2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 #include <linux/module.h>
26 #include <linux/version.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/completion.h>
30 #include <linux/utsname.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mutex.h>
37 #include <asm/byteorder.h>
38 #include <asm/unaligned.h>
39 #include <linux/platform_device.h>
40 #include <linux/workqueue.h>
42 #include <linux/usb.h>
43 #include <linux/usb/hcd.h>
48 /*-------------------------------------------------------------------------*/
51 * USB Host Controller Driver framework
53 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
54 * HCD-specific behaviors/bugs.
56 * This does error checks, tracks devices and urbs, and delegates to a
57 * "hc_driver" only for code (and data) that really needs to know about
58 * hardware differences. That includes root hub registers, i/o queues,
59 * and so on ... but as little else as possible.
61 * Shared code includes most of the "root hub" code (these are emulated,
62 * though each HC's hardware works differently) and PCI glue, plus request
63 * tracking overhead. The HCD code should only block on spinlocks or on
64 * hardware handshaking; blocking on software events (such as other kernel
65 * threads releasing resources, or completing actions) is all generic.
67 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
68 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
69 * only by the hub driver ... and that neither should be seen or used by
70 * usb client device drivers.
72 * Contributors of ideas or unattributed patches include: David Brownell,
73 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
76 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
77 * associated cleanup. "usb_hcd" still != "usb_bus".
78 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
81 /*-------------------------------------------------------------------------*/
83 /* Keep track of which host controller drivers are loaded */
84 unsigned long usb_hcds_loaded
;
85 EXPORT_SYMBOL_GPL(usb_hcds_loaded
);
87 /* host controllers we manage */
88 LIST_HEAD (usb_bus_list
);
89 EXPORT_SYMBOL_GPL (usb_bus_list
);
91 /* used when allocating bus numbers */
94 unsigned long busmap
[USB_MAXBUS
/ (8*sizeof (unsigned long))];
96 static struct usb_busmap busmap
;
98 /* used when updating list of hcds */
99 DEFINE_MUTEX(usb_bus_list_lock
); /* exported only for usbfs */
100 EXPORT_SYMBOL_GPL (usb_bus_list_lock
);
102 /* used for controlling access to virtual root hubs */
103 static DEFINE_SPINLOCK(hcd_root_hub_lock
);
105 /* used when updating an endpoint's URB list */
106 static DEFINE_SPINLOCK(hcd_urb_list_lock
);
108 /* used to protect against unlinking URBs after the device is gone */
109 static DEFINE_SPINLOCK(hcd_urb_unlink_lock
);
111 /* wait queue for synchronous unlinks */
112 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue
);
114 static inline int is_root_hub(struct usb_device
*udev
)
116 return (udev
->parent
== NULL
);
119 /*-------------------------------------------------------------------------*/
122 * Sharable chunks of root hub code.
