ASoC: Fix section mismatch in wm8995.c
[linux-2.6/next.git] / include / linux / mm.h
blob721f451c3029bb756324458f93eccf107778d746
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
4 #include <linux/errno.h>
6 #ifdef __KERNEL__
8 #include <linux/gfp.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/prio_tree.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
15 #include <linux/range.h>
16 #include <linux/pfn.h>
18 struct mempolicy;
19 struct anon_vma;
20 struct file_ra_state;
21 struct user_struct;
22 struct writeback_control;
24 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
25 extern unsigned long max_mapnr;
26 #endif
28 extern unsigned long num_physpages;
29 extern unsigned long totalram_pages;
30 extern void * high_memory;
31 extern int page_cluster;
33 #ifdef CONFIG_SYSCTL
34 extern int sysctl_legacy_va_layout;
35 #else
36 #define sysctl_legacy_va_layout 0
37 #endif
39 #include <asm/page.h>
40 #include <asm/pgtable.h>
41 #include <asm/processor.h>
43 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
45 /* to align the pointer to the (next) page boundary */
46 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
49 * Linux kernel virtual memory manager primitives.
50 * The idea being to have a "virtual" mm in the same way
51 * we have a virtual fs - giving a cleaner interface to the
52 * mm details, and allowing different kinds of memory mappings
53 * (from shared memory to executable loading to arbitrary
54 * mmap() functions).
57 extern struct kmem_cache *vm_area_cachep;
59 #ifndef CONFIG_MMU
60 extern struct rb_root nommu_region_tree;
61 extern struct rw_semaphore nommu_region_sem;
63 extern unsigned int kobjsize(const void *objp);
64 #endif
67 * vm_flags in vm_area_struct, see mm_types.h.
69 #define VM_READ 0x00000001 /* currently active flags */
70 #define VM_WRITE 0x00000002
71 #define VM_EXEC 0x00000004
72 #define VM_SHARED 0x00000008
74 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
75 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
76 #define VM_MAYWRITE 0x00000020
77 #define VM_MAYEXEC 0x00000040
78 #define VM_MAYSHARE 0x00000080
80 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
81 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
82 #define VM_GROWSUP 0x00000200
83 #else
84 #define VM_GROWSUP 0x00000000
85 #endif
86 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
87 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
89 #define VM_EXECUTABLE 0x00001000
90 #define VM_LOCKED 0x00002000
91 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
93 /* Used by sys_madvise() */
94 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
95 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
97 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
98 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
99 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
100 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
101 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
102 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
103 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
104 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
105 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
106 #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
108 #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
109 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
110 #define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
111 #define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */
112 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
114 /* Bits set in the VMA until the stack is in its final location */
115 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
117 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
118 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
119 #endif
121 #ifdef CONFIG_STACK_GROWSUP
122 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
123 #else
124 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
125 #endif
127 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
128 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
129 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
130 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
131 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
134 * special vmas that are non-mergable, non-mlock()able
136 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
139 * mapping from the currently active vm_flags protection bits (the
140 * low four bits) to a page protection mask..
142 extern pgprot_t protection_map[16];
144 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
145 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
146 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
147 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
150 * This interface is used by x86 PAT code to identify a pfn mapping that is
151 * linear over entire vma. This is to optimize PAT code that deals with
152 * marking the physical region with a particular prot. This is not for generic
153 * mm use. Note also that this check will not work if the pfn mapping is
154 * linear for a vma starting at physical address 0. In which case PAT code
155 * falls back to slow path of reserving physical range page by page.
157 static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
159 return (vma->vm_flags & VM_PFN_AT_MMAP);
162 static inline int is_pfn_mapping(struct vm_area_struct *vma)
164 return (vma->vm_flags & VM_PFNMAP);
168 * vm_fault is filled by the the pagefault handler and passed to the vma's
169 * ->fault function. The vma's ->fault is responsible for returning a bitmask
170 * of VM_FAULT_xxx flags that give details about how the fault was handled.
172 * pgoff should be used in favour of virtual_address, if possible. If pgoff
173 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
174 * mapping support.
176 struct vm_fault {
177 unsigned int flags; /* FAULT_FLAG_xxx flags */
178 pgoff_t pgoff; /* Logical page offset based on vma */
179 void __user *virtual_address; /* Faulting virtual address */
181 struct page *page; /* ->fault handlers should return a
182 * page here, unless VM_FAULT_NOPAGE
183 * is set (which is also implied by
184 * VM_FAULT_ERROR).
189 * These are the virtual MM functions - opening of an area, closing and
190 * unmapping it (needed to keep files on disk up-to-date etc), pointer
191 * to the functions called when a no-page or a wp-page exception occurs.
193 struct vm_operations_struct {
194 void (*open)(struct vm_area_struct * area);
195 void (*close)(struct vm_area_struct * area);
196 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
198 /* notification that a previously read-only page is about to become
199 * writable, if an error is returned it will cause a SIGBUS */
200 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
202 /* called by access_process_vm when get_user_pages() fails, typically
203 * for use by special VMAs that can switch between memory and hardware
205 int (*access)(struct vm_area_struct *vma, unsigned long addr,
206 void *buf, int len, int write);
207 #ifdef CONFIG_NUMA
209 * set_policy() op must add a reference to any non-NULL @new mempolicy
210 * to hold the policy upon return. Caller should pass NULL @new to
211 * remove a policy and fall back to surrounding context--i.e. do not
212 * install a MPOL_DEFAULT policy, nor the task or system default
213 * mempolicy.
