1 /* -*- mode: c; c-basic-offset: 8 -*- */
3 /* NCR (or Symbios) 53c700 and 53c700-66 Driver
5 * Copyright (C) 2001 by James.Bottomley@HansenPartnership.com
6 **-----------------------------------------------------------------------------
8 ** This program is free software; you can redistribute it and/or modify
9 ** it under the terms of the GNU General Public License as published by
10 ** the Free Software Foundation; either version 2 of the License, or
11 ** (at your option) any later version.
13 ** This program is distributed in the hope that it will be useful,
14 ** but WITHOUT ANY WARRANTY; without even the implied warranty of
15 ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 ** GNU General Public License for more details.
18 ** You should have received a copy of the GNU General Public License
19 ** along with this program; if not, write to the Free Software
20 ** Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 **-----------------------------------------------------------------------------
27 * This driver is designed exclusively for these chips (virtually the
28 * earliest of the scripts engine chips). They need their own drivers
29 * because they are missing so many of the scripts and snazzy register
30 * features of their elder brothers (the 710, 720 and 770).
32 * The 700 is the lowliest of the line, it can only do async SCSI.
33 * The 700-66 can at least do synchronous SCSI up to 10MHz.
35 * The 700 chip has no host bus interface logic of its own. However,
36 * it is usually mapped to a location with well defined register
37 * offsets. Therefore, if you can determine the base address and the
38 * irq your board incorporating this chip uses, you can probably use
39 * this driver to run it (although you'll probably have to write a
40 * minimal wrapper for the purpose---see the NCR_D700 driver for
41 * details about how to do this).
46 * 1. Better statistics in the proc fs
48 * 2. Implement message queue (queues SCSI messages like commands) and make
49 * the abort and device reset functions use them.
56 * Fixed bad bug affecting tag starvation processing (previously the
57 * driver would hang the system if too many tags starved. Also fixed
58 * bad bug having to do with 10 byte command processing and REQUEST
59 * SENSE (the command would loop forever getting a transfer length
60 * mismatch in the CMD phase).
64 * Fixed scripts problem which caused certain devices (notably CDRWs)
65 * to hang on initial INQUIRY. Updated NCR_700_readl/writel to use
66 * __raw_readl/writel for parisc compatibility (Thomas
67 * Bogendoerfer). Added missing SCp->request_bufflen initialisation
68 * for sense requests (Ryan Bradetich).
72 * Following test of the 64 bit parisc kernel by Richard Hirst,
73 * several problems have now been corrected. Also adds support for
74 * consistent memory allocation.
78 * More Compatibility changes for 710 (now actually works). Enhanced
79 * support for odd clock speeds which constrain SDTR negotiations.
80 * correct cacheline separation for scsi messages and status for
81 * incoherent architectures. Use of the pci mapping functions on
82 * buffers to begin support for 64 bit drivers.
86 * Added support for the 53c710 chip (in 53c700 emulation mode only---no
87 * special 53c710 instructions or registers are used).
91 * More endianness/cache coherency changes.
93 * Better bad device handling (handles devices lying about tag
94 * queueing support and devices which fail to provide sense data on
95 * contingent allegiance conditions)
97 * Many thanks to Richard Hirst <rhirst@linuxcare.com> for patiently
98 * debugging this driver on the parisc architecture and suggesting
99 * many improvements and bug fixes.
101 * Thanks also go to Linuxcare Inc. for providing several PARISC
102 * machines for me to debug the driver on.
106 * Made the driver mem or io mapped; added endian invariance; added
107 * dma cache flushing operations for architectures which need it;
108 * added support for more varied clocking speeds.
112 * Initial modularisation from the D700. See NCR_D700.c for the rest of
115 #define NCR_700_VERSION "2.8"
117 #include <linux/kernel.h>
118 #include <linux/types.h>
119 #include <linux/string.h>
120 #include <linux/ioport.h>
121 #include <linux/delay.h>
122 #include <linux/spinlock.h>
123 #include <linux/completion.h>
124 #include <linux/init.h>
125 #include <linux/proc_fs.h>
126 #include <linux/blkdev.h>
127 #include <linux/module.h>
128 #include <linux/interrupt.h>
129 #include <linux/device.h>
131 #include <asm/system.h>
133 #include <asm/pgtable.h>
134 #include <asm/byteorder.h>
136 #include <scsi/scsi.h>
137 #include <scsi/scsi_cmnd.h>
138 #include <scsi/scsi_dbg.h>
139 #include <scsi/scsi_eh.h>
140 #include <scsi/scsi_host.h>
141 #include <scsi/scsi_tcq.h>
142 #include <scsi/scsi_transport.h>
143 #include <scsi/scsi_transport_spi.h>
147 /* NOTE: For 64 bit drivers there are points in the code where we use
148 * a non dereferenceable pointer to point to a structure in dma-able
149 * memory (which is 32 bits) so that we can use all of the structure
150 * operations but take the address at the end. This macro allows us
151 * to truncate the 64 bit pointer down to 32 bits without the compiler
153 #define to32bit(x) ((__u32)((unsigned long)(x)))
158 #define STATIC static
161 MODULE_AUTHOR("James Bottomley");
162 MODULE_DESCRIPTION("53c700 and 53c700-66 Driver");
163 MODULE_LICENSE("GPL");
165 /* This is the script */
166 #include "53c700_d.h"
169 STATIC
int NCR_700_queuecommand(struct scsi_cmnd
*, void (*done
)(struct scsi_cmnd
*));
170 STATIC
int NCR_700_abort(struct scsi_cmnd
* SCpnt
);
171 STATIC
int NCR_700_bus_reset(struct scsi_cmnd
* SCpnt
);
172 STATIC
int NCR_700_host_reset(struct scsi_cmnd
* SCpnt
);
173 STATIC
void NCR_700_chip_setup(struct Scsi_Host
*host
);
174 STATIC
void NCR_700_chip_reset(struct Scsi_Host
*host
);
175 STATIC
int NCR_700_slave_alloc(struct scsi_device
*SDpnt
);
176 STATIC
int NCR_700_slave_configure(struct scsi_device
*SDpnt
);
177 STATIC
void NCR_700_slave_destroy(struct scsi_device
*SDpnt
);
178 static int NCR_700_change_queue_depth(struct scsi_device
*SDpnt
, int depth
);
179 static int NCR_700_change_queue_type(struct scsi_device
*SDpnt
, int depth
);
181 STATIC
struct device_attribute
*NCR_700_dev_attrs
[];
183 STATIC
struct scsi_transport_template
*NCR_700_transport_template
= NULL
;
185 static char *NCR_700_phase
[] = {
188 "before command phase",
189 "after command phase",
190 "after status phase",
191 "after data in phase",
192 "after data out phase",
196 static char *NCR_700_condition
[] = {
204 "REJECT_MSG RECEIVED",
205 "DISCONNECT_MSG RECEIVED",
211 static char *NCR_700_fatal_messages
[] = {
212 "unexpected message after reselection",
213 "still MSG_OUT after message injection",
214 "not MSG_IN after selection",
215 "Illegal message length received",
218 static char *NCR_700_SBCL_bits
[] = {
229 static char *NCR_700_SBCL_to_phase
[] = {
240 /* This translates the SDTR message offset and period to a value
241 * which can be loaded into the SXFER_REG.
243 * NOTE: According to SCSI-2, the true transfer period (in ns) is
244 * actually four times this period value */
246 NCR_700_offset_period_to_sxfer(struct NCR_700_Host_Parameters
*hostdata
,
247 __u8 offset
, __u8 period
)
251 __u8 min_xferp
= (hostdata
->chip710
252 ? NCR_710_MIN_XFERP
: NCR_700_MIN_XFERP
);
253 __u8 max_offset
= (hostdata
->chip710
254 ? NCR_710_MAX_OFFSET
: NCR_700_MAX_OFFSET
);
259 if(period
< hostdata
->min_period
) {
260 printk(KERN_WARNING
"53c700: Period %dns is less than this chip's minimum, setting to %d\n", period
*4, NCR_700_MIN_PERIOD
*4);
261 period
= hostdata
->min_period
;
263 XFERP
= (period
*4 * hostdata
->sync_clock
)/1000 - 4;
264 if(offset
> max_offset
) {
265 printk(KERN_WARNING
"53c700: Offset %d exceeds chip maximum, setting to %d\n",
269 if(XFERP
< min_xferp
) {
270 printk(KERN_WARNING
"53c700: XFERP %d is less than minium, setting to %d\n",
274 return (offset
& 0x0f) | (XFERP
& 0x07)<<4;
278 NCR_700_get_SXFER(struct scsi_device
*SDp
)
280 struct NCR_700_Host_Parameters
*hostdata
=
281 (struct NCR_700_Host_Parameters
*)SDp
->host
->hostdata
[0];
283 return NCR_700_offset_period_to_sxfer(hostdata
,
284 spi_offset(SDp
->sdev_target
),
285 spi_period(SDp
->sdev_target
));
289 NCR_700_detect(struct scsi_host_template
*tpnt
,
290 struct NCR_700_Host_Parameters
*hostdata
, struct device
*dev
)
292 dma_addr_t pScript
, pSlots
;
295 struct Scsi_Host
*host
;
296 static int banner
= 0;
299 if(tpnt
->sdev_attrs
== NULL
)
300 tpnt
->sdev_attrs
= NCR_700_dev_attrs
;
302 memory
= dma_alloc_noncoherent(hostdata
->dev
, TOTAL_MEM_SIZE
,
303 &pScript
, GFP_KERNEL
);
305 printk(KERN_ERR
"53c700: Failed to allocate memory for driver, detatching\n");
309 script
= (__u32
*)memory
;
310 hostdata
->msgin
= memory
+ MSGIN_OFFSET
;
311 hostdata
->msgout
= memory
+ MSGOUT_OFFSET
;
312 hostdata
->status
= memory
+ STATUS_OFFSET
;
313 /* all of these offsets are L1_CACHE_BYTES separated. It is fatal
314 * if this isn't sufficient separation to avoid dma flushing issues */
315 BUG_ON(!dma_is_consistent(hostdata
->dev
, pScript
) && L1_CACHE_BYTES
< dma_get_cache_alignment());
316 hostdata
->slots
= (struct NCR_700_command_slot
*)(memory
+ SLOTS_OFFSET
);
319 pSlots
= pScript
+ SLOTS_OFFSET
;
321 /* Fill in the missing routines from the host template */
322 tpnt
->queuecommand
= NCR_700_queuecommand
;
323 tpnt
->eh_abort_handler
= NCR_700_abort
;
324 tpnt
->eh_bus_reset_handler
= NCR_700_bus_reset
;
325 tpnt
->eh_host_reset_handler
= NCR_700_host_reset
;
326 tpnt
->can_queue
= NCR_700_COMMAND_SLOTS_PER_HOST
;
327 tpnt
->sg_tablesize
= NCR_700_SG_SEGMENTS
;
328 tpnt
->cmd_per_lun
= NCR_700_CMD_PER_LUN
;
329 tpnt
->use_clustering
= ENABLE_CLUSTERING
;
330 tpnt
->slave_configure
= NCR_700_slave_configure
;
331 tpnt
->slave_destroy
= NCR_700_slave_destroy
;
332 tpnt
->slave_alloc
= NCR_700_slave_alloc
;
333 tpnt
->change_queue_depth
= NCR_700_change_queue_depth
;
334 tpnt
->change_queue_type
= NCR_700_change_queue_type
;
336 if(tpnt
->name
== NULL
)
337 tpnt
->name
= "53c700";
338 if(tpnt
->proc_name
== NULL
)
339 tpnt
->proc_name
= "53c700";
341 host
= scsi_host_alloc(tpnt
, 4);
344 memset(hostdata
->slots
, 0, sizeof(struct NCR_700_command_slot
)
345 * NCR_700_COMMAND_SLOTS_PER_HOST
);
346 for (j
= 0; j
< NCR_700_COMMAND_SLOTS_PER_HOST
; j
++) {
347 dma_addr_t offset
= (dma_addr_t
)((unsigned long)&hostdata
->slots
[j
].SG
[0]
348 - (unsigned long)&hostdata
->slots
[0].SG
[0]);
349 hostdata
->slots
[j
].pSG
= (struct NCR_700_SG_List
*)((unsigned long)(pSlots
+ offset
));
351 hostdata
->free_list
= &hostdata
->slots
[j
];
353 hostdata
->slots
[j
-1].ITL_forw
= &hostdata
->slots
[j
];
354 hostdata
->slots
[j
].state
= NCR_700_SLOT_FREE
;
357 for (j
= 0; j
< ARRAY_SIZE(SCRIPT
); j
++)
358 script
[j
] = bS_to_host(SCRIPT
[j
]);
360 /* adjust all labels to be bus physical */
361 for (j
= 0; j
< PATCHES
; j
++)
362 script
[LABELPATCHES
[j
]] = bS_to_host(pScript
+ SCRIPT
[LABELPATCHES
[j
]]);
363 /* now patch up fixed addresses. */
364 script_patch_32(hostdata
->dev
, script
, MessageLocation
,
365 pScript
+ MSGOUT_OFFSET
);
366 script_patch_32(hostdata
->dev
, script
, StatusAddress
,
367 pScript
+ STATUS_OFFSET
);
368 script_patch_32(hostdata
->dev
, script
, ReceiveMsgAddress
,
369 pScript
+ MSGIN_OFFSET
);
371 hostdata
->script
= script
;
372 hostdata
->pScript
= pScript
;
373 dma_sync_single_for_device(hostdata
->dev
, pScript
, sizeof(SCRIPT
), DMA_TO_DEVICE
);
374 hostdata
->state
= NCR_700_HOST_FREE
;
375 hostdata
->cmd
= NULL
;
377 host
->max_lun
= NCR_700_MAX_LUNS
;
378 BUG_ON(NCR_700_transport_template
== NULL
);
379 host
->transportt
= NCR_700_transport_template
;
380 host
->unique_id
= (unsigned long)hostdata
->base
;
381 hostdata
->eh_complete
= NULL
;
382 host
->hostdata
[0] = (unsigned long)hostdata
;
384 NCR_700_writeb(0xff, host
, CTEST9_REG
);
385 if (hostdata
->chip710
)
386 hostdata
->rev
= (NCR_700_readb(host
, CTEST8_REG
)>>4) & 0x0f;
388 hostdata
->rev
= (NCR_700_readb(host
, CTEST7_REG
)>>4) & 0x0f;
389 hostdata
->fast
= (NCR_700_readb(host
, CTEST9_REG
) == 0);
391 printk(KERN_NOTICE
"53c700: Version " NCR_700_VERSION
" By James.Bottomley@HansenPartnership.com\n");
394 printk(KERN_NOTICE
"scsi%d: %s rev %d %s\n", host
->host_no
,
395 hostdata
->chip710
? "53c710" :
396 (hostdata
->fast
? "53c700-66" : "53c700"),
397 hostdata
->rev
, hostdata
->differential
?
