)
1011 *ppos = pos + retval;
1013 file_accessed(filp);
1014 goto out;
1017 retval = 0;
1018 if (count) {
1019 for (seg = 0; seg < nr_segs; seg++) {
1020 read_descriptor_t desc;
1022 desc.written = 0;
1023 desc.arg.buf = iov[seg].iov_base;
1024 desc.count = iov[seg].iov_len;
1025 if (desc.count == 0)
1026 continue;
1027 desc.error = 0;
1028 do_generic_file_read(filp,ppos,&desc,file_read_actor);
1029 retval += desc.written;
1030 if (!retval) {
1031 retval = desc.error;
1032 break;
1036 out:
1037 return retval;
1040 EXPORT_SYMBOL(__generic_file_aio_read);
1042 ssize_t
1043 generic_file_aio_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos)
1045 struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1047 BUG_ON(iocb->ki_pos != pos);
1048 return __generic_file_aio_read(iocb, &local_iov, 1, &iocb->ki_pos);
1051 EXPORT_SYMBOL(generic_file_aio_read);
1053 ssize_t
1054 generic_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1056 struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1057 struct kiocb kiocb;
1058 ssize_t ret;
1060 init_sync_kiocb(&kiocb, filp);
1061 ret = __generic_file_aio_read(&kiocb, &local_iov, 1, ppos);
1062 if (-EIOCBQUEUED == ret)
1063 ret = wait_on_sync_kiocb(&kiocb);
1064 return ret;
1067 EXPORT_SYMBOL(generic_file_read);
1069 int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
1071 ssize_t written;
1072 unsigned long count = desc->count;
1073 struct file *file = desc->arg.data;
1075 if (size > count)
1076 size = count;
1078 written = file->f_op->sendpage(file, page, offset,
1079 size, &file->f_pos, size<count);
1080 if (written < 0) {
1081 desc->error = written;
1082 written = 0;
1084 desc->count = count - written;
1085 desc->written += written;
1086 return written;
1089 ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos,
1090 size_t count, read_actor_t actor, void *target)
1092 read_descriptor_t desc;
1094 if (!count)
1095 return 0;
1097 desc.written = 0;
1098 desc.count = count;
1099 desc.arg.data = target;
1100 desc.error = 0;
1102 do_generic_file_read(in_file, ppos, &desc, actor);
1103 if (desc.written)
1104 return desc.written;
1105 return desc.error;
1108 EXPORT_SYMBOL(generic_file_sendfile);
1110 static ssize_t
1111 do_readahead(struct address_space *mapping, struct file *filp,
1112 unsigned long index, unsigned long nr)
1114 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1115 return -EINVAL;
1117 force_page_cache_readahead(mapping, filp, index,
1118 max_sane_readahead(nr));
1119 return 0;
1122 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1124 ssize_t ret;
1125 struct file *file;
1127 ret = -EBADF;
1128 file = fget(fd);
1129 if (file) {
1130 if (file->f_mode & FMODE_READ) {
1131 struct address_space *mapping = file->f_mapping;
1132 unsigned long start = offset >> PAGE_CACHE_SHIFT;
1133 unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1134 unsigned long len = end - start + 1;
1135 ret = do_readahead(mapping, file, start, len);
1137 fput(file);
1139 return ret;
1142 #ifdef CONFIG_MMU
1144 * This adds the requested page to the page cache if it isn't already there,
1145 * and schedules an I/O to read in its contents from disk.
1147 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1148 static int fastcall page_cache_read(struct file * file, unsigned long offset)
1150 struct address_space *mapping = file->f_mapping;
1151 struct page *page;
1152 int error;
1154 page = page_cache_alloc_cold(mapping);
1155 if (!page)
1156 return -ENOMEM;
1158 error = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1159 if (!error) {
1160 error = mapping->a_ops->readpage(file, page);
1161 page_cache_release(page);
1162 return error;
1166 * We arrive here in the unlikely event that someone
1167 * raced with us and added our page to the cache first
1168 * or we are out of memory for radix-tree nodes.
1170 page_cache_release(page);
1171 return error == -EEXIST ? 0 : error;
1174 #define MMAP_LOTSAMISS (100)
1177 * filemap_nopage() is invoked via the vma operations vector for a
1178 * mapped memory region to read in file data during a page fault.
