ALSA: hda - Add static_hdmi_pcm option to HDMI codec parser
[linux-2.6/next.git] / net / socket.c
blob3ca2fd9e37200e3e12f6606065acb8c982f25528
1 /*
2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
58 * Based upon Swansea University Computer Society NET3.039
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
110 unsigned long nr_segs, loff_t pos);
111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
112 unsigned long nr_segs, loff_t pos);
113 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
115 static int sock_close(struct inode *inode, struct file *file);
116 static unsigned int sock_poll(struct file *file,
117 struct poll_table_struct *wait);
118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
119 #ifdef CONFIG_COMPAT
120 static long compat_sock_ioctl(struct file *file,
121 unsigned int cmd, unsigned long arg);
122 #endif
123 static int sock_fasync(int fd, struct file *filp, int on);
124 static ssize_t sock_sendpage(struct file *file, struct page *page,
125 int offset, size_t size, loff_t *ppos, int more);
126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
127 struct pipe_inode_info *pipe, size_t len,
128 unsigned int flags);
131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132 * in the operation structures but are done directly via the socketcall() multiplexor.
135 static const struct file_operations socket_file_ops = {
136 .owner = THIS_MODULE,
137 .llseek = no_llseek,
138 .aio_read = sock_aio_read,
139 .aio_write = sock_aio_write,
140 .poll = sock_poll,
141 .unlocked_ioctl = sock_ioctl,
142 #ifdef CONFIG_COMPAT
143 .compat_ioctl = compat_sock_ioctl,
144 #endif
145 .mmap = sock_mmap,
146 .open = sock_no_open, /* special open code to disallow open via /proc */
147 .release = sock_close,
148 .fasync = sock_fasync,
149 .sendpage = sock_sendpage,
150 .splice_write = generic_splice_sendpage,
151 .splice_read = sock_splice_read,
155 * The protocol list. Each protocol is registered in here.
158 static DEFINE_SPINLOCK(net_family_lock);
159 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
162 * Statistics counters of the socket lists
165 static DEFINE_PER_CPU(int, sockets_in_use);
168 * Support routines.
169 * Move socket addresses back and forth across the kernel/user
170 * divide and look after the messy bits.
174 * move_addr_to_kernel - copy a socket address into kernel space
175 * @uaddr: Address in user space
176 * @kaddr: Address in kernel space
177 * @ulen: Length in user space
179 * The address is copied into kernel space. If the provided address is
180 * too long an error code of -EINVAL is returned. If the copy gives
181 * invalid addresses -EFAULT is returned. On a success 0 is returned.
184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
186 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
187 return -EINVAL;
188 if (ulen == 0)
189 return 0;
190 if (copy_from_user(kaddr, uaddr, ulen))
191 return -EFAULT;
192 return audit_sockaddr(ulen, kaddr);
196 * move_addr_to_user - copy an address to user space
197 * @kaddr: kernel space address
198 * @klen: length of address in kernel
199 * @uaddr: user space address
200 * @ulen: pointer to user length field
202 * The value pointed to by ulen on entry is the buffer length available.
203 * This is overwritten with the buffer space used. -EINVAL is returned
204 * if an overlong buffer is specified or a negative buffer size. -EFAULT
205 * is returned if either the buffer or the length field are not
206 * accessible.
207 * After copying the data up to the limit the user specifies, the true
208 * length of the data is written over the length limit the user
209 * specified. Zero is returned for a success.
212 static int move_addr_to_user(struct sockaddr *kaddr, int klen,
213 void __user *uaddr, int __user *ulen)
215 int err;
216 int len;
218 err = get_user(len, ulen);
219 if (err)
220 return err;
221 if (len > klen)
222 len = klen;
223 if (len < 0 || len > sizeof(struct sockaddr_storage))
224 return -EINVAL;
225 if (len) {
226 if (audit_sockaddr(klen, kaddr))
227 return -ENOMEM;
228 if (copy_to_user(uaddr, kaddr, len))
229 return -EFAULT;
232 * "fromlen shall refer to the value before truncation.."
233 * 1003.1g
235 return __put_user(klen, ulen);
238 static struct kmem_cache *sock_inode_cachep __read_mostly;
240 static struct inode *sock_alloc_inode(struct super_block *sb)
242 struct socket_alloc *ei;
244 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
245 if (!ei)
246 return NULL;
247 ei->socket.wq = kmalloc(sizeof(struct socket_wq), GFP_KERNEL);
248 if (!ei->socket.wq) {
249 kmem_cache_free(sock_inode_cachep, ei);
250 return NULL;
252 init_waitqueue_head(&ei->socket.wq->wait);
253 ei->socket.wq->fasync_list = NULL;
255 ei->socket.state = SS_UNCONNECTED;
256 ei->socket.flags = 0;
257 ei->socket.ops = NULL;
258 ei->socket.sk = NULL;
259 ei->socket.file = NULL;
261 return &ei->vfs_inode;
265 static void wq_free_rcu(struct rcu_head *head)
267 struct socket_wq *wq = container_of(head, struct socket_wq, rcu);
269 kfree(wq);
272 static void sock_destroy_inode(struct inode *inode)
274 struct socket_alloc *ei;
276 ei = container_of(inode, struct socket_alloc, vfs_inode);
277 call_rcu(&ei->socket.wq->rcu, wq_free_rcu);
278 kmem_cache_free(sock_inode_cachep, ei);
281 static void init_once(void *foo)
283 struct socket_alloc *ei = (struct socket_alloc *)foo;
285 inode_init_once(&ei->vfs_inode);
288 static int init_inodecache(void)
290 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
291 sizeof(struct socket_alloc),
293 (SLAB_HWCACHE_ALIGN |
294 SLAB_RECLAIM_ACCOUNT |
295 SLAB_MEM_SPREAD),
296 init_once);
297 if (sock_inode_cachep == NULL)
298 return -ENOMEM;
299 return 0;
302 static const struct super_operations sockfs_ops = {
303 .alloc_inode = sock_alloc_inode,
304 .destroy_inode = sock_destroy_inode,
305 .statfs = simple_statfs,
308 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
309 int flags, const char *dev_name, void *data)
311 return mount_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC);
314 static struct vfsmount *sock_mnt __read_mostly;
316 static struct file_system_type sock_fs_type = {
317 .name = "sockfs",
318 .mount = sockfs_mount,
319 .kill_sb = kill_anon_super,
323 * sockfs_dname() is called from d_path().
325 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
327 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
328 dentry->d_inode->i_ino);
331 static const struct dentry_operations sockfs_dentry_operations = {
332 .d_dname = sockfs_dname,
336 * Obtains the first available file descriptor and sets it up for use.
338 * These functions create file structures and maps them to fd space
339 * of the current process. On success it returns file descriptor
340 * and file struct implicitly stored in sock->file.
341 * Note that another thread may close file descriptor before we return
342 * from this function. We use the fact that now we do not refer
343 * to socket after mapping. If one day we will need it, this
344 * function will increment ref. count on file by 1.
346 * In any case returned fd MAY BE not valid!
347 * This race condition is unavoidable
348 * with shared fd spaces, we cannot solve it inside kernel,
349 * but we take care of internal coherence yet.
352 static int sock_alloc_file(struct socket *sock, struct file **f, int flags)
354 struct qstr name = { .name = "" };
355 struct path path;
356 struct file *file;
357 int fd;
359 fd = get_unused_fd_flags(flags);
360 if (unlikely(fd < 0))
361 return fd;
363 path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
364 if (unlikely(!path.dentry)) {
365 put_unused_fd(fd);
366 return -ENOMEM;
368 path.mnt = mntget(sock_mnt);
370 path.dentry->d_op = &sockfs_dentry_operations;
371 d_instantiate(path.dentry, SOCK_INODE(sock));
372 SOCK_INODE(sock)->i_fop = &socket_file_ops;
374 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
375 &socket_file_ops);
376 if (unlikely(!file)) {
377 /* drop dentry, keep inode */
378 ihold(path.dentry->d_inode);
379 path_put(&path);
380 put_unused_fd(fd);
381 return -ENFILE;
384 sock->file = file;
385 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
386 file->f_pos = 0;
387 file->private_data = sock;
389 *f = file;
390 return fd;
393 int sock_map_fd(struct socket *sock, int flags)
395 struct file *newfile;
396 int fd = sock_alloc_file(sock, &newfile, flags);
398 if (likely(fd >= 0))
399 fd_install(fd, newfile);
401 return fd;
403 EXPORT_SYMBOL(sock_map_fd);
405 static struct socket *sock_from_file(struct file *file, int *err)
407 if (file->f_op == &socket_file_ops)
408 return file->private_data; /* set in sock_map_fd */
410 *err = -ENOTSOCK;
411 return NULL;
415 * sockfd_lookup - Go from a file number to its socket slot
416 * @fd: file handle
417 * @err: pointer to an error code return
419 * The file handle passed in is locked and the socket it is bound
420 * too is returned. If an error occurs the err pointer is overwritten
421 * with a negative errno code and NULL is returned. The function checks
422 * for both invalid handles and passing a handle which is not a socket.
424 * On a success the socket object pointer is returned.
427 struct socket *sockfd_lookup(int fd, int *err)
429 struct file *file;
430 struct socket *sock;
432 file = fget(fd);
433 if (!file) {
434 *err = -EBADF;
435 return NULL;
438 sock = sock_from_file(file, err);
439 if (!sock)
440 fput(file);
441 return sock;
443 EXPORT_SYMBOL(sockfd_lookup);
445 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
447 struct file *file;
448 struct socket *sock;
450 *err = -EBADF;
451 file = fget_light(fd, fput_needed);
452 if (file) {
453 sock = sock_from_file(file, err);
454 if (sock)
455 return sock;
456 fput_light(file, *fput_needed);
458 return NULL;
462 * sock_alloc - allocate a socket
464 * Allocate a new inode and socket object. The two are bound together
465 * and initialised. The socket is then returned. If we are out of inodes
466 * NULL is returned.
