Linux v2.6.13
[linux-2.6/next.git] / sound / sparc / dbri.c
blob941c7b1e7ebb959ed49e1077aa2dad14b99c4bdb
1 /*
2 * Driver for DBRI sound chip found on Sparcs.
3 * Copyright (C) 2004 Martin Habets (mhabets@users.sourceforge.net)
5 * Based entirely upon drivers/sbus/audio/dbri.c which is:
6 * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
7 * Copyright (C) 1998, 1999 Brent Baccala (baccala@freesoft.org)
9 * This is the lowlevel driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
10 * on Sun SPARCstation 10, 20, LX and Voyager models.
12 * - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
13 * data time multiplexer with ISDN support (aka T7259)
14 * Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
15 * CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
16 * Documentation:
17 * - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Tranceiver" from
18 * Sparc Technology Business (courtesy of Sun Support)
19 * - Data sheet of the T7903, a newer but very similar ISA bus equivalent
20 * available from the Lucent (formarly AT&T microelectronics) home
21 * page.
22 * - http://www.freesoft.org/Linux/DBRI/
23 * - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
24 * Interfaces: CHI, Audio In & Out, 2 bits parallel
25 * Documentation: from the Crystal Semiconductor home page.
27 * The DBRI is a 32 pipe machine, each pipe can transfer some bits between
28 * memory and a serial device (long pipes, nr 0-15) or between two serial
29 * devices (short pipes, nr 16-31), or simply send a fixed data to a serial
30 * device (short pipes).
31 * A timeslot defines the bit-offset and nr of bits read from a serial device.
32 * The timeslots are linked to 6 circular lists, one for each direction for
33 * each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
34 * (the second one is a monitor/tee pipe, valid only for serial input).
36 * The mmcodec is connected via the CHI bus and needs the data & some
37 * parameters (volume, balance, output selection) timemultiplexed in 8 byte
38 * chunks. It also has a control mode, which serves for audio format setting.
40 * Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
41 * the same CHI bus, so I thought perhaps it is possible to use the onboard
42 * & the speakerbox codec simultanously, giving 2 (not very independent :-)
43 * audio devices. But the SUN HW group decided against it, at least on my
44 * LX the speakerbox connector has at least 1 pin missing and 1 wrongly
45 * connected.
48 #include <sound/driver.h>
49 #include <linux/interrupt.h>
50 #include <linux/delay.h>
52 #include <sound/core.h>
53 #include <sound/pcm.h>
54 #include <sound/pcm_params.h>
55 #include <sound/info.h>
56 #include <sound/control.h>
57 #include <sound/initval.h>
59 #include <asm/irq.h>
60 #include <asm/io.h>
61 #include <asm/sbus.h>
62 #include <asm/atomic.h>
64 MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
65 MODULE_DESCRIPTION("Sun DBRI");
66 MODULE_LICENSE("GPL");
67 MODULE_SUPPORTED_DEVICE("{{Sun,DBRI}}");
69 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
70 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
71 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */
73 module_param_array(index, int, NULL, 0444);
74 MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
75 module_param_array(id, charp, NULL, 0444);
76 MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
77 module_param_array(enable, bool, NULL, 0444);
78 MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
80 #define DBRI_DEBUG
82 #define D_INT (1<<0)
83 #define D_GEN (1<<1)
84 #define D_CMD (1<<2)
85 #define D_MM (1<<3)
86 #define D_USR (1<<4)
87 #define D_DESC (1<<5)
89 static int dbri_debug = 0;
90 module_param(dbri_debug, int, 0444);
91 MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
93 #ifdef DBRI_DEBUG
94 static char *cmds[] = {
95 "WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
96 "SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
99 #define dprintk(a, x...) if(dbri_debug & a) printk(KERN_DEBUG x)
101 #define DBRI_CMD(cmd, intr, value) ((cmd << 28) | \
102 (1 << 27) | \
103 value)
104 #else
105 #define dprintk(a, x...)
107 #define DBRI_CMD(cmd, intr, value) ((cmd << 28) | \
108 (intr << 27) | \
109 value)
110 #endif /* DBRI_DEBUG */
112 /***************************************************************************
113 CS4215 specific definitions and structures
114 ****************************************************************************/
116 struct cs4215 {
117 __u8 data[4]; /* Data mode: Time slots 5-8 */
118 __u8 ctrl[4]; /* Ctrl mode: Time slots 1-4 */
119 __u8 onboard;
120 __u8 offset; /* Bit offset from frame sync to time slot 1 */
121 volatile __u32 status;
122 volatile __u32 version;
123 __u8 precision; /* In bits, either 8 or 16 */
124 __u8 channels; /* 1 or 2 */
128 * Control mode first
131 /* Time Slot 1, Status register */
132 #define CS4215_CLB (1<<2) /* Control Latch Bit */
133 #define CS4215_OLB (1<<3) /* 1: line: 2.0V, speaker 4V */
134 /* 0: line: 2.8V, speaker 8V */
135 #define CS4215_MLB (1<<4) /* 1: Microphone: 20dB gain disabled */
136 #define CS4215_RSRVD_1 (1<<5)
138 /* Time Slot 2, Data Format Register */
139 #define CS4215_DFR_LINEAR16 0
140 #define CS4215_DFR_ULAW 1
141 #define CS4215_DFR_ALAW 2
142 #define CS4215_DFR_LINEAR8 3
143 #define CS4215_DFR_STEREO (1<<2)
144 static struct {
145 unsigned short freq;
146 unsigned char xtal;
147 unsigned char csval;
148 } CS4215_FREQ[] = {
149 { 8000, (1 << 4), (0 << 3) },
150 { 16000, (1 << 4), (1 << 3) },
151 { 27429, (1 << 4), (2 << 3) }, /* Actually 24428.57 */
152 { 32000, (1 << 4), (3 << 3) },
153 /* { NA, (1 << 4), (4 << 3) }, */
154 /* { NA, (1 << 4), (5 << 3) }, */
155 { 48000, (1 << 4), (6 << 3) },
156 { 9600, (1 << 4), (7 << 3) },
157 { 5513, (2 << 4), (0 << 3) }, /* Actually 5512.5 */
158 { 11025, (2 << 4), (1 << 3) },
159 { 18900, (2 << 4), (2 << 3) },
160 { 22050, (2 << 4), (3 << 3) },
161 { 37800, (2 << 4), (4 << 3) },
162 { 44100, (2 << 4), (5 << 3) },
163 { 33075, (2 << 4), (6 << 3) },
164 { 6615, (2 << 4), (7 << 3) },
165 { 0, 0, 0}
168 #define CS4215_HPF (1<<7) /* High Pass Filter, 1: Enabled */
170 #define CS4215_12_MASK 0xfcbf /* Mask off reserved bits in slot 1 & 2 */
172 /* Time Slot 3, Serial Port Control register */
173 #define CS4215_XEN (1<<0) /* 0: Enable serial output */
174 #define CS4215_XCLK (1<<1) /* 1: Master mode: Generate SCLK */
175 #define CS4215_BSEL_64 (0<<2) /* Bitrate: 64 bits per frame */
176 #define CS4215_BSEL_128 (1<<2)
177 #define CS4215_BSEL_256 (2<<2)
178 #define CS4215_MCK_MAST (0<<4) /* Master clock */
179 #define CS4215_MCK_XTL1 (1<<4) /* 24.576 MHz clock source */
180 #define CS4215_MCK_XTL2 (2<<4) /* 16.9344 MHz clock source */
181 #define CS4215_MCK_CLK1 (3<<4) /* Clockin, 256 x Fs */
182 #define CS4215_MCK_CLK2 (4<<4) /* Clockin, see DFR */
184 /* Time Slot 4, Test Register */
185 #define CS4215_DAD (1<<0) /* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
186 #define CS4215_ENL (1<<1) /* Enable Loopback Testing */
188 /* Time Slot 5, Parallel Port Register */
189 /* Read only here and the same as the in data mode */
191 /* Time Slot 6, Reserved */
193 /* Time Slot 7, Version Register */
194 #define CS4215_VERSION_MASK 0xf /* Known versions 0/C, 1/D, 2/E */
196 /* Time Slot 8, Reserved */
199 * Data mode
201 /* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data */
203 /* Time Slot 5, Output Setting */
204 #define CS4215_LO(v) v /* Left Output Attenuation 0x3f: -94.5 dB */
205 #define CS4215_LE (1<<6) /* Line Out Enable */
206 #define CS4215_HE (1<<7) /* Headphone Enable */
208 /* Time Slot 6, Output Setting */
209 #define CS4215_RO(v) v /* Right Output Attenuation 0x3f: -94.5 dB */
210 #define CS4215_SE (1<<6) /* Speaker Enable */
211 #define CS4215_ADI (1<<7) /* A/D Data Invalid: Busy in calibration */
213 /* Time Slot 7, Input Setting */
214 #define CS4215_LG(v) v /* Left Gain Setting 0xf: 22.5 dB */
215 #define CS4215_IS (1<<4) /* Input Select: 1=Microphone, 0=Line */
216 #define CS4215_OVR (1<<5) /* 1: Overrange condition occurred */
217 #define CS4215_PIO0 (1<<6) /* Parallel I/O 0 */
218 #define CS4215_PIO1 (1<<7)
220 /* Time Slot 8, Input Setting */
221 #define CS4215_RG(v) v /* Right Gain Setting 0xf: 22.5 dB */
222 #define CS4215_MA(v) (v<<4) /* Monitor Path Attenuation 0xf: mute */
224 /***************************************************************************
225 DBRI specific definitions and structures
226 ****************************************************************************/
228 /* DBRI main registers */
229 #define REG0 0x00UL /* Status and Control */
230 #define REG1 0x04UL /* Mode and Interrupt */
231 #define REG2 0x08UL /* Parallel IO */
232 #define REG3 0x0cUL /* Test */
233 #define REG8 0x20UL /* Command Queue Pointer */
234 #define REG9 0x24UL /* Interrupt Queue Pointer */
236 #define DBRI_NO_CMDS 64
237 #define DBRI_NO_INTS 1 /* Note: the value of this define was
238 * originally 2. The ringbuffer to store
239 * interrupts in dma is currently broken.
240 * This is a temporary fix until the ringbuffer
241 * is fixed.