125 /*-------------------------------------------------------------------------*/
127 #define KERNEL_REL ((LINUX_VERSION_CODE >> 16) & 0x0ff)
128 #define KERNEL_VER ((LINUX_VERSION_CODE >> 8) & 0x0ff)
130 /* usb 3.0 root hub device descriptor */
131 static const u8 usb3_rh_dev_descriptor
[18] = {
132 0x12, /* __u8 bLength; */
133 0x01, /* __u8 bDescriptorType; Device */
134 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
136 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
137 0x00, /* __u8 bDeviceSubClass; */
138 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
139 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
141 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
142 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
143 KERNEL_VER
, KERNEL_REL
, /* __le16 bcdDevice */
145 0x03, /* __u8 iManufacturer; */
146 0x02, /* __u8 iProduct; */
147 0x01, /* __u8 iSerialNumber; */
148 0x01 /* __u8 bNumConfigurations; */
151 /* usb 2.0 root hub device descriptor */
152 static const u8 usb2_rh_dev_descriptor
[18] = {
153 0x12, /* __u8 bLength; */
154 0x01, /* __u8 bDescriptorType; Device */
155 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
157 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
158 0x00, /* __u8 bDeviceSubClass; */
159 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
160 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
162 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
163 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
164 KERNEL_VER
, KERNEL_REL
, /* __le16 bcdDevice */
166 0x03, /* __u8 iManufacturer; */
167 0x02, /* __u8 iProduct; */
168 0x01, /* __u8 iSerialNumber; */
169 0x01 /* __u8 bNumConfigurations; */
172 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
174 /* usb 1.1 root hub device descriptor */
175 static const u8 usb11_rh_dev_descriptor
[18] = {
176 0x12, /* __u8 bLength; */
177 0x01, /* __u8 bDescriptorType; Device */
178 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
180 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
181 0x00, /* __u8 bDeviceSubClass; */
182 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
183 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
185 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
186 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
187 KERNEL_VER
, KERNEL_REL
, /* __le16 bcdDevice */
189 0x03, /* __u8 iManufacturer; */
190 0x02, /* __u8 iProduct; */
191 0x01, /* __u8 iSerialNumber; */
192 0x01 /* __u8 bNumConfigurations; */
196 /*-------------------------------------------------------------------------*/
198 /* Configuration descriptors for our root hubs */
200 static const u8 fs_rh_config_descriptor
[] = {
202 /* one configuration */
203 0x09, /* __u8 bLength; */
204 0x02, /* __u8 bDescriptorType; Configuration */
205 0x19, 0x00, /* __le16 wTotalLength; */
206 0x01, /* __u8 bNumInterfaces; (1) */
207 0x01, /* __u8 bConfigurationValue; */
208 0x00, /* __u8 iConfiguration; */
209 0xc0, /* __u8 bmAttributes;
214 0x00, /* __u8 MaxPower; */
217 * USB 2.0, single TT organization (mandatory):
218 * one interface, protocol 0
220 * USB 2.0, multiple TT organization (optional):
221 * two interfaces, protocols 1 (like single TT)
222 * and 2 (multiple TT mode) ... config is
228 0x09, /* __u8 if_bLength; */
229 0x04, /* __u8 if_bDescriptorType; Interface */
230 0x00, /* __u8 if_bInterfaceNumber; */
231 0x00, /* __u8 if_bAlternateSetting; */
232 0x01, /* __u8 if_bNumEndpoints; */
233 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
234 0x00, /* __u8 if_bInterfaceSubClass; */
235 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
236 0x00, /* __u8 if_iInterface; */
238 /* one endpoint (status change endpoint) */
239 0x07, /* __u8 ep_bLength; */
240 0x05, /* __u8 ep_bDescriptorType; Endpoint */
241 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
242 0x03, /* __u8 ep_bmAttributes; Interrupt */
243 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
244 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
247 static const u8 hs_rh_config_descriptor
[] = {
249 /* one configuration */
250 0x09, /* __u8 bLength; */