469 static struct socket *sock_alloc(void)
471 struct inode *inode;
472 struct socket *sock;
474 inode = new_inode(sock_mnt->mnt_sb);
475 if (!inode)
476 return NULL;
478 sock = SOCKET_I(inode);
480 kmemcheck_annotate_bitfield(sock, type);
481 inode->i_ino = get_next_ino();
482 inode->i_mode = S_IFSOCK | S_IRWXUGO;
483 inode->i_uid = current_fsuid();
484 inode->i_gid = current_fsgid();
486 percpu_add(sockets_in_use, 1);
487 return sock;
491 * In theory you can't get an open on this inode, but /proc provides
492 * a back door. Remember to keep it shut otherwise you'll let the
493 * creepy crawlies in.
496 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
498 return -ENXIO;
501 const struct file_operations bad_sock_fops = {
502 .owner = THIS_MODULE,
503 .open = sock_no_open,
504 .llseek = noop_llseek,
508 * sock_release - close a socket
509 * @sock: socket to close
511 * The socket is released from the protocol stack if it has a release
512 * callback, and the inode is then released if the socket is bound to
513 * an inode not a file.
516 void sock_release(struct socket *sock)
518 if (sock->ops) {
519 struct module *owner = sock->ops->owner;
521 sock->ops->release(sock);
522 sock->ops = NULL;
523 module_put(owner);
526 if (sock->wq->fasync_list)
527 printk(KERN_ERR "sock_release: fasync list not empty!\n");
529 percpu_sub(sockets_in_use, 1);
530 if (!sock->file) {
531 iput(SOCK_INODE(sock));
532 return;
534 sock->file = NULL;
536 EXPORT_SYMBOL(sock_release);
538 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
540 *tx_flags = 0;
541 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
542 *tx_flags |= SKBTX_HW_TSTAMP;
543 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
544 *tx_flags |= SKBTX_SW_TSTAMP;
545 return 0;
547 EXPORT_SYMBOL(sock_tx_timestamp);
549 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
550 struct msghdr *msg, size_t size)
552 struct sock_iocb *si = kiocb_to_siocb(iocb);
553 int err;
555 sock_update_classid(sock->sk);
557 si->sock = sock;
558 si->scm = NULL;
559 si->msg = msg;
560 si->size = size;
562 err = security_socket_sendmsg(sock, msg, size);
563 if (err)
564 return err;
566 return sock->ops->sendmsg(iocb, sock, msg, size);
569 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
571 struct kiocb iocb;
572 struct sock_iocb siocb;
573 int ret;
575 init_sync_kiocb(&iocb, NULL);
576 iocb.private = &siocb;
577 ret = __sock_sendmsg(&iocb, sock, msg, size);
578 if (-EIOCBQUEUED == ret)
579 ret = wait_on_sync_kiocb(&iocb);
580 return ret;
582 EXPORT_SYMBOL(sock_sendmsg);
584 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
585 struct kvec *vec, size_t num, size_t size)
587 mm_segment_t oldfs = get_fs();
588 int result;
590 set_fs(KERNEL_DS);
592 * the following is safe, since for compiler definitions of kvec and
593 * iovec are identical, yielding the same in-core layout and alignment
595 msg->msg_iov = (struct iovec *)vec;
596 msg->msg_iovlen = num;
597 result = sock_sendmsg(sock, msg, size);
598 set_fs(oldfs);
599 return result;
601 EXPORT_SYMBOL(kernel_sendmsg);
603 static int ktime2ts(ktime_t kt, struct timespec *ts)
605 if (kt.tv64) {
606 *ts = ktime_to_timespec(kt);
607 return 1;
608 } else {
609 return 0;
614 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
616 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
617 struct sk_buff *skb)
619 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
620 struct timespec ts[3];
621 int empty = 1;
622 struct skb_shared_hwtstamps *shhwtstamps =
623 skb_hwtstamps(skb);
625 /* Race occurred between timestamp enabling and packet
626 receiving. Fill in the current time for now. */
627 if (need_software_tstamp && skb->tstamp.tv64 == 0)
628 __net_timestamp(skb);
630 if (need_software_tstamp) {
631 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
632 struct timeval tv;
633 skb_get_timestamp(skb, &tv);
634 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
635 sizeof(tv), &tv);
636 } else {
637 skb_get_timestampns(skb, &ts[0]);
638 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
639 sizeof(ts[0]), &ts[0]);
644 memset(ts, 0, sizeof(ts));
645 if (skb->tstamp.tv64 &&
646 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
647 skb_get_timestampns(skb, ts + 0);
648 empty = 0;
650 if (shhwtstamps) {
651 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
652 ktime2ts(shhwtstamps->syststamp, ts + 1))
653 empty = 0;
654 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
655 ktime2ts(shhwtstamps->hwtstamp, ts + 2))
656 empty = 0;
658 if (!empty)
659 put_cmsg(msg, SOL_SOCKET,
660 SCM_TIMESTAMPING, sizeof(ts), &ts);
662 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
664 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
665 struct sk_buff *skb)
667 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
668 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
669 sizeof(__u32), &skb->dropcount);
672 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
673 struct sk_buff *skb)
675 sock_recv_timestamp(msg, sk, skb);
676 sock_recv_drops(msg, sk, skb);
678 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
680 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
681 struct msghdr *msg, size_t size, int flags)
683 struct sock_iocb *si = kiocb_to_siocb(iocb);
685 sock_update_classid(sock->sk);
687 si->sock = sock;
688 si->scm = NULL;
689 si->msg = msg;
690 si->size = size;
691 si->flags = flags;
693 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
696 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
697 struct msghdr *msg, size_t size, int flags)
699 int err = security_socket_recvmsg(sock, msg, size, flags);
701 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
704 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
705 size_t size, int flags)
707 struct kiocb iocb;
708 struct sock_iocb siocb;
709 int ret;
711 init_sync_kiocb(&iocb, NULL);
712 iocb.private = &siocb;
713 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
714 if (-EIOCBQUEUED == ret)
715 ret = wait_on_sync_kiocb(&iocb);
716 return ret;
718 EXPORT_SYMBOL(sock_recvmsg);
720 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
721 size_t size, int flags)
723 struct kiocb iocb;
724 struct sock_iocb siocb;
725 int ret;
727 init_sync_kiocb(&iocb, NULL);
728 iocb.private = &siocb;
729 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
730 if (-EIOCBQUEUED == ret)
731 ret = wait_on_sync_kiocb(&iocb);
732 return ret;
735 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
736 struct kvec *vec, size_t num, size_t size, int flags)
738 mm_segment_t oldfs = get_fs();
739 int result;
741 set_fs(KERNEL_DS);
743 * the following is safe, since for compiler definitions of kvec and
744 * iovec are identical, yielding the same in-core layout and alignment
746 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
747 result = sock_recvmsg(sock, msg, size, flags);
748 set_fs(oldfs);
749 return result;
751 EXPORT_SYMBOL(kernel_recvmsg);
753 static void sock_aio_dtor(struct kiocb *iocb)
755 kfree(iocb->private);
758 static ssize_t sock_sendpage(struct file *file, struct page *page,
759 int offset, size_t size, loff_t *ppos, int more)
761 struct socket *sock;
762 int flags;
764 sock = file->private_data;
766 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
767 if (more)
768 flags |= MSG_MORE;
770 return kernel_sendpage(sock, page, offset, size, flags);
773 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
774 struct pipe_inode_info *pipe, size_t len,
775 unsigned int flags)
777 struct socket *sock = file->private_data;
779 if (unlikely(!sock->ops->splice_read))
780 return -EINVAL;
782 sock_update_classid(sock->sk);
784 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
787 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
788 struct sock_iocb *siocb)
790 if (!is_sync_kiocb(iocb)) {
791 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
792 if (!siocb)
793 return NULL;
794 iocb->ki_dtor = sock_aio_dtor;
797 siocb->kiocb = iocb;
798 iocb->private = siocb;
799 return siocb;
802 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
803 struct file *file, const struct iovec *iov,
804 unsigned long nr_segs)
806 struct socket *sock = file->private_data;
807 size_t size = 0;
808 int i;
810 for (i = 0; i < nr_segs; i++)
811 size += iov[i].iov_len;
813 msg->msg_name = NULL;
814 msg->msg_namelen = 0;
815 msg->msg_control = NULL;
816 msg->msg_controllen = 0;
817 msg->msg_iov = (struct iovec *)iov;
818 msg->msg_iovlen = nr_segs;
819 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
821 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
824 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
825 unsigned long nr_segs, loff_t pos)
827 struct sock_iocb siocb, *x;
829 if (pos != 0)
830 return -ESPIPE;
832 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
833 return 0;
836 x = alloc_sock_iocb(iocb, &siocb);
837 if (!x)
838 return -ENOMEM;
839 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
842 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
843 struct file *file, const struct iovec *iov,
844 unsigned long nr_segs)
846 struct socket *sock = file->private_data;
847 size_t size = 0;
848 int i;
850 for (i = 0; i < nr_segs; i++)
851 size += iov[i].iov_len;
853 msg->msg_name = NULL;
854 msg->msg_namelen = 0;
855 msg->msg_control = NULL;
856 msg->msg_controllen = 0;
857 msg->msg_iov = (struct iovec *)iov;
858 msg->msg_iovlen = nr_segs;
859 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
860 if (sock->type == SOCK_SEQPACKET)
861 msg->msg_flags |= MSG_EOR;
863 return __sock_sendmsg(iocb, sock, msg, size);
866 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
867 unsigned long nr_segs, loff_t pos)
869 struct sock_iocb siocb, *x;
871 if (pos != 0)
872 return -ESPIPE;
874 x = alloc_sock_iocb(iocb, &siocb);
875 if (!x)
876 return -ENOMEM;
878 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
882 * Atomic setting of ioctl hooks to avoid race
883 * with module unload.