243 #define DBRI_INT_BLK 64
244 #define DBRI_NO_DESCS 64
245 #define DBRI_NO_PIPES 32
247 #define DBRI_MM_ONB 1
248 #define DBRI_MM_SB 2
250 #define DBRI_REC 0
251 #define DBRI_PLAY 1
252 #define DBRI_NO_STREAMS 2
254 /* One transmit/receive descriptor */
255 struct dbri_mem {
256 volatile __u32 word1;
257 volatile __u32 ba; /* Transmit/Receive Buffer Address */
258 volatile __u32 nda; /* Next Descriptor Address */
259 volatile __u32 word4;
262 /* This structure is in a DMA region where it can accessed by both
263 * the CPU and the DBRI
265 struct dbri_dma {
266 volatile s32 cmd[DBRI_NO_CMDS]; /* Place for commands */
267 volatile s32 intr[DBRI_NO_INTS * DBRI_INT_BLK]; /* Interrupt field */
268 struct dbri_mem desc[DBRI_NO_DESCS]; /* Xmit/receive descriptors */
271 #define dbri_dma_off(member, elem) \
272 ((u32)(unsigned long) \
273 (&(((struct dbri_dma *)0)->member[elem])))
275 enum in_or_out { PIPEinput, PIPEoutput };
277 struct dbri_pipe {
278 u32 sdp; /* SDP command word */
279 enum in_or_out direction;
280 int nextpipe; /* Next pipe in linked list */
281 int prevpipe;
282 int cycle; /* Offset of timeslot (bits) */
283 int length; /* Length of timeslot (bits) */
284 int first_desc; /* Index of first descriptor */
285 int desc; /* Index of active descriptor */
286 volatile __u32 *recv_fixed_ptr; /* Ptr to receive fixed data */
289 struct dbri_desc {
290 int inuse; /* Boolean flag */
291 int next; /* Index of next desc, or -1 */
292 unsigned int len;
295 /* Per stream (playback or record) information */
296 typedef struct dbri_streaminfo {
297 snd_pcm_substream_t *substream;
298 u32 dvma_buffer; /* Device view of Alsa DMA buffer */
299 int left; /* # of bytes left in DMA buffer */
300 int size; /* Size of DMA buffer */
301 size_t offset; /* offset in user buffer */
302 int pipe; /* Data pipe used */
303 int left_gain; /* mixer elements */
304 int right_gain;
305 int balance;
306 } dbri_streaminfo_t;
308 /* This structure holds the information for both chips (DBRI & CS4215) */
309 typedef struct snd_dbri {
310 snd_card_t *card; /* ALSA card */
311 snd_pcm_t *pcm;
313 int regs_size, irq; /* Needed for unload */
314 struct sbus_dev *sdev; /* SBUS device info */
315 spinlock_t lock;
317 volatile struct dbri_dma *dma; /* Pointer to our DMA block */
318 u32 dma_dvma; /* DBRI visible DMA address */
320 void __iomem *regs; /* dbri HW regs */
321 int dbri_version; /* 'e' and up is OK */
322 int dbri_irqp; /* intr queue pointer */
323 int wait_seen;
325 struct dbri_pipe pipes[DBRI_NO_PIPES]; /* DBRI's 32 data pipes */
326 struct dbri_desc descs[DBRI_NO_DESCS];
328 int chi_in_pipe;
329 int chi_out_pipe;
330 int chi_bpf;
332 struct cs4215 mm; /* mmcodec special info */
333 /* per stream (playback/record) info */
334 struct dbri_streaminfo stream_info[DBRI_NO_STREAMS];
336 struct snd_dbri *next;
337 } snd_dbri_t;
339 /* Needed for the ALSA macros to work */
340 #define chip_t snd_dbri_t
342 #define DBRI_MAX_VOLUME 63 /* Output volume */
343 #define DBRI_MAX_GAIN 15 /* Input gain */
344 #define DBRI_RIGHT_BALANCE 255
345 #define DBRI_MID_BALANCE (DBRI_RIGHT_BALANCE >> 1)
347 /* DBRI Reg0 - Status Control Register - defines. (Page 17) */
348 #define D_P (1<<15) /* Program command & queue pointer valid */
349 #define D_G (1<<14) /* Allow 4-Word SBus Burst */
350 #define D_S (1<<13) /* Allow 16-Word SBus Burst */
351 #define D_E (1<<12) /* Allow 8-Word SBus Burst */
352 #define D_X (1<<7) /* Sanity Timer Disable */
353 #define D_T (1<<6) /* Permit activation of the TE interface */
354 #define D_N (1<<5) /* Permit activation of the NT interface */
355 #define D_C (1<<4) /* Permit activation of the CHI interface */
356 #define D_F (1<<3) /* Force Sanity Timer Time-Out */
357 #define D_D (1<<2) /* Disable Master Mode */
358 #define D_H (1<<1) /* Halt for Analysis */
359 #define D_R (1<<0) /* Soft Reset */
361 /* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
362 #define D_LITTLE_END (1<<8) /* Byte Order */
363 #define D_BIG_END (0<<8) /* Byte Order */
364 #define D_MRR (1<<4) /* Multiple Error Ack on SBus (readonly) */
365 #define D_MLE (1<<3) /* Multiple Late Error on SBus (readonly) */
366 #define D_LBG (1<<2) /* Lost Bus Grant on SBus (readonly) */
367 #define D_MBE (1<<1) /* Burst Error on SBus (readonly) */
368 #define D_IR (1<<0) /* Interrupt Indicator (readonly) */
370 /* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
371 #define D_ENPIO3 (1<<7) /* Enable Pin 3 */
372 #define D_ENPIO2 (1<<6) /* Enable Pin 2 */
373 #define D_ENPIO1 (1<<5) /* Enable Pin 1 */
374 #define D_ENPIO0 (1<<4) /* Enable Pin 0 */
375 #define D_ENPIO (0xf0) /* Enable all the pins */
376 #define D_PIO3 (1<<3) /* Pin 3: 1: Data mode, 0: Ctrl mode */
377 #define D_PIO2 (1<<2) /* Pin 2: 1: Onboard PDN */
378 #define D_PIO1 (1<<1) /* Pin 1: 0: Reset */
379 #define D_PIO0 (1<<0) /* Pin 0: 1: Speakerbox PDN */
381 /* DBRI Commands (Page 20) */
382 #define D_WAIT 0x0 /* Stop execution */
383 #define D_PAUSE 0x1 /* Flush long pipes */
384 #define D_JUMP 0x2 /* New command queue */
385 #define D_IIQ 0x3 /* Initialize Interrupt Queue */
386 #define D_REX 0x4 /* Report command execution via interrupt */
387 #define D_SDP 0x5 /* Setup Data Pipe */
388 #define D_CDP 0x6 /* Continue Data Pipe (reread NULL Pointer) */
389 #define D_DTS 0x7 /* Define Time Slot */
390 #define D_SSP 0x8 /* Set short Data Pipe */
391 #define D_CHI 0x9 /* Set CHI Global Mode */
392 #define D_NT 0xa /* NT Command */
393 #define D_TE 0xb /* TE Command */
394 #define D_CDEC 0xc /* Codec setup */
395 #define D_TEST 0xd /* No comment */
396 #define D_CDM 0xe /* CHI Data mode command */
398 /* Special bits for some commands */
399 #define D_PIPE(v) ((v)<<0) /* Pipe Nr: 0-15 long, 16-21 short */
401 /* Setup Data Pipe */
402 /* IRM */
403 #define D_SDP_2SAME (1<<18) /* Report 2nd time in a row value rcvd */
404 #define D_SDP_CHANGE (2<<18) /* Report any changes */
405 #define D_SDP_EVERY (3<<18) /* Report any changes */
406 #define D_SDP_EOL (1<<17) /* EOL interrupt enable */
407 #define D_SDP_IDLE (1<<16) /* HDLC idle interrupt enable */
409 /* Pipe data MODE */
410 #define D_SDP_MEM (0<<13) /* To/from memory */
411 #define D_SDP_HDLC (2<<13)
412 #define D_SDP_HDLC_D (3<<13) /* D Channel (prio control) */
413 #define D_SDP_SER (4<<13) /* Serial to serial */
414 #define D_SDP_FIXED (6<<13) /* Short only */
415 #define D_SDP_MODE(v) ((v)&(7<<13))
417 #define D_SDP_TO_SER (1<<12) /* Direction */
418 #define D_SDP_FROM_SER (0<<12) /* Direction */
419 #define D_SDP_MSB (1<<11) /* Bit order within Byte */
420 #define D_SDP_LSB (0<<11) /* Bit order within Byte */
421 #define D_SDP_P (1<<10) /* Pointer Valid */
422 #define D_SDP_A (1<<8) /* Abort */
423 #define D_SDP_C (1<<7) /* Clear */
425 /* Define Time Slot */
426 #define D_DTS_VI (1<<17) /* Valid Input Time-Slot Descriptor */
427 #define D_DTS_VO (1<<16) /* Valid Output Time-Slot Descriptor */
428 #define D_DTS_INS (1<<15) /* Insert Time Slot */
429 #define D_DTS_DEL (0<<15) /* Delete Time Slot */
430 #define D_DTS_PRVIN(v) ((v)<<10) /* Previous In Pipe */
431 #define D_DTS_PRVOUT(v) ((v)<<5) /* Previous Out Pipe */
433 /* Time Slot defines */
434 #define D_TS_LEN(v) ((v)<<24) /* Number of bits in this time slot */
435 #define D_TS_CYCLE(v) ((v)<<14) /* Bit Count at start of TS */
436 #define D_TS_DI (1<<13) /* Data Invert */
437 #define D_TS_1CHANNEL (0<<10) /* Single Channel / Normal mode */
438 #define D_TS_MONITOR (2<<10) /* Monitor pipe */
439 #define D_TS_NONCONTIG (3<<10) /* Non contiguous mode */
440 #define D_TS_ANCHOR (7<<10) /* Starting short pipes */
441 #define D_TS_MON(v) ((v)<<5) /* Monitor Pipe */
442 #define D_TS_NEXT(v) ((v)<<0) /* Pipe Nr: 0-15 long, 16-21 short */
444 /* Concentration Highway Interface Modes */
445 #define D_CHI_CHICM(v) ((v)<<16) /* Clock mode */
446 #define D_CHI_IR (1<<15) /* Immediate Interrupt Report */
447 #define D_CHI_EN (1<<14) /* CHIL Interrupt enabled */
448 #define D_CHI_OD (1<<13) /* Open Drain Enable */
449 #define D_CHI_FE (1<<12) /* Sample CHIFS on Rising Frame Edge */
450 #define D_CHI_FD (1<<11) /* Frame Drive */
451 #define D_CHI_BPF(v) ((v)<<0) /* Bits per Frame */
453 /* NT: These are here for completeness */
454 #define D_NT_FBIT (1<<17) /* Frame Bit */
455 #define D_NT_NBF (1<<16) /* Number of bad frames to loose framing */
456 #define D_NT_IRM_IMM (1<<15) /* Interrupt Report & Mask: Immediate */
457 #define D_NT_IRM_EN (1<<14) /* Interrupt Report & Mask: Enable */
458 #define D_NT_ISNT (1<<13) /* Configfure interface as NT */
459 #define D_NT_FT (1<<12) /* Fixed Timing */
460 #define D_NT_EZ (1<<11) /* Echo Channel is Zeros */
461 #define D_NT_IFA (1<<10) /* Inhibit Final Activation */
462 #define D_NT_ACT (1<<9) /* Activate Interface */
463 #define D_NT_MFE (1<<8) /* Multiframe Enable */
464 #define D_NT_RLB(v) ((v)<<5) /* Remote Loopback */
465 #define D_NT_LLB(v) ((v)<<2) /* Local Loopback */
466 #define D_NT_FACT (1<<1) /* Force Activation */
467 #define D_NT_ABV (1<<0) /* Activate Bipolar Violation */
469 /* Codec Setup */
470 #define D_CDEC_CK(v) ((v)<<24) /* Clock Select */
471 #define D_CDEC_FED(v) ((v)<<12) /* FSCOD Falling Edge Delay */
472 #define D_CDEC_RED(v) ((v)<<0) /* FSCOD Rising Edge Delay */
474 /* Test */
475 #define D_TEST_RAM(v) ((v)<<16) /* RAM Pointer */
476 #define D_TEST_SIZE(v) ((v)<<11) /* */
477 #define D_TEST_ROMONOFF 0x5 /* Toggle ROM opcode monitor on/off */
478 #define D_TEST_PROC 0x6 /* MicroProcessor test */
479 #define D_TEST_SER 0x7 /* Serial-Controller test */
480 #define D_TEST_RAMREAD 0x8 /* Copy from Ram to system memory */
481 #define D_TEST_RAMWRITE 0x9 /* Copy into Ram from system memory */
482 #define D_TEST_RAMBIST 0xa /* RAM Built-In Self Test */
483 #define D_TEST_MCBIST 0xb /* Microcontroller Built-In Self Test */
484 #define D_TEST_DUMP 0xe /* ROM Dump */
486 /* CHI Data Mode */
487 #define D_CDM_THI (1<<8) /* Transmit Data on CHIDR Pin */
488 #define D_CDM_RHI (1<<7) /* Receive Data on CHIDX Pin */
489 #define D_CDM_RCE (1<<6) /* Receive on Rising Edge of CHICK */
490 #define D_CDM_XCE (1<<2) /* Transmit Data on Rising Edge of CHICK */
491 #define D_CDM_XEN (1<<1) /* Transmit Highway Enable */
492 #define D_CDM_REN (1<<0) /* Receive Highway Enable */
494 /* The Interrupts */
495 #define D_INTR_BRDY 1 /* Buffer Ready for processing */
496 #define D_INTR_MINT 2 /* Marked Interrupt in RD/TD */
497 #define D_INTR_IBEG 3 /* Flag to idle transition detected (HDLC) */
498 #define D_INTR_IEND 4 /* Idle to flag transition detected (HDLC) */
499 #define D_INTR_EOL 5 /* End of List */
500 #define D_INTR_CMDI 6 /* Command has bean read */
501 #define D_INTR_XCMP 8 /* Transmission of frame complete */