215 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
218 * get_policy() op must add reference [mpol_get()] to any policy at
219 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
220 * in mm/mempolicy.c will do this automatically.
221 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
222 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
223 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
224 * must return NULL--i.e., do not "fallback" to task or system default
225 * policy.
227 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
228 unsigned long addr);
229 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
230 const nodemask_t *to, unsigned long flags);
231 #endif
234 struct mmu_gather;
235 struct inode;
237 #define page_private(page) ((page)->private)
238 #define set_page_private(page, v) ((page)->private = (v))
241 * FIXME: take this include out, include page-flags.h in
242 * files which need it (119 of them)
244 #include <linux/page-flags.h>
247 * Methods to modify the page usage count.
249 * What counts for a page usage:
250 * - cache mapping (page->mapping)
251 * - private data (page->private)
252 * - page mapped in a task's page tables, each mapping
253 * is counted separately
255 * Also, many kernel routines increase the page count before a critical
256 * routine so they can be sure the page doesn't go away from under them.
260 * Drop a ref, return true if the refcount fell to zero (the page has no users)
262 static inline int put_page_testzero(struct page *page)
264 VM_BUG_ON(atomic_read(&page->_count) == 0);
265 return atomic_dec_and_test(&page->_count);
269 * Try to grab a ref unless the page has a refcount of zero, return false if
270 * that is the case.
272 static inline int get_page_unless_zero(struct page *page)
274 return atomic_inc_not_zero(&page->_count);
277 extern int page_is_ram(unsigned long pfn);
279 /* Support for virtually mapped pages */
280 struct page *vmalloc_to_page(const void *addr);
281 unsigned long vmalloc_to_pfn(const void *addr);
284 * Determine if an address is within the vmalloc range
286 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
287 * is no special casing required.
289 static inline int is_vmalloc_addr(const void *x)
291 #ifdef CONFIG_MMU
292 unsigned long addr = (unsigned long)x;
294 return addr >= VMALLOC_START && addr < VMALLOC_END;
295 #else
296 return 0;
297 #endif
299 #ifdef CONFIG_MMU
300 extern int is_vmalloc_or_module_addr(const void *x);
301 #else
302 static inline int is_vmalloc_or_module_addr(const void *x)
304 return 0;
306 #endif
308 static inline struct page *compound_head(struct page *page)
310 if (unlikely(PageTail(page)))
311 return page->first_page;
312 return page;
315 static inline int page_count(struct page *page)
317 return atomic_read(&compound_head(page)->_count);
320 static inline void get_page(struct page *page)
322 page = compound_head(page);
323 VM_BUG_ON(atomic_read(&page->_count) == 0);
324 atomic_inc(&page->_count);
327 static inline struct page *virt_to_head_page(const void *x)
329 struct page *page = virt_to_page(x);
330 return compound_head(page);
334 * Setup the page count before being freed into the page allocator for
335 * the first time (boot or memory hotplug)
337 static inline void init_page_count(struct page *page)
339 atomic_set(&page->_count, 1);
342 void put_page(struct page *page);
343 void put_pages_list(struct list_head *pages);
345 void split_page(struct page *page, unsigned int order);
346 int split_free_page(struct page *page);
349 * Compound pages have a destructor function. Provide a
350 * prototype for that function and accessor functions.
351 * These are _only_ valid on the head of a PG_compound page.
353 typedef void compound_page_dtor(struct page *);
355 static inline void set_compound_page_dtor(struct page *page,
356 compound_page_dtor *dtor)
358 page[1].lru.next = (void *)dtor;
361 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
363 return (compound_page_dtor *)page[1].lru.next;
366 static inline int compound_order(struct page *page)
368 if (!PageHead(page))
369 return 0;
370 return (unsigned long)page[1].lru.prev;
373 static inline void set_compound_order(struct page *page, unsigned long order)
375 page[1].lru.prev = (void *)order;
379 * Multiple processes may "see" the same page. E.g. for untouched
380 * mappings of /dev/null, all processes see the same page full of
381 * zeroes, and text pages of executables and shared libraries have
382 * only one copy in memory, at most, normally.
384 * For the non-reserved pages, page_count(page) denotes a reference count.
385 * page_count() == 0 means the page is free. page->lru is then used for
386 * freelist management in the buddy allocator.
387 * page_count() > 0 means the page has been allocated.
389 * Pages are allocated by the slab allocator in order to provide memory
390 * to kmalloc and kmem_cache_alloc. In this case, the management of the
391 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
392 * unless a particular usage is carefully commented. (the responsibility of
393 * freeing the kmalloc memory is the caller's, of course).
395 * A page may be used by anyone else who does a __get_free_page().
396 * In this case, page_count still tracks the references, and should only
397 * be used through the normal accessor functions. The top bits of page->flags
398 * and page->virtual store page management information, but all other fields
399 * are unused and could be used privately, carefully. The management of this
400 * page is the responsibility of the one who allocated it, and those who have
401 * subsequently been given references to it.