251 0x02, /* __u8 bDescriptorType; Configuration */
252 0x19, 0x00, /* __le16 wTotalLength; */
253 0x01, /* __u8 bNumInterfaces; (1) */
254 0x01, /* __u8 bConfigurationValue; */
255 0x00, /* __u8 iConfiguration; */
256 0xc0, /* __u8 bmAttributes;
261 0x00, /* __u8 MaxPower; */
264 * USB 2.0, single TT organization (mandatory):
265 * one interface, protocol 0
267 * USB 2.0, multiple TT organization (optional):
268 * two interfaces, protocols 1 (like single TT)
269 * and 2 (multiple TT mode) ... config is
275 0x09, /* __u8 if_bLength; */
276 0x04, /* __u8 if_bDescriptorType; Interface */
277 0x00, /* __u8 if_bInterfaceNumber; */
278 0x00, /* __u8 if_bAlternateSetting; */
279 0x01, /* __u8 if_bNumEndpoints; */
280 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
281 0x00, /* __u8 if_bInterfaceSubClass; */
282 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
283 0x00, /* __u8 if_iInterface; */
285 /* one endpoint (status change endpoint) */
286 0x07, /* __u8 ep_bLength; */
287 0x05, /* __u8 ep_bDescriptorType; Endpoint */
288 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
289 0x03, /* __u8 ep_bmAttributes; Interrupt */
290 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
291 * see hub.c:hub_configure() for details. */
292 (USB_MAXCHILDREN
+ 1 + 7) / 8, 0x00,
293 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
296 static const u8 ss_rh_config_descriptor
[] = {
297 /* one configuration */
298 0x09, /* __u8 bLength; */
299 0x02, /* __u8 bDescriptorType; Configuration */
300 0x1f, 0x00, /* __le16 wTotalLength; */
301 0x01, /* __u8 bNumInterfaces; (1) */
302 0x01, /* __u8 bConfigurationValue; */
303 0x00, /* __u8 iConfiguration; */
304 0xc0, /* __u8 bmAttributes;
309 0x00, /* __u8 MaxPower; */
312 0x09, /* __u8 if_bLength; */
313 0x04, /* __u8 if_bDescriptorType; Interface */
314 0x00, /* __u8 if_bInterfaceNumber; */
315 0x00, /* __u8 if_bAlternateSetting; */
316 0x01, /* __u8 if_bNumEndpoints; */
317 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
318 0x00, /* __u8 if_bInterfaceSubClass; */
319 0x00, /* __u8 if_bInterfaceProtocol; */
320 0x00, /* __u8 if_iInterface; */
322 /* one endpoint (status change endpoint) */
323 0x07, /* __u8 ep_bLength; */
324 0x05, /* __u8 ep_bDescriptorType; Endpoint */
325 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
326 0x03, /* __u8 ep_bmAttributes; Interrupt */
327 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
328 * see hub.c:hub_configure() for details. */
329 (USB_MAXCHILDREN
+ 1 + 7) / 8, 0x00,
330 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
332 /* one SuperSpeed endpoint companion descriptor */
333 0x06, /* __u8 ss_bLength */
334 0x30, /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */
335 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
336 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
337 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
340 /*-------------------------------------------------------------------------*/
343 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
344 * @s: Null-terminated ASCII (actually ISO-8859-1) string
345 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
346 * @len: Length (in bytes; may be odd) of descriptor buffer.
348 * The return value is the number of bytes filled in: 2 + 2*strlen(s) or
349 * buflen, whichever is less.
351 * USB String descriptors can contain at most 126 characters; input
352 * strings longer than that are truncated.
355 ascii2desc(char const *s
, u8
*buf
, unsigned len
)
357 unsigned n
, t
= 2 + 2*strlen(s
);
360 t
= 254; /* Longest possible UTF string descriptor */
364 t
+= USB_DT_STRING
<< 8; /* Now t is first 16 bits to store */
372 t
= (unsigned char)*s
++;
378 * rh_string() - provides string descriptors for root hub
379 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
380 * @hcd: the host controller for this root hub
381 * @data: buffer for output packet
382 * @len: length of the provided buffer
384 * Produces either a manufacturer, product or serial number string for the
385 * virtual root hub device.
386 * Returns the number of bytes filled in: the length of the descriptor or
387 * of the provided buffer, whichever is less.