502 #define D_INTR_SBRI 9 /* BRI status change info */
503 #define D_INTR_FXDT 10 /* Fixed data change */
504 #define D_INTR_CHIL 11 /* CHI lost frame sync (channel 36 only) */
505 #define D_INTR_COLL 11 /* Unrecoverable D-Channel collision */
506 #define D_INTR_DBYT 12 /* Dropped by frame slip */
507 #define D_INTR_RBYT 13 /* Repeated by frame slip */
508 #define D_INTR_LINT 14 /* Lost Interrupt */
509 #define D_INTR_UNDR 15 /* DMA underrun */
511 #define D_INTR_TE 32
512 #define D_INTR_NT 34
513 #define D_INTR_CHI 36
514 #define D_INTR_CMD 38
516 #define D_INTR_GETCHAN(v) (((v)>>24) & 0x3f)
517 #define D_INTR_GETCODE(v) (((v)>>20) & 0xf)
518 #define D_INTR_GETCMD(v) (((v)>>16) & 0xf)
519 #define D_INTR_GETVAL(v) ((v) & 0xffff)
520 #define D_INTR_GETRVAL(v) ((v) & 0xfffff)
522 #define D_P_0 0 /* TE receive anchor */
523 #define D_P_1 1 /* TE transmit anchor */
524 #define D_P_2 2 /* NT transmit anchor */
525 #define D_P_3 3 /* NT receive anchor */
526 #define D_P_4 4 /* CHI send data */
527 #define D_P_5 5 /* CHI receive data */
528 #define D_P_6 6 /* */
529 #define D_P_7 7 /* */
530 #define D_P_8 8 /* */
531 #define D_P_9 9 /* */
532 #define D_P_10 10 /* */
533 #define D_P_11 11 /* */
534 #define D_P_12 12 /* */
535 #define D_P_13 13 /* */
536 #define D_P_14 14 /* */
537 #define D_P_15 15 /* */
538 #define D_P_16 16 /* CHI anchor pipe */
539 #define D_P_17 17 /* CHI send */
540 #define D_P_18 18 /* CHI receive */
541 #define D_P_19 19 /* CHI receive */
542 #define D_P_20 20 /* CHI receive */
543 #define D_P_21 21 /* */
544 #define D_P_22 22 /* */
545 #define D_P_23 23 /* */
546 #define D_P_24 24 /* */
547 #define D_P_25 25 /* */
548 #define D_P_26 26 /* */
549 #define D_P_27 27 /* */
550 #define D_P_28 28 /* */
551 #define D_P_29 29 /* */
552 #define D_P_30 30 /* */
553 #define D_P_31 31 /* */
555 /* Transmit descriptor defines */
556 #define DBRI_TD_F (1<<31) /* End of Frame */
557 #define DBRI_TD_D (1<<30) /* Do not append CRC */
558 #define DBRI_TD_CNT(v) ((v)<<16) /* Number of valid bytes in the buffer */
559 #define DBRI_TD_B (1<<15) /* Final interrupt */
560 #define DBRI_TD_M (1<<14) /* Marker interrupt */
561 #define DBRI_TD_I (1<<13) /* Transmit Idle Characters */
562 #define DBRI_TD_FCNT(v) (v) /* Flag Count */
563 #define DBRI_TD_UNR (1<<3) /* Underrun: transmitter is out of data */
564 #define DBRI_TD_ABT (1<<2) /* Abort: frame aborted */
565 #define DBRI_TD_TBC (1<<0) /* Transmit buffer Complete */
566 #define DBRI_TD_STATUS(v) ((v)&0xff) /* Transmit status */
567 /* Maximum buffer size per TD: almost 8Kb */
568 #define DBRI_TD_MAXCNT ((1 << 13) - 1)
570 /* Receive descriptor defines */
571 #define DBRI_RD_F (1<<31) /* End of Frame */
572 #define DBRI_RD_C (1<<30) /* Completed buffer */
573 #define DBRI_RD_B (1<<15) /* Final interrupt */
574 #define DBRI_RD_M (1<<14) /* Marker interrupt */
575 #define DBRI_RD_BCNT(v) (v) /* Buffer size */
576 #define DBRI_RD_CRC (1<<7) /* 0: CRC is correct */
577 #define DBRI_RD_BBC (1<<6) /* 1: Bad Byte received */
578 #define DBRI_RD_ABT (1<<5) /* Abort: frame aborted */
579 #define DBRI_RD_OVRN (1<<3) /* Overrun: data lost */
580 #define DBRI_RD_STATUS(v) ((v)&0xff) /* Receive status */
581 #define DBRI_RD_CNT(v) (((v)>>16)&0x1fff) /* Valid bytes in the buffer */
583 /* stream_info[] access */
584 /* Translate the ALSA direction into the array index */
585 #define DBRI_STREAMNO(substream) \
586 (substream->stream == \
587 SNDRV_PCM_STREAM_PLAYBACK? DBRI_PLAY: DBRI_REC)
589 /* Return a pointer to dbri_streaminfo */
590 #define DBRI_STREAM(dbri, substream) &dbri->stream_info[DBRI_STREAMNO(substream)]
592 static snd_dbri_t *dbri_list = NULL; /* All DBRI devices */
595 * Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
596 * So we have to reverse the bits. Note: not all bit lengths are supported
598 static __u32 reverse_bytes(__u32 b, int len)
600 switch (len) {
601 case 32:
602 b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
603 case 16:
604 b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
605 case 8:
606 b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
607 case 4:
608 b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
609 case 2:
610 b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
611 case 1:
612 case 0:
613 break;
614 default:
615 printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
618 return b;
622 ****************************************************************************
623 ************** DBRI initialization and command synchronization *************
624 ****************************************************************************
626 Commands are sent to the DBRI by building a list of them in memory,
627 then writing the address of the first list item to DBRI register 8.
628 The list is terminated with a WAIT command, which can generate a
629 CPU interrupt if required.
631 Since the DBRI can run in parallel with the CPU, several means of
632 synchronization present themselves. The original scheme (Rudolf's)
633 was to set a flag when we "cmdlock"ed the DBRI, clear the flag when
634 an interrupt signaled completion, and wait on a wait_queue if a routine
635 attempted to cmdlock while the flag was set. The problems arose when
636 we tried to cmdlock from inside an interrupt handler, which might
637 cause scheduling in an interrupt (if we waited), etc, etc
639 A more sophisticated scheme might involve a circular command buffer
640 or an array of command buffers. A routine could fill one with
641 commands and link it onto a list. When a interrupt signaled
642 completion of the current command buffer, look on the list for
643 the next one.
645 I've decided to implement something much simpler - after each command,
646 the CPU waits for the DBRI to finish the command by polling the P bit
647 in DBRI register 0. I've tried to implement this in such a way
648 that might make implementing a more sophisticated scheme easier.
650 Every time a routine wants to write commands to the DBRI, it must
651 first call dbri_cmdlock() and get an initial pointer into dbri->dma->cmd
652 in return. After the commands have been writen, dbri_cmdsend() is
653 called with the final pointer value.
657 enum dbri_lock_t { NoGetLock, GetLock };
659 static volatile s32 *dbri_cmdlock(snd_dbri_t * dbri, enum dbri_lock_t get)
661 #ifndef SMP
662 if ((get == GetLock) && spin_is_locked(&dbri->lock)) {
663 printk(KERN_ERR "DBRI: cmdlock called while in spinlock.");
665 #endif
667 /*if (get == GetLock) spin_lock(&dbri->lock); */
668 return &dbri->dma->cmd[0];
671 static void dbri_process_interrupt_buffer(snd_dbri_t *);
673 static void dbri_cmdsend(snd_dbri_t * dbri, volatile s32 * cmd)
675 int MAXLOOPS = 1000000;
676 int maxloops = MAXLOOPS;
677 volatile s32 *ptr;
679 for (ptr = &dbri->dma->cmd[0]; ptr < cmd; ptr++) {
680 dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
683 if ((cmd - &dbri->dma->cmd[0]) >= DBRI_NO_CMDS - 1) {
684 printk("DBRI: Command buffer overflow! (bug in driver)\n");
685 /* Ignore the last part. */
686 cmd = &dbri->dma->cmd[DBRI_NO_CMDS - 3];
689 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
690 *(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
691 dbri->wait_seen = 0;
692 sbus_writel(dbri->dma_dvma, dbri->regs + REG8);
693 while ((--maxloops) > 0 && (sbus_readl(dbri->regs + REG0) & D_P))
694 barrier();
695 if (maxloops == 0) {
696 printk(KERN_ERR "DBRI: Chip never completed command buffer\n");
697 dprintk(D_CMD, "DBRI: Chip never completed command buffer\n");
698 } else {
699 while ((--maxloops) > 0 && (!dbri->wait_seen))
700 dbri_process_interrupt_buffer(dbri);
701 if (maxloops == 0) {
702 printk(KERN_ERR "DBRI: Chip never acked WAIT\n");
703 dprintk(D_CMD, "DBRI: Chip never acked WAIT\n");
704 } else {
705 dprintk(D_CMD, "Chip completed command "
706 "buffer (%d)\n", MAXLOOPS - maxloops);
710 /*spin_unlock(&dbri->lock); */
713 /* Lock must be held when calling this */
714 static void dbri_reset(snd_dbri_t * dbri)
716 int i;
718 dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
719 sbus_readl(dbri->regs + REG0),
720 sbus_readl(dbri->regs + REG2),
721 sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
723 sbus_writel(D_R, dbri->regs + REG0); /* Soft Reset */
724 for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
725 udelay(10);
728 /* Lock must not be held before calling this */
729 static void dbri_initialize(snd_dbri_t * dbri)
731 volatile s32 *cmd;
732 u32 dma_addr, tmp;
733 unsigned long flags;
734 int n;
736 spin_lock_irqsave(&dbri->lock, flags);
738 dbri_reset(dbri);
740 cmd = dbri_cmdlock(dbri, NoGetLock);
741 dprintk(D_GEN, "init: cmd: %p, int: %p\n",
742 &dbri->dma->cmd[0], &dbri->dma->intr[0]);
745 * Initialize the interrupt ringbuffer.
747 for (n = 0; n < DBRI_NO_INTS - 1; n++) {
748 dma_addr = dbri->dma_dvma;
749 dma_addr += dbri_dma_off(intr, ((n + 1) & DBRI_INT_BLK));
750 dbri->dma->intr[n * DBRI_INT_BLK] = dma_addr;
752 dma_addr = dbri->dma_dvma + dbri_dma_off(intr, 0);
753 dbri->dma->intr[n * DBRI_INT_BLK] = dma_addr;
754 dbri->dbri_irqp = 1;
756 /* Initialize pipes */
757 for (n = 0; n < DBRI_NO_PIPES; n++)
758 dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
760 /* We should query the openprom to see what burst sizes this
761 * SBus supports. For now, just disable all SBus bursts */
762 tmp = sbus_readl(dbri->regs + REG0);
763 tmp &= ~(D_G | D_S | D_E);
764 sbus_writel(tmp, dbri->regs + REG0);
767 * Set up the interrupt queue
769 dma_addr = dbri->dma_dvma + dbri_dma_off(intr, 0);
770 *(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
771 *(cmd++) = dma_addr;
773 dbri_cmdsend(dbri, cmd);
774 spin_unlock_irqrestore(&dbri->lock, flags);
778 ****************************************************************************
779 ************************** DBRI data pipe management ***********************
780 ****************************************************************************
782 While DBRI control functions use the command and interrupt buffers, the
783 main data path takes the form of data pipes, which can be short (command
784 and interrupt driven), or long (attached to DMA buffers). These functions
785 provide a rudimentary means of setting up and managing the DBRI's pipes,
786 but the calling functions have to make sure they respect the pipes' linked
787 list ordering, among other things. The transmit and receive functions
788 here interface closely with the transmit and receive interrupt code.
791 static int pipe_active(snd_dbri_t * dbri, int pipe)
793 return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
796 /* reset_pipe(dbri, pipe)
798 * Called on an in-use pipe to clear anything being transmitted or received
799 * Lock must be held before calling this.