1180 * The goto's are kind of ugly, but this streamlines the normal case of having
1181 * it in the page cache, and handles the special cases reasonably without
1182 * having a lot of duplicated code.
1184 struct page *filemap_nopage(struct vm_area_struct *area,
1185 unsigned long address, int *type)
1187 int error;
1188 struct file *file = area->vm_file;
1189 struct address_space *mapping = file->f_mapping;
1190 struct file_ra_state *ra = &file->f_ra;
1191 struct inode *inode = mapping->host;
1192 struct page *page;
1193 unsigned long size, pgoff;
1194 int did_readaround = 0, majmin = VM_FAULT_MINOR;
1196 pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
1198 retry_all:
1199 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1200 if (pgoff >= size)
1201 goto outside_data_content;
1203 /* If we don't want any read-ahead, don't bother */
1204 if (VM_RandomReadHint(area))
1205 goto no_cached_page;
1208 * The readahead code wants to be told about each and every page
1209 * so it can build and shrink its windows appropriately
1211 * For sequential accesses, we use the generic readahead logic.
1213 if (VM_SequentialReadHint(area))
1214 page_cache_readahead(mapping, ra, file, pgoff, 1);
1217 * Do we have something in the page cache already?
1219 retry_find:
1220 page = find_get_page(mapping, pgoff);
1221 if (!page) {
1222 unsigned long ra_pages;
1224 if (VM_SequentialReadHint(area)) {
1225 handle_ra_miss(mapping, ra, pgoff);
1226 goto no_cached_page;
1228 ra->mmap_miss++;
1231 * Do we miss much more than hit in this file? If so,
1232 * stop bothering with read-ahead. It will only hurt.
1234 if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1235 goto no_cached_page;
1238 * To keep the pgmajfault counter straight, we need to
1239 * check did_readaround, as this is an inner loop.
1241 if (!did_readaround) {
1242 majmin = VM_FAULT_MAJOR;
1243 inc_page_state(pgmajfault);
1245 did_readaround = 1;
1246 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1247 if (ra_pages) {
1248 pgoff_t start = 0;
1250 if (pgoff > ra_pages / 2)
1251 start = pgoff - ra_pages / 2;
1252 do_page_cache_readahead(mapping, file, start, ra_pages);
1254 page = find_get_page(mapping, pgoff);
1255 if (!page)
1256 goto no_cached_page;
1259 if (!did_readaround)
1260 ra->mmap_hit++;
1263 * Ok, found a page in the page cache, now we need to check
1264 * that it's up-to-date.
1266 if (!PageUptodate(page))
1267 goto page_not_uptodate;
1269 success:
1271 * Found the page and have a reference on it.
1273 mark_page_accessed(page);
1274 if (type)
1275 *type = majmin;
1276 return page;
1278 outside_data_content:
1280 * An external ptracer can access pages that normally aren't
1281 * accessible..
1283 if (area->vm_mm == current->mm)
1284 return NULL;
1285 /* Fall through to the non-read-ahead case */
1286 no_cached_page:
1288 * We're only likely to ever get here if MADV_RANDOM is in
1289 * effect.
1291 error = page_cache_read(file, pgoff);
1292 grab_swap_token();
1295 * The page we want has now been added to the page cache.
1296 * In the unlikely event that someone removed it in the
1297 * meantime, we'll just come back here and read it again.
1299 if (error >= 0)
1300 goto retry_find;
1303 * An error return from page_cache_read can result if the
1304 * system is low on memory, or a problem occurs while trying
1305 * to schedule I/O.
1307 if (error == -ENOMEM)
1308 return NOPAGE_OOM;
1309 return NULL;
1311 page_not_uptodate:
1312 if (!did_readaround) {
1313 majmin = VM_FAULT_MAJOR;
1314 inc_page_state(pgmajfault);
1316 lock_page(page);
1318 /* Did it get unhashed while we waited for it? */
1319 if (!page->mapping) {
1320 unlock_page(page);
1321 page_cache_release(page);
1322 goto retry_all;
1325 /* Did somebody else get it up-to-date? */
1326 if (PageUptodate(page)) {
1327 unlock_page(page);
1328 goto success;
1331 if (!mapping->a_ops->readpage(file, page)) {
1332 wait_on_page_locked(page);
1333 if (PageUptodate(page))
1334 goto success;
1338 * Umm, take care of errors if the page isn't up-to-date.