886 static DEFINE_MUTEX(br_ioctl_mutex);
887 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
889 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
891 mutex_lock(&br_ioctl_mutex);
892 br_ioctl_hook = hook;
893 mutex_unlock(&br_ioctl_mutex);
895 EXPORT_SYMBOL(brioctl_set);
897 static DEFINE_MUTEX(vlan_ioctl_mutex);
898 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
900 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
902 mutex_lock(&vlan_ioctl_mutex);
903 vlan_ioctl_hook = hook;
904 mutex_unlock(&vlan_ioctl_mutex);
906 EXPORT_SYMBOL(vlan_ioctl_set);
908 static DEFINE_MUTEX(dlci_ioctl_mutex);
909 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
911 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
913 mutex_lock(&dlci_ioctl_mutex);
914 dlci_ioctl_hook = hook;
915 mutex_unlock(&dlci_ioctl_mutex);
917 EXPORT_SYMBOL(dlci_ioctl_set);
919 static long sock_do_ioctl(struct net *net, struct socket *sock,
920 unsigned int cmd, unsigned long arg)
922 int err;
923 void __user *argp = (void __user *)arg;
925 err = sock->ops->ioctl(sock, cmd, arg);
928 * If this ioctl is unknown try to hand it down
929 * to the NIC driver.
931 if (err == -ENOIOCTLCMD)
932 err = dev_ioctl(net, cmd, argp);
934 return err;
938 * With an ioctl, arg may well be a user mode pointer, but we don't know
939 * what to do with it - that's up to the protocol still.
942 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
944 struct socket *sock;
945 struct sock *sk;
946 void __user *argp = (void __user *)arg;
947 int pid, err;
948 struct net *net;
950 sock = file->private_data;
951 sk = sock->sk;
952 net = sock_net(sk);
953 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
954 err = dev_ioctl(net, cmd, argp);
955 } else
956 #ifdef CONFIG_WEXT_CORE
957 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
958 err = dev_ioctl(net, cmd, argp);
959 } else
960 #endif
961 switch (cmd) {
962 case FIOSETOWN:
963 case SIOCSPGRP:
964 err = -EFAULT;
965 if (get_user(pid, (int __user *)argp))
966 break;
967 err = f_setown(sock->file, pid, 1);
968 break;
969 case FIOGETOWN:
970 case SIOCGPGRP:
971 err = put_user(f_getown(sock->file),
972 (int __user *)argp);
973 break;
974 case SIOCGIFBR:
975 case SIOCSIFBR:
976 case SIOCBRADDBR:
977 case SIOCBRDELBR:
978 err = -ENOPKG;
979 if (!br_ioctl_hook)
980 request_module("bridge");
982 mutex_lock(&br_ioctl_mutex);
983 if (br_ioctl_hook)
984 err = br_ioctl_hook(net, cmd, argp);
985 mutex_unlock(&br_ioctl_mutex);
986 break;
987 case SIOCGIFVLAN:
988 case SIOCSIFVLAN:
989 err = -ENOPKG;
990 if (!vlan_ioctl_hook)
991 request_module("8021q");
993 mutex_lock(&vlan_ioctl_mutex);
994 if (vlan_ioctl_hook)
995 err = vlan_ioctl_hook(net, argp);
996 mutex_unlock(&vlan_ioctl_mutex);
997 break;
998 case SIOCADDDLCI:
999 case SIOCDELDLCI:
1000 err = -ENOPKG;
1001 if (!dlci_ioctl_hook)
1002 request_module("dlci");
1004 mutex_lock(&dlci_ioctl_mutex);
1005 if (dlci_ioctl_hook)
1006 err = dlci_ioctl_hook(cmd, argp);
1007 mutex_unlock(&dlci_ioctl_mutex);
1008 break;
1009 default:
1010 err = sock_do_ioctl(net, sock, cmd, arg);
1011 break;
1013 return err;
1016 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1018 int err;
1019 struct socket *sock = NULL;
1021 err = security_socket_create(family, type, protocol, 1);
1022 if (err)
1023 goto out;
1025 sock = sock_alloc();
1026 if (!sock) {
1027 err = -ENOMEM;
1028 goto out;
1031 sock->type = type;
1032 err = security_socket_post_create(sock, family, type, protocol, 1);
1033 if (err)
1034 goto out_release;
1036 out:
1037 *res = sock;
1038 return err;
1039 out_release:
1040 sock_release(sock);
1041 sock = NULL;
1042 goto out;
1044 EXPORT_SYMBOL(sock_create_lite);
1046 /* No kernel lock held - perfect */
1047 static unsigned int sock_poll(struct file *file, poll_table *wait)
1049 struct socket *sock;
1052 * We can't return errors to poll, so it's either yes or no.
1054 sock = file->private_data;
1055 return sock->ops->poll(file, sock, wait);
1058 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1060 struct socket *sock = file->private_data;
1062 return sock->ops->mmap(file, sock, vma);
1065 static int sock_close(struct inode *inode, struct file *filp)
1068 * It was possible the inode is NULL we were
1069 * closing an unfinished socket.
1072 if (!inode) {
1073 printk(KERN_DEBUG "sock_close: NULL inode\n");
1074 return 0;
1076 sock_release(SOCKET_I(inode));
1077 return 0;
1081 * Update the socket async list
1083 * Fasync_list locking strategy.
1085 * 1. fasync_list is modified only under process context socket lock
1086 * i.e. under semaphore.
1087 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1088 * or under socket lock
1091 static int sock_fasync(int fd, struct file *filp, int on)
1093 struct socket *sock = filp->private_data;
1094 struct sock *sk = sock->sk;
1096 if (sk == NULL)
1097 return -EINVAL;
1099 lock_sock(sk);
1101 fasync_helper(fd, filp, on, &sock->wq->fasync_list);
1103 if (!sock->wq->fasync_list)
1104 sock_reset_flag(sk, SOCK_FASYNC);
1105 else
1106 sock_set_flag(sk, SOCK_FASYNC);
1108 release_sock(sk);
1109 return 0;
1112 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1114 int sock_wake_async(struct socket *sock, int how, int band)
1116 struct socket_wq *wq;
1118 if (!sock)
1119 return -1;
1120 rcu_read_lock();
1121 wq = rcu_dereference(sock->wq);
1122 if (!wq || !wq->fasync_list) {
1123 rcu_read_unlock();
1124 return -1;
1126 switch (how) {
1127 case SOCK_WAKE_WAITD:
1128 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1129 break;
1130 goto call_kill;
1131 case SOCK_WAKE_SPACE:
1132 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1133 break;
1134 /* fall through */
1135 case SOCK_WAKE_IO:
1136 call_kill:
1137 kill_fasync(&wq->fasync_list, SIGIO, band);
1138 break;
1139 case SOCK_WAKE_URG:
1140 kill_fasync(&wq->fasync_list, SIGURG, band);
1142 rcu_read_unlock();
1143 return 0;
1145 EXPORT_SYMBOL(sock_wake_async);
1147 int __sock_create(struct net *net, int family, int type, int protocol,
1148 struct socket **res, int kern)
1150 int err;
1151 struct socket *sock;
1152 const struct net_proto_family *pf;
1155 * Check protocol is in range
1157 if (family < 0 || family >= NPROTO)
1158 return -EAFNOSUPPORT;
1159 if (type < 0 || type >= SOCK_MAX)
1160 return -EINVAL;
1162 /* Compatibility.
1164 This uglymoron is moved from INET layer to here to avoid
1165 deadlock in module load.
1167 if (family == PF_INET && type == SOCK_PACKET) {
1168 static int warned;
1169 if (!warned) {
1170 warned = 1;
1171 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1172 current->comm);
1174 family = PF_PACKET;
1177 err = security_socket_create(family, type, protocol, kern);
1178 if (err)
1179 return err;
1182 * Allocate the socket and allow the family to set things up. if
1183 * the protocol is 0, the family is instructed to select an appropriate
1184 * default.
1186 sock = sock_alloc();
1187 if (!sock) {
1188 if (net_ratelimit())
1189 printk(KERN_WARNING "socket: no more sockets\n");
1190 return -ENFILE; /* Not exactly a match, but its the
1191 closest posix thing */
1194 sock->type = type;
1196 #ifdef CONFIG_MODULES
1197 /* Attempt to load a protocol module if the find failed.
1199 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1200 * requested real, full-featured networking support upon configuration.
1201 * Otherwise module support will break!
1203 if (net_families[family] == NULL)
1204 request_module("net-pf-%d", family);
1205 #endif
1207 rcu_read_lock();
1208 pf = rcu_dereference(net_families[family]);
1209 err = -EAFNOSUPPORT;
1210 if (!pf)
1211 goto out_release;
1214 * We will call the ->create function, that possibly is in a loadable
1215 * module, so we have to bump that loadable module refcnt first.
1217 if (!try_module_get(pf->owner))
1218 goto out_release;
1220 /* Now protected by module ref count */
1221 rcu_read_unlock();
1223 err = pf->create(net, sock, protocol, kern);
1224 if (err < 0)
1225 goto out_module_put;
1228 * Now to bump the refcnt of the [loadable] module that owns this
1229 * socket at sock_release time we decrement its refcnt.