801 static void reset_pipe(snd_dbri_t * dbri, int pipe)
803 int sdp;
804 int desc;
805 volatile int *cmd;
807 if (pipe < 0 || pipe > 31) {
808 printk("DBRI: reset_pipe called with illegal pipe number\n");
809 return;
812 sdp = dbri->pipes[pipe].sdp;
813 if (sdp == 0) {
814 printk("DBRI: reset_pipe called on uninitialized pipe\n");
815 return;
818 cmd = dbri_cmdlock(dbri, NoGetLock);
819 *(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
820 *(cmd++) = 0;
821 dbri_cmdsend(dbri, cmd);
823 desc = dbri->pipes[pipe].first_desc;
824 while (desc != -1) {
825 dbri->descs[desc].inuse = 0;
826 desc = dbri->descs[desc].next;
829 dbri->pipes[pipe].desc = -1;
830 dbri->pipes[pipe].first_desc = -1;
833 /* FIXME: direction as an argument? */
834 static void setup_pipe(snd_dbri_t * dbri, int pipe, int sdp)
836 if (pipe < 0 || pipe > 31) {
837 printk("DBRI: setup_pipe called with illegal pipe number\n");
838 return;
841 if ((sdp & 0xf800) != sdp) {
842 printk("DBRI: setup_pipe called with strange SDP value\n");
843 /* sdp &= 0xf800; */
846 /* If this is a fixed receive pipe, arrange for an interrupt
847 * every time its data changes
849 if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
850 sdp |= D_SDP_CHANGE;
852 sdp |= D_PIPE(pipe);
853 dbri->pipes[pipe].sdp = sdp;
854 dbri->pipes[pipe].desc = -1;
855 dbri->pipes[pipe].first_desc = -1;
856 if (sdp & D_SDP_TO_SER)
857 dbri->pipes[pipe].direction = PIPEoutput;
858 else
859 dbri->pipes[pipe].direction = PIPEinput;
861 reset_pipe(dbri, pipe);
864 /* FIXME: direction not needed */
865 static void link_time_slot(snd_dbri_t * dbri, int pipe,
866 enum in_or_out direction, int basepipe,
867 int length, int cycle)
869 volatile s32 *cmd;
870 int val;
871 int prevpipe;
872 int nextpipe;
874 if (pipe < 0 || pipe > 31 || basepipe < 0 || basepipe > 31) {
875 printk
876 ("DBRI: link_time_slot called with illegal pipe number\n");
877 return;
880 if (dbri->pipes[pipe].sdp == 0 || dbri->pipes[basepipe].sdp == 0) {
881 printk("DBRI: link_time_slot called on uninitialized pipe\n");
882 return;
885 /* Deal with CHI special case:
886 * "If transmission on edges 0 or 1 is desired, then cycle n
887 * (where n = # of bit times per frame...) must be used."
888 * - DBRI data sheet, page 11
890 if (basepipe == 16 && direction == PIPEoutput && cycle == 0)
891 cycle = dbri->chi_bpf;
893 if (basepipe == pipe) {
894 prevpipe = pipe;
895 nextpipe = pipe;
896 } else {
897 /* We're not initializing a new linked list (basepipe != pipe),
898 * so run through the linked list and find where this pipe
899 * should be sloted in, based on its cycle. CHI confuses
900 * things a bit, since it has a single anchor for both its
901 * transmit and receive lists.
903 if (basepipe == 16) {
904 if (direction == PIPEinput) {
905 prevpipe = dbri->chi_in_pipe;
906 } else {
907 prevpipe = dbri->chi_out_pipe;
909 } else {
910 prevpipe = basepipe;
913 nextpipe = dbri->pipes[prevpipe].nextpipe;
915 while (dbri->pipes[nextpipe].cycle < cycle
916 && dbri->pipes[nextpipe].nextpipe != basepipe) {
917 prevpipe = nextpipe;
918 nextpipe = dbri->pipes[nextpipe].nextpipe;
922 if (prevpipe == 16) {
923 if (direction == PIPEinput) {
924 dbri->chi_in_pipe = pipe;
925 } else {
926 dbri->chi_out_pipe = pipe;
928 } else {
929 dbri->pipes[prevpipe].nextpipe = pipe;
932 dbri->pipes[pipe].nextpipe = nextpipe;
933 dbri->pipes[pipe].cycle = cycle;
934 dbri->pipes[pipe].length = length;
936 cmd = dbri_cmdlock(dbri, NoGetLock);
938 if (direction == PIPEinput) {
939 val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
940 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
941 *(cmd++) =
942 D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
943 *(cmd++) = 0;
944 } else {
945 val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
946 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
947 *(cmd++) = 0;
948 *(cmd++) =
949 D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
952 dbri_cmdsend(dbri, cmd);
955 static void unlink_time_slot(snd_dbri_t * dbri, int pipe,
956 enum in_or_out direction, int prevpipe,
957 int nextpipe)
959 volatile s32 *cmd;
960 int val;
962 if (pipe < 0 || pipe > 31 || prevpipe < 0 || prevpipe > 31) {
963 printk
964 ("DBRI: unlink_time_slot called with illegal pipe number\n");
965 return;
968 cmd = dbri_cmdlock(dbri, NoGetLock);
970 if (direction == PIPEinput) {
971 val = D_DTS_VI | D_DTS_DEL | D_DTS_PRVIN(prevpipe) | pipe;
972 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
973 *(cmd++) = D_TS_NEXT(nextpipe);
974 *(cmd++) = 0;
975 } else {
976 val = D_DTS_VO | D_DTS_DEL | D_DTS_PRVOUT(prevpipe) | pipe;
977 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
978 *(cmd++) = 0;
979 *(cmd++) = D_TS_NEXT(nextpipe);
982 dbri_cmdsend(dbri, cmd);
985 /* xmit_fixed() / recv_fixed()
987 * Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
988 * expected to change much, and which we don't need to buffer.
989 * The DBRI only interrupts us when the data changes (receive pipes),
990 * or only changes the data when this function is called (transmit pipes).
991 * Only short pipes (numbers 16-31) can be used in fixed data mode.
993 * These function operate on a 32-bit field, no matter how large
994 * the actual time slot is. The interrupt handler takes care of bit
995 * ordering and alignment. An 8-bit time slot will always end up
996 * in the low-order 8 bits, filled either MSB-first or LSB-first,
997 * depending on the settings passed to setup_pipe()
999 static void xmit_fixed(snd_dbri_t * dbri, int pipe, unsigned int data)
1001 volatile s32 *cmd;
1003 if (pipe < 16 || pipe > 31) {
1004 printk("DBRI: xmit_fixed: Illegal pipe number\n");
1005 return;
1008 if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
1009 printk("DBRI: xmit_fixed: Uninitialized pipe %d\n", pipe);
1010 return;
1013 if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1014 printk("DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
1015 return;
1018 if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
1019 printk("DBRI: xmit_fixed: Called on receive pipe %d\n", pipe);
1020 return;
1023 /* DBRI short pipes always transmit LSB first */
1025 if (dbri->pipes[pipe].sdp & D_SDP_MSB)
1026 data = reverse_bytes(data, dbri->pipes[pipe].length);
1028 cmd = dbri_cmdlock(dbri, GetLock);
1030 *(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
1031 *(cmd++) = data;
1033 dbri_cmdsend(dbri, cmd);
1036 static void recv_fixed(snd_dbri_t * dbri, int pipe, volatile __u32 * ptr)
1038 if (pipe < 16 || pipe > 31) {
1039 printk("DBRI: recv_fixed called with illegal pipe number\n");
1040 return;
1043 if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1044 printk("DBRI: recv_fixed called on non-fixed pipe %d\n", pipe);
1045 return;
1048 if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
1049 printk("DBRI: recv_fixed called on transmit pipe %d\n", pipe);
1050 return;
1053 dbri->pipes[pipe].recv_fixed_ptr = ptr;
1056 /* setup_descs()
1058 * Setup transmit/receive data on a "long" pipe - i.e, one associated
1059 * with a DMA buffer.
1061 * Only pipe numbers 0-15 can be used in this mode.
1063 * This function takes a stream number pointing to a data buffer,
1064 * and work by building chains of descriptors which identify the
1065 * data buffers. Buffers too large for a single descriptor will
1066 * be spread across multiple descriptors.
1068 static int setup_descs(snd_dbri_t * dbri, int streamno, unsigned int period)
1070 dbri_streaminfo_t *info = &dbri->stream_info[streamno];
1071 __u32 dvma_buffer;
1072 int desc = 0;
1073 int len;
1074 int first_desc = -1;
1075 int last_desc = -1;
1077 if (info->pipe < 0 || info->pipe > 15) {
1078 printk("DBRI: setup_descs: Illegal pipe number\n");
1079 return -2;
1082 if (dbri->pipes[info->pipe].sdp == 0) {
1083 printk("DBRI: setup_descs: Uninitialized pipe %d\n",
1084 info->pipe);
1085 return -2;
1088 dvma_buffer = info->dvma_buffer;
1089 len = info->size;
1091 if (streamno == DBRI_PLAY) {
1092 if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
1093 printk("DBRI: setup_descs: Called on receive pipe %d\n",
1094 info->pipe);
1095 return -2;
1097 } else {
1098 if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
1099 printk
1100 ("DBRI: setup_descs: Called on transmit pipe %d\n",
1101 info->pipe);
1102 return -2;
1104 /* Should be able to queue multiple buffers to receive on a pipe */
1105 if (pipe_active(dbri, info->pipe)) {
1106 printk("DBRI: recv_on_pipe: Called on active pipe %d\n",
1107 info->pipe);
1108 return -2;
1111 /* Make sure buffer size is multiple of four */
1112 len &= ~3;
1115 while (len > 0) {
1116 int mylen;
1118 for (; desc < DBRI_NO_DESCS; desc++) {
1119 if (!dbri->descs[desc].inuse)
1120 break;
1122 if (desc == DBRI_NO_DESCS) {
1123 printk("DBRI: setup_descs: No descriptors\n");
1124 return -1;
1127 if (len > DBRI_TD_MAXCNT) {
1128 mylen = DBRI_TD_MAXCNT; /* 8KB - 1 */
1129 } else {
1130 mylen = len;
1132 if (mylen > period) {
1133 mylen = period;
1136 dbri->descs[desc].inuse = 1;
1137 dbri->descs[desc].next = -1;
1138 dbri->dma->desc[desc].ba = dvma_buffer;
1139 dbri->dma->desc[desc].nda = 0;
1141 if (streamno == DBRI_PLAY) {
1142 dbri->descs[desc].len = mylen;
1143 dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
1144 dbri->dma->desc[desc].word4 = 0;
1145 if (first_desc != -1)
1146 dbri->dma->desc[desc].word1 |= DBRI_TD_M;
1147 } else {
1148 dbri->descs[desc].len = 0;
1149 dbri->dma->desc[desc].word1 = 0;
1150 dbri->dma->desc[desc].word4 =
1151 DBRI_RD_B | DBRI_RD_BCNT(mylen);
1154 if (first_desc == -1) {
1155 first_desc = desc;
1156 } else {
1157 dbri->descs[last_desc].next = desc;
1158 dbri->dma->desc[last_desc].nda =
1159 dbri->dma_dvma + dbri_dma_off(desc, desc);
1162 last_desc = desc;
1163 dvma_buffer += mylen;
1164 len -= mylen;
1167 if (first_desc == -1 || last_desc == -1) {
1168 printk("DBRI: setup_descs: Not enough descriptors available\n");
1169 return -1;
1172 dbri->dma->desc[last_desc].word1 &= ~DBRI_TD_M;
1173 if (streamno == DBRI_PLAY) {
1174 dbri->dma->desc[last_desc].word1 |=
1175 DBRI_TD_I | DBRI_TD_F | DBRI_TD_B;
1177 dbri->pipes[info->pipe].first_desc = first_desc;
1178 dbri->pipes[info->pipe].desc = first_desc;
1180 for (desc = first_desc; desc != -1; desc = dbri->descs[desc].next) {
1181 dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
1182 desc,
1183 dbri->dma->desc[desc].word1,
1184 dbri->dma->desc[desc].ba,
1185 dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
1187 return 0;
1191 ****************************************************************************
1192 ************************** DBRI - CHI interface ****************************
1193 ****************************************************************************
1195 The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1196 multiplexed serial interface which the DBRI can operate in either master
1197 (give clock/frame sync) or slave (take clock/frame sync) mode.