398 "(Differential)" : "");
400 NCR_700_chip_reset(host
);
402 if (scsi_add_host(host
, dev
)) {
403 dev_printk(KERN_ERR
, dev
, "53c700: scsi_add_host failed\n");
408 spi_signalling(host
) = hostdata
->differential
? SPI_SIGNAL_HVD
:
415 NCR_700_release(struct Scsi_Host
*host
)
417 struct NCR_700_Host_Parameters
*hostdata
=
418 (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
420 dma_free_noncoherent(hostdata
->dev
, TOTAL_MEM_SIZE
,
421 hostdata
->script
, hostdata
->pScript
);
426 NCR_700_identify(int can_disconnect
, __u8 lun
)
428 return IDENTIFY_BASE
|
429 ((can_disconnect
) ? 0x40 : 0) |
430 (lun
& NCR_700_LUN_MASK
);
434 * Function : static int data_residual (Scsi_Host *host)
436 * Purpose : return residual data count of what's in the chip. If you
437 * really want to know what this function is doing, it's almost a
438 * direct transcription of the algorithm described in the 53c710
439 * guide, except that the DBC and DFIFO registers are only 6 bits
442 * Inputs : host - SCSI host */
444 NCR_700_data_residual (struct Scsi_Host
*host
) {
445 struct NCR_700_Host_Parameters
*hostdata
=
446 (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
447 int count
, synchronous
= 0;
450 if(hostdata
->chip710
) {
451 count
= ((NCR_700_readb(host
, DFIFO_REG
) & 0x7f) -
452 (NCR_700_readl(host
, DBC_REG
) & 0x7f)) & 0x7f;
454 count
= ((NCR_700_readb(host
, DFIFO_REG
) & 0x3f) -
455 (NCR_700_readl(host
, DBC_REG
) & 0x3f)) & 0x3f;
459 synchronous
= NCR_700_readb(host
, SXFER_REG
) & 0x0f;
461 /* get the data direction */
462 ddir
= NCR_700_readb(host
, CTEST0_REG
) & 0x01;
467 count
+= (NCR_700_readb(host
, SSTAT2_REG
) & 0xf0) >> 4;
469 if (NCR_700_readb(host
, SSTAT1_REG
) & SIDL_REG_FULL
)
473 __u8 sstat
= NCR_700_readb(host
, SSTAT1_REG
);
474 if (sstat
& SODL_REG_FULL
)
476 if (synchronous
&& (sstat
& SODR_REG_FULL
))
481 printk("RESIDUAL IS %d (ddir %d)\n", count
, ddir
);
486 /* print out the SCSI wires and corresponding phase from the SBCL register
489 sbcl_to_string(__u8 sbcl
)
492 static char ret
[256];
497 strcat(ret
, NCR_700_SBCL_bits
[i
]);
499 strcat(ret
, NCR_700_SBCL_to_phase
[sbcl
& 0x07]);
504 bitmap_to_number(__u8 bitmap
)
508 for(i
=0; i
<8 && !(bitmap
&(1<<i
)); i
++)
513 /* Pull a slot off the free list */
514 STATIC
struct NCR_700_command_slot
*
515 find_empty_slot(struct NCR_700_Host_Parameters
*hostdata
)
517 struct NCR_700_command_slot
*slot
= hostdata
->free_list
;
521 if(hostdata
->command_slot_count
!= NCR_700_COMMAND_SLOTS_PER_HOST
)
522 printk(KERN_ERR
"SLOTS FULL, but count is %d, should be %d\n", hostdata
->command_slot_count
, NCR_700_COMMAND_SLOTS_PER_HOST
);
526 if(slot
->state
!= NCR_700_SLOT_FREE
)
528 printk(KERN_ERR
"BUSY SLOT ON FREE LIST!!!\n");
531 hostdata
->free_list
= slot
->ITL_forw
;
532 slot
->ITL_forw
= NULL
;
535 /* NOTE: set the state to busy here, not queued, since this
536 * indicates the slot is in use and cannot be run by the IRQ
537 * finish routine. If we cannot queue the command when it
538 * is properly build, we then change to NCR_700_SLOT_QUEUED */
539 slot
->state
= NCR_700_SLOT_BUSY
;
541 hostdata
->command_slot_count
++;
547 free_slot(struct NCR_700_command_slot
*slot
,
548 struct NCR_700_Host_Parameters
*hostdata
)
550 if((slot
->state
& NCR_700_SLOT_MASK
) != NCR_700_SLOT_MAGIC
) {
551 printk(KERN_ERR
"53c700: SLOT %p is not MAGIC!!!\n", slot
);
553 if(slot
->state
== NCR_700_SLOT_FREE
) {
554 printk(KERN_ERR
"53c700: SLOT %p is FREE!!!\n", slot
);
557 slot
->resume_offset
= 0;
559 slot
->state
= NCR_700_SLOT_FREE
;
560 slot
->ITL_forw
= hostdata
->free_list
;
561 hostdata
->free_list
= slot
;
562 hostdata
->command_slot_count
--;
566 /* This routine really does very little. The command is indexed on
567 the ITL and (if tagged) the ITLQ lists in _queuecommand */
569 save_for_reselection(struct NCR_700_Host_Parameters
*hostdata
,
570 struct scsi_cmnd
*SCp
, __u32 dsp
)
572 /* Its just possible that this gets executed twice */
574 struct NCR_700_command_slot
*slot
=
575 (struct NCR_700_command_slot
*)SCp
->host_scribble
;
577 slot
->resume_offset
= dsp
;
579 hostdata
->state
= NCR_700_HOST_FREE
;
580 hostdata
->cmd
= NULL
;
584 NCR_700_unmap(struct NCR_700_Host_Parameters
*hostdata
, struct scsi_cmnd
*SCp
,
585 struct NCR_700_command_slot
*slot
)
587 if(SCp
->sc_data_direction
!= DMA_NONE
&&
588 SCp
->sc_data_direction
!= DMA_BIDIRECTIONAL
) {
590 dma_unmap_sg(hostdata
->dev
, SCp
->request_buffer
,
591 SCp
->use_sg
, SCp
->sc_data_direction
);
593 dma_unmap_single(hostdata
->dev
, slot
->dma_handle
,
594 SCp
->request_bufflen
,
595 SCp
->sc_data_direction
);
601 NCR_700_scsi_done(struct NCR_700_Host_Parameters
*hostdata
,
602 struct scsi_cmnd
*SCp
, int result
)
604 hostdata
->state
= NCR_700_HOST_FREE
;
605 hostdata
->cmd
= NULL
;
608 struct NCR_700_command_slot
*slot
=
609 (struct NCR_700_command_slot
*)SCp
->host_scribble
;
611 dma_unmap_single(hostdata
->dev
, slot
->pCmd
,
612 sizeof(SCp
->cmnd
), DMA_TO_DEVICE
);
613 if (slot
->flags
== NCR_700_FLAG_AUTOSENSE
) {
614 char *cmnd
= NCR_700_get_sense_cmnd(SCp
->device
);
616 printk(" ORIGINAL CMD %p RETURNED %d, new return is %d sense is\n",
617 SCp
, SCp
->cmnd
[7], result
);
618 scsi_print_sense("53c700", SCp
);
621 dma_unmap_single(hostdata
->dev
, slot
->dma_handle
, sizeof(SCp
->sense_buffer
), DMA_FROM_DEVICE
);
622 /* restore the old result if the request sense was
626 /* restore the original length */
627 SCp
->cmd_len
= cmnd
[8];
629 NCR_700_unmap(hostdata
, SCp
, slot
);
631 free_slot(slot
, hostdata
);
633 if(NCR_700_get_depth(SCp
->device
) == 0 ||
634 NCR_700_get_depth(SCp
->device
) > SCp
->device
->queue_depth
)
635 printk(KERN_ERR
"Invalid depth in NCR_700_scsi_done(): %d\n",
636 NCR_700_get_depth(SCp
->device
));
637 #endif /* NCR_700_DEBUG */
638 NCR_700_set_depth(SCp
->device
, NCR_700_get_depth(SCp
->device
) - 1);
640 SCp
->host_scribble
= NULL
;
641 SCp
->result
= result
;
644 printk(KERN_ERR
"53c700: SCSI DONE HAS NULL SCp\n");
650 NCR_700_internal_bus_reset(struct Scsi_Host
*host
)
653 NCR_700_writeb(ASSERT_RST
, host
, SCNTL1_REG
);
655 NCR_700_writeb(0, host
, SCNTL1_REG
);
660 NCR_700_chip_setup(struct Scsi_Host
*host
)
662 struct NCR_700_Host_Parameters
*hostdata
=
663 (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
664 __u32 dcntl_extra
= 0;
666 __u8 min_xferp
= (hostdata
->chip710
? NCR_710_MIN_XFERP
: NCR_700_MIN_XFERP
);
668 if(hostdata
->chip710
) {
669 __u8 burst_disable
= 0;
670 __u8 burst_length
= 0;
672 switch (hostdata
->burst_length
) {
674 burst_length
= BURST_LENGTH_1
;
677 burst_length
= BURST_LENGTH_2
;
680 burst_length
= BURST_LENGTH_4
;
683 burst_length
= BURST_LENGTH_8
;
686 burst_disable
= BURST_DISABLE
;
689 dcntl_extra
= COMPAT_700_MODE
;
691 NCR_700_writeb(dcntl_extra
, host
, DCNTL_REG
);
692 NCR_700_writeb(burst_length
| hostdata
->dmode_extra
,
693 host
, DMODE_710_REG
);
694 NCR_700_writeb(burst_disable
| (hostdata
->differential
?