403 * The other pages (we may call them "pagecache pages") are completely
404 * managed by the Linux memory manager: I/O, buffers, swapping etc.
405 * The following discussion applies only to them.
407 * A pagecache page contains an opaque `private' member, which belongs to the
408 * page's address_space. Usually, this is the address of a circular list of
409 * the page's disk buffers. PG_private must be set to tell the VM to call
410 * into the filesystem to release these pages.
412 * A page may belong to an inode's memory mapping. In this case, page->mapping
413 * is the pointer to the inode, and page->index is the file offset of the page,
414 * in units of PAGE_CACHE_SIZE.
416 * If pagecache pages are not associated with an inode, they are said to be
417 * anonymous pages. These may become associated with the swapcache, and in that
418 * case PG_swapcache is set, and page->private is an offset into the swapcache.
420 * In either case (swapcache or inode backed), the pagecache itself holds one
421 * reference to the page. Setting PG_private should also increment the
422 * refcount. The each user mapping also has a reference to the page.
424 * The pagecache pages are stored in a per-mapping radix tree, which is
425 * rooted at mapping->page_tree, and indexed by offset.
426 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
427 * lists, we instead now tag pages as dirty/writeback in the radix tree.
429 * All pagecache pages may be subject to I/O:
430 * - inode pages may need to be read from disk,
431 * - inode pages which have been modified and are MAP_SHARED may need
432 * to be written back to the inode on disk,
433 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
434 * modified may need to be swapped out to swap space and (later) to be read
435 * back into memory.
439 * The zone field is never updated after free_area_init_core()
440 * sets it, so none of the operations on it need to be atomic.
445 * page->flags layout:
447 * There are three possibilities for how page->flags get
448 * laid out. The first is for the normal case, without
449 * sparsemem. The second is for sparsemem when there is
450 * plenty of space for node and section. The last is when
451 * we have run out of space and have to fall back to an
452 * alternate (slower) way of determining the node.
454 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
455 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
456 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
458 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
459 #define SECTIONS_WIDTH SECTIONS_SHIFT
460 #else
461 #define SECTIONS_WIDTH 0
462 #endif
464 #define ZONES_WIDTH ZONES_SHIFT
466 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
467 #define NODES_WIDTH NODES_SHIFT
468 #else
469 #ifdef CONFIG_SPARSEMEM_VMEMMAP
470 #error "Vmemmap: No space for nodes field in page flags"
471 #endif
472 #define NODES_WIDTH 0
473 #endif
475 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
476 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
477 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
478 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
481 * We are going to use the flags for the page to node mapping if its in
482 * there. This includes the case where there is no node, so it is implicit.
484 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
485 #define NODE_NOT_IN_PAGE_FLAGS
486 #endif
488 #ifndef PFN_SECTION_SHIFT
489 #define PFN_SECTION_SHIFT 0
490 #endif
493 * Define the bit shifts to access each section. For non-existant
494 * sections we define the shift as 0; that plus a 0 mask ensures
495 * the compiler will optimise away reference to them.
497 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
498 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
499 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
501 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
502 #ifdef NODE_NOT_IN_PAGE_FLAGS
503 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
504 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
505 SECTIONS_PGOFF : ZONES_PGOFF)
506 #else
507 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
508 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
509 NODES_PGOFF : ZONES_PGOFF)
510 #endif
512 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
514 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
515 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
516 #endif
518 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
519 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
520 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
521 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
523 static inline enum zone_type page_zonenum(struct page *page)
525 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
529 * The identification function is only used by the buddy allocator for
530 * determining if two pages could be buddies. We are not really
531 * identifying a zone since we could be using a the section number
532 * id if we have not node id available in page flags.
533 * We guarantee only that it will return the same value for two
534 * combinable pages in a zone.
536 static inline int page_zone_id(struct page *page)
538 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
541 static inline int zone_to_nid(struct zone *zone)
543 #ifdef CONFIG_NUMA
544 return zone->node;
545 #else
546 return 0;
547 #endif
550 #ifdef NODE_NOT_IN_PAGE_FLAGS
551 extern int page_to_nid(struct page *page);
552 #else
553 static inline int page_to_nid(struct page *page)
555 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
557 #endif
559 static inline struct zone *page_zone(struct page *page)
561 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
564 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
565 static inline unsigned long page_to_section(struct page *page)
567 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
569 #endif
571 static inline void set_page_zone(struct page *page, enum zone_type zone)
573 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
574 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
577 static inline void set_page_node(struct page *page, unsigned long node)
579 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
580 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
583 static inline void set_page_section(struct page *page, unsigned long section)
585 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
586 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
589 static inline void set_page_links(struct page *page, enum zone_type zone,
590 unsigned long node, unsigned long pfn)
592 set_page_zone(page, zone);
593 set_page_node(page, node);
594 set_page_section(page, pfn_to_section_nr(pfn));
598 * Some inline functions in vmstat.h depend on page_zone()
600 #include <linux/vmstat.h>
602 static __always_inline void *lowmem_page_address(struct page *page)
604 return __va(PFN_PHYS(page_to_pfn(page)));
607 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
608 #define HASHED_PAGE_VIRTUAL
609 #endif
611 #if defined(WANT_PAGE_VIRTUAL)
612 #define page_address(page) ((page)->virtual)
613 #define set_page_address(page, address) \
614 do { \
615 (page)->virtual = (address); \
616 } while(0)
617 #define page_address_init() do { } while(0)
618 #endif
620 #if defined(HASHED_PAGE_VIRTUAL)
621 void *page_address(struct page *page);
622 void set_page_address(struct page *page, void *virtual);
623 void page_address_init(void);
624 #endif
626 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
627 #define page_address(page) lowmem_page_address(page)
628 #define set_page_address(page, address) do { } while(0)
629 #define page_address_init() do { } while(0)
630 #endif
633 * On an anonymous page mapped into a user virtual memory area,
634 * page->mapping points to its anon_vma, not to a struct address_space;
635 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
637 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
638 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
639 * and then page->mapping points, not to an anon_vma, but to a private
640 * structure which KSM associates with that merged page. See ksm.h.