1231 if (!try_module_get(sock->ops->owner))
1232 goto out_module_busy;
1235 * Now that we're done with the ->create function, the [loadable]
1236 * module can have its refcnt decremented
1238 module_put(pf->owner);
1239 err = security_socket_post_create(sock, family, type, protocol, kern);
1240 if (err)
1241 goto out_sock_release;
1242 *res = sock;
1244 return 0;
1246 out_module_busy:
1247 err = -EAFNOSUPPORT;
1248 out_module_put:
1249 sock->ops = NULL;
1250 module_put(pf->owner);
1251 out_sock_release:
1252 sock_release(sock);
1253 return err;
1255 out_release:
1256 rcu_read_unlock();
1257 goto out_sock_release;
1259 EXPORT_SYMBOL(__sock_create);
1261 int sock_create(int family, int type, int protocol, struct socket **res)
1263 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1265 EXPORT_SYMBOL(sock_create);
1267 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1269 return __sock_create(&init_net, family, type, protocol, res, 1);
1271 EXPORT_SYMBOL(sock_create_kern);
1273 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1275 int retval;
1276 struct socket *sock;
1277 int flags;
1279 /* Check the SOCK_* constants for consistency. */
1280 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1281 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1282 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1283 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1285 flags = type & ~SOCK_TYPE_MASK;
1286 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1287 return -EINVAL;
1288 type &= SOCK_TYPE_MASK;
1290 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1291 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1293 retval = sock_create(family, type, protocol, &sock);
1294 if (retval < 0)
1295 goto out;
1297 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1298 if (retval < 0)
1299 goto out_release;
1301 out:
1302 /* It may be already another descriptor 8) Not kernel problem. */
1303 return retval;
1305 out_release:
1306 sock_release(sock);
1307 return retval;
1311 * Create a pair of connected sockets.
1314 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1315 int __user *, usockvec)
1317 struct socket *sock1, *sock2;
1318 int fd1, fd2, err;
1319 struct file *newfile1, *newfile2;
1320 int flags;
1322 flags = type & ~SOCK_TYPE_MASK;
1323 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1324 return -EINVAL;
1325 type &= SOCK_TYPE_MASK;
1327 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1328 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1331 * Obtain the first socket and check if the underlying protocol
1332 * supports the socketpair call.
1335 err = sock_create(family, type, protocol, &sock1);
1336 if (err < 0)
1337 goto out;
1339 err = sock_create(family, type, protocol, &sock2);
1340 if (err < 0)
1341 goto out_release_1;
1343 err = sock1->ops->socketpair(sock1, sock2);
1344 if (err < 0)
1345 goto out_release_both;
1347 fd1 = sock_alloc_file(sock1, &newfile1, flags);
1348 if (unlikely(fd1 < 0)) {
1349 err = fd1;
1350 goto out_release_both;
1353 fd2 = sock_alloc_file(sock2, &newfile2, flags);
1354 if (unlikely(fd2 < 0)) {
1355 err = fd2;
1356 fput(newfile1);
1357 put_unused_fd(fd1);
1358 sock_release(sock2);
1359 goto out;
1362 audit_fd_pair(fd1, fd2);
1363 fd_install(fd1, newfile1);
1364 fd_install(fd2, newfile2);
1365 /* fd1 and fd2 may be already another descriptors.
1366 * Not kernel problem.
1369 err = put_user(fd1, &usockvec[0]);
1370 if (!err)
1371 err = put_user(fd2, &usockvec[1]);
1372 if (!err)
1373 return 0;
1375 sys_close(fd2);
1376 sys_close(fd1);
1377 return err;
1379 out_release_both:
1380 sock_release(sock2);
1381 out_release_1:
1382 sock_release(sock1);
1383 out:
1384 return err;
1388 * Bind a name to a socket. Nothing much to do here since it's
1389 * the protocol's responsibility to handle the local address.
1391 * We move the socket address to kernel space before we call
1392 * the protocol layer (having also checked the address is ok).
1395 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1397 struct socket *sock;
1398 struct sockaddr_storage address;
1399 int err, fput_needed;
1401 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1402 if (sock) {
1403 err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1404 if (err >= 0) {
1405 err = security_socket_bind(sock,
1406 (struct sockaddr *)&address,
1407 addrlen);
1408 if (!err)
1409 err = sock->ops->bind(sock,
1410 (struct sockaddr *)
1411 &address, addrlen);
1413 fput_light(sock->file, fput_needed);
1415 return err;
1419 * Perform a listen. Basically, we allow the protocol to do anything
1420 * necessary for a listen, and if that works, we mark the socket as
1421 * ready for listening.
1424 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1426 struct socket *sock;
1427 int err, fput_needed;
1428 int somaxconn;
1430 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1431 if (sock) {
1432 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1433 if ((unsigned)backlog > somaxconn)
1434 backlog = somaxconn;
1436 err = security_socket_listen(sock, backlog);
1437 if (!err)
1438 err = sock->ops->listen(sock, backlog);
1440 fput_light(sock->file, fput_needed);
1442 return err;
1446 * For accept, we attempt to create a new socket, set up the link
1447 * with the client, wake up the client, then return the new
1448 * connected fd. We collect the address of the connector in kernel
1449 * space and move it to user at the very end. This is unclean because
1450 * we open the socket then return an error.
1452 * 1003.1g adds the ability to recvmsg() to query connection pending
1453 * status to recvmsg. We need to add that support in a way thats
1454 * clean when we restucture accept also.
1457 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1458 int __user *, upeer_addrlen, int, flags)
1460 struct socket *sock, *newsock;
1461 struct file *newfile;
1462 int err, len, newfd, fput_needed;
1463 struct sockaddr_storage address;
1465 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1466 return -EINVAL;
1468 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1469 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1471 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1472 if (!sock)
1473 goto out;
1475 err = -ENFILE;
1476 newsock = sock_alloc();
1477 if (!newsock)
1478 goto out_put;
1480 newsock->type = sock->type;
1481 newsock->ops = sock->ops;
1484 * We don't need try_module_get here, as the listening socket (sock)
1485 * has the protocol module (sock->ops->owner) held.
1487 __module_get(newsock->ops->owner);
1489 newfd = sock_alloc_file(newsock, &newfile, flags);
1490 if (unlikely(newfd < 0)) {
1491 err = newfd;
1492 sock_release(newsock);
1493 goto out_put;
1496 err = security_socket_accept(sock, newsock);
1497 if (err)
1498 goto out_fd;
1500 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1501 if (err < 0)
1502 goto out_fd;
1504 if (upeer_sockaddr) {
1505 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1506 &len, 2) < 0) {
1507 err = -ECONNABORTED;
1508 goto out_fd;
1510 err = move_addr_to_user((struct sockaddr *)&address,
1511 len, upeer_sockaddr, upeer_addrlen);
1512 if (err < 0)
1513 goto out_fd;
1516 /* File flags are not inherited via accept() unlike another OSes. */
1518 fd_install(newfd, newfile);
1519 err = newfd;
1521 out_put:
1522 fput_light(sock->file, fput_needed);
1523 out:
1524 return err;
1525 out_fd:
1526 fput(newfile);
1527 put_unused_fd(newfd);
1528 goto out_put;
1531 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1532 int __user *, upeer_addrlen)
1534 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1538 * Attempt to connect to a socket with the server address. The address
1539 * is in user space so we verify it is OK and move it to kernel space.
1541 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1542 * break bindings
1544 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1545 * other SEQPACKET protocols that take time to connect() as it doesn't
1546 * include the -EINPROGRESS status for such sockets.
1549 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1550 int, addrlen)
1552 struct socket *sock;
1553 struct sockaddr_storage address;
1554 int err, fput_needed;
1556 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1557 if (!sock)
1558 goto out;
1559 err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1560 if (err < 0)
1561 goto out_put;
1563 err =
1564 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1565 if (err)
1566 goto out_put;
1568 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1569 sock->file->f_flags);
1570 out_put:
1571 fput_light(sock->file, fput_needed);
1572 out:
1573 return err;
1577 * Get the local address ('name') of a socket object. Move the obtained
1578 * name to user space.
1581 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1582 int __user *, usockaddr_len)
1584 struct socket *sock;
1585 struct sockaddr_storage address;
1586 int len, err, fput_needed;
1588 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1589 if (!sock)
1590 goto out;
1592 err = security_socket_getsockname(sock);
1593 if (err)
1594 goto out_put;
1596 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1597 if (err)
1598 goto out_put;
1599 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1601 out_put:
1602 fput_light(sock->file, fput_needed);
1603 out:
1604 return err;
1608 * Get the remote address ('name') of a socket object. Move the obtained
1609 * name to user space.
1612 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1613 int __user *, usockaddr_len)
1615 struct socket *sock;
1616 struct sockaddr_storage address;
1617 int len, err, fput_needed;
1619 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1620 if (sock != NULL) {
1621 err = security_socket_getpeername(sock);
1622 if (err) {
1623 fput_light(sock->file, fput_needed);
1624 return err;
1627 err =
1628 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1630 if (!err)
1631 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1632 usockaddr_len);
1633 fput_light(sock->file, fput_needed);
1635 return err;
1639 * Send a datagram to a given address. We move the address into kernel
1640 * space and check the user space data area is readable before invoking
1641 * the protocol.