695 DIFF
: 0), host
, CTEST7_REG
);
696 NCR_700_writeb(BTB_TIMER_DISABLE
, host
, CTEST0_REG
);
697 NCR_700_writeb(FULL_ARBITRATION
| ENABLE_PARITY
| PARITY
698 | AUTO_ATN
, host
, SCNTL0_REG
);
700 NCR_700_writeb(BURST_LENGTH_8
| hostdata
->dmode_extra
,
701 host
, DMODE_700_REG
);
702 NCR_700_writeb(hostdata
->differential
?
703 DIFF
: 0, host
, CTEST7_REG
);
705 /* this is for 700-66, does nothing on 700 */
706 NCR_700_writeb(LAST_DIS_ENBL
| ENABLE_ACTIVE_NEGATION
707 | GENERATE_RECEIVE_PARITY
, host
,
710 NCR_700_writeb(FULL_ARBITRATION
| ENABLE_PARITY
711 | PARITY
| AUTO_ATN
, host
, SCNTL0_REG
);
715 NCR_700_writeb(1 << host
->this_id
, host
, SCID_REG
);
716 NCR_700_writeb(0, host
, SBCL_REG
);
717 NCR_700_writeb(ASYNC_OPERATION
, host
, SXFER_REG
);
719 NCR_700_writeb(PHASE_MM_INT
| SEL_TIMEOUT_INT
| GROSS_ERR_INT
| UX_DISC_INT
720 | RST_INT
| PAR_ERR_INT
| SELECT_INT
, host
, SIEN_REG
);
722 NCR_700_writeb(ABORT_INT
| INT_INST_INT
| ILGL_INST_INT
, host
, DIEN_REG
);
723 NCR_700_writeb(ENABLE_SELECT
, host
, SCNTL1_REG
);
724 if(hostdata
->clock
> 75) {
725 printk(KERN_ERR
"53c700: Clock speed %dMHz is too high: 75Mhz is the maximum this chip can be driven at\n", hostdata
->clock
);
726 /* do the best we can, but the async clock will be out
727 * of spec: sync divider 2, async divider 3 */
728 DEBUG(("53c700: sync 2 async 3\n"));
729 NCR_700_writeb(SYNC_DIV_2_0
, host
, SBCL_REG
);
730 NCR_700_writeb(ASYNC_DIV_3_0
| dcntl_extra
, host
, DCNTL_REG
);
731 hostdata
->sync_clock
= hostdata
->clock
/2;
732 } else if(hostdata
->clock
> 50 && hostdata
->clock
<= 75) {
733 /* sync divider 1.5, async divider 3 */
734 DEBUG(("53c700: sync 1.5 async 3\n"));
735 NCR_700_writeb(SYNC_DIV_1_5
, host
, SBCL_REG
);
736 NCR_700_writeb(ASYNC_DIV_3_0
| dcntl_extra
, host
, DCNTL_REG
);
737 hostdata
->sync_clock
= hostdata
->clock
*2;
738 hostdata
->sync_clock
/= 3;
740 } else if(hostdata
->clock
> 37 && hostdata
->clock
<= 50) {
741 /* sync divider 1, async divider 2 */
742 DEBUG(("53c700: sync 1 async 2\n"));
743 NCR_700_writeb(SYNC_DIV_1_0
, host
, SBCL_REG
);
744 NCR_700_writeb(ASYNC_DIV_2_0
| dcntl_extra
, host
, DCNTL_REG
);
745 hostdata
->sync_clock
= hostdata
->clock
;
746 } else if(hostdata
->clock
> 25 && hostdata
->clock
<=37) {
747 /* sync divider 1, async divider 1.5 */
748 DEBUG(("53c700: sync 1 async 1.5\n"));
749 NCR_700_writeb(SYNC_DIV_1_0
, host
, SBCL_REG
);
750 NCR_700_writeb(ASYNC_DIV_1_5
| dcntl_extra
, host
, DCNTL_REG
);
751 hostdata
->sync_clock
= hostdata
->clock
;
753 DEBUG(("53c700: sync 1 async 1\n"));
754 NCR_700_writeb(SYNC_DIV_1_0
, host
, SBCL_REG
);
755 NCR_700_writeb(ASYNC_DIV_1_0
| dcntl_extra
, host
, DCNTL_REG
);
756 /* sync divider 1, async divider 1 */
757 hostdata
->sync_clock
= hostdata
->clock
;
759 /* Calculate the actual minimum period that can be supported
760 * by our synchronous clock speed. See the 710 manual for
761 * exact details of this calculation which is based on a
762 * setting of the SXFER register */
763 min_period
= 1000*(4+min_xferp
)/(4*hostdata
->sync_clock
);
764 hostdata
->min_period
= NCR_700_MIN_PERIOD
;
765 if(min_period
> NCR_700_MIN_PERIOD
)
766 hostdata
->min_period
= min_period
;
770 NCR_700_chip_reset(struct Scsi_Host
*host
)
772 struct NCR_700_Host_Parameters
*hostdata
=
773 (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
774 if(hostdata
->chip710
) {
775 NCR_700_writeb(SOFTWARE_RESET_710
, host
, ISTAT_REG
);
778 NCR_700_writeb(0, host
, ISTAT_REG
);
780 NCR_700_writeb(SOFTWARE_RESET
, host
, DCNTL_REG
);
783 NCR_700_writeb(0, host
, DCNTL_REG
);
788 NCR_700_chip_setup(host
);
791 /* The heart of the message processing engine is that the instruction
792 * immediately after the INT is the normal case (and so must be CLEAR
793 * ACK). If we want to do something else, we call that routine in
794 * scripts and set temp to be the normal case + 8 (skipping the CLEAR
795 * ACK) so that the routine returns correctly to resume its activity
798 process_extended_message(struct Scsi_Host
*host
,
799 struct NCR_700_Host_Parameters
*hostdata
,
800 struct scsi_cmnd
*SCp
, __u32 dsp
, __u32 dsps
)
802 __u32 resume_offset
= dsp
, temp
= dsp
+ 8;
803 __u8 pun
= 0xff, lun
= 0xff;
806 pun
= SCp
->device
->id
;
807 lun
= SCp
->device
->lun
;
810 switch(hostdata
->msgin
[2]) {
812 if(SCp
!= NULL
&& NCR_700_is_flag_set(SCp
->device
, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION
)) {
813 struct scsi_target
*starget
= SCp
->device
->sdev_target
;
814 __u8 period
= hostdata
->msgin
[3];
815 __u8 offset
= hostdata
->msgin
[4];
817 if(offset
== 0 || period
== 0) {
822 spi_offset(starget
) = offset
;
823 spi_period(starget
) = period
;
825 if(NCR_700_is_flag_set(SCp
->device
, NCR_700_DEV_PRINT_SYNC_NEGOTIATION
)) {
826 spi_display_xfer_agreement(starget
);
827 NCR_700_clear_flag(SCp
->device
, NCR_700_DEV_PRINT_SYNC_NEGOTIATION
);
830 NCR_700_set_flag(SCp
->device
, NCR_700_DEV_NEGOTIATED_SYNC
);
831 NCR_700_clear_flag(SCp
->device
, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION
);
833 NCR_700_writeb(NCR_700_get_SXFER(SCp
->device
),
837 /* SDTR message out of the blue, reject it */
838 shost_printk(KERN_WARNING
, host
,
839 "Unexpected SDTR msg\n");
840 hostdata
->msgout
[0] = A_REJECT_MSG
;
841 dma_cache_sync(hostdata
->dev
, hostdata
->msgout
, 1, DMA_TO_DEVICE
);
842 script_patch_16(hostdata
->dev
, hostdata
->script
,
844 /* SendMsgOut returns, so set up the return
846 resume_offset
= hostdata
->pScript
+ Ent_SendMessageWithATN
;
851 printk(KERN_INFO
"scsi%d: (%d:%d), Unsolicited WDTR after CMD, Rejecting\n",
852 host
->host_no
, pun
, lun
);
853 hostdata
->msgout
[0] = A_REJECT_MSG
;
854 dma_cache_sync(hostdata
->dev
, hostdata
->msgout
, 1, DMA_TO_DEVICE
);
855 script_patch_16(hostdata
->dev
, hostdata
->script
, MessageCount
,
857 resume_offset
= hostdata
->pScript
+ Ent_SendMessageWithATN
;
862 printk(KERN_INFO
"scsi%d (%d:%d): Unexpected message %s: ",
863 host
->host_no
, pun
, lun
,
864 NCR_700_phase
[(dsps
& 0xf00) >> 8]);
865 spi_print_msg(hostdata
->msgin
);
868 hostdata
->msgout
[0] = A_REJECT_MSG
;
869 dma_cache_sync(hostdata
->dev
, hostdata
->msgout
, 1, DMA_TO_DEVICE
);
870 script_patch_16(hostdata
->dev
, hostdata
->script
, MessageCount
,
872 /* SendMsgOut returns, so set up the return
874 resume_offset
= hostdata
->pScript
+ Ent_SendMessageWithATN
;
876 NCR_700_writel(temp
, host
, TEMP_REG
);
877 return resume_offset
;
881 process_message(struct Scsi_Host
*host
, struct NCR_700_Host_Parameters
*hostdata
,
882 struct scsi_cmnd
*SCp
, __u32 dsp
, __u32 dsps
)
884 /* work out where to return to */
885 __u32 temp
= dsp
+ 8, resume_offset
= dsp
;
886 __u8 pun
= 0xff, lun
= 0xff;
889 pun
= SCp
->device
->id
;
890 lun
= SCp
->device
->lun
;
894 printk("scsi%d (%d:%d): message %s: ", host
->host_no
, pun
, lun
,
895 NCR_700_phase
[(dsps
& 0xf00) >> 8]);
896 spi_print_msg(hostdata
->msgin
);
900 switch(hostdata
->msgin
[0]) {
903 resume_offset
= process_extended_message(host
, hostdata
, SCp
,
908 if(SCp
!= NULL
&& NCR_700_is_flag_set(SCp
->device
, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION
)) {
909 /* Rejected our sync negotiation attempt */
910 spi_period(SCp
->device
->sdev_target
) =
911 spi_offset(SCp
->device
->sdev_target
) = 0;
912 NCR_700_set_flag(SCp
->device
, NCR_700_DEV_NEGOTIATED_SYNC
);
913 NCR_700_clear_flag(SCp
->device
, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION
);
914 } else if(SCp
!= NULL
&& NCR_700_get_tag_neg_state(SCp
->device
) == NCR_700_DURING_TAG_NEGOTIATION
) {
915 /* rejected our first simple tag message */
916 scmd_printk(KERN_WARNING
, SCp
,
917 "Rejected first tag queue attempt, turning off tag queueing\n");
918 /* we're done negotiating */
919 NCR_700_set_tag_neg_state(SCp
->device
, NCR_700_FINISHED_TAG_NEGOTIATION
);
920 hostdata
->tag_negotiated
&= ~(1<<scmd_id(SCp
));
921 SCp
->device
->tagged_supported
= 0;
922 scsi_deactivate_tcq(SCp
->device
, host
->cmd_per_lun
);
924 shost_printk(KERN_WARNING
, host
,
925 "(%d:%d) Unexpected REJECT Message %s\n",
927 NCR_700_phase
[(dsps
& 0xf00) >> 8]);
928 /* however, just ignore it */
932 case A_PARITY_ERROR_MSG
:
933 printk(KERN_ERR
"scsi%d (%d:%d) Parity Error!\n", host
->host_no
,
935 NCR_700_internal_bus_reset(host
);
937 case A_SIMPLE_TAG_MSG
:
938 printk(KERN_INFO
"scsi%d (%d:%d) SIMPLE TAG %d %s\n", host
->host_no
,
939 pun
, lun
, hostdata
->msgin
[1],
940 NCR_700_phase
[(dsps
& 0xf00) >> 8]);
944 printk(KERN_INFO
"scsi%d (%d:%d): Unexpected message %s: ",
945 host
->host_no
, pun
, lun
,
946 NCR_700_phase
[(dsps
& 0xf00) >> 8]);
948 spi_print_msg(hostdata
->msgin
);
951 hostdata
->msgout
[0] = A_REJECT_MSG
;
952 dma_cache_sync(hostdata
->dev
, hostdata