642 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
644 * Please note that, confusingly, "page_mapping" refers to the inode
645 * address_space which maps the page from disk; whereas "page_mapped"
646 * refers to user virtual address space into which the page is mapped.
648 #define PAGE_MAPPING_ANON 1
649 #define PAGE_MAPPING_KSM 2
650 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
652 extern struct address_space swapper_space;
653 static inline struct address_space *page_mapping(struct page *page)
655 struct address_space *mapping = page->mapping;
657 VM_BUG_ON(PageSlab(page));
658 if (unlikely(PageSwapCache(page)))
659 mapping = &swapper_space;
660 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
661 mapping = NULL;
662 return mapping;
665 /* Neutral page->mapping pointer to address_space or anon_vma or other */
666 static inline void *page_rmapping(struct page *page)
668 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
671 static inline int PageAnon(struct page *page)
673 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
677 * Return the pagecache index of the passed page. Regular pagecache pages
678 * use ->index whereas swapcache pages use ->private
680 static inline pgoff_t page_index(struct page *page)
682 if (unlikely(PageSwapCache(page)))
683 return page_private(page);
684 return page->index;
688 * The atomic page->_mapcount, like _count, starts from -1:
689 * so that transitions both from it and to it can be tracked,
690 * using atomic_inc_and_test and atomic_add_negative(-1).
692 static inline void reset_page_mapcount(struct page *page)
694 atomic_set(&(page)->_mapcount, -1);
697 static inline int page_mapcount(struct page *page)
699 return atomic_read(&(page)->_mapcount) + 1;
703 * Return true if this page is mapped into pagetables.
705 static inline int page_mapped(struct page *page)
707 return atomic_read(&(page)->_mapcount) >= 0;
711 * Different kinds of faults, as returned by handle_mm_fault().
712 * Used to decide whether a process gets delivered SIGBUS or
713 * just gets major/minor fault counters bumped up.
716 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
718 #define VM_FAULT_OOM 0x0001
719 #define VM_FAULT_SIGBUS 0x0002
720 #define VM_FAULT_MAJOR 0x0004
721 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
722 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
723 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
725 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
726 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
727 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
729 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
731 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
732 VM_FAULT_HWPOISON_LARGE)
734 /* Encode hstate index for a hwpoisoned large page */
735 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
736 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
739 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
741 extern void pagefault_out_of_memory(void);
743 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
745 extern void show_free_areas(void);
747 int shmem_lock(struct file *file, int lock, struct user_struct *user);
748 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags);
749 int shmem_zero_setup(struct vm_area_struct *);
751 #ifndef CONFIG_MMU
752 extern unsigned long shmem_get_unmapped_area(struct file *file,
753 unsigned long addr,
754 unsigned long len,
755 unsigned long pgoff,
756 unsigned long flags);
757 #endif
759 extern int can_do_mlock(void);
760 extern int user_shm_lock(size_t, struct user_struct *);
761 extern void user_shm_unlock(size_t, struct user_struct *);
764 * Parameter block passed down to zap_pte_range in exceptional cases.