1644 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1645 unsigned, flags, struct sockaddr __user *, addr,
1646 int, addr_len)
1648 struct socket *sock;
1649 struct sockaddr_storage address;
1650 int err;
1651 struct msghdr msg;
1652 struct iovec iov;
1653 int fput_needed;
1655 if (len > INT_MAX)
1656 len = INT_MAX;
1657 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1658 if (!sock)
1659 goto out;
1661 iov.iov_base = buff;
1662 iov.iov_len = len;
1663 msg.msg_name = NULL;
1664 msg.msg_iov = &iov;
1665 msg.msg_iovlen = 1;
1666 msg.msg_control = NULL;
1667 msg.msg_controllen = 0;
1668 msg.msg_namelen = 0;
1669 if (addr) {
1670 err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1671 if (err < 0)
1672 goto out_put;
1673 msg.msg_name = (struct sockaddr *)&address;
1674 msg.msg_namelen = addr_len;
1676 if (sock->file->f_flags & O_NONBLOCK)
1677 flags |= MSG_DONTWAIT;
1678 msg.msg_flags = flags;
1679 err = sock_sendmsg(sock, &msg, len);
1681 out_put:
1682 fput_light(sock->file, fput_needed);
1683 out:
1684 return err;
1688 * Send a datagram down a socket.
1691 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1692 unsigned, flags)
1694 return sys_sendto(fd, buff, len, flags, NULL, 0);
1698 * Receive a frame from the socket and optionally record the address of the
1699 * sender. We verify the buffers are writable and if needed move the
1700 * sender address from kernel to user space.
1703 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1704 unsigned, flags, struct sockaddr __user *, addr,
1705 int __user *, addr_len)
1707 struct socket *sock;
1708 struct iovec iov;
1709 struct msghdr msg;
1710 struct sockaddr_storage address;
1711 int err, err2;
1712 int fput_needed;
1714 if (size > INT_MAX)
1715 size = INT_MAX;
1716 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1717 if (!sock)
1718 goto out;
1720 msg.msg_control = NULL;
1721 msg.msg_controllen = 0;
1722 msg.msg_iovlen = 1;
1723 msg.msg_iov = &iov;
1724 iov.iov_len = size;
1725 iov.iov_base = ubuf;
1726 msg.msg_name = (struct sockaddr *)&address;
1727 msg.msg_namelen = sizeof(address);
1728 if (sock->file->f_flags & O_NONBLOCK)
1729 flags |= MSG_DONTWAIT;
1730 err = sock_recvmsg(sock, &msg, size, flags);
1732 if (err >= 0 && addr != NULL) {
1733 err2 = move_addr_to_user((struct sockaddr *)&address,
1734 msg.msg_namelen, addr, addr_len);
1735 if (err2 < 0)
1736 err = err2;
1739 fput_light(sock->file, fput_needed);
1740 out:
1741 return err;
1745 * Receive a datagram from a socket.
1748 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1749 unsigned flags)
1751 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1755 * Set a socket option. Because we don't know the option lengths we have
1756 * to pass the user mode parameter for the protocols to sort out.
1759 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1760 char __user *, optval, int, optlen)
1762 int err, fput_needed;
1763 struct socket *sock;
1765 if (optlen < 0)
1766 return -EINVAL;
1768 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1769 if (sock != NULL) {
1770 err = security_socket_setsockopt(sock, level, optname);
1771 if (err)
1772 goto out_put;
1774 if (level == SOL_SOCKET)
1775 err =
1776 sock_setsockopt(sock, level, optname, optval,
1777 optlen);
1778 else
1779 err =
1780 sock->ops->setsockopt(sock, level, optname, optval,
1781 optlen);
1782 out_put:
1783 fput_light(sock->file, fput_needed);
1785 return err;
1789 * Get a socket option. Because we don't know the option lengths we have
1790 * to pass a user mode parameter for the protocols to sort out.
1793 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1794 char __user *, optval, int __user *, optlen)
1796 int err, fput_needed;
1797 struct socket *sock;
1799 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1800 if (sock != NULL) {
1801 err = security_socket_getsockopt(sock, level, optname);
1802 if (err)
1803 goto out_put;
1805 if (level == SOL_SOCKET)
1806 err =
1807 sock_getsockopt(sock, level, optname, optval,
1808 optlen);
1809 else
1810 err =
1811 sock->ops->getsockopt(sock, level, optname, optval,
1812 optlen);
1813 out_put:
1814 fput_light(sock->file, fput_needed);
1816 return err;
1820 * Shutdown a socket.
1823 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1825 int err, fput_needed;
1826 struct socket *sock;
1828 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1829 if (sock != NULL) {
1830 err = security_socket_shutdown(sock, how);
1831 if (!err)
1832 err = sock->ops->shutdown(sock, how);
1833 fput_light(sock->file, fput_needed);
1835 return err;
1838 /* A couple of helpful macros for getting the address of the 32/64 bit
1839 * fields which are the same type (int / unsigned) on our platforms.
1841 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1842 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1843 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1846 * BSD sendmsg interface
1849 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
1851 struct compat_msghdr __user *msg_compat =
1852 (struct compat_msghdr __user *)msg;
1853 struct socket *sock;
1854 struct sockaddr_storage address;
1855 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1856 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1857 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1858 /* 20 is size of ipv6_pktinfo */
1859 unsigned char *ctl_buf = ctl;
1860 struct msghdr msg_sys;
1861 int err, ctl_len, iov_size, total_len;
1862 int fput_needed;
1864 err = -EFAULT;
1865 if (MSG_CMSG_COMPAT & flags) {
1866 if (get_compat_msghdr(&msg_sys, msg_compat))
1867 return -EFAULT;
1868 } else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1869 return -EFAULT;
1871 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1872 if (!sock)
1873 goto out;
1875 /* do not move before msg_sys is valid */
1876 err = -EMSGSIZE;
1877 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1878 goto out_put;
1880 /* Check whether to allocate the iovec area */
1881 err = -ENOMEM;
1882 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1883 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1884 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1885 if (!iov)
1886 goto out_put;
1889 /* This will also move the address data into kernel space */
1890 if (MSG_CMSG_COMPAT & flags) {
1891 err = verify_compat_iovec(&msg_sys, iov,
1892 (struct sockaddr *)&address,
1893 VERIFY_READ);
1894 } else
1895 err = verify_iovec(&msg_sys, iov,
1896 (struct sockaddr *)&address,
1897 VERIFY_READ);
1898 if (err < 0)
1899 goto out_freeiov;
1900 total_len = err;
1902 err = -ENOBUFS;
1904 if (msg_sys.msg_controllen > INT_MAX)
1905 goto out_freeiov;
1906 ctl_len = msg_sys.msg_controllen;
1907 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1908 err =
1909 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1910 sizeof(ctl));
1911 if (err)
1912 goto out_freeiov;
1913 ctl_buf = msg_sys.msg_control;
1914 ctl_len = msg_sys.msg_controllen;
1915 } else if (ctl_len) {
1916 if (ctl_len > sizeof(ctl)) {
1917 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1918 if (ctl_buf == NULL)
1919 goto out_freeiov;
1921 err = -EFAULT;
1923 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1924 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1925 * checking falls down on this.
1927 if (copy_from_user(ctl_buf,
1928 (void __user __force *)msg_sys.msg_control,
1929 ctl_len))
1930 goto out_freectl;
1931 msg_sys.msg_control = ctl_buf;
1933 msg_sys.msg_flags = flags;
1935 if (sock->file->f_flags & O_NONBLOCK)
1936 msg_sys.msg_flags |= MSG_DONTWAIT;
1937 err = sock_sendmsg(sock, &msg_sys, total_len);
1939 out_freectl:
1940 if (ctl_buf != ctl)
1941 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1942 out_freeiov:
1943 if (iov != iovstack)
1944 sock_kfree_s(sock->sk, iov, iov_size);
1945 out_put:
1946 fput_light(sock->file, fput_needed);
1947 out:
1948 return err;
1951 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
1952 struct msghdr *msg_sys, unsigned flags, int nosec)
1954 struct compat_msghdr __user *msg_compat =
1955 (struct compat_msghdr __user *)msg;
1956 struct iovec iovstack[UIO_FASTIOV];
1957 struct iovec *iov = iovstack;
1958 unsigned long cmsg_ptr;
1959 int err, iov_size, total_len, len;
1961 /* kernel mode address */
1962 struct sockaddr_storage addr;
1964 /* user mode address pointers */
1965 struct sockaddr __user *uaddr;
1966 int __user *uaddr_len;
1968 if (MSG_CMSG_COMPAT & flags) {
1969 if (get_compat_msghdr(msg_sys, msg_compat))
1970 return -EFAULT;
1971 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1972 return -EFAULT;
1974 err = -EMSGSIZE;
1975 if (msg_sys->msg_iovlen > UIO_MAXIOV)
1976 goto out;
1978 /* Check whether to allocate the iovec area */
1979 err = -ENOMEM;
1980 iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
1981 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1982 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1983 if (!iov)
1984 goto out;
1988 * Save the user-mode address (verify_iovec will change the
1989 * kernel msghdr to use the kernel address space)
1992 uaddr = (__force void __user *)msg_sys->msg_name;
1993 uaddr_len = COMPAT_NAMELEN(msg);
1994 if (MSG_CMSG_COMPAT & flags) {
1995 err = verify_compat_iovec(msg_sys, iov,
1996 (struct sockaddr *)&addr,
1997 VERIFY_WRITE);
1998 } else
1999 err = verify_iovec(msg_sys, iov,
2000 (struct sockaddr *)&addr,
2001 VERIFY_WRITE);
2002 if (err < 0)
2003 goto out_freeiov;
2004 total_len = err;
2006 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2007 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2009 if (sock->file->f_flags & O_NONBLOCK)
2010 flags |= MSG_DONTWAIT;
2011 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2012 total_len, flags);
2013 if (err < 0)
2014 goto out_freeiov;
2015 len = err;
2017 if (uaddr != NULL) {
2018 err = move_addr_to_user((struct sockaddr *)&addr,
2019 msg_sys->msg_namelen, uaddr,
2020 uaddr_len);
2021 if (err < 0)
2022 goto out_freeiov;
2024 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2025 COMPAT_FLAGS(msg));
2026 if (err)
2027 goto out_freeiov;
2028 if (MSG_CMSG_COMPAT & flags)
2029 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2030 &msg_compat->msg_controllen);
2031 else
2032 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2033 &msg->msg_controllen);
2034 if (err)
2035 goto out_freeiov;
2036 err = len;
2038 out_freeiov:
2039 if (iov != iovstack)
2040 sock_kfree_s(sock->sk, iov, iov_size);
2041 out:
2042 return err;
2046 * BSD recvmsg interface
2049 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2050 unsigned int, flags)
2052 int fput_needed, err;
2053 struct msghdr msg_sys;
2054 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2056 if (!sock)
2057 goto out;
2059 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2061 fput_light(sock->file, fput_needed);
2062 out:
2063 return err;
2067 * Linux recvmmsg interface
2070 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2071 unsigned int flags, struct timespec *timeout)
2073 int fput_needed, err, datagrams;
2074 struct socket *sock;
2075 struct mmsghdr __user *entry;
2076 struct compat_mmsghdr __user *compat_entry;
2077 struct msghdr msg_sys;
2078 struct timespec end_time;
2080 if (timeout &&
2081 poll_select_set_timeout(&end_time, timeout->tv_sec,
2082 timeout->tv_nsec))
2083 return -EINVAL;
2085 datagrams = 0;
2087 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2088 if (!sock)
2089 return err;
2091 err = sock_error(sock->sk);
2092 if (err)
2093 goto out_put;
2095 entry = mmsg;
2096 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2098 while (datagrams < vlen) {
2100 * No need to ask LSM for more than the first datagram.