->msgout
, 1, DMA_TO_DEVICE
);
953 script_patch_16(hostdata
->dev
, hostdata
->script
, MessageCount
,
955 /* SendMsgOut returns, so set up the return
957 resume_offset
= hostdata
->pScript
+ Ent_SendMessageWithATN
;
961 NCR_700_writel(temp
, host
, TEMP_REG
);
962 /* set us up to receive another message */
963 dma_cache_sync(hostdata
->dev
, hostdata
->msgin
, MSG_ARRAY_SIZE
, DMA_FROM_DEVICE
);
964 return resume_offset
;
968 process_script_interrupt(__u32 dsps
, __u32 dsp
, struct scsi_cmnd
*SCp
,
969 struct Scsi_Host
*host
,
970 struct NCR_700_Host_Parameters
*hostdata
)
972 __u32 resume_offset
= 0;
973 __u8 pun
= 0xff, lun
=0xff;
976 pun
= SCp
->device
->id
;
977 lun
= SCp
->device
->lun
;
980 if(dsps
== A_GOOD_STATUS_AFTER_STATUS
) {
981 DEBUG((" COMMAND COMPLETE, status=%02x\n",
982 hostdata
->status
[0]));
983 /* OK, if TCQ still under negotiation, we now know it works */
984 if (NCR_700_get_tag_neg_state(SCp
->device
) == NCR_700_DURING_TAG_NEGOTIATION
)
985 NCR_700_set_tag_neg_state(SCp
->device
,
986 NCR_700_FINISHED_TAG_NEGOTIATION
);
988 /* check for contingent allegiance contitions */
989 if(status_byte(hostdata
->status
[0]) == CHECK_CONDITION
||
990 status_byte(hostdata
->status
[0]) == COMMAND_TERMINATED
) {
991 struct NCR_700_command_slot
*slot
=
992 (struct NCR_700_command_slot
*)SCp
->host_scribble
;
993 if(slot
->flags
== NCR_700_FLAG_AUTOSENSE
) {
994 /* OOPS: bad device, returning another
995 * contingent allegiance condition */
996 scmd_printk(KERN_ERR
, SCp
,
997 "broken device is looping in contingent allegiance: ignoring\n");
998 NCR_700_scsi_done(hostdata
, SCp
, hostdata
->status
[0]);
1001 NCR_700_get_sense_cmnd(SCp
->device
);
1003 scsi_print_command(SCp
);
1004 printk(" cmd %p has status %d, requesting sense\n",
1005 SCp
, hostdata
->status
[0]);
1007 /* we can destroy the command here
1008 * because the contingent allegiance
1009 * condition will cause a retry which
1010 * will re-copy the command from the
1011 * saved data_cmnd. We also unmap any
1012 * data associated with the command
1014 NCR_700_unmap(hostdata
, SCp
, slot
);
1015 dma_unmap_single(hostdata
->dev
, slot
->pCmd
,
1019 cmnd
[0] = REQUEST_SENSE
;
1020 cmnd
[1] = (SCp
->device
->lun
& 0x7) << 5;
1023 cmnd
[4] = sizeof(SCp
->sense_buffer
);
1025 /* Here's a quiet hack: the
1026 * REQUEST_SENSE command is six bytes,
1027 * so store a flag indicating that
1028 * this was an internal sense request
1029 * and the original status at the end
1031 cmnd
[6] = NCR_700_INTERNAL_SENSE_MAGIC
;
1032 cmnd
[7] = hostdata
->status
[0];
1033 cmnd
[8] = SCp
->cmd_len
;
1034 SCp
->cmd_len
= 6; /* command length for
1036 slot
->pCmd
= dma_map_single(hostdata
->dev
, cmnd
, MAX_COMMAND_SIZE
, DMA_TO_DEVICE
);
1037 slot
->dma_handle
= dma_map_single(hostdata
->dev
, SCp
->sense_buffer
, sizeof(SCp
->sense_buffer
), DMA_FROM_DEVICE
);
1038 slot
->SG
[0].ins
= bS_to_host(SCRIPT_MOVE_DATA_IN
| sizeof(SCp
->sense_buffer
));
1039 slot
->SG
[0].pAddr
= bS_to_host(slot
->dma_handle
);
1040 slot
->SG
[1].ins
= bS_to_host(SCRIPT_RETURN
);
1041 slot
->SG
[1].pAddr
= 0;
1042 slot
->resume_offset
= hostdata
->pScript
;
1043 dma_cache_sync(hostdata
->dev
, slot
->SG
, sizeof(slot
->SG
[0])*2, DMA_TO_DEVICE
);
1044 dma_cache_sync(hostdata
->dev
, SCp
->sense_buffer
, sizeof(SCp
->sense_buffer
), DMA_FROM_DEVICE
);
1046 /* queue the command for reissue */
1047 slot
->state
= NCR_700_SLOT_QUEUED
;
1048 slot
->flags
= NCR_700_FLAG_AUTOSENSE
;
1049 hostdata
->state
= NCR_700_HOST_FREE
;
1050 hostdata
->cmd
= NULL
;
1053 // Currently rely on the mid layer evaluation
1054 // of the tag queuing capability
1056 //if(status_byte(hostdata->status[0]) == GOOD &&
1057 // SCp->cmnd[0] == INQUIRY && SCp->use_sg == 0) {
1058 // /* Piggy back the tag queueing support
1059 // * on this command */
1060 // dma_sync_single_for_cpu(hostdata->dev,
1061 // slot->dma_handle,
1062 // SCp->request_bufflen,
1063 // DMA_FROM_DEVICE);
1064 // if(((char *)SCp->request_buffer)[7] & 0x02) {
1065 // scmd_printk(KERN_INFO, SCp,
1066 // "Enabling Tag Command Queuing\n");
1067 // hostdata->tag_negotiated |= (1<<scmd_id(SCp));
1068 // NCR_700_set_flag(SCp->device, NCR_700_DEV_BEGIN_TAG_QUEUEING);
1070 // NCR_700_clear_flag(SCp->device, NCR_700_DEV_BEGIN_TAG_QUEUEING);
1071 // hostdata->tag_negotiated &= ~(1<<scmd_id(SCp));
1074 NCR_700_scsi_done(hostdata
, SCp
, hostdata
->status
[0]);
1076 } else if((dsps
& 0xfffff0f0) == A_UNEXPECTED_PHASE
) {
1077 __u8 i
= (dsps
& 0xf00) >> 8;
1079 scmd_printk(KERN_ERR
, SCp
, "UNEXPECTED PHASE %s (%s)\n",
1081 sbcl_to_string(NCR_700_readb(host
, SBCL_REG
)));
1082 scmd_printk(KERN_ERR
, SCp
, " len = %d, cmd =",
1084 scsi_print_command(SCp
);
1086 NCR_700_internal_bus_reset(host
);
1087 } else if((dsps
& 0xfffff000) == A_FATAL
) {
1088 int i
= (dsps
& 0xfff);
1090 printk(KERN_ERR
"scsi%d: (%d:%d) FATAL ERROR: %s\n",
1091 host
->host_no
, pun
, lun
, NCR_700_fatal_messages
[i
]);
1092 if(dsps
== A_FATAL_ILLEGAL_MSG_LENGTH
) {
1093 printk(KERN_ERR
" msg begins %02x %02x\n",
1094 hostdata
->msgin
[0], hostdata
->msgin
[1]);
1096 NCR_700_internal_bus_reset(host
);
1097 } else if((dsps
& 0xfffff0f0) == A_DISCONNECT
) {
1098 #ifdef NCR_700_DEBUG
1099 __u8 i
= (dsps
& 0xf00) >> 8;
1101 printk("scsi%d: (%d:%d), DISCONNECTED (%d) %s\n",
1102 host
->host_no
, pun
, lun
,
1103 i
, NCR_700_phase
[i
]);
1105 save_for_reselection(hostdata
, SCp
, dsp
);
1107 } else if(dsps
== A_RESELECTION_IDENTIFIED
) {
1109 struct NCR_700_command_slot
*slot
;
1110 __u8 reselection_id
= hostdata
->reselection_id
;
1111 struct scsi_device
*SDp
;
1113 lun
= hostdata
->msgin
[0] & 0x1f;
1115 hostdata
->reselection_id
= 0xff;
1116 DEBUG(("scsi%d: (%d:%d) RESELECTED!\n",
1117 host
->host_no
, reselection_id
, lun
));
1118 /* clear the reselection indicator */
1119 SDp
= __scsi_device_lookup(host
, 0, reselection_id
, lun
);
1120 if(unlikely(SDp
== NULL
)) {
1121 printk(KERN_ERR
"scsi%d: (%d:%d) HAS NO device\n",
1122 host
->host_no
, reselection_id
, lun
);
1125 if(hostdata
->msgin
[1] == A_SIMPLE_TAG_MSG
) {
1126 struct scsi_cmnd
*SCp
= scsi_find_tag(SDp
, hostdata
->msgin
[2]);
1127 if(unlikely(SCp
== NULL
)) {
1128 printk(KERN_ERR
"scsi%d: (%d:%d) no saved request for tag %d\n",
1129 host
->host_no
, reselection_id
, lun
, hostdata
->msgin
[2]);
1133 slot
= (struct NCR_700_command_slot
*)SCp
->host_scribble
;
1134 DDEBUG(KERN_DEBUG
, SDp
,
1135 "reselection is tag %d, slot %p(%d)\n",
1136 hostdata
->msgin
[2], slot
, slot
->tag
);
1138 struct scsi_cmnd
*SCp
= scsi_find_tag(SDp
, SCSI_NO_TAG
);
1139 if(unlikely(SCp
== NULL
)) {
1140 sdev_printk(KERN_ERR
, SDp
,
1141 "no saved request for untagged cmd\n");
1144 slot
= (struct NCR_700_command_slot
*)SCp
->host_scribble
;
1148 printk(KERN_ERR
"scsi%d: (%d:%d) RESELECTED but no saved command (MSG = %02x %02x %02x)!!\n",
1149 host
->host_no
, reselection_id
, lun
,
1150 hostdata
->msgin
[0], hostdata
->msgin
[1],
1151 hostdata
->msgin
[2]);
1153 if(hostdata
->state
!= NCR_700_HOST_BUSY
)
1154 printk(KERN_ERR
"scsi%d: FATAL, host not busy during valid reselection!\n",
1156 resume_offset
= slot
->resume_offset
;
1157 hostdata
->cmd
= slot
->cmnd
;
1159 /* re-patch for this command */
1160 script_patch_32_abs(hostdata
->dev
, hostdata
->script
,
1161 CommandAddress
, slot
->pCmd
);
1162 script_patch_16(hostdata
->dev
, hostdata
->script
,
1163 CommandCount
, slot
->cmnd
->cmd_len
);
1164 script_patch_32_abs(hostdata
->dev
, hostdata
->script
,
1165 SGScriptStartAddress
,
1166 to32bit(&slot
->pSG
[0].ins
));
1168 /* Note: setting SXFER only works if we're
1169 * still in the MESSAGE phase, so it is vital
1170 * that ACK is still asserted when we process
1171 * the reselection message. The resume offset
1172 * should therefore always clear ACK */
1173 NCR_700_writeb(NCR_700_get_SXFER(hostdata
->cmd
->device
),
1175 dma_cache_sync(hostdata
->dev
, hostdata
->msgin
,
1176 MSG_ARRAY_SIZE
, DMA_FROM_DEVICE
);
1177 dma_cache_sync(hostdata
->dev
, hostdata
->msgout
,
1178 MSG_ARRAY_SIZE
, DMA_TO_DEVICE
);
1179 /* I'm just being paranoid here, the command should
1180 * already have been flushed from the cache */
1181 dma_cache_sync(hostdata
->dev
, slot
->cmnd
->cmnd
,
1182 slot
->cmnd
->cmd_len
, DMA_TO_DEVICE
);
1187 } else if(dsps
== A_RESELECTED_DURING_SELECTION
) {
1189 /* This section is full of debugging code because I've
1190 * never managed to reach it. I think what happens is
1191 * that, because the 700 runs with selection
1192 * interrupts enabled the whole time that we take a
1193 * selection interrupt before we manage to get to the
1194 * reselected script interrupt */
1196 __u8 reselection_id
= NCR_700_readb(host
, SFBR_REG
);
1197 struct NCR_700_command_slot
*slot