766 struct zap_details {
767 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
768 struct address_space *check_mapping; /* Check page->mapping if set */
769 pgoff_t first_index; /* Lowest page->index to unmap */
770 pgoff_t last_index; /* Highest page->index to unmap */
771 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
772 unsigned long truncate_count; /* Compare vm_truncate_count */
775 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
776 pte_t pte);
778 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
779 unsigned long size);
780 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
781 unsigned long size, struct zap_details *);
782 unsigned long unmap_vmas(struct mmu_gather **tlb,
783 struct vm_area_struct *start_vma, unsigned long start_addr,
784 unsigned long end_addr, unsigned long *nr_accounted,
785 struct zap_details *);
788 * mm_walk - callbacks for walk_page_range
789 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
790 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
791 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
792 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
793 * @pte_hole: if set, called for each hole at all levels
794 * @hugetlb_entry: if set, called for each hugetlb entry
796 * (see walk_page_range for more details)
798 struct mm_walk {
799 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
800 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
801 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
802 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
803 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
804 int (*hugetlb_entry)(pte_t *, unsigned long,
805 unsigned long, unsigned long, struct mm_walk *);
806 struct mm_struct *mm;
807 void *private;
810 int walk_page_range(unsigned long addr, unsigned long end,
811 struct mm_walk *walk);
812 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
813 unsigned long end, unsigned long floor, unsigned long ceiling);
814 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
815 struct vm_area_struct *vma);
816 void unmap_mapping_range(struct address_space *mapping,
817 loff_t const holebegin, loff_t const holelen, int even_cows);
818 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
819 unsigned long *pfn);
820 int follow_phys(struct vm_area_struct *vma, unsigned long address,
821 unsigned int flags, unsigned long *prot, resource_size_t *phys);
822 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
823 void *buf, int len, int write);
825 static inline void unmap_shared_mapping_range(struct address_space *mapping,
826 loff_t const holebegin, loff_t const holelen)
828 unmap_mapping_range(mapping, holebegin, holelen, 0);
831 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
832 extern void truncate_setsize(struct inode *inode, loff_t newsize);
833 extern int vmtruncate(struct inode *inode, loff_t offset);
834 extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end);
836 int truncate_inode_page(struct address_space *mapping, struct page *page);
837 int generic_error_remove_page(struct address_space *mapping, struct page *page);
839 int invalidate_inode_page(struct page *page);
841 #ifdef CONFIG_MMU
842 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
843 unsigned long address, unsigned int flags);
844 #else
845 static inline int handle_mm_fault(struct mm_struct *mm,
846 struct vm_area_struct *vma, unsigned long address,
847 unsigned int flags)
849 /* should never happen if there's no MMU */
850 BUG();
851 return VM_FAULT_SIGBUS;
853 #endif
855 extern int make_pages_present(unsigned long addr, unsigned long end);
856 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
858 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
859 unsigned long start, int nr_pages, int write, int force,
860 struct page **pages, struct vm_area_struct **vmas);
861 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
862 struct page **pages);
863 struct page *get_dump_page(unsigned long addr);
865 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
866 extern void do_invalidatepage(struct page *page, unsigned long offset);
868 int __set_page_dirty_nobuffers(struct page *page);
869 int __set_page_dirty_no_writeback(struct page *page);
870 int redirty_page_for_writepage(struct writeback_control *wbc,
871 struct page *page);
872 void account_page_dirtied(struct page *page, struct address_space *mapping);
873 void account_page_writeback(struct page *page);
874 int set_page_dirty(struct page *page);
875 int set_page_dirty_lock(struct page *page);
876 int clear_page_dirty_for_io(struct page *page);
878 /* Is the vma a continuation of the stack vma above it? */
879 static inline int vma_stack_continue(struct vm_area_struct *vma, unsigned long addr)
881 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
884 extern unsigned long move_page_tables(struct vm_area_struct *vma,
885 unsigned long old_addr, struct vm_area_struct *new_vma,
886 unsigned long new_addr, unsigned long len);
887 extern unsigned long do_mremap(unsigned long addr,
888 unsigned long old_len, unsigned long new_len,
889 unsigned long flags, unsigned long new_addr);
890 extern int mprotect_fixup(struct vm_area_struct *vma,
891 struct vm_area_struct **pprev, unsigned long start,
892 unsigned long end, unsigned long newflags);
895 * doesn't attempt to fault and will return short.
897 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
898 struct page **pages);
900 * per-process(per-mm_struct) statistics.
902 #if defined(SPLIT_RSS_COUNTING)
904 * The mm counters are not protected by its page_table_lock,
905 * so must be incremented atomically.
907 static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
909 atomic_long_set(&mm->rss_stat.count[member], value);
912 unsigned long get_mm_counter(struct mm_struct *mm, int member);
914 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
916 atomic_long_add(value, &mm->rss_stat.count[member]);
919 static inline void inc_mm_counter(struct mm_struct *mm, int member)
921 atomic_long_inc(&mm->rss_stat.count[member]);
924 static inline void dec_mm_counter(struct mm_struct *mm, int member)
926 atomic_long_dec(&mm->rss_stat.count[member]);
929 #else /* !USE_SPLIT_PTLOCKS */
931 * The mm counters are protected by its page_table_lock,
932 * so can be incremented directly.
934 static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
936 mm->rss_stat.count[member] = value;
939 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
941 return mm->rss_stat.count[member];
944 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
946 mm->rss_stat.count[member] += value;
949 static inline void inc_mm_counter(struct mm_struct *mm, int member)
951 mm->rss_stat.count[member]++;
954 static inline void dec_mm_counter(struct mm_struct *mm, int member)
956 mm->rss_stat.count[member]--;
959 #endif /* !USE_SPLIT_PTLOCKS */
961 static inline unsigned long get_mm_rss(struct mm_struct *mm)
963 return get_mm_counter(mm, MM_FILEPAGES) +
964 get_mm_counter(mm, MM_ANONPAGES);
967 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
969 return max(mm->hiwater_rss, get_mm_rss(mm));
972 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
974 return max(mm->hiwater_vm, mm->total_vm);
977 static inline void update_hiwater_rss(struct mm_struct *mm)
979 unsigned long _rss = get_mm_rss(mm);
981 if ((mm)->hiwater_rss < _rss)
982 (mm)->hiwater_rss = _rss;
985 static inline void update_hiwater_vm(struct mm_struct *mm)
987 if (mm->hiwater_vm < mm->total_vm)
988 mm->hiwater_vm = mm->total_vm;
991 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
992 struct mm_struct *mm)
994 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
996 if (*maxrss < hiwater_rss)
997 *maxrss = hiwater_rss;
1000 #if defined(SPLIT_RSS_COUNTING)
1001 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm);
1002 #else
1003 static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
1006 #endif
1009 * A callback you can register to apply pressure to ageable caches.