1339 * Try to re-read it _once_. We do this synchronously,
1340 * because there really aren't any performance issues here
1341 * and we need to check for errors.
1343 lock_page(page);
1345 /* Somebody truncated the page on us? */
1346 if (!page->mapping) {
1347 unlock_page(page);
1348 page_cache_release(page);
1349 goto retry_all;
1352 /* Somebody else successfully read it in? */
1353 if (PageUptodate(page)) {
1354 unlock_page(page);
1355 goto success;
1357 ClearPageError(page);
1358 if (!mapping->a_ops->readpage(file, page)) {
1359 wait_on_page_locked(page);
1360 if (PageUptodate(page))
1361 goto success;
1365 * Things didn't work out. Return zero to tell the
1366 * mm layer so, possibly freeing the page cache page first.
1368 page_cache_release(page);
1369 return NULL;
1372 EXPORT_SYMBOL(filemap_nopage);
1374 static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
1375 int nonblock)
1377 struct address_space *mapping = file->f_mapping;
1378 struct page *page;
1379 int error;
1382 * Do we have something in the page cache already?
1384 retry_find:
1385 page = find_get_page(mapping, pgoff);
1386 if (!page) {
1387 if (nonblock)
1388 return NULL;
1389 goto no_cached_page;
1393 * Ok, found a page in the page cache, now we need to check
1394 * that it's up-to-date.
1396 if (!PageUptodate(page)) {
1397 if (nonblock) {
1398 page_cache_release(page);
1399 return NULL;
1401 goto page_not_uptodate;
1404 success:
1406 * Found the page and have a reference on it.
1408 mark_page_accessed(page);
1409 return page;
1411 no_cached_page:
1412 error = page_cache_read(file, pgoff);
1415 * The page we want has now been added to the page cache.
1416 * In the unlikely event that someone removed it in the
1417 * meantime, we'll just come back here and read it again.
1419 if (error >= 0)
1420 goto retry_find;
1423 * An error return from page_cache_read can result if the
1424 * system is low on memory, or a problem occurs while trying
1425 * to schedule I/O.
1427 return NULL;
1429 page_not_uptodate:
1430 lock_page(page);
1432 /* Did it get unhashed while we waited for it? */
1433 if (!page->mapping) {
1434 unlock_page(page);
1435 goto err;
1438 /* Did somebody else get it up-to-date? */
1439 if (PageUptodate(page)) {
1440 unlock_page(page);
1441 goto success;
1444 if (!mapping->a_ops->readpage(file, page)) {
1445 wait_on_page_locked(page);
1446 if (PageUptodate(page))
1447 goto success;
1451 * Umm, take care of errors if the page isn't up-to-date.
1452 * Try to re-read it _once_. We do this synchronously,
1453 * because there really aren't any performance issues here
1454 * and we need to check for errors.
1456 lock_page(page);
1458 /* Somebody truncated the page on us? */
1459 if (!page->mapping) {
1460 unlock_page(page);
1461 goto err;
1463 /* Somebody else successfully read it in? */
1464 if (PageUptodate(page)) {
1465 unlock_page(page);
1466 goto success;
1469 ClearPageError(page);
1470 if (!mapping->a_ops->readpage(file, page)) {
1471 wait_on_page_locked(page);
1472 if (PageUptodate(page))
1473 goto success;
1477 * Things didn't work out. Return zero to tell the
1478 * mm layer so, possibly freeing the page cache page first.