;
1199 /* Take out our own ID */
1200 reselection_id
&= ~(1<<host
->this_id
);
1202 /* I've never seen this happen, so keep this as a printk rather
1204 printk(KERN_INFO
"scsi%d: (%d:%d) RESELECTION DURING SELECTION, dsp=%08x[%04x] state=%d, count=%d\n",
1205 host
->host_no
, reselection_id
, lun
, dsp
, dsp
- hostdata
->pScript
, hostdata
->state
, hostdata
->command_slot_count
);
1208 /* FIXME: DEBUGGING CODE */
1209 __u32 SG
= (__u32
)bS_to_cpu(hostdata
->script
[A_SGScriptStartAddress_used
[0]]);
1212 for(i
=0; i
< NCR_700_COMMAND_SLOTS_PER_HOST
; i
++) {
1213 if(SG
>= to32bit(&hostdata
->slots
[i
].pSG
[0])
1214 && SG
<= to32bit(&hostdata
->slots
[i
].pSG
[NCR_700_SG_SEGMENTS
]))
1217 printk(KERN_INFO
"IDENTIFIED SG segment as being %08x in slot %p, cmd %p, slot->resume_offset=%08x\n", SG
, &hostdata
->slots
[i
], hostdata
->slots
[i
].cmnd
, hostdata
->slots
[i
].resume_offset
);
1218 SCp
= hostdata
->slots
[i
].cmnd
;
1222 slot
= (struct NCR_700_command_slot
*)SCp
->host_scribble
;
1223 /* change slot from busy to queued to redo command */
1224 slot
->state
= NCR_700_SLOT_QUEUED
;
1226 hostdata
->cmd
= NULL
;
1228 if(reselection_id
== 0) {
1229 if(hostdata
->reselection_id
== 0xff) {
1230 printk(KERN_ERR
"scsi%d: Invalid reselection during selection!!\n", host
->host_no
);
1233 printk(KERN_ERR
"scsi%d: script reselected and we took a selection interrupt\n",
1235 reselection_id
= hostdata
->reselection_id
;
1239 /* convert to real ID */
1240 reselection_id
= bitmap_to_number(reselection_id
);
1242 hostdata
->reselection_id
= reselection_id
;
1243 /* just in case we have a stale simple tag message, clear it */
1244 hostdata
->msgin
[1] = 0;
1245 dma_cache_sync(hostdata
->dev
, hostdata
->msgin
,
1246 MSG_ARRAY_SIZE
, DMA_BIDIRECTIONAL
);
1247 if(hostdata
->tag_negotiated
& (1<<reselection_id
)) {
1248 resume_offset
= hostdata
->pScript
+ Ent_GetReselectionWithTag
;
1250 resume_offset
= hostdata
->pScript
+ Ent_GetReselectionData
;
1252 } else if(dsps
== A_COMPLETED_SELECTION_AS_TARGET
) {
1253 /* we've just disconnected from the bus, do nothing since
1254 * a return here will re-run the queued command slot
1255 * that may have been interrupted by the initial selection */
1256 DEBUG((" SELECTION COMPLETED\n"));
1257 } else if((dsps
& 0xfffff0f0) == A_MSG_IN
) {
1258 resume_offset
= process_message(host
, hostdata
, SCp
,
1260 } else if((dsps
& 0xfffff000) == 0) {
1261 __u8 i
= (dsps
& 0xf0) >> 4, j
= (dsps
& 0xf00) >> 8;
1262 printk(KERN_ERR
"scsi%d: (%d:%d), unhandled script condition %s %s at %04x\n",
1263 host
->host_no
, pun
, lun
, NCR_700_condition
[i
],
1264 NCR_700_phase
[j
], dsp
- hostdata
->pScript
);
1266 scsi_print_command(SCp
);
1269 for(i
= 0; i
< SCp
->use_sg
+ 1; i
++) {
1270 printk(KERN_INFO
" SG[%d].length = %d, move_insn=%08x, addr %08x\n", i
, ((struct scatterlist
*)SCp
->request_buffer
)[i
].length
, ((struct NCR_700_command_slot
*)SCp
->host_scribble
)->SG
[i
].ins
, ((struct NCR_700_command_slot
*)SCp
->host_scribble
)->SG
[i
].pAddr
);
1274 NCR_700_internal_bus_reset(host
);
1275 } else if((dsps
& 0xfffff000) == A_DEBUG_INTERRUPT
) {
1276 printk(KERN_NOTICE
"scsi%d (%d:%d) DEBUG INTERRUPT %d AT %08x[%04x], continuing\n",
1277 host
->host_no
, pun
, lun
, dsps
& 0xfff, dsp
, dsp
- hostdata
->pScript
);
1278 resume_offset
= dsp
;
1280 printk(KERN_ERR
"scsi%d: (%d:%d), unidentified script interrupt 0x%x at %04x\n",
1281 host
->host_no
, pun
, lun
, dsps
, dsp
- hostdata
->pScript
);
1282 NCR_700_internal_bus_reset(host
);
1284 return resume_offset
;
1287 /* We run the 53c700 with selection interrupts always enabled. This
1288 * means that the chip may be selected as soon as the bus frees. On a
1289 * busy bus, this can be before the scripts engine finishes its
1290 * processing. Therefore, part of the selection processing has to be
1291 * to find out what the scripts engine is doing and complete the
1292 * function if necessary (i.e. process the pending disconnect or save
1293 * the interrupted initial selection */
1295 process_selection(struct Scsi_Host
*host
, __u32 dsp
)
1297 __u8 id
= 0; /* Squash compiler warning */
1299 __u32 resume_offset
= 0;
1300 struct NCR_700_Host_Parameters
*hostdata
=
1301 (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
1302 struct scsi_cmnd
*SCp
= hostdata
->cmd
;
1305 for(count
= 0; count
< 5; count
++) {
1306 id
= NCR_700_readb(host
, hostdata
->chip710
?
1307 CTEST9_REG
: SFBR_REG
);
1309 /* Take out our own ID */
1310 id
&= ~(1<<host
->this_id
);
1315 sbcl
= NCR_700_readb(host
, SBCL_REG
);
1316 if((sbcl
& SBCL_IO
) == 0) {
1317 /* mark as having been selected rather than reselected */
1320 /* convert to real ID */
1321 hostdata
->reselection_id
= id
= bitmap_to_number(id
);
1322 DEBUG(("scsi%d: Reselected by %d\n",
1323 host
->host_no
, id
));
1325 if(hostdata
->state
== NCR_700_HOST_BUSY
&& SCp
!= NULL
) {
1326 struct NCR_700_command_slot
*slot
=
1327 (struct NCR_700_command_slot
*)SCp
->host_scribble
;
1328 DEBUG((" ID %d WARNING: RESELECTION OF BUSY HOST, saving cmd %p, slot %p, addr %x [%04x], resume %x!\n", id
, hostdata
->cmd
, slot
, dsp
, dsp
- hostdata
->pScript
, resume_offset
));
1330 switch(dsp
- hostdata
->pScript
) {
1331 case Ent_Disconnect1
:
1332 case Ent_Disconnect2
:
1333 save_for_reselection(hostdata
, SCp
, Ent_Disconnect2
+ hostdata
->pScript
);
1335 case Ent_Disconnect3
:
1336 case Ent_Disconnect4
:
1337 save_for_reselection(hostdata
, SCp
, Ent_Disconnect4
+ hostdata
->pScript
);
1339 case Ent_Disconnect5
:
1340 case Ent_Disconnect6
:
1341 save_for_reselection(hostdata
, SCp
, Ent_Disconnect6
+ hostdata
->pScript
);
1343 case Ent_Disconnect7
:
1344 case Ent_Disconnect8
:
1345 save_for_reselection(hostdata
, SCp
, Ent_Disconnect8
+ hostdata
->pScript
);
1349 process_script_interrupt(A_GOOD_STATUS_AFTER_STATUS
, dsp
, SCp
, host
, hostdata
);
1353 slot
->state
= NCR_700_SLOT_QUEUED
;
1357 hostdata
->state
= NCR_700_HOST_BUSY
;
1358 hostdata
->cmd
= NULL
;
1359 /* clear any stale simple tag message */
1360 hostdata
->msgin
[1] = 0;
1361 dma_cache_sync(hostdata
->dev
, hostdata
->msgin
, MSG_ARRAY_SIZE
,
1365 /* Selected as target, Ignore */
1366 resume_offset
= hostdata
->pScript
+ Ent_SelectedAsTarget
;
1367 } else if(hostdata
->tag_negotiated
& (1<<id
)) {
1368 resume_offset
= hostdata
->pScript
+ Ent_GetReselectionWithTag
;
1370 resume_offset
= hostdata
->pScript
+ Ent_GetReselectionData
;
1372 return resume_offset
;
1376 NCR_700_clear_fifo(struct Scsi_Host
*host
) {
1377 const struct NCR_700_Host_Parameters
*hostdata
1378 = (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
1379 if(hostdata
->chip710
) {
1380 NCR_700_writeb(CLR_FIFO_710
, host
, CTEST8_REG
);
1382 NCR_700_writeb(CLR_FIFO
, host
, DFIFO_REG
);
1387 NCR_700_flush_fifo(struct Scsi_Host
*host
) {
1388 const struct NCR_700_Host_Parameters
*hostdata
1389 = (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
1390 if(hostdata
->chip710
) {
1391 NCR_700_writeb(FLUSH_DMA_FIFO_710
, host
, CTEST8_REG
);
1393 NCR_700_writeb(0, host
, CTEST8_REG
);
1395 NCR_700_writeb(FLUSH_DMA_FIFO
, host
, DFIFO_REG
);
1397 NCR_700_writeb(0, host
, DFIFO_REG
);
1402 /* The queue lock with interrupts disabled must be held on entry to
1405 NCR_700_start_command(struct scsi_cmnd
*SCp
)
1407 struct NCR_700_command_slot
*slot
=
1408 (struct NCR_700_command_slot
*)SCp
->host_scribble
;
1409 struct NCR_700_Host_Parameters
*hostdata
=
1410 (struct NCR_700_Host_Parameters
*)SCp
->device
->host
->hostdata
[0];
1411 __u16 count
= 1; /* for IDENTIFY message */
1413 if(hostdata
->state
!= NCR_700_HOST_FREE
) {
1414 /* keep this inside the lock to close the race window where
1415 * the running command finishes on another CPU while we don't
1416 * change the state to queued on this one */
1417 slot
->state
= NCR_700_SLOT_QUEUED
;
1419 DEBUG(("scsi%d: host busy, queueing command %p, slot %p\n",
1420 SCp
->device
->host
->host_no
, slot
->cmnd
, slot
));
1423 hostdata
->state
= NCR_700_HOST_BUSY
;
1424 hostdata
->cmd
= SCp
;
1425 slot
->state
= NCR_700_SLOT_BUSY
;
1426 /* keep interrupts disabled until we have the command correctly
1427 * set up so we cannot take a selection interrupt */
1429 hostdata
->msgout
[0] = NCR_700_identify((SCp
->cmnd
[0] != REQUEST_SENSE
&&
1430 slot
->flags
!= NCR_700_FLAG_AUTOSENSE
),
1432 /* for INQUIRY or REQUEST_SENSE commands, we cannot be sure
1433 * if the negotiated transfer parameters still hold, so
1434 * always renegotiate them */
1435 if(SCp
->cmnd
[0] == INQUIRY
|| SCp
->cmnd
[0] == REQUEST_SENSE
||
1436 slot
->flags
== NCR_700_FLAG_AUTOSENSE
) {
1437 NCR_700_clear_flag(SCp
->device
, NCR_700_DEV_NEGOTIATED_SYNC
);
1440 /* REQUEST_SENSE is asking for contingent I_T_L(_Q) status.