1011 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
1012 * look through the least-recently-used 'nr_to_scan' entries and
1013 * attempt to free them up. It should return the number of objects
1014 * which remain in the cache. If it returns -1, it means it cannot do
1015 * any scanning at this time (eg. there is a risk of deadlock).
1017 * The 'gfpmask' refers to the allocation we are currently trying to
1018 * fulfil.
1020 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
1021 * querying the cache size, so a fastpath for that case is appropriate.
1023 struct shrinker {
1024 int (*shrink)(struct shrinker *, int nr_to_scan, gfp_t gfp_mask);
1025 int seeks; /* seeks to recreate an obj */
1027 /* These are for internal use */
1028 struct list_head list;
1029 long nr; /* objs pending delete */
1031 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
1032 extern void register_shrinker(struct shrinker *);
1033 extern void unregister_shrinker(struct shrinker *);
1035 int vma_wants_writenotify(struct vm_area_struct *vma);
1037 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1038 spinlock_t **ptl);
1039 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1040 spinlock_t **ptl)
1042 pte_t *ptep;
1043 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1044 return ptep;
1047 #ifdef __PAGETABLE_PUD_FOLDED
1048 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1049 unsigned long address)
1051 return 0;
1053 #else
1054 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1055 #endif
1057 #ifdef __PAGETABLE_PMD_FOLDED
1058 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1059 unsigned long address)
1061 return 0;
1063 #else
1064 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1065 #endif
1067 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1068 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1071 * The following ifdef needed to get the 4level-fixup.h header to work.
1072 * Remove it when 4level-fixup.h has been removed.
1074 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1075 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1077 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1078 NULL: pud_offset(pgd, address);
1081 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1083 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1084 NULL: pmd_offset(pud, address);
1086 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1088 #if USE_SPLIT_PTLOCKS
1090 * We tuck a spinlock to guard each pagetable page into its struct page,
1091 * at page->private, with BUILD_BUG_ON to make sure that this will not
1092 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1093 * When freeing, reset page->mapping so free_pages_check won't complain.
1095 #define __pte_lockptr(page) &((page)->ptl)
1096 #define pte_lock_init(_page) do { \
1097 spin_lock_init(__pte_lockptr(_page)); \
1098 } while (0)
1099 #define pte_lock_deinit(page) ((page)->mapping = NULL)
1100 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1101 #else /* !USE_SPLIT_PTLOCKS */
1103 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1105 #define pte_lock_init(page) do {} while (0)
1106 #define pte_lock_deinit(page) do {} while (0)
1107 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
1108 #endif /* USE_SPLIT_PTLOCKS */
1110 static inline void pgtable_page_ctor(struct page *page)
1112 pte_lock_init(page);
1113 inc_zone_page_state(page, NR_PAGETABLE);
1116 static inline void pgtable_page_dtor(struct page *page)
1118 pte_lock_deinit(page);
1119 dec_zone_page_state(page, NR_PAGETABLE);
1122 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1123 ({ \
1124 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1125 pte_t *__pte = pte_offset_map(pmd, address); \
1126 *(ptlp) = __ptl; \
1127 spin_lock(__ptl); \
1128 __pte; \
1131 #define pte_unmap_unlock(pte, ptl) do { \
1132 spin_unlock(ptl); \
1133 pte_unmap(pte); \
1134 } while (0)
1136 #define pte_alloc_map(mm, pmd, address) \
1137 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
1138 NULL: pte_offset_map(pmd, address))
1140 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1141 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
1142 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1144 #define pte_alloc_kernel(pmd, address) \
1145 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1146 NULL: pte_offset_kernel(pmd, address))
1148 extern void free_area_init(unsigned long * zones_size);
1149 extern void free_area_init_node(int nid, unsigned long * zones_size,
1150 unsigned long zone_start_pfn, unsigned long *zholes_size);
1151 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
1153 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
1154 * zones, allocate the backing mem_map and account for memory holes in a more
1155 * architecture independent manner. This is a substitute for creating the
1156 * zone_sizes[] and zholes_size[] arrays and passing them to
1157 * free_area_init_node()
1159 * An architecture is expected to register range of page frames backed by
1160 * physical memory with add_active_range() before calling
1161 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1162 * usage, an architecture is expected to do something like
1164 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1165 * max_highmem_pfn};
1166 * for_each_valid_physical_page_range()
1167 * add_active_range(node_id, start_pfn, end_pfn)
1168 * free_area_init_nodes(max_zone_pfns);
1170 * If the architecture guarantees that there are no holes in the ranges
1171 * registered with add_active_range(), free_bootmem_active_regions()
1172 * will call free_bootmem_node() for each registered physical page range.
1173 * Similarly sparse_memory_present_with_active_regions() calls
1174 * memory_present() for each range when SPARSEMEM is enabled.