1480 err:
1481 page_cache_release(page);
1483 return NULL;
1486 int filemap_populate(struct vm_area_struct *vma, unsigned long addr,
1487 unsigned long len, pgprot_t prot, unsigned long pgoff,
1488 int nonblock)
1490 struct file *file = vma->vm_file;
1491 struct address_space *mapping = file->f_mapping;
1492 struct inode *inode = mapping->host;
1493 unsigned long size;
1494 struct mm_struct *mm = vma->vm_mm;
1495 struct page *page;
1496 int err;
1498 if (!nonblock)
1499 force_page_cache_readahead(mapping, vma->vm_file,
1500 pgoff, len >> PAGE_CACHE_SHIFT);
1502 repeat:
1503 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1504 if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
1505 return -EINVAL;
1507 page = filemap_getpage(file, pgoff, nonblock);
1508 if (!page && !nonblock)
1509 return -ENOMEM;
1510 if (page) {
1511 err = install_page(mm, vma, addr, page, prot);
1512 if (err) {
1513 page_cache_release(page);
1514 return err;
1516 } else {
1517 err = install_file_pte(mm, vma, addr, pgoff, prot);
1518 if (err)
1519 return err;
1522 len -= PAGE_SIZE;
1523 addr += PAGE_SIZE;
1524 pgoff++;
1525 if (len)
1526 goto repeat;
1528 return 0;
1531 struct vm_operations_struct generic_file_vm_ops = {
1532 .nopage = filemap_nopage,
1533 .populate = filemap_populate,
1536 /* This is used for a general mmap of a disk file */
1538 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1540 struct address_space *mapping = file->f_mapping;
1542 if (!mapping->a_ops->readpage)
1543 return -ENOEXEC;
1544 file_accessed(file);
1545 vma->vm_ops = &generic_file_vm_ops;
1546 return 0;
1548 EXPORT_SYMBOL(filemap_populate);
1551 * This is for filesystems which do not implement ->writepage.
1553 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1555 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1556 return -EINVAL;
1557 return generic_file_mmap(file, vma);
1559 #else
1560 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1562 return -ENOSYS;
1564 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1566 return -ENOSYS;
1568 #endif /* CONFIG_MMU */
1570 EXPORT_SYMBOL(generic_file_mmap);
1571 EXPORT_SYMBOL(generic_file_readonly_mmap);
1573 static inline struct page *__read_cache_page(struct address_space *mapping,
1574 unsigned long index,
1575 int (*filler)(void *,struct page*),
1576 void *data)
1578 struct page *page, *cached_page = NULL;
1579 int err;
1580 repeat:
1581 page = find_get_page(mapping, index);
1582 if (!page) {
1583 if (!cached_page) {
1584 cached_page = page_cache_alloc_cold(mapping);
1585 if (!cached_page)
1586 return ERR_PTR(-ENOMEM);
1588 err = add_to_page_cache_lru(cached_page, mapping,
1589 index, GFP_KERNEL);
1590 if (err == -EEXIST)
1591 goto repeat;
1592 if (err < 0) {
1593 /* Presumably ENOMEM for radix tree node */
1594 page_cache_release(cached_page);
1595 return ERR_PTR(err);
1597 page = cached_page;
1598 cached_page = NULL;
1599 err = filler(data, page);
1600 if (err < 0) {
1601 page_cache_release(page);
1602 page = ERR_PTR(err);
1605 if (cached_page)
1606 page_cache_release(cached_page);
1607 return page;
1611 * Read into the page cache. If a page already exists,
1612 * and PageUptodate() is not set, try to fill the page.
1614 struct page *read_cache_page(struct address_space *mapping,
1615 unsigned long index,
1616 int (*filler)(void *,struct page*),
1617 void *data)
1619 struct page *page;
1620 int err;
1622 retry:
1623 page = __read_cache_page(mapping, index, filler, data);
1624 if (IS_ERR(page))
1625 goto out;
1626 mark_page_accessed(page);
1627 if (PageUptodate(page))
1628 goto out;
1630 lock_page(page);
1631 if (!page->mapping) {
1632 unlock_page(page);
1633 page_cache_release(page);
1634 goto retry;
1636 if (PageUptodate(page)) {
1637 unlock_page(page);
1638 goto out;
1640 err = filler(data, page);
1641 if (err < 0) {
1642 page_cache_release(page);
1643 page = ERR_PTR(err);
1645 out:
1646 return page;
1649 EXPORT_SYMBOL(read_cache_page);
1652 * If the page was newly created, increment its refcount and add it to the
1653 * caller's lru-buffering pagevec. This function is specifically for
1654 * generic_file_write().