1441 * If a contingent allegiance condition exists, the device
1442 * will refuse all tags, so send the request sense as untagged
1444 if((hostdata
->tag_negotiated
& (1<<scmd_id(SCp
)))
1445 && (slot
->tag
!= SCSI_NO_TAG
&& SCp
->cmnd
[0] != REQUEST_SENSE
&&
1446 slot
->flags
!= NCR_700_FLAG_AUTOSENSE
)) {
1447 count
+= scsi_populate_tag_msg(SCp
, &hostdata
->msgout
[count
]);
1450 if(hostdata
->fast
&&
1451 NCR_700_is_flag_clear(SCp
->device
, NCR_700_DEV_NEGOTIATED_SYNC
)) {
1452 count
+= spi_populate_sync_msg(&hostdata
->msgout
[count
],
1453 spi_period(SCp
->device
->sdev_target
),
1454 spi_offset(SCp
->device
->sdev_target
));
1455 NCR_700_set_flag(SCp
->device
, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION
);
1458 script_patch_16(hostdata
->dev
, hostdata
->script
, MessageCount
, count
);
1461 script_patch_ID(hostdata
->dev
, hostdata
->script
,
1462 Device_ID
, 1<<scmd_id(SCp
));
1464 script_patch_32_abs(hostdata
->dev
, hostdata
->script
, CommandAddress
,
1466 script_patch_16(hostdata
->dev
, hostdata
->script
, CommandCount
,
1468 /* finally plumb the beginning of the SG list into the script
1470 script_patch_32_abs(hostdata
->dev
, hostdata
->script
,
1471 SGScriptStartAddress
, to32bit(&slot
->pSG
[0].ins
));
1472 NCR_700_clear_fifo(SCp
->device
->host
);
1474 if(slot
->resume_offset
== 0)
1475 slot
->resume_offset
= hostdata
->pScript
;
1476 /* now perform all the writebacks and invalidates */
1477 dma_cache_sync(hostdata
->dev
, hostdata
->msgout
, count
, DMA_TO_DEVICE
);
1478 dma_cache_sync(hostdata
->dev
, hostdata
->msgin
, MSG_ARRAY_SIZE
,
1480 dma_cache_sync(hostdata
->dev
, SCp
->cmnd
, SCp
->cmd_len
, DMA_TO_DEVICE
);
1481 dma_cache_sync(hostdata
->dev
, hostdata
->status
, 1, DMA_FROM_DEVICE
);
1483 /* set the synchronous period/offset */
1484 NCR_700_writeb(NCR_700_get_SXFER(SCp
->device
),
1485 SCp
->device
->host
, SXFER_REG
);
1486 NCR_700_writel(slot
->temp
, SCp
->device
->host
, TEMP_REG
);
1487 NCR_700_writel(slot
->resume_offset
, SCp
->device
->host
, DSP_REG
);
1493 NCR_700_intr(int irq
, void *dev_id
)
1495 struct Scsi_Host
*host
= (struct Scsi_Host
*)dev_id
;
1496 struct NCR_700_Host_Parameters
*hostdata
=
1497 (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
1499 __u32 resume_offset
= 0;
1500 __u8 pun
= 0xff, lun
= 0xff;
1501 unsigned long flags
;
1504 /* Use the host lock to serialise acess to the 53c700
1505 * hardware. Note: In future, we may need to take the queue
1506 * lock to enter the done routines. When that happens, we
1507 * need to ensure that for this driver, the host lock and the
1508 * queue lock point to the same thing. */
1509 spin_lock_irqsave(host
->host_lock
, flags
);
1510 if((istat
= NCR_700_readb(host
, ISTAT_REG
))
1511 & (SCSI_INT_PENDING
| DMA_INT_PENDING
)) {
1513 __u8 sstat0
= 0, dstat
= 0;
1515 struct scsi_cmnd
*SCp
= hostdata
->cmd
;
1516 enum NCR_700_Host_State state
;
1519 state
= hostdata
->state
;
1520 SCp
= hostdata
->cmd
;
1522 if(istat
& SCSI_INT_PENDING
) {
1525 sstat0
= NCR_700_readb(host
, SSTAT0_REG
);
1528 if(istat
& DMA_INT_PENDING
) {
1531 dstat
= NCR_700_readb(host
, DSTAT_REG
);
1534 dsps
= NCR_700_readl(host
, DSPS_REG
);
1535 dsp
= NCR_700_readl(host
, DSP_REG
);
1537 DEBUG(("scsi%d: istat %02x sstat0 %02x dstat %02x dsp %04x[%08x] dsps 0x%x\n",
1538 host
->host_no
, istat
, sstat0
, dstat
,
1539 (dsp
- (__u32
)(hostdata
->pScript
))/4,
1543 pun
= SCp
->device
->id
;
1544 lun
= SCp
->device
->lun
;
1547 if(sstat0
& SCSI_RESET_DETECTED
) {
1548 struct scsi_device
*SDp
;
1551 hostdata
->state
= NCR_700_HOST_BUSY
;
1553 printk(KERN_ERR
"scsi%d: Bus Reset detected, executing command %p, slot %p, dsp %08x[%04x]\n",
1554 host
->host_no
, SCp
, SCp
== NULL
? NULL
: SCp
->host_scribble
, dsp
, dsp
- hostdata
->pScript
);
1556 scsi_report_bus_reset(host
, 0);
1558 /* clear all the negotiated parameters */
1559 __shost_for_each_device(SDp
, host
)
1560 NCR_700_clear_flag(SDp
, ~0);
1562 /* clear all the slots and their pending commands */
1563 for(i
= 0; i
< NCR_700_COMMAND_SLOTS_PER_HOST
; i
++) {
1564 struct scsi_cmnd
*SCp
;
1565 struct NCR_700_command_slot
*slot
=
1566 &hostdata
->slots
[i
];
1568 if(slot
->state
== NCR_700_SLOT_FREE
)
1572 printk(KERN_ERR
" failing command because of reset, slot %p, cmnd %p\n",
1574 free_slot(slot
, hostdata
);
1575 SCp
->host_scribble
= NULL
;
1576 NCR_700_set_depth(SCp
->device
, 0);
1577 /* NOTE: deadlock potential here: we
1578 * rely on mid-layer guarantees that
1579 * scsi_done won't try to issue the
1580 * command again otherwise we'll
1582 * hostdata->state_lock */
1583 SCp
->result
= DID_RESET
<< 16;
1584 SCp
->scsi_done(SCp
);
1587 NCR_700_chip_setup(host
);
1589 hostdata
->state
= NCR_700_HOST_FREE
;
1590 hostdata
->cmd
= NULL
;
1591 /* signal back if this was an eh induced reset */
1592 if(hostdata
->eh_complete
!= NULL
)
1593 complete(hostdata
->eh_complete
);
1595 } else if(sstat0
& SELECTION_TIMEOUT
) {
1596 DEBUG(("scsi%d: (%d:%d) selection timeout\n",
1597 host
->host_no
, pun
, lun
));
1598 NCR_700_scsi_done(hostdata
, SCp
, DID_NO_CONNECT
<<16);
1599 } else if(sstat0
& PHASE_MISMATCH
) {
1600 struct NCR_700_command_slot
*slot
= (SCp
== NULL
) ? NULL
:
1601 (struct NCR_700_command_slot
*)SCp
->host_scribble
;
1603 if(dsp
== Ent_SendMessage
+ 8 + hostdata
->pScript
) {
1604 /* It wants to reply to some part of
1606 #ifdef NCR_700_DEBUG
1607 __u32 temp
= NCR_700_readl(host
, TEMP_REG
);
1608 int count
= (hostdata
->script
[Ent_SendMessage
/4] & 0xffffff) - ((NCR_700_readl(host
, DBC_REG
) & 0xffffff) + NCR_700_data_residual(host
));
1609 printk("scsi%d (%d:%d) PHASE MISMATCH IN SEND MESSAGE %d remain, return %p[%04x], phase %s\n", host
->host_no
, pun
, lun
, count
, (void *)temp
, temp
- hostdata
->pScript
, sbcl_to_string(NCR_700_readb(host
, SBCL_REG
)));
1611 resume_offset
= hostdata
->pScript
+ Ent_SendMessagePhaseMismatch
;
1612 } else if(dsp
>= to32bit(&slot
->pSG
[0].ins
) &&
1613 dsp
<= to32bit(&slot
->pSG
[NCR_700_SG_SEGMENTS
].ins
)) {
1614 int data_transfer
= NCR_700_readl(host
, DBC_REG
) & 0xffffff;
1615 int SGcount
= (dsp
- to32bit(&slot
->pSG
[0].ins
))/sizeof(struct NCR_700_SG_List
);
1616 int residual
= NCR_700_data_residual(host
);
1618 #ifdef NCR_700_DEBUG
1619 __u32 naddr
= NCR_700_readl(host
, DNAD_REG
);
1621 printk("scsi%d: (%d:%d) Expected phase mismatch in slot->SG[%d], transferred 0x%x\n",
1622 host
->host_no
, pun
, lun
,
1623 SGcount
, data_transfer
);
1624 scsi_print_command(SCp
);
1626 printk("scsi%d: (%d:%d) Expected phase mismatch in slot->SG[%d], transferred 0x%x, residual %d\n",
1627 host
->host_no
, pun
, lun
,
1628 SGcount
, data_transfer
, residual
);
1631 data_transfer
+= residual
;
1633 if(data_transfer
!= 0) {
1639 count
= (bS_to_cpu(slot
->SG
[SGcount
].ins
) & 0x00ffffff);
1640 DEBUG(("DATA TRANSFER MISMATCH, count = %d, transferred %d\n", count
, count
-data_transfer
));
1641 slot
->SG
[SGcount
].ins
&= bS_to_host(0xff000000);
1642 slot
->SG
[SGcount
].ins
|= bS_to_host(data_transfer
);
1643 pAddr