1201 enum master_or_slave { CHImaster, CHIslave };
1203 static void reset_chi(snd_dbri_t * dbri, enum master_or_slave master_or_slave,
1204 int bits_per_frame)
1206 volatile s32 *cmd;
1207 int val;
1208 static int chi_initialized = 0; /* FIXME: mutex? */
1210 if (!chi_initialized) {
1212 cmd = dbri_cmdlock(dbri, GetLock);
1214 /* Set CHI Anchor: Pipe 16 */
1216 val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(16) | D_PIPE(16);
1217 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
1218 *(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1219 *(cmd++) = 0;
1221 val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(16) | D_PIPE(16);
1222 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
1223 *(cmd++) = 0;
1224 *(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1226 dbri->pipes[16].sdp = 1;
1227 dbri->pipes[16].nextpipe = 16;
1228 dbri->chi_in_pipe = 16;
1229 dbri->chi_out_pipe = 16;
1231 #if 0
1232 chi_initialized++;
1233 #endif
1234 } else {
1235 int pipe;
1237 for (pipe = dbri->chi_in_pipe;
1238 pipe != 16; pipe = dbri->pipes[pipe].nextpipe) {
1239 unlink_time_slot(dbri, pipe, PIPEinput,
1240 16, dbri->pipes[pipe].nextpipe);
1242 for (pipe = dbri->chi_out_pipe;
1243 pipe != 16; pipe = dbri->pipes[pipe].nextpipe) {
1244 unlink_time_slot(dbri, pipe, PIPEoutput,
1245 16, dbri->pipes[pipe].nextpipe);
1248 dbri->chi_in_pipe = 16;
1249 dbri->chi_out_pipe = 16;
1251 cmd = dbri_cmdlock(dbri, GetLock);
1254 if (master_or_slave == CHIslave) {
1255 /* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1257 * CHICM = 0 (slave mode, 8 kHz frame rate)
1258 * IR = give immediate CHI status interrupt
1259 * EN = give CHI status interrupt upon change
1261 *(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
1262 } else {
1263 /* Setup DBRI for CHI Master - generate clock, FS
1265 * BPF = bits per 8 kHz frame
1266 * 12.288 MHz / CHICM_divisor = clock rate
1267 * FD = 1 - drive CHIFS on rising edge of CHICK
1269 int clockrate = bits_per_frame * 8;
1270 int divisor = 12288 / clockrate;
1272 if (divisor > 255 || divisor * clockrate != 12288)
1273 printk("DBRI: illegal bits_per_frame in setup_chi\n");
1275 *(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
1276 | D_CHI_BPF(bits_per_frame));
1279 dbri->chi_bpf = bits_per_frame;
1281 /* CHI Data Mode
1283 * RCE = 0 - receive on falling edge of CHICK
1284 * XCE = 1 - transmit on rising edge of CHICK
1285 * XEN = 1 - enable transmitter
1286 * REN = 1 - enable receiver
1289 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1290 *(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
1292 dbri_cmdsend(dbri, cmd);
1296 ****************************************************************************
1297 *********************** CS4215 audio codec management **********************
1298 ****************************************************************************
1300 In the standard SPARC audio configuration, the CS4215 codec is attached
1301 to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1304 static void cs4215_setup_pipes(snd_dbri_t * dbri)
1307 * Data mode:
1308 * Pipe 4: Send timeslots 1-4 (audio data)
1309 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1310 * Pipe 6: Receive timeslots 1-4 (audio data)
1311 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1312 * interrupt, and the rest of the data (slot 5 and 8) is
1313 * not relevant for us (only for doublechecking).
1315 * Control mode:
1316 * Pipe 17: Send timeslots 1-4 (slots 5-8 are readonly)
1317 * Pipe 18: Receive timeslot 1 (clb).
1318 * Pipe 19: Receive timeslot 7 (version).
1321 setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
1322 setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1323 setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
1324 setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1326 setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1327 setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1328 setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1331 static int cs4215_init_data(struct cs4215 *mm)
1334 * No action, memory resetting only.
1336 * Data Time Slot 5-8
1337 * Speaker,Line and Headphone enable. Gain set to the half.
1338 * Input is mike.
1340 mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
1341 mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
1342 mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
1343 mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1346 * Control Time Slot 1-4
1347 * 0: Default I/O voltage scale
1348 * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1349 * 2: Serial enable, CHI master, 128 bits per frame, clock 1
1350 * 3: Tests disabled
1352 mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
1353 mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
1354 mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
1355 mm->ctrl[3] = 0;
1357 mm->status = 0;
1358 mm->version = 0xff;
1359 mm->precision = 8; /* For ULAW */
1360 mm->channels = 2;
1362 return 0;
1365 static void cs4215_setdata(snd_dbri_t * dbri, int muted)
1367 if (muted) {
1368 dbri->mm.data[0] |= 63;
1369 dbri->mm.data[1] |= 63;
1370 dbri->mm.data[2] &= ~15;
1371 dbri->mm.data[3] &= ~15;
1372 } else {
1373 /* Start by setting the playback attenuation. */
1374 dbri_streaminfo_t *info = &dbri->stream_info[DBRI_PLAY];
1375 int left_gain = info->left_gain % 64;
1376 int right_gain = info->right_gain % 64;
1378 if (info->balance < DBRI_MID_BALANCE) {
1379 right_gain *= info->balance;
1380 right_gain /= DBRI_MID_BALANCE;
1381 } else {
1382 left_gain *= DBRI_RIGHT_BALANCE - info->balance;
1383 left_gain /= DBRI_MID_BALANCE;
1386 dbri->mm.data[0] &= ~0x3f; /* Reset the volume bits */
1387 dbri->mm.data[1] &= ~0x3f;
1388 dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
1389 dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
1391 /* Now set the recording gain. */
1392 info = &dbri->stream_info[DBRI_REC];
1393 left_gain = info->left_gain % 16;
1394 right_gain = info->right_gain % 16;
1395 dbri->mm.data[2] |= CS4215_LG(left_gain);
1396 dbri->mm.data[3] |= CS4215_RG(right_gain);
1399 xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
1403 * Set the CS4215 to data mode.
1405 static void cs4215_open(snd_dbri_t * dbri)
1407 int data_width;
1408 u32 tmp;
1410 dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
1411 dbri->mm.channels, dbri->mm.precision);
1413 /* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1414 * to make sure this takes. This avoids clicking noises.
1417 cs4215_setdata(dbri, 1);
1418 udelay(125);
1421 * Data mode:
1422 * Pipe 4: Send timeslots 1-4 (audio data)
1423 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1424 * Pipe 6: Receive timeslots 1-4 (audio data)
1425 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1426 * interrupt, and the rest of the data (slot 5 and 8) is
1427 * not relevant for us (only for doublechecking).
1429 * Just like in control mode, the time slots are all offset by eight
1430 * bits. The CS4215, it seems, observes TSIN (the delayed signal)
1431 * even if it's the CHI master. Don't ask me...
1433 tmp = sbus_readl(dbri->regs + REG0);
1434 tmp &= ~(D_C); /* Disable CHI */
1435 sbus_writel(tmp, dbri->regs + REG0);
1437 /* Switch CS4215 to data mode - set PIO3 to 1 */
1438 sbus_writel(D_ENPIO | D_PIO1 | D_PIO3 |
1439 (dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
1441 reset_chi(dbri, CHIslave, 128);
1443 /* Note: this next doesn't work for 8-bit stereo, because the two
1444 * channels would be on timeslots 1 and 3, with 2 and 4 idle.
1445 * (See CS4215 datasheet Fig 15)
1447 * DBRI non-contiguous mode would be required to make this work.
1449 data_width = dbri->mm.channels * dbri->mm.precision;
1451 link_time_slot(dbri, 20, PIPEoutput, 16, 32, dbri->mm.offset + 32);
1452 link_time_slot(dbri, 4, PIPEoutput, 16, data_width, dbri->mm.offset);
1453 link_time_slot(dbri, 6, PIPEinput, 16, data_width, dbri->mm.offset);
1454 link_time_slot(dbri, 21, PIPEinput, 16, 16, dbri->mm.offset + 40);
1456 /* FIXME: enable CHI after _setdata? */
1457 tmp = sbus_readl(dbri->regs + REG0);
1458 tmp |= D_C; /* Enable CHI */
1459 sbus_writel(tmp, dbri->regs + REG0);
1461 cs4215_setdata(dbri, 0);
1465 * Send the control information (i.e. audio format)
1467 static int cs4215_setctrl(snd_dbri_t * dbri)
1469 int i, val;
1470 u32 tmp;
1472 /* FIXME - let the CPU do something useful during these delays */
1474 /* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1475 * to make sure this takes. This avoids clicking noises.
1478 cs4215_setdata(dbri, 1);
1479 udelay(125);
1482 * Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1483 * 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1485 val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
1486 sbus_writel(val, dbri->regs + REG2);
1487 dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
1488 udelay(34);
1490 /* In Control mode, the CS4215 is a slave device, so the DBRI must
1491 * operate as CHI master, supplying clocking and frame synchronization.
1493 * In Data mode, however, the CS4215 must be CHI master to insure
1494 * that its data stream is synchronous with its codec.
1496 * The upshot of all this? We start by putting the DBRI into master
1497 * mode, program the CS4215 in Control mode, then switch the CS4215
1498 * into Data mode and put the DBRI into slave mode. Various timing
1499 * requirements must be observed along the way.
1501 * Oh, and one more thing, on a SPARCStation 20 (and maybe
1502 * others?), the addressing of the CS4215's time slots is
1503 * offset by eight bits, so we add eight to all the "cycle"
1504 * values in the Define Time Slot (DTS) commands. This is
1505 * done in hardware by a TI 248 that delays the DBRI->4215
1506 * frame sync signal by eight clock cycles. Anybody know why?
1508 tmp = sbus_readl(dbri->regs + REG0);
1509 tmp &= ~D_C; /* Disable CHI */
1510 sbus_writel(tmp, dbri->regs + REG0);
1512 reset_chi(dbri, CHImaster, 128);
1515 * Control mode:
1516 * Pipe 17: Send timeslots 1-4 (slots 5-8 are readonly)
1517 * Pipe 18: Receive timeslot 1 (clb).
1518 * Pipe 19: Receive timeslot 7 (version).
1521 link_time_slot(dbri, 17, PIPEoutput, 16, 32, dbri->mm.offset);
1522 link_time_slot(dbri, 18, PIPEinput, 16, 8, dbri->mm.offset);
1523 link_time_slot(dbri, 19, PIPEinput, 16, 8, dbri->mm.offset + 48);
1525 /* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1526 dbri->mm.ctrl[0] &= ~CS4215_CLB;
1527 xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1529 tmp = sbus_readl(dbri->regs + REG0);
1530 tmp |= D_C; /* Enable CHI */
1531 sbus_writel(tmp, dbri->regs + REG0);
1533 for (i = 64; ((dbri->mm.status & 0xe4) != 0x20); --i) {
1534 udelay(125);
1536 if (i == 0) {
1537 dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
1538 dbri->mm.status);
1539 return -1;
1542 /* Disable changes to our copy of the version number, as we are about
1543 * to leave control mode.
1545 recv_fixed(dbri, 19, NULL);
1547 /* Terminate CS4215 control mode - data sheet says
1548 * "Set CLB=1 and send two more frames of valid control info"
1550 dbri->mm.ctrl[0] |= CS4215_CLB;
1551 xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1553 /* Two frames of control info @ 8kHz frame rate = 250 us delay */
1554 udelay(250);
1556 cs4215_setdata(dbri, 0);
1558 return 0;
1562 * Setup the codec with the sampling rate, audio format and number of
1563 * channels.
1564 * As part of the process we resend the settings for the data
1565 * timeslots as well.
1567 static int cs4215_prepare(snd_dbri_t * dbri, unsigned int rate,
1568 snd_pcm_format_t format, unsigned int channels)
1570 int freq_idx;
1571 int ret = 0;
1573 /* Lookup index for this rate */
1574 for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
1575 if (CS4215_FREQ[freq_idx].freq == rate)
1576 break;
1578 if (CS4215_FREQ[freq_idx].freq != rate) {
1579 printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
1580 return -1;
1583 switch (format) {
1584 case SNDRV_PCM_FORMAT_MU_LAW:
1585 dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
1586 dbri->mm.precision = 8;
1587 break;
1588 case SNDRV_PCM_FORMAT_A_LAW:
1589 dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
1590 dbri->mm.precision = 8;
1591 break;
1592 case SNDRV_PCM_FORMAT_U8:
1593 dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
1594 dbri->mm.precision = 8;
1595 break;
1596 case SNDRV_PCM_FORMAT_S16_BE:
1597 dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
1598 dbri->mm.precision = 16;
1599 break;
1600 default:
1601 printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
1602 return -1;
1605 /* Add rate parameters */
1606 dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
1607 dbri->mm.ctrl[2] = CS4215_XCLK |
1608 CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
1610 dbri->mm.channels = channels;
1611 /* Stereo bit: 8 bit stereo not working yet. */
1612 if ((channels > 1) && (dbri->mm.precision == 16))
1613 dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
1615 ret = cs4215_setctrl(dbri);
1616 if (ret == 0)
1617 cs4215_open(dbri); /* set codec to data mode */
1619 return ret;
1625 static int cs4215_init(snd_dbri_t * dbri)
1627 u32 reg2 = sbus_readl(dbri->regs + REG2);
1628 dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
1630 /* Look for the cs4215 chips */
1631 if (reg2 & D_PIO2) {
1632 dprintk(D_MM, "Onboard CS4215 detected\n");
1633 dbri->mm.onboard = 1;
1635 if (reg2 & D_PIO0) {
1636 dprintk(D_MM, "Speakerbox detected\n");
1637 dbri->mm.onboard = 0;
1639 if (reg2 & D_PIO2) {
1640 printk(KERN_INFO "DBRI: Using speakerbox / "
1641 "ignoring onboard mmcodec.\n");
1642 sbus_writel(D_ENPIO2, dbri->regs + REG2);
1646 if (!(reg2 & (D_PIO0 | D_PIO2))) {
1647 printk(KERN_ERR "DBRI: no mmcodec found.\n");
1648 return -EIO;
1651 cs4215_setup_pipes(dbri);
1653 cs4215_init_data(&dbri->mm);
1655 /* Enable capture of the status & version timeslots. */
1656 recv_fixed(dbri, 18, &dbri->mm.status);
1657 recv_fixed(dbri, 19, &dbri->mm.version);
1659 dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
1660 if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
1661 dprintk(D_MM, "CS4215 failed probe at offset %d\n",
1662 dbri->mm.offset);
1663 return -EIO;
1665 dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
1667 return 0;
1671 ****************************************************************************
1672 *************************** DBRI interrupt handler *************************
1673 ****************************************************************************
1675 The DBRI communicates with the CPU mainly via a circular interrupt
1676 buffer. When an interrupt is signaled, the CPU walks through the
1677 buffer and calls dbri_process_one_interrupt() for each interrupt word.