1176 * See mm/page_alloc.c for more information on each function exposed by
1177 * CONFIG_ARCH_POPULATES_NODE_MAP
1179 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1180 extern void add_active_range(unsigned int nid, unsigned long start_pfn,
1181 unsigned long end_pfn);
1182 extern void remove_active_range(unsigned int nid, unsigned long start_pfn,
1183 unsigned long end_pfn);
1184 extern void remove_all_active_ranges(void);
1185 void sort_node_map(void);
1186 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1187 unsigned long end_pfn);
1188 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1189 unsigned long end_pfn);
1190 extern void get_pfn_range_for_nid(unsigned int nid,
1191 unsigned long *start_pfn, unsigned long *end_pfn);
1192 extern unsigned long find_min_pfn_with_active_regions(void);
1193 extern void free_bootmem_with_active_regions(int nid,
1194 unsigned long max_low_pfn);
1195 int add_from_early_node_map(struct range *range, int az,
1196 int nr_range, int nid);
1197 u64 __init find_memory_core_early(int nid, u64 size, u64 align,
1198 u64 goal, u64 limit);
1199 void *__alloc_memory_core_early(int nodeid, u64 size, u64 align,
1200 u64 goal, u64 limit);
1201 typedef int (*work_fn_t)(unsigned long, unsigned long, void *);
1202 extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data);
1203 extern void sparse_memory_present_with_active_regions(int nid);
1204 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1206 #if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \
1207 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1208 static inline int __early_pfn_to_nid(unsigned long pfn)
1210 return 0;
1212 #else
1213 /* please see mm/page_alloc.c */
1214 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1215 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1216 /* there is a per-arch backend function. */
1217 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1218 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1219 #endif
1221 extern void set_dma_reserve(unsigned long new_dma_reserve);
1222 extern void memmap_init_zone(unsigned long, int, unsigned long,
1223 unsigned long, enum memmap_context);
1224 extern void setup_per_zone_wmarks(void);
1225 extern void calculate_zone_inactive_ratio(struct zone *zone);
1226 extern void mem_init(void);
1227 extern void __init mmap_init(void);
1228 extern void show_mem(void);
1229 extern void si_meminfo(struct sysinfo * val);
1230 extern void si_meminfo_node(struct sysinfo *val, int nid);
1231 extern int after_bootmem;
1233 extern void setup_per_cpu_pageset(void);
1235 extern void zone_pcp_update(struct zone *zone);
1237 /* nommu.c */
1238 extern atomic_long_t mmap_pages_allocated;
1239 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1241 /* prio_tree.c */
1242 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1243 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1244 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1245 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1246 struct prio_tree_iter *iter);
1248 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1249 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1250 (vma = vma_prio_tree_next(vma, iter)); )
1252 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1253 struct list_head *list)
1255 vma->shared.vm_set.parent = NULL;
1256 list_add_tail(&vma->shared.vm_set.list, list);
1259 /* mmap.c */
1260 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1261 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1262 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1263 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1264 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1265 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1266 struct mempolicy *);
1267 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1268 extern int split_vma(struct mm_struct *,
1269 struct vm_area_struct *, unsigned long addr, int new_below);
1270 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1271 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1272 struct rb_node **, struct rb_node *);
1273 extern void unlink_file_vma(struct vm_area_struct *);
1274 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1275 unsigned long addr, unsigned long len, pgoff_t pgoff);
1276 extern void exit_mmap(struct mm_struct *);
1278 extern int mm_take_all_locks(struct mm_struct *mm);
1279 extern void mm_drop_all_locks(struct mm_struct *mm);
1281 #ifdef CONFIG_PROC_FS
1282 /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1283 extern void added_exe_file_vma(struct mm_struct *mm);
1284 extern void removed_exe_file_vma(struct mm_struct *mm);
1285 #else
1286 static inline void added_exe_file_vma(struct mm_struct *mm)
1289 static inline void removed_exe_file_vma(struct mm_struct *mm)
1291 #endif /* CONFIG_PROC_FS */
1293 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1294 extern int install_special_mapping(struct mm_struct *mm,
1295 unsigned long addr, unsigned long len,
1296 unsigned long flags, struct page **pages);
1298 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1300 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1301 unsigned long len, unsigned long prot,
1302 unsigned long flag, unsigned long pgoff);
1303 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1304 unsigned long len, unsigned long flags,
1305 unsigned int vm_flags, unsigned long pgoff);
1307 static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1308 unsigned long len, unsigned long prot,
1309 unsigned long flag, unsigned long offset)
1311 unsigned long ret = -EINVAL;
1312 if ((offset + PAGE_ALIGN(len)) < offset)
1313 goto out;
1314 if (!(offset & ~PAGE_MASK))
1315 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1316 out:
1317 return ret;
1320 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1322 extern unsigned long do_brk(unsigned long, unsigned long);
1324 /* filemap.c */
1325 extern unsigned long page_unuse(struct page *);
1326 extern void truncate_inode_pages(struct address_space *, loff_t);
1327 extern void truncate_inode_pages_range(struct address_space *,
1328 loff_t lstart, loff_t lend);
1330 /* generic vm_area_ops exported for stackable file systems */
1331 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1333 /* mm/page-writeback.c */