1656 static inline struct page *
1657 __grab_cache_page(struct address_space *mapping, unsigned long index,
1658 struct page **cached_page, struct pagevec *lru_pvec)
1660 int err;
1661 struct page *page;
1662 repeat:
1663 page = find_lock_page(mapping, index);
1664 if (!page) {
1665 if (!*cached_page) {
1666 *cached_page = page_cache_alloc(mapping);
1667 if (!*cached_page)
1668 return NULL;
1670 err = add_to_page_cache(*cached_page, mapping,
1671 index, GFP_KERNEL);
1672 if (err == -EEXIST)
1673 goto repeat;
1674 if (err == 0) {
1675 page = *cached_page;
1676 page_cache_get(page);
1677 if (!pagevec_add(lru_pvec, page))
1678 __pagevec_lru_add(lru_pvec);
1679 *cached_page = NULL;
1682 return page;
1686 * The logic we want is
1688 * if suid or (sgid and xgrp)
1689 * remove privs
1691 int remove_suid(struct dentry *dentry)
1693 mode_t mode = dentry->d_inode->i_mode;
1694 int kill = 0;
1695 int result = 0;
1697 /* suid always must be killed */
1698 if (unlikely(mode & S_ISUID))
1699 kill = ATTR_KILL_SUID;
1702 * sgid without any exec bits is just a mandatory locking mark; leave
1703 * it alone. If some exec bits are set, it's a real sgid; kill it.
1705 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1706 kill |= ATTR_KILL_SGID;
1708 if (unlikely(kill && !capable(CAP_FSETID))) {
1709 struct iattr newattrs;
1711 newattrs.ia_valid = ATTR_FORCE | kill;
1712 result = notify_change(dentry, &newattrs);
1714 return result;
1716 EXPORT_SYMBOL(remove_suid);
1718 size_t
1719 __filemap_copy_from_user_iovec(char *vaddr,
1720 const struct iovec *iov, size_t base, size_t bytes)
1722 size_t copied = 0, left = 0;
1724 while (bytes) {
1725 char __user *buf = iov->iov_base + base;
1726 int copy = min(bytes, iov->iov_len - base);
1728 base = 0;
1729 left = __copy_from_user_inatomic(vaddr, buf, copy);
1730 copied += copy;
1731 bytes -= copy;
1732 vaddr += copy;
1733 iov++;
1735 if (unlikely(left)) {
1736 /* zero the rest of the target like __copy_from_user */
1737 if (bytes)
1738 memset(vaddr, 0, bytes);
1739 break;
1742 return copied - left;
1746 * Performs necessary checks before doing a write
1748 * Can adjust writing position aor amount of bytes to write.
1749 * Returns appropriate error code that caller should return or
1750 * zero in case that write should be allowed.
1752 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1754 struct inode *inode = file->f_mapping->host;
1755 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1757 if (unlikely(*pos < 0))
1758 return -EINVAL;
1760 if (!isblk) {
1761 /* FIXME: this is for backwards compatibility with 2.4 */
1762 if (file->f_flags & O_APPEND)
1763 *pos = i_size_read(inode);
1765 if (limit != RLIM_INFINITY) {
1766 if (*pos >= limit) {
1767 send_sig(SIGXFSZ, current, 0);
1768 return -EFBIG;
1770 if (*count > limit - (typeof(limit))*pos) {
1771 *count = limit - (typeof(limit))*pos;
1777 * LFS rule
1779 if (unlikely(*pos + *count > MAX_NON_LFS &&
1780 !(file->f_flags & O_LARGEFILE))) {
1781 if (*pos >= MAX_NON_LFS) {
1782 send_sig(SIGXFSZ, current, 0);
1783 return -EFBIG;
1785 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1786 *count = MAX_NON_LFS - (unsigned long)*pos;
1791 * Are we about to exceed the fs block limit ?
1793 * If we have written data it becomes a short write. If we have
1794 * exceeded without writing data we send a signal and return EFBIG.
1795 * Linus frestrict idea will clean these up nicely..
1797 if (likely(!isblk)) {
1798 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1799 if (*count || *pos > inode->i_sb->s_maxbytes) {
1800 send_sig(SIGXFSZ, current, 0);
1801 return -EFBIG;
1803 /* zero-length writes at ->s_maxbytes are OK */
1806 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1807 *count = inode->i_sb->s_maxbytes - *pos;
1808 } else {
1809 loff_t isize;
1810 if (bdev_read_only(I_BDEV(inode)))
1811 return -EPERM;
1812 isize = i_size_read(inode);
1813 if (*pos >= isize) {
1814 if (*count || *pos > isize)
1815 return -ENOSPC;
1818 if (*pos + *count > isize)
1819 *count = isize - *pos;
1821 return 0;
1823 EXPORT_SYMBOL(generic_write_checks);
1825 ssize_t
1826 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1827 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1828 size_t count, size_t ocount)
1830 struct file *file = iocb->ki_filp;
1831 struct address_space *mapping = file->f_mapping;
1832 struct inode *inode = mapping->host;
1833 ssize_t written;
1835 if (count != ocount)
1836 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1838 written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
1839 if (written > 0) {
1840 loff_t end = pos + written;
1841 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
1842 i_size_write(inode, end);
1843 mark_inode_dirty(inode);
1845 *ppos = end;
1849 * Sync the fs metadata but not the minor inode changes and
1850 * of course not the data as we did direct DMA for the IO.