1678 Complicated interrupts are handled by dedicated functions (which
1679 appear first in this file). Any pending interrupts can be serviced by
1680 calling dbri_process_interrupt_buffer(), which works even if the CPU's
1681 interrupts are disabled. This function is used by dbri_cmdsend()
1682 to make sure we're synced up with the chip after each command sequence,
1683 even if we're running cli'ed.
1687 /* xmit_descs()
1689 * Transmit the current TD's for recording/playing, if needed.
1690 * For playback, ALSA has filled the DMA memory with new data (we hope).
1692 static void xmit_descs(unsigned long data)
1694 snd_dbri_t *dbri = (snd_dbri_t *) data;
1695 dbri_streaminfo_t *info;
1696 volatile s32 *cmd;
1697 unsigned long flags;
1698 int first_td;
1700 if (dbri == NULL)
1701 return; /* Disabled */
1703 /* First check the recording stream for buffer overflow */
1704 info = &dbri->stream_info[DBRI_REC];
1705 spin_lock_irqsave(&dbri->lock, flags);
1707 if ((info->left >= info->size) && (info->pipe >= 0)) {
1708 first_td = dbri->pipes[info->pipe].first_desc;
1710 dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
1712 /* Stream could be closed by the time we run. */
1713 if (first_td < 0) {
1714 goto play;
1717 cmd = dbri_cmdlock(dbri, NoGetLock);
1718 *(cmd++) = DBRI_CMD(D_SDP, 0,
1719 dbri->pipes[info->pipe].sdp
1720 | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1721 *(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, first_td);
1722 dbri_cmdsend(dbri, cmd);
1724 /* Reset our admin of the pipe & bytes read. */
1725 dbri->pipes[info->pipe].desc = first_td;
1726 info->left = 0;
1729 play:
1730 spin_unlock_irqrestore(&dbri->lock, flags);
1732 /* Now check the playback stream for buffer underflow */
1733 info = &dbri->stream_info[DBRI_PLAY];
1734 spin_lock_irqsave(&dbri->lock, flags);
1736 if ((info->left <= 0) && (info->pipe >= 0)) {
1737 first_td = dbri->pipes[info->pipe].first_desc;
1739 dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
1741 /* Stream could be closed by the time we run. */
1742 if (first_td < 0) {
1743 spin_unlock_irqrestore(&dbri->lock, flags);
1744 return;
1747 cmd = dbri_cmdlock(dbri, NoGetLock);
1748 *(cmd++) = DBRI_CMD(D_SDP, 0,
1749 dbri->pipes[info->pipe].sdp
1750 | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1751 *(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, first_td);
1752 dbri_cmdsend(dbri, cmd);
1754 /* Reset our admin of the pipe & bytes written. */
1755 dbri->pipes[info->pipe].desc = first_td;
1756 info->left = info->size;
1758 spin_unlock_irqrestore(&dbri->lock, flags);
1761 DECLARE_TASKLET(xmit_descs_task, xmit_descs, 0);
1763 /* transmission_complete_intr()
1765 * Called by main interrupt handler when DBRI signals transmission complete
1766 * on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1768 * Walks through the pipe's list of transmit buffer descriptors, releasing
1769 * each one's DMA buffer (if present), flagging the descriptor available,
1770 * and signaling its callback routine (if present), before proceeding
1771 * to the next one. Stops when the first descriptor is found without
1772 * TBC (Transmit Buffer Complete) set, or we've run through them all.
1775 static void transmission_complete_intr(snd_dbri_t * dbri, int pipe)
1777 dbri_streaminfo_t *info;
1778 int td;
1779 int status;
1781 info = &dbri->stream_info[DBRI_PLAY];
1783 td = dbri->pipes[pipe].desc;
1784 while (td >= 0) {
1785 if (td >= DBRI_NO_DESCS) {
1786 printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
1787 return;
1790 status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
1791 if (!(status & DBRI_TD_TBC)) {
1792 break;
1795 dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
1797 dbri->dma->desc[td].word4 = 0; /* Reset it for next time. */
1798 info->offset += dbri->descs[td].len;
1799 info->left -= dbri->descs[td].len;
1801 /* On the last TD, transmit them all again. */
1802 if (dbri->descs[td].next == -1) {
1803 if (info->left > 0) {
1804 printk(KERN_WARNING
1805 "%d bytes left after last transfer.\n",
1806 info->left);
1807 info->left = 0;
1809 tasklet_schedule(&xmit_descs_task);
1812 td = dbri->descs[td].next;
1813 dbri->pipes[pipe].desc = td;
1816 /* Notify ALSA */
1817 if (spin_is_locked(&dbri->lock)) {
1818 spin_unlock(&dbri->lock);
1819 snd_pcm_period_elapsed(info->substream);
1820 spin_lock(&dbri->lock);
1821 } else
1822 snd_pcm_period_elapsed(info->substream);
1825 static void reception_complete_intr(snd_dbri_t * dbri, int pipe)
1827 dbri_streaminfo_t *info;
1828 int rd = dbri->pipes[pipe].desc;
1829 s32 status;
1831 if (rd < 0 || rd >= DBRI_NO_DESCS) {
1832 printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
1833 return;
1836 dbri->descs[rd].inuse = 0;
1837 dbri->pipes[pipe].desc = dbri->descs[rd].next;
1838 status = dbri->dma->desc[rd].word1;
1839 dbri->dma->desc[rd].word1 = 0; /* Reset it for next time. */
1841 info = &dbri->stream_info[DBRI_REC];
1842 info->offset += DBRI_RD_CNT(status);
1843 info->left += DBRI_RD_CNT(status);
1845 /* FIXME: Check status */
1847 dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
1848 rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
1850 /* On the last TD, transmit them all again. */
1851 if (dbri->descs[rd].next == -1) {
1852 if (info->left > info->size) {
1853 printk(KERN_WARNING
1854 "%d bytes recorded in %d size buffer.\n",
1855 info->left, info->size);
1857 tasklet_schedule(&xmit_descs_task);
1860 /* Notify ALSA */
1861 if (spin_is_locked(&dbri->lock)) {
1862 spin_unlock(&dbri->lock);
1863 snd_pcm_period_elapsed(info->substream);
1864 spin_lock(&dbri->lock);
1865 } else
1866 snd_pcm_period_elapsed(info->substream);
1869 static void dbri_process_one_interrupt(snd_dbri_t * dbri, int x)
1871 int val = D_INTR_GETVAL(x);
1872 int channel = D_INTR_GETCHAN(x);
1873 int command = D_INTR_GETCMD(x);
1874 int code = D_INTR_GETCODE(x);
1875 #ifdef DBRI_DEBUG
1876 int rval = D_INTR_GETRVAL(x);
1877 #endif
1879 if (channel == D_INTR_CMD) {
1880 dprintk(D_CMD, "INTR: Command: %-5s Value:%d\n",
1881 cmds[command], val);
1882 } else {
1883 dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
1884 channel, code, rval);
1887 if (channel == D_INTR_CMD && command == D_WAIT) {
1888 dbri->wait_seen++;
1889 return;
1892 switch (code) {
1893 case D_INTR_BRDY:
1894 reception_complete_intr(dbri, channel);
1895 break;
1896 case D_INTR_XCMP:
1897 case D_INTR_MINT:
1898 transmission_complete_intr(dbri, channel);
1899 break;
1900 case D_INTR_UNDR:
1901 /* UNDR - Transmission underrun
1902 * resend SDP command with clear pipe bit (C) set
1905 volatile s32 *cmd;
1907 int pipe = channel;
1908 int td = dbri->pipes[pipe].desc;
1910 dbri->dma->desc[td].word4 = 0;
1911 cmd = dbri_cmdlock(dbri, NoGetLock);
1912 *(cmd++) = DBRI_CMD(D_SDP, 0,
1913 dbri->pipes[pipe].sdp
1914 | D_SDP_P | D_SDP_C | D_SDP_2SAME);
1915 *(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, td);
1916 dbri_cmdsend(dbri, cmd);
1918 break;
1919 case D_INTR_FXDT:
1920 /* FXDT - Fixed data change */
1921 if (dbri->pipes[channel].sdp & D_SDP_MSB)
1922 val = reverse_bytes(val, dbri->pipes[channel].length);
1924 if (dbri->pipes[channel].recv_fixed_ptr)
1925 *(dbri->pipes[channel].recv_fixed_ptr) = val;
1926 break;
1927 default:
1928 if (channel != D_INTR_CMD)
1929 printk(KERN_WARNING
1930 "DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
1934 /* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1935 * buffer until it finds a zero word (indicating nothing more to do
1936 * right now). Non-zero words require processing and are handed off
1937 * to dbri_process_one_interrupt AFTER advancing the pointer. This
1938 * order is important since we might recurse back into this function
1939 * and need to make sure the pointer has been advanced first.
1941 static void dbri_process_interrupt_buffer(snd_dbri_t * dbri)
1943 s32 x;
1945 while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
1946 dbri->dma->intr[dbri->dbri_irqp] = 0;
1947 dbri->dbri_irqp++;
1948 if (dbri->dbri_irqp == (DBRI_NO_INTS * DBRI_INT_BLK))
1949 dbri->dbri_irqp = 1;
1950 else if ((dbri->dbri_irqp & (DBRI_INT_BLK - 1)) == 0)
1951 dbri->dbri_irqp++;
1953 dbri_process_one_interrupt(dbri, x);
1957 static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id,
1958 struct pt_regs *regs)
1960 snd_dbri_t *dbri = dev_id;
1961 static int errcnt = 0;
1962 int x;
1964 if (dbri == NULL)
1965 return IRQ_NONE;
1966 spin_lock(&dbri->lock);
1969 * Read it, so the interrupt goes away.
1971 x = sbus_readl(dbri->regs + REG1);
1973 if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
1974 u32 tmp;
1976 if (x & D_MRR)
1977 printk(KERN_ERR
1978 "DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1980 if (x & D_MLE)
1981 printk(KERN_ERR
1982 "DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1984 if (x & D_LBG)
1985 printk(KERN_ERR
1986 "DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
1987 if (x & D_MBE)
1988 printk(KERN_ERR
1989 "DBRI: Burst Error on SBus reg1=0x%x\n", x);
1991 /* Some of these SBus errors cause the chip's SBus circuitry
1992 * to be disabled, so just re-enable and try to keep going.
1994 * The only one I've seen is MRR, which will be triggered
1995 * if you let a transmit pipe underrun, then try to CDP it.
1997 * If these things persist, we should probably reset
1998 * and re-init the chip.