2102 if (MSG_CMSG_COMPAT & flags) {
2103 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2104 &msg_sys, flags, datagrams);
2105 if (err < 0)
2106 break;
2107 err = __put_user(err, &compat_entry->msg_len);
2108 ++compat_entry;
2109 } else {
2110 err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2111 &msg_sys, flags, datagrams);
2112 if (err < 0)
2113 break;
2114 err = put_user(err, &entry->msg_len);
2115 ++entry;
2118 if (err)
2119 break;
2120 ++datagrams;
2122 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2123 if (flags & MSG_WAITFORONE)
2124 flags |= MSG_DONTWAIT;
2126 if (timeout) {
2127 ktime_get_ts(timeout);
2128 *timeout = timespec_sub(end_time, *timeout);
2129 if (timeout->tv_sec < 0) {
2130 timeout->tv_sec = timeout->tv_nsec = 0;
2131 break;
2134 /* Timeout, return less than vlen datagrams */
2135 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2136 break;
2139 /* Out of band data, return right away */
2140 if (msg_sys.msg_flags & MSG_OOB)
2141 break;
2144 out_put:
2145 fput_light(sock->file, fput_needed);
2147 if (err == 0)
2148 return datagrams;
2150 if (datagrams != 0) {
2152 * We may return less entries than requested (vlen) if the
2153 * sock is non block and there aren't enough datagrams...
2155 if (err != -EAGAIN) {
2157 * ... or if recvmsg returns an error after we
2158 * received some datagrams, where we record the
2159 * error to return on the next call or if the
2160 * app asks about it using getsockopt(SO_ERROR).
2162 sock->sk->sk_err = -err;
2165 return datagrams;
2168 return err;
2171 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2172 unsigned int, vlen, unsigned int, flags,
2173 struct timespec __user *, timeout)
2175 int datagrams;
2176 struct timespec timeout_sys;
2178 if (!timeout)
2179 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2181 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2182 return -EFAULT;
2184 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2186 if (datagrams > 0 &&
2187 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2188 datagrams = -EFAULT;
2190 return datagrams;
2193 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2194 /* Argument list sizes for sys_socketcall */
2195 #define AL(x) ((x) * sizeof(unsigned long))
2196 static const unsigned char nargs[20] = {
2197 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2198 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2199 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2200 AL(4), AL(5)
2203 #undef AL
2206 * System call vectors.
2208 * Argument checking cleaned up. Saved 20% in size.
2209 * This function doesn't need to set the kernel lock because
2210 * it is set by the callees.
2213 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2215 unsigned long a[6];
2216 unsigned long a0, a1;
2217 int err;
2218 unsigned int len;
2220 if (call < 1 || call > SYS_RECVMMSG)
2221 return -EINVAL;
2223 len = nargs[call];
2224 if (len > sizeof(a))
2225 return -EINVAL;
2227 /* copy_from_user should be SMP safe. */
2228 if (copy_from_user(a, args, len))
2229 return -EFAULT;
2231 audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2233 a0 = a[0];
2234 a1 = a[1];
2236 switch (call) {
2237 case SYS_SOCKET:
2238 err = sys_socket(a0, a1, a[2]);
2239 break;
2240 case SYS_BIND:
2241 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2242 break;
2243 case SYS_CONNECT:
2244 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2245 break;
2246 case SYS_LISTEN:
2247 err = sys_listen(a0, a1);
2248 break;
2249 case SYS_ACCEPT:
2250 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2251 (int __user *)a[2], 0);
2252 break;
2253 case SYS_GETSOCKNAME:
2254 err =
2255 sys_getsockname(a0, (struct sockaddr __user *)a1,
2256 (int __user *)a[2]);
2257 break;
2258 case SYS_GETPEERNAME:
2259 err =
2260 sys_getpeername(a0, (struct sockaddr __user *)a1,
2261 (int __user *)a[2]);
2262 break;
2263 case SYS_SOCKETPAIR:
2264 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2265 break;
2266 case SYS_SEND:
2267 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2268 break;
2269 case SYS_SENDTO:
2270 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2271 (struct sockaddr __user *)a[4], a[5]);
2272 break;
2273 case SYS_RECV:
2274 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2275 break;
2276 case SYS_RECVFROM:
2277 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2278 (struct sockaddr __user *)a[4],
2279 (int __user *)a[5]);
2280 break;
2281 case SYS_SHUTDOWN:
2282 err = sys_shutdown(a0, a1);
2283 break;
2284 case SYS_SETSOCKOPT:
2285 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2286 break;
2287 case SYS_GETSOCKOPT:
2288 err =
2289 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2290 (int __user *)a[4]);
2291 break;
2292 case SYS_SENDMSG:
2293 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2294 break;
2295 case SYS_RECVMSG:
2296 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2297 break;
2298 case SYS_RECVMMSG:
2299 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2300 (struct timespec __user *)a[4]);
2301 break;
2302 case SYS_ACCEPT4:
2303 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2304 (int __user *)a[2], a[3]);
2305 break;
2306 default:
2307 err = -EINVAL;
2308 break;
2310 return err;
2313 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2316 * sock_register - add a socket protocol handler
2317 * @ops: description of protocol
2319 * This function is called by a protocol handler that wants to
2320 * advertise its address family, and have it linked into the
2321 * socket interface. The value ops->family coresponds to the
2322 * socket system call protocol family.
2324 int sock_register(const struct net_proto_family *ops)
2326 int err;
2328 if (ops->family >= NPROTO) {
2329 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2330 NPROTO);
2331 return -ENOBUFS;
2334 spin_lock(&net_family_lock);
2335 if (net_families[ops->family])
2336 err = -EEXIST;
2337 else {
2338 net_families[ops->family] = ops;
2339 err = 0;
2341 spin_unlock(&net_family_lock);
2343 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2344 return err;
2346 EXPORT_SYMBOL(sock_register);
2349 * sock_unregister - remove a protocol handler
2350 * @family: protocol family to remove
2352 * This function is called by a protocol handler that wants to
2353 * remove its address family, and have it unlinked from the
2354 * new socket creation.
2356 * If protocol handler is a module, then it can use module reference
2357 * counts to protect against new references. If protocol handler is not
2358 * a module then it needs to provide its own protection in
2359 * the ops->create routine.
2361 void sock_unregister(int family)
2363 BUG_ON(family < 0 || family >= NPROTO);
2365 spin_lock(&net_family_lock);
2366 net_families[family] = NULL;
2367 spin_unlock(&net_family_lock);
2369 synchronize_rcu();
2371 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2373 EXPORT_SYMBOL(sock_unregister);
2375 static int __init sock_init(void)
2378 * Initialize sock SLAB cache.
2381 sk_init();
2384 * Initialize skbuff SLAB cache
2386 skb_init();
2389 * Initialize the protocols module.
2392 init_inodecache();
2393 register_filesystem(&sock_fs_type);
2394 sock_mnt = kern_mount(&sock_fs_type);
2396 /* The real protocol initialization is performed in later initcalls.