390 rh_string(int id
, struct usb_hcd
const *hcd
, u8
*data
, unsigned len
)
394 static char const langids
[4] = {4, USB_DT_STRING
, 0x09, 0x04};
399 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
400 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
403 memcpy(data
, langids
, len
);
407 s
= hcd
->self
.bus_name
;
411 s
= hcd
->product_desc
;
415 snprintf (buf
, sizeof buf
, "%s %s %s", init_utsname()->sysname
,
416 init_utsname()->release
, hcd
->driver
->description
);
420 /* Can't happen; caller guarantees it */
424 return ascii2desc(s
, data
, len
);
428 /* Root hub control transfers execute synchronously */
429 static int rh_call_control (struct usb_hcd
*hcd
, struct urb
*urb
)
431 struct usb_ctrlrequest
*cmd
;
432 u16 typeReq
, wValue
, wIndex
, wLength
;
433 u8
*ubuf
= urb
->transfer_buffer
;
434 u8 tbuf
[sizeof (struct usb_hub_descriptor
)]
435 __attribute__((aligned(4)));
436 const u8
*bufp
= tbuf
;
440 u8 patch_protocol
= 0;
444 spin_lock_irq(&hcd_root_hub_lock
);
445 status
= usb_hcd_link_urb_to_ep(hcd
, urb
);
446 spin_unlock_irq(&hcd_root_hub_lock
);
449 urb
->hcpriv
= hcd
; /* Indicate it's queued */
451 cmd
= (struct usb_ctrlrequest
*) urb
->setup_packet
;
452 typeReq
= (cmd
->bRequestType
<< 8) | cmd
->bRequest
;
453 wValue
= le16_to_cpu (cmd
->wValue
);
454 wIndex
= le16_to_cpu (cmd
->wIndex
);
455 wLength
= le16_to_cpu (cmd
->wLength
);
457 if (wLength
> urb
->transfer_buffer_length
)
460 urb
->actual_length
= 0;
463 /* DEVICE REQUESTS */
465 /* The root hub's remote wakeup enable bit is implemented using
466 * driver model wakeup flags. If this system supports wakeup
467 * through USB, userspace may change the default "allow wakeup"
468 * policy through sysfs or these calls.
470 * Most root hubs support wakeup from downstream devices, for
471 * runtime power management (disabling USB clocks and reducing
472 * VBUS power usage). However, not all of them do so; silicon,
473 * board, and BIOS bugs here are not uncommon, so these can't
474 * be treated quite like external hubs.
476 * Likewise, not all root hubs will pass wakeup events upstream,
477 * to wake up the whole system. So don't assume root hub and
478 * controller capabilities are identical.
481 case DeviceRequest
| USB_REQ_GET_STATUS
:
482 tbuf
[0] = (device_may_wakeup(&hcd
->self
.root_hub
->dev
)
483 << USB_DEVICE_REMOTE_WAKEUP
)
484 | (1 << USB_DEVICE_SELF_POWERED
);
488 case DeviceOutRequest
| USB_REQ_CLEAR_FEATURE
:
489 if (wValue
== USB_DEVICE_REMOTE_WAKEUP
)
490 device_set_wakeup_enable(&hcd
->self
.root_hub
->dev
, 0);
494 case DeviceOutRequest
| USB_REQ_SET_FEATURE
:
495 if (device_can_wakeup(&hcd
->self
.root_hub
->dev
)
496 && wValue
== USB_DEVICE_REMOTE_WAKEUP
)
497 device_set_wakeup_enable(&hcd
->self
.root_hub
->dev
, 1);
501 case DeviceRequest
| USB_REQ_GET_CONFIGURATION
:
505 case DeviceOutRequest
| USB_REQ_SET_CONFIGURATION
:
507 case DeviceRequest
| USB_REQ_GET_DESCRIPTOR
:
508 switch (wValue
& 0xff00) {
509 case USB_DT_DEVICE
<< 8:
510 switch (hcd
->speed
) {
512 bufp
= usb3_rh_dev_descriptor
;
515 bufp
= usb2_rh_dev_descriptor
;
518 bufp
= usb11_rh_dev_descriptor
;
527 case USB_DT_CONFIG
<< 8:
528 switch (hcd
->speed
) {
530 bufp
= ss_rh_config_descriptor
;
531 len