2000 if ((++errcnt) % 10 == 0) {
2001 dprintk(D_INT, "Interrupt errors exceeded.\n");
2002 dbri_reset(dbri);
2003 } else {
2004 tmp = sbus_readl(dbri->regs + REG0);
2005 tmp &= ~(D_D);
2006 sbus_writel(tmp, dbri->regs + REG0);
2010 dbri_process_interrupt_buffer(dbri);
2012 /* FIXME: Write 0 into regs to ACK interrupt */
2014 spin_unlock(&dbri->lock);
2016 return IRQ_HANDLED;
2019 /****************************************************************************
2020 PCM Interface
2021 ****************************************************************************/
2022 static snd_pcm_hardware_t snd_dbri_pcm_hw = {
2023 .info = (SNDRV_PCM_INFO_MMAP |
2024 SNDRV_PCM_INFO_INTERLEAVED |
2025 SNDRV_PCM_INFO_BLOCK_TRANSFER |
2026 SNDRV_PCM_INFO_MMAP_VALID),
2027 .formats = SNDRV_PCM_FMTBIT_MU_LAW |
2028 SNDRV_PCM_FMTBIT_A_LAW |
2029 SNDRV_PCM_FMTBIT_U8 |
2030 SNDRV_PCM_FMTBIT_S16_BE,
2031 .rates = SNDRV_PCM_RATE_8000_48000,
2032 .rate_min = 8000,
2033 .rate_max = 48000,
2034 .channels_min = 1,
2035 .channels_max = 2,
2036 .buffer_bytes_max = (64 * 1024),
2037 .period_bytes_min = 1,
2038 .period_bytes_max = DBRI_TD_MAXCNT,
2039 .periods_min = 1,
2040 .periods_max = 1024,
2043 static int snd_dbri_open(snd_pcm_substream_t * substream)
2045 snd_dbri_t *dbri = snd_pcm_substream_chip(substream);
2046 snd_pcm_runtime_t *runtime = substream->runtime;
2047 dbri_streaminfo_t *info = DBRI_STREAM(dbri, substream);
2048 unsigned long flags;
2050 dprintk(D_USR, "open audio output.\n");
2051 runtime->hw = snd_dbri_pcm_hw;
2053 spin_lock_irqsave(&dbri->lock, flags);
2054 info->substream = substream;
2055 info->left = 0;
2056 info->offset = 0;
2057 info->dvma_buffer = 0;
2058 info->pipe = -1;
2059 spin_unlock_irqrestore(&dbri->lock, flags);
2061 cs4215_open(dbri);
2063 return 0;
2066 static int snd_dbri_close(snd_pcm_substream_t * substream)
2068 snd_dbri_t *dbri = snd_pcm_substream_chip(substream);
2069 dbri_streaminfo_t *info = DBRI_STREAM(dbri, substream);
2071 dprintk(D_USR, "close audio output.\n");
2072 info->substream = NULL;
2073 info->left = 0;
2074 info->offset = 0;
2076 return 0;
2079 static int snd_dbri_hw_params(snd_pcm_substream_t * substream,
2080 snd_pcm_hw_params_t * hw_params)
2082 snd_pcm_runtime_t *runtime = substream->runtime;
2083 snd_dbri_t *dbri = snd_pcm_substream_chip(substream);
2084 dbri_streaminfo_t *info = DBRI_STREAM(dbri, substream);
2085 int direction;
2086 int ret;
2088 /* set sampling rate, audio format and number of channels */
2089 ret = cs4215_prepare(dbri, params_rate(hw_params),
2090 params_format(hw_params),
2091 params_channels(hw_params));
2092 if (ret != 0)
2093 return ret;
2095 if ((ret = snd_pcm_lib_malloc_pages(substream,
2096 params_buffer_bytes(hw_params))) < 0) {
2097 snd_printk(KERN_ERR "malloc_pages failed with %d\n", ret);
2098 return ret;
2101 /* hw_params can get called multiple times. Only map the DMA once.
2103 if (info->dvma_buffer == 0) {
2104 if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2105 direction = SBUS_DMA_TODEVICE;
2106 else
2107 direction = SBUS_DMA_FROMDEVICE;
2109 info->dvma_buffer = sbus_map_single(dbri->sdev,
2110 runtime->dma_area,
2111 params_buffer_bytes(hw_params),
2112 direction);
2115 direction = params_buffer_bytes(hw_params);
2116 dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
2117 direction, info->dvma_buffer);
2118 return 0;
2121 static int snd_dbri_hw_free(snd_pcm_substream_t * substream)
2123 snd_dbri_t *dbri = snd_pcm_substream_chip(substream);
2124 dbri_streaminfo_t *info = DBRI_STREAM(dbri, substream);
2125 int direction;
2126 dprintk(D_USR, "hw_free.\n");
2128 /* hw_free can get called multiple times. Only unmap the DMA once.
2130 if (info->dvma_buffer) {
2131 if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2132 direction = SBUS_DMA_TODEVICE;
2133 else
2134 direction = SBUS_DMA_FROMDEVICE;
2136 sbus_unmap_single(dbri->sdev, info->dvma_buffer,
2137 substream->runtime->buffer_size, direction);
2138 info->dvma_buffer = 0;
2140 info->pipe = -1;
2142 return snd_pcm_lib_free_pages(substream);
2145 static int snd_dbri_prepare(snd_pcm_substream_t * substream)
2147 snd_dbri_t *dbri = snd_pcm_substream_chip(substream);
2148 dbri_streaminfo_t *info = DBRI_STREAM(dbri, substream);
2149 snd_pcm_runtime_t *runtime = substream->runtime;
2150 int ret;
2152 info->size = snd_pcm_lib_buffer_bytes(substream);
2153 if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2154 info->pipe = 4; /* Send pipe */
2155 else {
2156 info->pipe = 6; /* Receive pipe */
2157 info->left = info->size; /* To trigger submittal */
2160 spin_lock_irq(&dbri->lock);
2162 /* Setup the all the transmit/receive desciptors to cover the
2163 * whole DMA buffer.
2165 ret = setup_descs(dbri, DBRI_STREAMNO(substream),
2166 snd_pcm_lib_period_bytes(substream));
2168 runtime->stop_threshold = DBRI_TD_MAXCNT / runtime->channels;
2170 spin_unlock_irq(&dbri->lock);
2172 dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
2173 return ret;
2176 static int snd_dbri_trigger(snd_pcm_substream_t * substream, int cmd)
2178 snd_dbri_t *dbri = snd_pcm_substream_chip(substream);
2179 dbri_streaminfo_t *info = DBRI_STREAM(dbri, substream);
2180 int ret = 0;
2182 switch (cmd) {
2183 case SNDRV_PCM_TRIGGER_START:
2184 dprintk(D_USR, "start audio, period is %d bytes\n",
2185 (int)snd_pcm_lib_period_bytes(substream));
2186 /* Enable & schedule the tasklet that re-submits the TDs. */
2187 xmit_descs_task.data = (unsigned long)dbri;
2188 tasklet_schedule(&xmit_descs_task);
2189 break;
2190 case SNDRV_PCM_TRIGGER_STOP:
2191 dprintk(D_USR, "stop audio.\n");
2192 /* Make the tasklet bail out immediately. */
2193 xmit_descs_task.data = 0;
2194 reset_pipe(dbri, info->pipe);
2195 break;
2196 default:
2197 ret = -EINVAL;
2200 return ret;
2203 static snd_pcm_uframes_t snd_dbri_pointer(snd_pcm_substream_t * substream)
2205 snd_dbri_t *dbri = snd_pcm_substream_chip(substream);
2206 dbri_streaminfo_t *info = DBRI_STREAM(dbri, substream);
2207 snd_pcm_uframes_t ret;
2209 ret = bytes_to_frames(substream->runtime, info->offset)
2210 % substream->runtime->buffer_size;
2211 dprintk(D_USR, "I/O pointer: %ld frames, %d bytes left.\n",
2212 ret, info->left);
2213 return ret;
2216 static snd_pcm_ops_t snd_dbri_ops = {
2217 .open = snd_dbri_open,
2218 .close = snd_dbri_close,
2219 .ioctl = snd_pcm_lib_ioctl,
2220 .hw_params = snd_dbri_hw_params,
2221 .hw_free = snd_dbri_hw_free,
2222 .prepare = snd_dbri_prepare,
2223 .trigger = snd_dbri_trigger,
2224 .pointer = snd_dbri_pointer,
2227 static int __devinit snd_dbri_pcm(snd_dbri_t * dbri)
2229 snd_pcm_t *pcm;
2230 int err;
2232 if ((err = snd_pcm_new(dbri->card,
2233 /* ID */ "sun_dbri",
2234 /* device */ 0,
2235 /* playback count */ 1,
2236 /* capture count */ 1, &pcm)) < 0)
2237 return err;
2238 snd_assert(pcm != NULL, return -EINVAL);
2240 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
2241 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
2243 pcm->private_data = dbri;
2244 pcm->info_flags = 0;
2245 strcpy(pcm->name, dbri->card->shortname);
2246 dbri->pcm = pcm;
2248 if ((err = snd_pcm_lib_preallocate_pages_for_all(pcm,
2249 SNDRV_DMA_TYPE_CONTINUOUS,
2250 snd_dma_continuous_data(GFP_KERNEL),
2251 64 * 1024, 64 * 1024)) < 0) {
2252 return err;
2255 return 0;
2258 /*****************************************************************************
2259 Mixer interface
2260 *****************************************************************************/
2262 static int snd_cs4215_info_volume(snd_kcontrol_t * kcontrol,
2263 snd_ctl_elem_info_t * uinfo)
2265 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2266 uinfo->count = 2;
2267 uinfo->value.integer.min = 0;
2268 if (kcontrol->private_value == DBRI_PLAY) {
2269 uinfo->value.integer.max = DBRI_MAX_VOLUME;
2270 } else {
2271 uinfo->value.integer.max = DBRI_MAX_GAIN;
2273 return 0;
2276 static int snd_cs4215_get_volume(snd_kcontrol_t * kcontrol,
2277 snd_ctl_elem_value_t * ucontrol)
2279 snd_dbri_t *dbri = snd_kcontrol_chip(kcontrol);
2280 dbri_streaminfo_t *info;
2281 snd_assert(dbri != NULL, return -EINVAL);
2282 info = &dbri->stream_info[kcontrol->private_value];
2283 snd_assert(info != NULL, return -EINVAL);
2285 ucontrol->value.integer.value[0] = info->left_gain;
2286 ucontrol->value.integer.value[1] = info->right_gain;
2287 return 0;
2290 static int snd_cs4215_put_volume(snd_kcontrol_t * kcontrol,
2291 snd_ctl_elem_value_t * ucontrol)
2293 snd_dbri_t *dbri = snd_kcontrol_chip(kcontrol);
2294 dbri_streaminfo_t *info = &dbri->stream_info[kcontrol->private_value];
2295 unsigned long flags;
2296 int changed = 0;
2298 if (info->left_gain != ucontrol->value.integer.value[0]) {
2299 info->left_gain = ucontrol->value.integer.value[0];
2300 changed = 1;
2302 if (info->right_gain != ucontrol->value.integer.value[1]) {
2303 info->right_gain = ucontrol->value.integer.value[1];
2304 changed = 1;
2306 if (changed == 1) {
2307 /* First mute outputs, and wait 1/8000 sec (125 us)
2308 * to make sure this takes. This avoids clicking noises.
2310 spin_lock_irqsave(&dbri->lock, flags);
2312 cs4215_setdata(dbri, 1);
2313 udelay(125);
2314 cs4215_setdata(dbri, 0);
2316 spin_unlock_irqrestore(&dbri->lock, flags);
2318 return changed;
2321 static int snd_cs4215_info_single(snd_kcontrol_t * kcontrol,
2322 snd_ctl_elem_info_t * uinfo)
2324 int mask = (kcontrol->private_value >> 16) & 0xff;
2326 uinfo->type = (mask == 1) ?