1851 * i_sem is held, which protects generic_osync_inode() from
1852 * livelocking.
1854 if (written >= 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1855 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
1856 if (err < 0)
1857 written = err;
1859 if (written == count && !is_sync_kiocb(iocb))
1860 written = -EIOCBQUEUED;
1861 return written;
1863 EXPORT_SYMBOL(generic_file_direct_write);
1865 ssize_t
1866 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
1867 unsigned long nr_segs, loff_t pos, loff_t *ppos,
1868 size_t count, ssize_t written)
1870 struct file *file = iocb->ki_filp;
1871 struct address_space * mapping = file->f_mapping;
1872 struct address_space_operations *a_ops = mapping->a_ops;
1873 struct inode *inode = mapping->host;
1874 long status = 0;
1875 struct page *page;
1876 struct page *cached_page = NULL;
1877 size_t bytes;
1878 struct pagevec lru_pvec;
1879 const struct iovec *cur_iov = iov; /* current iovec */
1880 size_t iov_base = 0; /* offset in the current iovec */
1881 char __user *buf;
1883 pagevec_init(&lru_pvec, 0);
1886 * handle partial DIO write. Adjust cur_iov if needed.
1888 if (likely(nr_segs == 1))
1889 buf = iov->iov_base + written;
1890 else {
1891 filemap_set_next_iovec(&cur_iov, &iov_base, written);
1892 buf = cur_iov->iov_base + iov_base;
1895 do {
1896 unsigned long index;
1897 unsigned long offset;
1898 unsigned long maxlen;
1899 size_t copied;
1901 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1902 index = pos >> PAGE_CACHE_SHIFT;
1903 bytes = PAGE_CACHE_SIZE - offset;
1904 if (bytes > count)
1905 bytes = count;
1908 * Bring in the user page that we will copy from _first_.
1909 * Otherwise there's a nasty deadlock on copying from the
1910 * same page as we're writing to, without it being marked
1911 * up-to-date.
1913 maxlen = cur_iov->iov_len - iov_base;
1914 if (maxlen > bytes)
1915 maxlen = bytes;
1916 fault_in_pages_readable(buf, maxlen);
1918 page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
1919 if (!page) {
1920 status = -ENOMEM;
1921 break;
1924 status = a_ops->prepare_write(file, page, offset, offset+bytes);
1925 if (unlikely(status)) {
1926 loff_t isize = i_size_read(inode);
1928 * prepare_write() may have instantiated a few blocks
1929 * outside i_size. Trim these off again.
1931 unlock_page(page);
1932 page_cache_release(page);
1933 if (pos + bytes > isize)
1934 vmtruncate(inode, isize);
1935 break;
1937 if (likely(nr_segs == 1))
1938 copied = filemap_copy_from_user(page, offset,
1939 buf, bytes);
1940 else
1941 copied = filemap_copy_from_user_iovec(page, offset,
1942 cur_iov, iov_base, bytes);
1943 flush_dcache_page(page);
1944 status = a_ops->commit_write(file, page, offset, offset+bytes);
1945 if (likely(copied > 0)) {
1946 if (!status)
1947 status = copied;
1949 if (status >= 0) {
1950 written += status;
1951 count -= status;
1952 pos += status;
1953 buf += status;
1954 if (unlikely(nr_segs > 1)) {
1955 filemap_set_next_iovec(&cur_iov,
1956 &iov_base, status);
1957 if (count)
1958 buf = cur_iov->iov_base +
1959 iov_base;
1960 } else {
1961 iov_base += status;
1965 if (unlikely(copied != bytes))
1966 if (status >= 0)
1967 status = -EFAULT;
1968 unlock_page(page);
1969 mark_page_accessed(page);
1970 page_cache_release(page);
1971 if (status < 0)
1972 break;
1973 balance_dirty_pages_ratelimited(mapping);
1974 cond_resched();
1975 } while (count);
1976 *ppos = pos;
1978 if (cached_page)
1979 page_cache_release(cached_page);
1982 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
1984 if (likely(status >= 0)) {
1985 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1986 if (!a_ops->writepage || !is_sync_kiocb(iocb))
1987 status = generic_osync_inode(inode, mapping,
1988 OSYNC_METADATA|OSYNC_DATA);
1993 * If we get here for O_DIRECT writes then we must have fallen through
1994 * to buffered writes (block instantiation inside i_size). So we sync
1995 * the file data here, to try to honour O_DIRECT expectations.