= bS_to_cpu(slot
->SG
[SGcount
].pAddr
);
1644 pAddr
+= (count
- data_transfer
);
1645 #ifdef NCR_700_DEBUG
1646 if(pAddr
!= naddr
) {
1647 printk("scsi%d (%d:%d) transfer mismatch pAddr=%lx, naddr=%lx, data_transfer=%d, residual=%d\n", host
->host_no
, pun
, lun
, (unsigned long)pAddr
, (unsigned long)naddr
, data_transfer
, residual
);
1650 slot
->SG
[SGcount
].pAddr
= bS_to_host(pAddr
);
1652 /* set the executed moves to nops */
1653 for(i
=0; i
<SGcount
; i
++) {
1654 slot
->SG
[i
].ins
= bS_to_host(SCRIPT_NOP
);
1655 slot
->SG
[i
].pAddr
= 0;
1657 dma_cache_sync(hostdata
->dev
, slot
->SG
, sizeof(slot
->SG
), DMA_TO_DEVICE
);
1658 /* and pretend we disconnected after
1659 * the command phase */
1660 resume_offset
= hostdata
->pScript
+ Ent_MsgInDuringData
;
1661 /* make sure all the data is flushed */
1662 NCR_700_flush_fifo(host
);
1664 __u8 sbcl
= NCR_700_readb(host
, SBCL_REG
);
1665 printk(KERN_ERR
"scsi%d: (%d:%d) phase mismatch at %04x, phase %s\n",
1666 host
->host_no
, pun
, lun
, dsp
- hostdata
->pScript
, sbcl_to_string(sbcl
));
1667 NCR_700_internal_bus_reset(host
);
1670 } else if(sstat0
& SCSI_GROSS_ERROR
) {
1671 printk(KERN_ERR
"scsi%d: (%d:%d) GROSS ERROR\n",
1672 host
->host_no
, pun
, lun
);
1673 NCR_700_scsi_done(hostdata
, SCp
, DID_ERROR
<<16);
1674 } else if(sstat0
& PARITY_ERROR
) {
1675 printk(KERN_ERR
"scsi%d: (%d:%d) PARITY ERROR\n",
1676 host
->host_no
, pun
, lun
);
1677 NCR_700_scsi_done(hostdata
, SCp
, DID_ERROR
<<16);
1678 } else if(dstat
& SCRIPT_INT_RECEIVED
) {
1679 DEBUG(("scsi%d: (%d:%d) ====>SCRIPT INTERRUPT<====\n",
1680 host
->host_no
, pun
, lun
));
1681 resume_offset
= process_script_interrupt(dsps
, dsp
, SCp
, host
, hostdata
);
1682 } else if(dstat
& (ILGL_INST_DETECTED
)) {
1683 printk(KERN_ERR
"scsi%d: (%d:%d) Illegal Instruction detected at 0x%08x[0x%x]!!!\n"
1684 " Please email James.Bottomley@HansenPartnership.com with the details\n",
1685 host
->host_no
, pun
, lun
,
1686 dsp
, dsp
- hostdata
->pScript
);
1687 NCR_700_scsi_done(hostdata
, SCp
, DID_ERROR
<<16);
1688 } else if(dstat
& (WATCH_DOG_INTERRUPT
|ABORTED
)) {
1689 printk(KERN_ERR
"scsi%d: (%d:%d) serious DMA problem, dstat=%02x\n",
1690 host
->host_no
, pun
, lun
, dstat
);
1691 NCR_700_scsi_done(hostdata
, SCp
, DID_ERROR
<<16);
1695 /* NOTE: selection interrupt processing MUST occur
1696 * after script interrupt processing to correctly cope
1697 * with the case where we process a disconnect and
1698 * then get reselected before we process the
1700 if(sstat0
& SELECTED
) {
1701 /* FIXME: It currently takes at least FOUR
1702 * interrupts to complete a command that
1703 * disconnects: one for the disconnect, one
1704 * for the reselection, one to get the
1705 * reselection data and one to complete the
1706 * command. If we guess the reselected
1707 * command here and prepare it, we only need
1708 * to get a reselection data interrupt if we
1709 * guessed wrongly. Since the interrupt
1710 * overhead is much greater than the command
1711 * setup, this would be an efficient
1712 * optimisation particularly as we probably
1713 * only have one outstanding command on a
1714 * target most of the time */
1716 resume_offset
= process_selection(host
, dsp
);
1723 if(hostdata
->state
!= NCR_700_HOST_BUSY
) {
1724 printk(KERN_ERR
"scsi%d: Driver error: resume at 0x%08x [0x%04x] with non busy host!\n",
1725 host
->host_no
, resume_offset
, resume_offset
- hostdata
->pScript
);
1726 hostdata
->state
= NCR_700_HOST_BUSY
;
1729 DEBUG(("Attempting to resume at %x\n", resume_offset
));
1730 NCR_700_clear_fifo(host
);
1731 NCR_700_writel(resume_offset
, host
, DSP_REG
);
1733 /* There is probably a technical no-no about this: If we're a
1734 * shared interrupt and we got this interrupt because the
1735 * other device needs servicing not us, we're still going to
1736 * check our queued commands here---of course, there shouldn't
1737 * be any outstanding.... */
1738 if(hostdata
->state
== NCR_700_HOST_FREE
) {
1741 for(i
= 0; i
< NCR_700_COMMAND_SLOTS_PER_HOST
; i
++) {
1742 /* fairness: always run the queue from the last
1743 * position we left off */
1744 int j
= (i
+ hostdata
->saved_slot_position
)
1745 % NCR_700_COMMAND_SLOTS_PER_HOST
;
1747 if(hostdata
->slots
[j
].state
!= NCR_700_SLOT_QUEUED
)
1749 if(NCR_700_start_command(hostdata
->slots
[j
].cmnd
)) {
1750 DEBUG(("scsi%d: Issuing saved command slot %p, cmd %p\t\n",
1751 host
->host_no
, &hostdata
->slots
[j
],
1752 hostdata
->slots
[j
].cmnd
));
1753 hostdata
->saved_slot_position
= j
+ 1;
1760 spin_unlock_irqrestore(host
->host_lock
, flags
);
1761 return IRQ_RETVAL(handled
);
1765 NCR_700_queuecommand(struct scsi_cmnd
*SCp
, void (*done
)(struct scsi_cmnd
*))
1767 struct NCR_700_Host_Parameters
*hostdata
=
1768 (struct NCR_700_Host_Parameters
*)SCp
->device
->host
->hostdata
[0];
1770 enum dma_data_direction direction
;
1771 struct NCR_700_command_slot
*slot
;
1773 if(hostdata
->command_slot_count
>= NCR_700_COMMAND_SLOTS_PER_HOST
) {
1774 /* We're over our allocation, this should never happen
1775 * since we report the max allocation to the mid layer */
1776 printk(KERN_WARNING
"scsi%d: Command depth has gone over queue depth\n", SCp
->device
->host
->host_no
);
1779 /* check for untagged commands. We cannot have any outstanding
1780 * commands if we accept them. Commands could be untagged because:
1782 * - The tag negotiated bitmap is clear
1783 * - The blk layer sent and untagged command
1785 if(NCR_700_get_depth(SCp
->device
) != 0
1786 && (!(hostdata
->tag_negotiated
& (1<<scmd_id(SCp
)))
1787 || !blk_rq_tagged(SCp
->request
))) {
1788 CDEBUG(KERN_ERR
, SCp
, "has non zero depth %d\n",
1789 NCR_700_get_depth(SCp
->device
));
1790 return SCSI_MLQUEUE_DEVICE_BUSY
;
1792 if(NCR_700_get_depth(SCp
->device
) >= SCp
->device
->queue_depth
) {
1793 CDEBUG(KERN_ERR
, SCp
, "has max tag depth %d\n",
1794 NCR_700_get_depth(SCp
->device
));
1795 return SCSI_MLQUEUE_DEVICE_BUSY
;
1797 NCR_700_set_depth(SCp
->device
, NCR_700_get_depth(SCp
->device
) + 1);
1799 /* begin the command here */
1800 /* no need to check for NULL, test for command_slot_count above
1801 * ensures a slot is free */
1802 slot
= find_empty_slot(hostdata
);
1806 SCp
->scsi_done
= done
;
1807 SCp
->host_scribble
= (unsigned char *)slot
;
1808 SCp
->SCp
.ptr
= NULL
;
1809 SCp
->SCp
.buffer
= NULL
;
1811 #ifdef NCR_700_DEBUG
1812 printk("53c700: scsi%d, command ", SCp
->device
->host
->host_no
);
1813 scsi_print_command(SCp
);
1815 if(blk_rq_tagged(SCp
->request
)
1816 && (hostdata
->tag_negotiated
&(1<<scmd_id(SCp
))) == 0
1817 && NCR_700_get_tag_neg_state(SCp
->device
) == NCR_700_START_TAG_NEGOTIATION
) {
1818 scmd_printk(KERN_ERR
, SCp
, "Enabling Tag Command Queuing\n");
1819 hostdata
->tag_negotiated
|= (1<<scmd_id(SCp
));
1820 NCR_700_set_tag_neg_state(SCp
->device
, NCR_700_DURING_TAG_NEGOTIATION
);
1823 /* here we may have to process an untagged command. The gate
1824 * above ensures that this will be the only one outstanding,
1825 * so clear the tag negotiated bit.