2327 SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2328 uinfo->count = 1;
2329 uinfo->value.integer.min = 0;
2330 uinfo->value.integer.max = mask;
2331 return 0;
2334 static int snd_cs4215_get_single(snd_kcontrol_t * kcontrol,
2335 snd_ctl_elem_value_t * ucontrol)
2337 snd_dbri_t *dbri = snd_kcontrol_chip(kcontrol);
2338 int elem = kcontrol->private_value & 0xff;
2339 int shift = (kcontrol->private_value >> 8) & 0xff;
2340 int mask = (kcontrol->private_value >> 16) & 0xff;
2341 int invert = (kcontrol->private_value >> 24) & 1;
2342 snd_assert(dbri != NULL, return -EINVAL);
2344 if (elem < 4) {
2345 ucontrol->value.integer.value[0] =
2346 (dbri->mm.data[elem] >> shift) & mask;
2347 } else {
2348 ucontrol->value.integer.value[0] =
2349 (dbri->mm.ctrl[elem - 4] >> shift) & mask;
2352 if (invert == 1) {
2353 ucontrol->value.integer.value[0] =
2354 mask - ucontrol->value.integer.value[0];
2356 return 0;
2359 static int snd_cs4215_put_single(snd_kcontrol_t * kcontrol,
2360 snd_ctl_elem_value_t * ucontrol)
2362 snd_dbri_t *dbri = snd_kcontrol_chip(kcontrol);
2363 unsigned long flags;
2364 int elem = kcontrol->private_value & 0xff;
2365 int shift = (kcontrol->private_value >> 8) & 0xff;
2366 int mask = (kcontrol->private_value >> 16) & 0xff;
2367 int invert = (kcontrol->private_value >> 24) & 1;
2368 int changed = 0;
2369 unsigned short val;
2370 snd_assert(dbri != NULL, return -EINVAL);
2372 val = (ucontrol->value.integer.value[0] & mask);
2373 if (invert == 1)
2374 val = mask - val;
2375 val <<= shift;
2377 if (elem < 4) {
2378 dbri->mm.data[elem] = (dbri->mm.data[elem] &
2379 ~(mask << shift)) | val;
2380 changed = (val != dbri->mm.data[elem]);
2381 } else {
2382 dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
2383 ~(mask << shift)) | val;
2384 changed = (val != dbri->mm.ctrl[elem - 4]);
2387 dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
2388 "mixer-value=%ld, mm-value=0x%x\n",
2389 mask, changed, ucontrol->value.integer.value[0],
2390 dbri->mm.data[elem & 3]);
2392 if (changed) {
2393 /* First mute outputs, and wait 1/8000 sec (125 us)
2394 * to make sure this takes. This avoids clicking noises.
2396 spin_lock_irqsave(&dbri->lock, flags);
2398 cs4215_setdata(dbri, 1);
2399 udelay(125);
2400 cs4215_setdata(dbri, 0);
2402 spin_unlock_irqrestore(&dbri->lock, flags);
2404 return changed;
2407 /* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2408 timeslots. Shift is the bit offset in the timeslot, mask defines the
2409 number of bits. invert is a boolean for use with attenuation.
2411 #define CS4215_SINGLE(xname, entry, shift, mask, invert) \
2412 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2413 .info = snd_cs4215_info_single, \
2414 .get = snd_cs4215_get_single, .put = snd_cs4215_put_single, \
2415 .private_value = entry | (shift << 8) | (mask << 16) | (invert << 24) },
2417 static snd_kcontrol_new_t dbri_controls[] __devinitdata = {
2419 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2420 .name = "Playback Volume",
2421 .info = snd_cs4215_info_volume,
2422 .get = snd_cs4215_get_volume,
2423 .put = snd_cs4215_put_volume,
2424 .private_value = DBRI_PLAY,
2426 CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2427 CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2428 CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2430 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2431 .name = "Capture Volume",
2432 .info = snd_cs4215_info_volume,
2433 .get = snd_cs4215_get_volume,
2434 .put = snd_cs4215_put_volume,
2435 .private_value = DBRI_REC,
2437 /* FIXME: mic/line switch */
2438 CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2439 CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2440 CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2441 CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2444 #define NUM_CS4215_CONTROLS (sizeof(dbri_controls)/sizeof(snd_kcontrol_new_t))
2446 static int __init snd_dbri_mixer(snd_dbri_t * dbri)
2448 snd_card_t *card;
2449 int idx, err;
2451 snd_assert(dbri != NULL && dbri->card != NULL, return -EINVAL);
2453 card = dbri->card;
2454 strcpy(card->mixername, card->shortname);
2456 for (idx = 0; idx < NUM_CS4215_CONTROLS; idx++) {
2457 if ((err = snd_ctl_add(card,
2458 snd_ctl_new1(&dbri_controls[idx],
2459 dbri))) < 0)
2460 return err;
2463 for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
2464 dbri->stream_info[idx].left_gain = 0;
2465 dbri->stream_info[idx].right_gain = 0;
2466 dbri->stream_info[idx].balance = DBRI_MID_BALANCE;
2469 return 0;
2472 /****************************************************************************
2473 /proc interface
2474 ****************************************************************************/
2475 static void dbri_regs_read(snd_info_entry_t * entry, snd_info_buffer_t * buffer)
2477 snd_dbri_t *dbri = entry->private_data;
2479 snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
2480 snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
2481 snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
2482 snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
2485 #ifdef DBRI_DEBUG
2486 static void dbri_debug_read(snd_info_entry_t * entry,
2487 snd_info_buffer_t * buffer)
2489 snd_dbri_t *dbri = entry->private_data;
2490 int pipe;
2491 snd_iprintf(buffer, "debug=%d\n", dbri_debug);
2493 snd_iprintf(buffer, "CHI pipe in=%d, out=%d\n",
2494 dbri->chi_in_pipe, dbri->chi_out_pipe);
2495 for (pipe = 0; pipe < 32; pipe++) {
2496 if (pipe_active(dbri, pipe)) {
2497 struct dbri_pipe *pptr = &dbri->pipes[pipe];
2498 snd_iprintf(buffer,
2499 "Pipe %d: %s SDP=0x%x desc=%d, "
2500 "len=%d @ %d prev: %d next %d\n",
2501 pipe,
2502 (pptr->direction ==
2503 PIPEinput ? "input" : "output"), pptr->sdp,
2504 pptr->desc, pptr->length, pptr->cycle,
2505 pptr->prevpipe, pptr->nextpipe);
2510 static void dbri_debug_write(snd_info_entry_t * entry,
2511 snd_info_buffer_t * buffer)
2513 char line[80];
2514 int i;
2516 if (snd_info_get_line(buffer, line, 80) == 0) {
2517 sscanf(line, "%d\n", &i);
2518 dbri_debug = i & 0x3f;
2521 #endif
2523 void snd_dbri_proc(snd_dbri_t * dbri)
2525 snd_info_entry_t *entry;
2526 int err;
2528 err = snd_card_proc_new(dbri->card, "regs", &entry);
2529 snd_info_set_text_ops(entry, dbri, 1024, dbri_regs_read);
2531 #ifdef DBRI_DEBUG
2532 err = snd_card_proc_new(dbri->card, "debug", &entry);
2533 snd_info_set_text_ops(entry, dbri, 4096, dbri_debug_read);
2534 entry->mode = S_IFREG | S_IRUGO | S_IWUSR; /* Writable for root */
2535 entry->c.text.write_size = 256;
2536 entry->c.text.write = dbri_debug_write;
2537 #endif
2541 ****************************************************************************
2542 **************************** Initialization ********************************
2543 ****************************************************************************
2545 static void snd_dbri_free(snd_dbri_t * dbri);
2547 static int __init snd_dbri_create(snd_card_t * card,
2548 struct sbus_dev *sdev,
2549 struct linux_prom_irqs *irq, int dev)
2551 snd_dbri_t *dbri = card->private_data;
2552 int err;
2554 spin_lock_init(&dbri->lock);
2555 dbri->card = card;
2556 dbri->sdev = sdev;
2557 dbri->irq = irq->pri;
2558 dbri->dbri_version = sdev->prom_name[9];
2560 dbri->dma = sbus_alloc_consistent(sdev, sizeof(struct dbri_dma),
2561 &dbri->dma_dvma);
2562 memset((void *)dbri->dma, 0, sizeof(struct dbri_dma));
2564 dprintk(D_GEN, "DMA Cmd Block 0x%p (0x%08x)\n",
2565 dbri->dma, dbri->dma_dvma);
2567 /* Map the registers into memory. */
2568 dbri->regs_size = sdev->reg_addrs[0].reg_size;
2569 dbri->regs = sbus_ioremap(&sdev->resource[0], 0,
2570 dbri->regs_size, "DBRI Registers");
2571 if (!dbri->regs) {
2572 printk(KERN_ERR "DBRI: could not allocate registers\n");
2573 sbus_free_consistent(sdev, sizeof(struct dbri_dma),
2574 (void *)dbri->dma, dbri->dma_dvma);
2575 return -EIO;
2578 err = request_irq(dbri->irq, snd_dbri_interrupt, SA_SHIRQ,
2579 "DBRI audio", dbri);
2580 if (err) {
2581 printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
2582 sbus_iounmap(dbri->regs, dbri->regs_size);
2583 sbus_free_consistent(sdev, sizeof(struct dbri_dma),
2584 (void *)dbri->dma, dbri->dma_dvma);
2585 return err;
2588 /* Do low level initialization of the DBRI and CS4215 chips */
2589 dbri_initialize(dbri);
2590 err = cs4215_init(dbri);
2591 if (err) {
2592 snd_dbri_free(dbri);
2593 return err;
2596 dbri->next = dbri_list;
2597 dbri_list = dbri;
2599 return 0;
2602 static void snd_dbri_free(snd_dbri_t * dbri)
2604 dprintk(D_GEN, "snd_dbri_free\n");
2605 dbri_reset(dbri);
2607 if (dbri->irq)
2608 free_irq(dbri->irq, dbri);
2610 if (dbri->regs)
2611 sbus_iounmap(dbri->regs, dbri->regs_size);
2613 if (dbri->dma)
2614 sbus_free_consistent(dbri->sdev, sizeof(struct dbri_dma),
2615 (void *)dbri->dma, dbri->dma_dvma);
2618 static int __init dbri_attach(int prom_node, struct sbus_dev *sdev)
2620 snd_dbri_t *dbri;
2621 struct linux_prom_irqs irq;
2622 struct resource *rp;
2623 snd_card_t *card;
2624 static int dev = 0;
2625 int err;
2627 if (sdev->prom_name[9] < 'e') {
2628 printk(KERN_ERR "DBRI: unsupported chip version %c found.\n",
2629 sdev->prom_name[9]);
2630 return -EIO;
2633 if (dev >= SNDRV_CARDS)
2634 return -ENODEV;
2635 if (!enable[dev]) {
2636 dev++;
2637 return -ENOENT;
2640 prom_getproperty(prom_node, "intr", (char *)&irq, sizeof(irq));
2642 card = snd_card_new(index[dev], id[dev], THIS_MODULE,
2643 sizeof(snd_dbri_t));
2644 if (card == NULL)
2645 return -ENOMEM;
2647 strcpy(card->driver, "DBRI");
2648 strcpy(card->shortname, "Sun DBRI");
2649 rp = &sdev->resource[0];
2650 sprintf(card->longname, "%s at 0x%02lx:0x%08lx, irq %s",
2651 card->shortname,
2652 rp->flags & 0xffL, rp->start, __irq_itoa(irq.pri));
2654 if ((err = snd_dbri_create(card, sdev, &irq, dev)) < 0) {
2655 snd_card_free(card);
2656 return err;
2659 dbri = (snd_dbri_t *) card->private_data;
2660 if ((err = snd_dbri_pcm(dbri)) < 0) {
2661 snd_dbri_free(dbri);
2662 snd_card_free(card);
2663 return err;
2666 if ((err = snd_dbri_mixer(dbri)) < 0) {
2667 snd_dbri_free(dbri);
2668 snd_card_free(card);
2669 return err;
2672 /* /proc file handling */
2673 snd_dbri_proc(dbri);
2675 if ((err = snd_card_register(card)) < 0) {
2676 snd_dbri_free(dbri);
2677 snd_card_free(card);
2678 return err;
2681 printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2682 dev, dbri->regs,
2683 dbri->irq, dbri->dbri_version, dbri->mm.version);
2684 dev++;
2686 return 0;
2689 /* Probe for the dbri chip and then attach the driver. */
2690 static int __init dbri_init(void)
2692 struct sbus_bus *sbus;
2693 struct sbus_dev *sdev;
2694 int found = 0;
2696 /* Probe each SBUS for the DBRI chip(s). */
2697 for_all_sbusdev(sdev, sbus) {
2699 * The version is coded in the last character
2701 if (!strncmp(sdev->prom_name, "SUNW,DBRI", 9)) {
2702 dprintk(D_GEN, "DBRI: Found %s in SBUS slot %d\n",
2703 sdev->prom_name, sdev->slot);
2705 if (dbri_attach(sdev->prom_node, sdev) == 0)
2706 found++;
2710 return (found > 0) ? 0 : -EIO;
2713 static void __exit dbri_exit(void)
2715 snd_dbri_t *this = dbri_list;
2717 while (this != NULL) {
2718 snd_dbri_t *next = this->next;
2719 snd_card_t *card = this->card;
2721 snd_dbri_free(this);
2722 snd_card_free(card);
2723 this = next;
2725 dbri_list = NULL;
2728 module_init(dbri_init);
2729 module_exit(dbri_exit);