2399 #ifdef CONFIG_NETFILTER
2400 netfilter_init();
2401 #endif
2403 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2404 skb_timestamping_init();
2405 #endif
2407 return 0;
2410 core_initcall(sock_init); /* early initcall */
2412 #ifdef CONFIG_PROC_FS
2413 void socket_seq_show(struct seq_file *seq)
2415 int cpu;
2416 int counter = 0;
2418 for_each_possible_cpu(cpu)
2419 counter += per_cpu(sockets_in_use, cpu);
2421 /* It can be negative, by the way. 8) */
2422 if (counter < 0)
2423 counter = 0;
2425 seq_printf(seq, "sockets: used %d\n", counter);
2427 #endif /* CONFIG_PROC_FS */
2429 #ifdef CONFIG_COMPAT
2430 static int do_siocgstamp(struct net *net, struct socket *sock,
2431 unsigned int cmd, struct compat_timeval __user *up)
2433 mm_segment_t old_fs = get_fs();
2434 struct timeval ktv;
2435 int err;
2437 set_fs(KERNEL_DS);
2438 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2439 set_fs(old_fs);
2440 if (!err) {
2441 err = put_user(ktv.tv_sec, &up->tv_sec);
2442 err |= __put_user(ktv.tv_usec, &up->tv_usec);
2444 return err;
2447 static int do_siocgstampns(struct net *net, struct socket *sock,
2448 unsigned int cmd, struct compat_timespec __user *up)
2450 mm_segment_t old_fs = get_fs();
2451 struct timespec kts;
2452 int err;
2454 set_fs(KERNEL_DS);
2455 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2456 set_fs(old_fs);
2457 if (!err) {
2458 err = put_user(kts.tv_sec, &up->tv_sec);
2459 err |= __put_user(kts.tv_nsec, &up->tv_nsec);
2461 return err;
2464 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2466 struct ifreq __user *uifr;
2467 int err;
2469 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2470 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2471 return -EFAULT;
2473 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2474 if (err)
2475 return err;
2477 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2478 return -EFAULT;
2480 return 0;
2483 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2485 struct compat_ifconf ifc32;
2486 struct ifconf ifc;
2487 struct ifconf __user *uifc;
2488 struct compat_ifreq __user *ifr32;
2489 struct ifreq __user *ifr;
2490 unsigned int i, j;
2491 int err;
2493 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2494 return -EFAULT;
2496 if (ifc32.ifcbuf == 0) {
2497 ifc32.ifc_len = 0;
2498 ifc.ifc_len = 0;
2499 ifc.ifc_req = NULL;
2500 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2501 } else {
2502 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2503 sizeof(struct ifreq);
2504 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2505 ifc.ifc_len = len;
2506 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2507 ifr32 = compat_ptr(ifc32.ifcbuf);
2508 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2509 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2510 return -EFAULT;
2511 ifr++;
2512 ifr32++;
2515 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2516 return -EFAULT;
2518 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2519 if (err)
2520 return err;
2522 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2523 return -EFAULT;
2525 ifr = ifc.ifc_req;
2526 ifr32 = compat_ptr(ifc32.ifcbuf);
2527 for (i = 0, j = 0;
2528 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2529 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2530 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2531 return -EFAULT;
2532 ifr32++;
2533 ifr++;
2536 if (ifc32.ifcbuf == 0) {
2537 /* Translate from 64-bit structure multiple to
2538 * a 32-bit one.
2540 i = ifc.ifc_len;
2541 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2542 ifc32.ifc_len = i;
2543 } else {
2544 ifc32.ifc_len = i;
2546 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2547 return -EFAULT;
2549 return 0;
2552 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2554 struct ifreq __user *ifr;
2555 u32 data;
2556 void __user *datap;
2558 ifr = compat_alloc_user_space(sizeof(*ifr));
2560 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2561 return -EFAULT;
2563 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2564 return -EFAULT;
2566 datap = compat_ptr(data);
2567 if (put_user(datap, &ifr->ifr_ifru.ifru_data))
2568 return -EFAULT;
2570 return dev_ioctl(net, SIOCETHTOOL, ifr);
2573 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2575 void __user *uptr;
2576 compat_uptr_t uptr32;
2577 struct ifreq __user *uifr;
2579 uifr = compat_alloc_user_space(sizeof(*uifr));
2580 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2581 return -EFAULT;
2583 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2584 return -EFAULT;
2586 uptr = compat_ptr(uptr32);
2588 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2589 return -EFAULT;
2591 return dev_ioctl(net, SIOCWANDEV, uifr);
2594 static int bond_ioctl(struct net *net, unsigned int cmd,
2595 struct compat_ifreq __user *ifr32)
2597 struct ifreq kifr;
2598 struct ifreq __user *uifr;
2599 mm_segment_t old_fs;
2600 int err;
2601 u32 data;
2602 void __user *datap;
2604 switch (cmd) {
2605 case SIOCBONDENSLAVE:
2606 case SIOCBONDRELEASE:
2607 case SIOCBONDSETHWADDR:
2608 case SIOCBONDCHANGEACTIVE:
2609 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2610 return -EFAULT;
2612 old_fs = get_fs();
2613 set_fs(KERNEL_DS);
2614 err = dev_ioctl(net, cmd, &kifr);
2615 set_fs(old_fs);
2617 return err;
2618 case SIOCBONDSLAVEINFOQUERY:
2619 case SIOCBONDINFOQUERY:
2620 uifr = compat_alloc_user_space(sizeof(*uifr));
2621 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2622 return -EFAULT;
2624 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2625 return -EFAULT;
2627 datap = compat_ptr(data);
2628 if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2629 return -EFAULT;
2631 return dev_ioctl(net, cmd, uifr);
2632 default:
2633 return -EINVAL;
2637 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2638 struct compat_ifreq __user *u_ifreq32)
2640 struct ifreq __user *u_ifreq64;
2641 char tmp_buf[IFNAMSIZ];
2642 void __user *data64;
2643 u32 data32;
2645 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2646 IFNAMSIZ))
2647 return -EFAULT;
2648 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2649 return -EFAULT;
2650 data64 = compat_ptr(data32);
2652 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2654 /* Don't check these user accesses, just let that get trapped
2655 * in the ioctl handler instead.
2657 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2658 IFNAMSIZ))
2659 return -EFAULT;
2660 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2661 return -EFAULT;
2663 return dev_ioctl(net, cmd, u_ifreq64);
2666 static int dev_ifsioc(struct net *net, struct socket *sock,
2667 unsigned int cmd, struct compat_ifreq __user *uifr32)
2669 struct ifreq __user *uifr;
2670 int err;
2672 uifr = compat_alloc_user_space(sizeof(*uifr));
2673 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2674 return -EFAULT;
2676 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2678 if (!err) {
2679 switch (cmd) {
2680 case SIOCGIFFLAGS:
2681 case SIOCGIFMETRIC:
2682 case SIOCGIFMTU:
2683 case SIOCGIFMEM:
2684 case SIOCGIFHWADDR:
2685 case SIOCGIFINDEX:
2686 case SIOCGIFADDR:
2687 case SIOCGIFBRDADDR:
2688 case SIOCGIFDSTADDR:
2689 case SIOCGIFNETMASK:
2690 case SIOCGIFPFLAGS:
2691 case SIOCGIFTXQLEN:
2692 case SIOCGMIIPHY:
2693 case SIOCGMIIREG:
2694 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2695 err = -EFAULT;
2696 break;
2699 return err;
2702 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2703 struct compat_ifreq __user *uifr32)
2705 struct ifreq ifr;
2706 struct compat_ifmap __user *uifmap32;
2707 mm_segment_t old_fs;
2708 int err;
2710 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2711 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2712 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2713 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2714 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2715 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
2716 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
2717 err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
2718 if (err)
2719 return -EFAULT;
2721 old_fs = get_fs();
2722 set_fs(KERNEL_DS);
2723 err = dev_ioctl(net, cmd, (void __user *)&ifr);
2724 set_fs(old_fs);
2726 if (cmd == SIOCGIFMAP && !err) {
2727 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2728 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2729 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2730 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2731 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
2732 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
2733 err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
2734 if (err)
2735 err = -EFAULT;
2737 return err;
2740 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
2742 void __user *uptr;
2743 compat_uptr_t uptr32;
2744 struct ifreq __user *uifr;
2746 uifr = compat_alloc_user_space(sizeof(*uifr));
2747 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2748 return -EFAULT;
2750 if (get_user(uptr32, &uifr32->ifr_data))
2751 return -EFAULT;
2753 uptr = compat_ptr(uptr32);
2755 if (put_user(uptr, &uifr->ifr_data))
2756 return -EFAULT;
2758 return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
2761 struct rtentry32 {
2762 u32 rt_pad1;
2763 struct sockaddr rt_dst; /* target address */
2764 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