1997 if (unlikely(file->f_flags & O_DIRECT) && written)
1998 status = filemap_write_and_wait(mapping);
2000 pagevec_lru_add(&lru_pvec);
2001 return written ? written : status;
2003 EXPORT_SYMBOL(generic_file_buffered_write);
2005 ssize_t
2006 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2007 unsigned long nr_segs, loff_t *ppos)
2009 struct file *file = iocb->ki_filp;
2010 struct address_space * mapping = file->f_mapping;
2011 size_t ocount; /* original count */
2012 size_t count; /* after file limit checks */
2013 struct inode *inode = mapping->host;
2014 unsigned long seg;
2015 loff_t pos;
2016 ssize_t written;
2017 ssize_t err;
2019 ocount = 0;
2020 for (seg = 0; seg < nr_segs; seg++) {
2021 const struct iovec *iv = &iov[seg];
2024 * If any segment has a negative length, or the cumulative
2025 * length ever wraps negative then return -EINVAL.
2027 ocount += iv->iov_len;
2028 if (unlikely((ssize_t)(ocount|iv->iov_len) < 0))
2029 return -EINVAL;
2030 if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
2031 continue;
2032 if (seg == 0)
2033 return -EFAULT;
2034 nr_segs = seg;
2035 ocount -= iv->iov_len; /* This segment is no good */
2036 break;
2039 count = ocount;
2040 pos = *ppos;
2042 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2044 /* We can write back this queue in page reclaim */
2045 current->backing_dev_info = mapping->backing_dev_info;
2046 written = 0;
2048 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2049 if (err)
2050 goto out;
2052 if (count == 0)
2053 goto out;
2055 err = remove_suid(file->f_dentry);
2056 if (err)
2057 goto out;
2059 inode_update_time(inode, 1);
2061 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2062 if (unlikely(file->f_flags & O_DIRECT)) {
2063 written = generic_file_direct_write(iocb, iov,
2064 &nr_segs, pos, ppos, count, ocount);
2065 if (written < 0 || written == count)
2066 goto out;
2068 * direct-io write to a hole: fall through to buffered I/O
2069 * for completing the rest of the request.
2071 pos += written;
2072 count -= written;
2075 written = generic_file_buffered_write(iocb, iov, nr_segs,
2076 pos, ppos, count, written);
2077 out:
2078 current->backing_dev_info = NULL;
2079 return written ? written : err;
2081 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2083 ssize_t
2084 generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2085 unsigned long nr_segs, loff_t *ppos)
2087 struct file *file = iocb->ki_filp;
2088 struct address_space *mapping = file->f_mapping;
2089 struct inode *inode = mapping->host;
2090 ssize_t ret;
2091 loff_t pos = *ppos;
2093 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, ppos);
2095 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2096 int err;
2098 err = sync_page_range_nolock(inode, mapping, pos, ret);
2099 if (err < 0)
2100 ret = err;
2102 return ret;
2105 ssize_t
2106 __generic_file_write_nolock(struct file *file, const struct iovec *iov,
2107 unsigned long nr_segs, loff_t *ppos)
2109 struct kiocb kiocb;
2110 ssize_t ret;
2112 init_sync_kiocb(&kiocb, file);
2113 ret = __generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2114 if (ret == -EIOCBQUEUED)
2115 ret = wait_on_sync_kiocb(&kiocb);
2116 return ret;
2119 ssize_t
2120 generic_file_write_nolock(struct file *file, const struct iovec *iov,
2121 unsigned long nr_segs, loff_t *ppos)
2123 struct kiocb kiocb;
2124 ssize_t ret;
2126 init_sync_kiocb(&kiocb, file);
2127 ret = generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2128 if (-EIOCBQUEUED == ret)
2129 ret = wait_on_sync_kiocb(&kiocb);
2130 return ret;