1827 * FIXME: This will royally screw up on multiple LUN devices
1829 if(!blk_rq_tagged(SCp
->request
)
1830 && (hostdata
->tag_negotiated
&(1<<scmd_id(SCp
)))) {
1831 scmd_printk(KERN_INFO
, SCp
, "Disabling Tag Command Queuing\n");
1832 hostdata
->tag_negotiated
&= ~(1<<scmd_id(SCp
));
1835 if((hostdata
->tag_negotiated
&(1<<scmd_id(SCp
)))
1836 && scsi_get_tag_type(SCp
->device
)) {
1837 slot
->tag
= SCp
->request
->tag
;
1838 CDEBUG(KERN_DEBUG
, SCp
, "sending out tag %d, slot %p\n",
1841 slot
->tag
= SCSI_NO_TAG
;
1842 /* must populate current_cmnd for scsi_find_tag to work */
1843 SCp
->device
->current_cmnd
= SCp
;
1845 /* sanity check: some of the commands generated by the mid-layer
1846 * have an eccentric idea of their sc_data_direction */
1847 if(!SCp
->use_sg
&& !SCp
->request_bufflen
1848 && SCp
->sc_data_direction
!= DMA_NONE
) {
1849 #ifdef NCR_700_DEBUG
1850 printk("53c700: Command");
1851 scsi_print_command(SCp
);
1852 printk("Has wrong data direction %d\n", SCp
->sc_data_direction
);
1854 SCp
->sc_data_direction
= DMA_NONE
;
1857 switch (SCp
->cmnd
[0]) {
1859 /* clear the internal sense magic */
1863 /* OK, get it from the command */
1864 switch(SCp
->sc_data_direction
) {
1865 case DMA_BIDIRECTIONAL
:
1867 printk(KERN_ERR
"53c700: Unknown command for data direction ");
1868 scsi_print_command(SCp
);
1875 case DMA_FROM_DEVICE
:
1876 move_ins
= SCRIPT_MOVE_DATA_IN
;
1879 move_ins
= SCRIPT_MOVE_DATA_OUT
;
1884 /* now build the scatter gather list */
1885 direction
= SCp
->sc_data_direction
;
1889 dma_addr_t vPtr
= 0;
1893 sg_count
= dma_map_sg(hostdata
->dev
,
1894 SCp
->request_buffer
, SCp
->use_sg
,
1897 vPtr
= dma_map_single(hostdata
->dev
,
1898 SCp
->request_buffer
,
1899 SCp
->request_bufflen
,
1901 count
= SCp
->request_bufflen
;
1902 slot
->dma_handle
= vPtr
;
1907 for(i
= 0; i
< sg_count
; i
++) {
1910 struct scatterlist
*sg
= SCp
->request_buffer
;
1912 vPtr
= sg_dma_address(&sg
[i
]);
1913 count
= sg_dma_len(&sg
[i
]);
1916 slot
->SG
[i
].ins
= bS_to_host(move_ins
| count
);
1917 DEBUG((" scatter block %d: move %d[%08x] from 0x%lx\n",
1918 i
, count
, slot
->SG
[i
].ins
, (unsigned long)vPtr
));
1919 slot
->SG
[i
].pAddr
= bS_to_host(vPtr
);
1921 slot
->SG
[i
].ins
= bS_to_host(SCRIPT_RETURN
);
1922 slot
->SG
[i
].pAddr
= 0;
1923 dma_cache_sync(hostdata
->dev
, slot
->SG
, sizeof(slot
->SG
), DMA_TO_DEVICE
);
1924 DEBUG((" SETTING %08lx to %x\n",
1925 (&slot
->pSG
[i
].ins
),
1928 slot
->resume_offset
= 0;
1929 slot
->pCmd
= dma_map_single(hostdata
->dev
, SCp
->cmnd
,
1930 sizeof(SCp
->cmnd
), DMA_TO_DEVICE
);
1931 NCR_700_start_command(SCp
);
1936 NCR_700_abort(struct scsi_cmnd
* SCp
)
1938 struct NCR_700_command_slot
*slot
;
1940 scmd_printk(KERN_INFO
, SCp
,
1941 "New error handler wants to abort command\n\t");
1942 scsi_print_command(SCp
);
1944 slot
= (struct NCR_700_command_slot
*)SCp
->host_scribble
;
1947 /* no outstanding command to abort */
1949 if(SCp
->cmnd
[0] == TEST_UNIT_READY
) {
1950 /* FIXME: This is because of a problem in the new
1951 * error handler. When it is in error recovery, it
1952 * will send a TUR to a device it thinks may still be
1953 * showing a problem. If the TUR isn't responded to,
1954 * it will abort it and mark the device off line.
1955 * Unfortunately, it does no other error recovery, so
1956 * this would leave us with an outstanding command
1957 * occupying a slot. Rather than allow this to
1958 * happen, we issue a bus reset to force all
1959 * outstanding commands to terminate here. */
1960 NCR_700_internal_bus_reset(SCp
->device
->host
);
1961 /* still drop through and return failed */
1968 NCR_700_bus_reset(struct scsi_cmnd
* SCp
)
1970 DECLARE_COMPLETION_ONSTACK(complete
);
1971 struct NCR_700_Host_Parameters
*hostdata
=
1972 (struct NCR_700_Host_Parameters
*)SCp
->device
->host
->hostdata
[0];
1974 scmd_printk(KERN_INFO
, SCp
,
1975 "New error handler wants BUS reset, cmd %p\n\t", SCp
);
1976 scsi_print_command(SCp
);
1978 /* In theory, eh_complete should always be null because the
1979 * eh is single threaded, but just in case we're handling a
1980 * reset via sg or something */
1981 spin_lock_irq(SCp
->device
->host
->host_lock
);
1982 while (hostdata
->eh_complete
!= NULL
) {
1983 spin_unlock_irq(SCp
->device
->host
->host_lock
);
1984 msleep_interruptible(100);
1985 spin_lock_irq(SCp
->device
->host
->host_lock
);
1988 hostdata
->eh_complete
= &complete
;
1989 NCR_700_internal_bus_reset(SCp
->device
->host
);
1991 spin_unlock_irq(SCp
->device
->host
->host_lock
);
1992 wait_for_completion(&complete
);
1993 spin_lock_irq(SCp
->device
->host
->host_lock
);
1995 hostdata
->eh_complete
= NULL
;
1996 /* Revalidate the transport parameters of the failing device */
1998 spi_schedule_dv_device(SCp
->device
);
2000 spin_unlock_irq(SCp
->device
->host
->host_lock
);
2005 NCR_700_host_reset(struct scsi_cmnd
* SCp
)
2007 scmd_printk(KERN_INFO
, SCp
, "New error handler wants HOST reset\n\t");
2008 scsi_print_command(SCp
);
2010 spin_lock_irq(SCp
->device
->host
->host_lock
);
2012 NCR_700_internal_bus_reset(SCp
->device
->host
);
2013 NCR_700_chip_reset(SCp
->device
->host
);
2015 spin_unlock_irq(SCp
->device
->host
->host_lock
);
2021 NCR_700_set_period(struct scsi_target
*STp
, int period
)
2023 struct Scsi_Host
*SHp
= dev_to_shost(STp
->dev
.parent
);
2024 struct NCR_700_Host_Parameters
*hostdata
=
2025 (struct NCR_700_Host_Parameters
*)SHp
->hostdata
[0];
2030 if(period
< hostdata
->min_period
)
2031 period
= hostdata
->min_period
;
2033 spi_period(STp
) = period
;
2034 spi_flags(STp
) &= ~(NCR_700_DEV_NEGOTIATED_SYNC
|
2035 NCR_700_DEV_BEGIN_SYNC_NEGOTIATION
);
2036 spi_flags(STp
) |= NCR_700_DEV_PRINT_SYNC_NEGOTIATION
;
2040 NCR_700_set_offset(struct scsi_target
*STp
, int offset
)
2042 struct Scsi_Host
*SHp
= dev_to_shost(STp
->dev
.parent
);
2043 struct NCR_700_Host_Parameters
*hostdata
=
2044 (struct NCR_700_Host_Parameters
*)SHp
->hostdata
[0];
2045 int max_offset
= hostdata
->chip710
2046 ? NCR_710_MAX_OFFSET
: NCR_700_MAX_OFFSET
;
2051 if(offset
> max_offset
)
2052 offset
= max_offset
;
2054 /* if we're currently async, make sure the period is reasonable */
2055 if(spi_offset(STp
) == 0 && (spi_period(STp
) < hostdata
->min_period
||
2056 spi_period(STp
) > 0xff))
2057 spi_period(STp
) = hostdata
->min_period
;
2059 spi_offset(STp
) = offset
;
2060 spi_flags(STp
) &= ~(NCR_700_DEV_NEGOTIATED_SYNC
|
2061 NCR_700_DEV_BEGIN_SYNC_NEGOTIATION
);
2062 spi_flags(STp
) |= NCR_700_DEV_PRINT_SYNC_NEGOTIATION
;
2066 NCR_700_slave_alloc(struct scsi_device
*SDp
)
2068 SDp
->hostdata
= kzalloc(sizeof(struct NCR_700_Device_Parameters
),
2078 NCR_700_slave_configure(struct scsi_device
*SDp
)
2080 struct NCR_700_Host_Parameters
*hostdata
=
2081 (struct NCR_700_Host_Parameters
*)SDp
->host
->hostdata
[0];
2083 /* to do here: allocate memory; build a queue_full list */
2084 if(SDp
->tagged_supported
) {
2085 scsi_set_tag_type(SDp
, MSG_ORDERED_TAG
);
2086 scsi_activate_tcq(SDp
, NCR_700_DEFAULT_TAGS
);
2087 NCR_700_set_tag_neg_state(SDp
, NCR_700_START_TAG_NEGOTIATION
);
2089 /* initialise to default depth */
2090 scsi_adjust_queue_depth(SDp
, 0, SDp
->host
->cmd_per_lun
);
2092 if(hostdata
->fast
) {
2093 /* Find the correct offset and period via domain validation */
2094 if (!spi_initial_dv(SDp
->sdev_target
))
2097 spi_offset(SDp
->sdev_target
) = 0;
2098 spi_period(SDp
->sdev_target
) = 0;
2104 NCR_700_slave_destroy(struct scsi_device
*SDp
)
2106 kfree(SDp
->hostdata
);
2107 SDp
->hostdata
= NULL
;
2111 NCR_700_change_queue_depth(struct scsi_device
*SDp
, int depth
)
2113 if (depth
> NCR_700_MAX_TAGS
)
2114 depth
= NCR_700_MAX_TAGS
;
2116 scsi_adjust_queue_depth(SDp
, scsi_get_tag_type(SDp
), depth
);
2120 static int NCR_700_change_queue_type(struct scsi_device
*SDp
, int tag_type
)
2122 int change_tag
= ((tag_type
==0 && scsi_get_tag_type(SDp
) != 0)
2123 || (tag_type
!= 0 && scsi_get_tag_type(SDp
) == 0));
2124 struct NCR_700_Host_Parameters
*hostdata
=
2125 (struct NCR_700_Host_Parameters
*)SDp
->host
->hostdata
[0];
2127 scsi_set_tag_type(SDp
, tag_type
);
2129 /* We have a global (per target) flag to track whether TCQ is
2130 * enabled, so we'll be turning it off for the entire target here.
2131 * our tag algorithm will fail if we mix tagged and untagged commands,
2132 * so quiesce the device before doing this */
2134 scsi_target_quiesce(SDp
->sdev_target
);
2137 /* shift back to the default unqueued number of commands
2138 * (the user can still raise this) */
2139 scsi_deactivate_tcq(SDp
, SDp
->host
->cmd_per_lun
);
2140 hostdata
->tag_negotiated
&= ~(1 << sdev_id(SDp
));
2142 /* Here, we cleared the negotiation flag above, so this
2143 * will force the driver to renegotiate */
2144 scsi_activate_tcq(SDp
, SDp
->queue_depth
);
2146 NCR_700_set_tag_neg_state(SDp
, NCR_700_START_TAG_NEGOTIATION
);
2149 scsi_target_resume(SDp
->sdev_target
);
2155 NCR_700_show_active_tags(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
2157 struct scsi_device
*SDp
= to_scsi_device(dev
);
2159 return snprintf(buf
, 20, "%d\n", NCR_700_get_depth(SDp
));
2162 static struct device_attribute NCR_700_active_tags_attr
= {
2164 .name
= "active_tags",
2167 .show
= NCR_700_show_active_tags
,
2170 STATIC
struct device_attribute
*NCR_700_dev_attrs
[] = {
2171 &NCR_700_active_tags_attr
,
2175 EXPORT_SYMBOL(NCR_700_detect
);
2176 EXPORT_SYMBOL(NCR_700_release
);
2177 EXPORT_SYMBOL(NCR_700_intr
);
2179 static struct spi_function_template NCR_700_transport_functions
= {
2180 .set_period
= NCR_700_set_period
,
2182 .set_offset
= NCR_700_set_offset
,
2186 static int __init
NCR_700_init(void)
2188 NCR_700_transport_template
= spi_attach_transport(&NCR_700_transport_functions
);
2189 if(!NCR_700_transport_template
)
2194 static void __exit
NCR_700_exit(void)
2196 spi_release_transport(NCR_700_transport_template
);
2199 module_init(NCR_700_init
);
2200 module_exit(NCR_700_exit
);