2765 struct sockaddr rt_genmask; /* target network mask (IP) */
2766 unsigned short rt_flags;
2767 short rt_pad2;
2768 u32 rt_pad3;
2769 unsigned char rt_tos;
2770 unsigned char rt_class;
2771 short rt_pad4;
2772 short rt_metric; /* +1 for binary compatibility! */
2773 /* char * */ u32 rt_dev; /* forcing the device at add */
2774 u32 rt_mtu; /* per route MTU/Window */
2775 u32 rt_window; /* Window clamping */
2776 unsigned short rt_irtt; /* Initial RTT */
2779 struct in6_rtmsg32 {
2780 struct in6_addr rtmsg_dst;
2781 struct in6_addr rtmsg_src;
2782 struct in6_addr rtmsg_gateway;
2783 u32 rtmsg_type;
2784 u16 rtmsg_dst_len;
2785 u16 rtmsg_src_len;
2786 u32 rtmsg_metric;
2787 u32 rtmsg_info;
2788 u32 rtmsg_flags;
2789 s32 rtmsg_ifindex;
2792 static int routing_ioctl(struct net *net, struct socket *sock,
2793 unsigned int cmd, void __user *argp)
2795 int ret;
2796 void *r = NULL;
2797 struct in6_rtmsg r6;
2798 struct rtentry r4;
2799 char devname[16];
2800 u32 rtdev;
2801 mm_segment_t old_fs = get_fs();
2803 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2804 struct in6_rtmsg32 __user *ur6 = argp;
2805 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2806 3 * sizeof(struct in6_addr));
2807 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
2808 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2809 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2810 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
2811 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
2812 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
2813 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
2815 r = (void *) &r6;
2816 } else { /* ipv4 */
2817 struct rtentry32 __user *ur4 = argp;
2818 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
2819 3 * sizeof(struct sockaddr));
2820 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
2821 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
2822 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
2823 ret |= __get_user(r4.rt_window, &(ur4->rt_window));
2824 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
2825 ret |= __get_user(rtdev, &(ur4->rt_dev));
2826 if (rtdev) {
2827 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
2828 r4.rt_dev = devname; devname[15] = 0;
2829 } else
2830 r4.rt_dev = NULL;
2832 r = (void *) &r4;
2835 if (ret) {
2836 ret = -EFAULT;
2837 goto out;
2840 set_fs(KERNEL_DS);
2841 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
2842 set_fs(old_fs);
2844 out:
2845 return ret;
2848 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
2849 * for some operations; this forces use of the newer bridge-utils that
2850 * use compatiable ioctls
2852 static int old_bridge_ioctl(compat_ulong_t __user *argp)
2854 compat_ulong_t tmp;
2856 if (get_user(tmp, argp))
2857 return -EFAULT;
2858 if (tmp == BRCTL_GET_VERSION)
2859 return BRCTL_VERSION + 1;
2860 return -EINVAL;
2863 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
2864 unsigned int cmd, unsigned long arg)
2866 void __user *argp = compat_ptr(arg);
2867 struct sock *sk = sock->sk;
2868 struct net *net = sock_net(sk);
2870 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
2871 return siocdevprivate_ioctl(net, cmd, argp);
2873 switch (cmd) {
2874 case SIOCSIFBR:
2875 case SIOCGIFBR:
2876 return old_bridge_ioctl(argp);
2877 case SIOCGIFNAME:
2878 return dev_ifname32(net, argp);
2879 case SIOCGIFCONF:
2880 return dev_ifconf(net, argp);
2881 case SIOCETHTOOL:
2882 return ethtool_ioctl(net, argp);
2883 case SIOCWANDEV:
2884 return compat_siocwandev(net, argp);
2885 case SIOCGIFMAP:
2886 case SIOCSIFMAP:
2887 return compat_sioc_ifmap(net, cmd, argp);
2888 case SIOCBONDENSLAVE:
2889 case SIOCBONDRELEASE:
2890 case SIOCBONDSETHWADDR:
2891 case SIOCBONDSLAVEINFOQUERY:
2892 case SIOCBONDINFOQUERY:
2893 case SIOCBONDCHANGEACTIVE:
2894 return bond_ioctl(net, cmd, argp);
2895 case SIOCADDRT:
2896 case SIOCDELRT:
2897 return routing_ioctl(net, sock, cmd, argp);
2898 case SIOCGSTAMP:
2899 return do_siocgstamp(net, sock, cmd, argp);
2900 case SIOCGSTAMPNS:
2901 return do_siocgstampns(net, sock, cmd, argp);
2902 case SIOCSHWTSTAMP:
2903 return compat_siocshwtstamp(net, argp);
2905 case FIOSETOWN:
2906 case SIOCSPGRP:
2907 case FIOGETOWN:
2908 case SIOCGPGRP:
2909 case SIOCBRADDBR:
2910 case SIOCBRDELBR:
2911 case SIOCGIFVLAN:
2912 case SIOCSIFVLAN:
2913 case SIOCADDDLCI:
2914 case SIOCDELDLCI:
2915 return sock_ioctl(file, cmd, arg);
2917 case SIOCGIFFLAGS:
2918 case SIOCSIFFLAGS:
2919 case SIOCGIFMETRIC:
2920 case SIOCSIFMETRIC:
2921 case SIOCGIFMTU:
2922 case SIOCSIFMTU:
2923 case SIOCGIFMEM:
2924 case SIOCSIFMEM:
2925 case SIOCGIFHWADDR:
2926 case SIOCSIFHWADDR:
2927 case SIOCADDMULTI:
2928 case SIOCDELMULTI:
2929 case SIOCGIFINDEX:
2930 case SIOCGIFADDR:
2931 case SIOCSIFADDR:
2932 case SIOCSIFHWBROADCAST:
2933 case SIOCDIFADDR:
2934 case SIOCGIFBRDADDR:
2935 case SIOCSIFBRDADDR:
2936 case SIOCGIFDSTADDR:
2937 case SIOCSIFDSTADDR:
2938 case SIOCGIFNETMASK:
2939 case SIOCSIFNETMASK:
2940 case SIOCSIFPFLAGS:
2941 case SIOCGIFPFLAGS:
2942 case SIOCGIFTXQLEN:
2943 case SIOCSIFTXQLEN:
2944 case SIOCBRADDIF:
2945 case SIOCBRDELIF:
2946 case SIOCSIFNAME:
2947 case SIOCGMIIPHY:
2948 case SIOCGMIIREG:
2949 case SIOCSMIIREG:
2950 return dev_ifsioc(net, sock, cmd, argp);
2952 case SIOCSARP:
2953 case SIOCGARP:
2954 case SIOCDARP:
2955 case SIOCATMARK:
2956 return sock_do_ioctl(net, sock, cmd, arg);
2959 /* Prevent warning from compat_sys_ioctl, these always
2960 * result in -EINVAL in the native case anyway. */
2961 switch (cmd) {
2962 case SIOCRTMSG:
2963 case SIOCGIFCOUNT:
2964 case SIOCSRARP:
2965 case SIOCGRARP:
2966 case SIOCDRARP:
2967 case SIOCSIFLINK:
2968 case SIOCGIFSLAVE:
2969 case SIOCSIFSLAVE:
2970 return -EINVAL;
2973 return -ENOIOCTLCMD;
2976 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2977 unsigned long arg)
2979 struct socket *sock = file->private_data;
2980 int ret = -ENOIOCTLCMD;
2981 struct sock *sk;
2982 struct net *net;
2984 sk = sock->sk;
2985 net = sock_net(sk);
2987 if (sock->ops->compat_ioctl)
2988 ret = sock->ops->compat_ioctl(sock, cmd, arg);
2990 if (ret == -ENOIOCTLCMD &&
2991 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
2992 ret = compat_wext_handle_ioctl(net, cmd, arg);
2994 if (ret == -ENOIOCTLCMD)
2995 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
2997 return ret;
2999 #endif
3001 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3003 return sock->ops->bind(sock, addr, addrlen);
3005 EXPORT_SYMBOL(kernel_bind);
3007 int kernel_listen(struct socket *sock, int backlog)
3009 return sock->ops->listen(sock, backlog);
3011 EXPORT_SYMBOL(kernel_listen);
3013 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3015 struct sock *sk = sock->sk;
3016 int err;
3018 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3019 newsock);
3020 if (err < 0)
3021 goto done;
3023 err = sock->ops->accept(sock, *newsock, flags);
3024 if (err < 0) {
3025 sock_release(*newsock);
3026 *newsock = NULL;
3027 goto done;
3030 (*newsock)->ops = sock->ops;
3031 __module_get((*newsock)->ops->owner);
3033 done:
3034 return err;
3036 EXPORT_SYMBOL(kernel_accept);
3038 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3039 int flags)
3041 return sock->ops->connect(sock, addr, addrlen, flags);
3043 EXPORT_SYMBOL(kernel_connect);
3045 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3046 int *addrlen)
3048 return sock->ops->getname(sock, addr, addrlen, 0);
3050 EXPORT_SYMBOL(kernel_getsockname);
3052 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3053 int *addrlen)
3055 return sock->ops->getname(sock, addr, addrlen, 1);
3057 EXPORT_SYMBOL(kernel_getpeername);
3059 int kernel_getsockopt(struct socket *sock, int level, int optname,
3060 char *optval, int *optlen)
3062 mm_segment_t oldfs = get_fs();
3063 char __user *uoptval;
3064 int __user *uoptlen;
3065 int err;
3067 uoptval = (char __user __force *) optval;
3068 uoptlen = (int __user __force *) optlen;
3070 set_fs(KERNEL_DS);
3071 if (level == SOL_SOCKET)
3072 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3073 else
3074 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3075 uoptlen);
3076 set_fs(oldfs);
3077 return err;
3079 EXPORT_SYMBOL(kernel_getsockopt);
3081 int kernel_setsockopt(struct socket *sock, int level, int optname,
3082 char *optval, unsigned int optlen)
3084 mm_segment_t oldfs = get_fs();
3085 char __user *uoptval;
3086 int err;
3088 uoptval = (char __user __force *) optval;
3090 set_fs(KERNEL_DS);
3091 if (level == SOL_SOCKET)
3092 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3093 else
3094 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3095 optlen);
3096 set_fs(oldfs);
3097 return err;
3099 EXPORT_SYMBOL(kernel_setsockopt);
3101 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3102 size_t size, int flags)
3104 sock_update_classid(sock->sk);
3106 if (sock->ops->sendpage)
3107 return sock->ops->sendpage(sock, page, offset, size, flags);
3109 return sock_no_sendpage(sock, page, offset, size, flags);
3111 EXPORT_SYMBOL(kernel_sendpage);
3113 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3115 mm_segment_t oldfs = get_fs();
3116 int err;
3118 set_fs(KERNEL_DS);
3119 err = sock->ops->ioctl(sock, cmd, arg);
3120 set_fs(oldfs);
3122 return err;
3124 EXPORT_SYMBOL(kernel_sock_ioctl);
3126 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3128 return sock->ops->shutdown(sock, how);
3130 EXPORT_SYMBOL(kernel_sock_shutdown);