2132 EXPORT_SYMBOL(generic_file_write_nolock);
2134 ssize_t generic_file_aio_write(struct kiocb *iocb, const char __user *buf,
2135 size_t count, loff_t pos)
2137 struct file *file = iocb->ki_filp;
2138 struct address_space *mapping = file->f_mapping;
2139 struct inode *inode = mapping->host;
2140 ssize_t ret;
2141 struct iovec local_iov = { .iov_base = (void __user *)buf,
2142 .iov_len = count };
2144 BUG_ON(iocb->ki_pos != pos);
2146 down(&inode->i_sem);
2147 ret = __generic_file_aio_write_nolock(iocb, &local_iov, 1,
2148 &iocb->ki_pos);
2149 up(&inode->i_sem);
2151 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2152 ssize_t err;
2154 err = sync_page_range(inode, mapping, pos, ret);
2155 if (err < 0)
2156 ret = err;
2158 return ret;
2160 EXPORT_SYMBOL(generic_file_aio_write);
2162 ssize_t generic_file_write(struct file *file, const char __user *buf,
2163 size_t count, loff_t *ppos)
2165 struct address_space *mapping = file->f_mapping;
2166 struct inode *inode = mapping->host;
2167 ssize_t ret;
2168 struct iovec local_iov = { .iov_base = (void __user *)buf,
2169 .iov_len = count };
2171 down(&inode->i_sem);
2172 ret = __generic_file_write_nolock(file, &local_iov, 1, ppos);
2173 up(&inode->i_sem);
2175 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2176 ssize_t err;
2178 err = sync_page_range(inode, mapping, *ppos - ret, ret);
2179 if (err < 0)
2180 ret = err;
2182 return ret;
2184 EXPORT_SYMBOL(generic_file_write);
2186 ssize_t generic_file_readv(struct file *filp, const struct iovec *iov,
2187 unsigned long nr_segs, loff_t *ppos)
2189 struct kiocb kiocb;
2190 ssize_t ret;
2192 init_sync_kiocb(&kiocb, filp);
2193 ret = __generic_file_aio_read(&kiocb, iov, nr_segs, ppos);
2194 if (-EIOCBQUEUED == ret)
2195 ret = wait_on_sync_kiocb(&kiocb);
2196 return ret;
2198 EXPORT_SYMBOL(generic_file_readv);
2200 ssize_t generic_file_writev(struct file *file, const struct iovec *iov,
2201 unsigned long nr_segs, loff_t *ppos)
2203 struct address_space *mapping = file->f_mapping;
2204 struct inode *inode = mapping->host;
2205 ssize_t ret;
2207 down(&inode->i_sem);
2208 ret = __generic_file_write_nolock(file, iov, nr_segs, ppos);
2209 up(&inode->i_sem);
2211 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2212 int err;
2214 err = sync_page_range(inode, mapping, *ppos - ret, ret);
2215 if (err < 0)
2216 ret = err;
2218 return ret;
2220 EXPORT_SYMBOL(generic_file_writev);
2223 * Called under i_sem for writes to S_ISREG files. Returns -EIO if something
2224 * went wrong during pagecache shootdown.
2226 ssize_t
2227 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2228 loff_t offset, unsigned long nr_segs)
2230 struct file *file = iocb->ki_filp;
2231 struct address_space *mapping = file->f_mapping;
2232 ssize_t retval;
2233 size_t write_len = 0;
2236 * If it's a write, unmap all mmappings of the file up-front. This
2237 * will cause any pte dirty bits to be propagated into the pageframes
2238 * for the subsequent filemap_write_and_wait().
2240 if (rw == WRITE) {
2241 write_len = iov_length(iov, nr_segs);
2242 if (mapping_mapped(mapping))
2243 unmap_mapping_range(mapping, offset, write_len, 0);
2246 retval = filemap_write_and_wait(mapping);
2247 if (retval == 0) {
2248 retval = mapping->a_ops->direct_IO(rw, iocb, iov,
2249 offset, nr_segs);
2250 if (rw == WRITE && mapping->nrpages) {
2251 pgoff_t end = (offset + write_len - 1)
2252 >> PAGE_CACHE_SHIFT;
2253 int err = invalidate_inode_pages2_range(mapping,
2254 offset >> PAGE_CACHE_SHIFT, end);
2255 if (err)
2256 retval = err;
2259 return retval;
2261 EXPORT_SYMBOL_GPL(generic_file_direct_IO);