1334 int write_one_page(struct page *page, int wait);
1335 void task_dirty_inc(struct task_struct *tsk);
1337 /* readahead.c */
1338 #define VM_MAX_READAHEAD 128 /* kbytes */
1339 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1341 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1342 pgoff_t offset, unsigned long nr_to_read);
1344 void page_cache_sync_readahead(struct address_space *mapping,
1345 struct file_ra_state *ra,
1346 struct file *filp,
1347 pgoff_t offset,
1348 unsigned long size);
1350 void page_cache_async_readahead(struct address_space *mapping,
1351 struct file_ra_state *ra,
1352 struct file *filp,
1353 struct page *pg,
1354 pgoff_t offset,
1355 unsigned long size);
1357 unsigned long max_sane_readahead(unsigned long nr);
1358 unsigned long ra_submit(struct file_ra_state *ra,
1359 struct address_space *mapping,
1360 struct file *filp);
1362 /* Do stack extension */
1363 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1364 #if VM_GROWSUP
1365 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1366 #else
1367 #define expand_upwards(vma, address) do { } while (0)
1368 #endif
1369 extern int expand_stack_downwards(struct vm_area_struct *vma,
1370 unsigned long address);
1372 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1373 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1374 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1375 struct vm_area_struct **pprev);
1377 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1378 NULL if none. Assume start_addr < end_addr. */
1379 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1381 struct vm_area_struct * vma = find_vma(mm,start_addr);
1383 if (vma && end_addr <= vma->vm_start)
1384 vma = NULL;
1385 return vma;
1388 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1390 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1393 #ifdef CONFIG_MMU
1394 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1395 #else
1396 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1398 return __pgprot(0);
1400 #endif
1402 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1403 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1404 unsigned long pfn, unsigned long size, pgprot_t);
1405 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1406 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1407 unsigned long pfn);
1408 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1409 unsigned long pfn);
1411 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1412 unsigned int foll_flags);
1413 #define FOLL_WRITE 0x01 /* check pte is writable */
1414 #define FOLL_TOUCH 0x02 /* mark page accessed */
1415 #define FOLL_GET 0x04 /* do get_page on page */
1416 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1417 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1419 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1420 void *data);
1421 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1422 unsigned long size, pte_fn_t fn, void *data);
1424 #ifdef CONFIG_PROC_FS
1425 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1426 #else
1427 static inline void vm_stat_account(struct mm_struct *mm,
1428 unsigned long flags, struct file *file, long pages)
1431 #endif /* CONFIG_PROC_FS */
1433 #ifdef CONFIG_DEBUG_PAGEALLOC
1434 extern int debug_pagealloc_enabled;
1436 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1438 static inline void enable_debug_pagealloc(void)
1440 debug_pagealloc_enabled = 1;
1442 #ifdef CONFIG_HIBERNATION
1443 extern bool kernel_page_present(struct page *page);
1444 #endif /* CONFIG_HIBERNATION */
1445 #else
1446 static inline void
1447 kernel_map_pages(struct page *page, int numpages, int enable) {}
1448 static inline void enable_debug_pagealloc(void)
1451 #ifdef CONFIG_HIBERNATION
1452 static inline bool kernel_page_present(struct page *page) { return true; }
1453 #endif /* CONFIG_HIBERNATION */
1454 #endif
1456 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1457 #ifdef __HAVE_ARCH_GATE_AREA
1458 int in_gate_area_no_task(unsigned long addr);
1459 int in_gate_area(struct task_struct *task, unsigned long addr);
1460 #else
1461 int in_gate_area_no_task(unsigned long addr);
1462 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1463 #endif /* __HAVE_ARCH_GATE_AREA */
1465 int drop_caches_sysctl_handler(struct ctl_table *, int,
1466 void __user *, size_t *, loff_t *);
1467 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
1468 unsigned long lru_pages);
1470 #ifndef CONFIG_MMU
1471 #define randomize_va_space 0
1472 #else
1473 extern int randomize_va_space;
1474 #endif
1476 const char * arch_vma_name(struct vm_area_struct *vma);
1477 void print_vma_addr(char *prefix, unsigned long rip);
1479 void sparse_mem_maps_populate_node(struct page **map_map,
1480 unsigned long pnum_begin,
1481 unsigned long pnum_end,
1482 unsigned long map_count,
1483 int nodeid);
1485 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1486 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1487 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1488 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1489 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1490 void *vmemmap_alloc_block(unsigned long size, int node);
1491 void *vmemmap_alloc_block_buf(unsigned long size, int node);
1492 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1493 int vmemmap_populate_basepages(struct page *start_page,
1494 unsigned long pages, int node);
1495 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1496 void vmemmap_populate_print_last(void);
1499 enum mf_flags {
1500 MF_COUNT_INCREASED = 1 << 0,
1502 extern void memory_failure(unsigned long pfn, int trapno);
1503 extern int __memory_failure(unsigned long pfn, int trapno, int flags);
1504 extern int unpoison_memory(unsigned long pfn);
1505 extern int sysctl_memory_failure_early_kill;
1506 extern int sysctl_memory_failure_recovery;
1507 extern void shake_page(struct page *p, int access);
1508 extern atomic_long_t mce_bad_pages;
1509 extern int soft_offline_page(struct page *page, int flags);
1510 #ifdef CONFIG_MEMORY_FAILURE
1511 int is_hwpoison_address(unsigned long addr);
1512 #else
1513 static inline int is_hwpoison_address(unsigned long addr)
1515 return 0;
1517 #endif
1519 extern void dump_page(struct page *page);
1521 #endif /* __KERNEL__ */
1522 #endif /* _LINUX_MM_H */