= sizeof ss_rh_config_descriptor
;
534 bufp
= hs_rh_config_descriptor
;
535 len
= sizeof hs_rh_config_descriptor
;
538 bufp
= fs_rh_config_descriptor
;
539 len
= sizeof fs_rh_config_descriptor
;
544 if (device_can_wakeup(&hcd
->self
.root_hub
->dev
))
547 case USB_DT_STRING
<< 8:
548 if ((wValue
& 0xff) < 4)
549 urb
->actual_length
= rh_string(wValue
& 0xff,
551 else /* unsupported IDs --> "protocol stall" */
558 case DeviceRequest
| USB_REQ_GET_INTERFACE
:
562 case DeviceOutRequest
| USB_REQ_SET_INTERFACE
:
564 case DeviceOutRequest
| USB_REQ_SET_ADDRESS
:
565 // wValue == urb->dev->devaddr
566 dev_dbg (hcd
->self
.controller
, "root hub device address %d\n",
570 /* INTERFACE REQUESTS (no defined feature/status flags) */
572 /* ENDPOINT REQUESTS */
574 case EndpointRequest
| USB_REQ_GET_STATUS
:
575 // ENDPOINT_HALT flag
580 case EndpointOutRequest
| USB_REQ_CLEAR_FEATURE
:
581 case EndpointOutRequest
| USB_REQ_SET_FEATURE
:
582 dev_dbg (hcd
->self
.controller
, "no endpoint features yet\n");
585 /* CLASS REQUESTS (and errors) */
588 /* non-generic request */
594 case GetHubDescriptor
:
595 len
= sizeof (struct usb_hub_descriptor
);
598 status
= hcd
->driver
->hub_control (hcd
,
599 typeReq
, wValue
, wIndex
,
603 /* "protocol stall" on error */
609 if (status
!= -EPIPE
) {
610 dev_dbg (hcd
->self
.controller
,
611 "CTRL: TypeReq=0x%x val=0x%x "
612 "idx=0x%x len=%d ==> %d\n",
613 typeReq
, wValue
, wIndex
,
618 if (urb
->transfer_buffer_length
< len
)
619 len
= urb
->transfer_buffer_length
;
620 urb
->actual_length
= len
;
621 // always USB_DIR_IN, toward host
622 memcpy (ubuf
, bufp
, len
);
624 /* report whether RH hardware supports remote wakeup */
626 len
> offsetof (struct usb_config_descriptor
,
628 ((struct usb_config_descriptor
*)ubuf
)->bmAttributes
629 |= USB_CONFIG_ATT_WAKEUP
;
631 /* report whether RH hardware has an integrated TT */
632 if (patch_protocol
&&
633 len
> offsetof(struct usb_device_descriptor
,
635 ((struct usb_device_descriptor
*) ubuf
)->
639 /* any errors get returned through the urb completion */
640 spin_lock_irq(&hcd_root_hub_lock
);
641 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
643 /* This peculiar use of spinlocks echoes what real HC drivers do.
644 * Avoiding calls to local_irq_disable/enable makes the code
647 spin_unlock(&hcd_root_hub_lock
);
648 usb_hcd_giveback_urb(hcd
, urb
, status
);
649 spin_lock(&hcd_root_hub_lock
);
651 spin_unlock_irq(&hcd_root_hub_lock
);
655 /*-------------------------------------------------------------------------*/
658 * Root Hub interrupt transfers are polled using a timer if the
659 * driver requests it; otherwise the driver is responsible for
660 * calling usb_hcd_poll_rh_status() when an event occurs.
662 * Completions are called in_interrupt(), but they may or may not
665 void usb_hcd_poll_rh_status(struct usb_hcd
*hcd
)
670 char buffer
[6]; /* Any root hubs with > 31 ports? */
672 if (unlikely(!hcd
->rh_pollable
))
674 if (!hcd
->uses_new_polling
&& !hcd
->status_urb
)
677 length
= hcd
->driver
->hub_status_data(hcd
, buffer
);
680 /* try to complete the status urb */
681 spin_lock_irqsave(&hcd_root_hub_lock
, flags
);
682 urb
= hcd
->status_urb
;
684 clear_bit(HCD_FLAG_POLL_PENDING
, &hcd
->flags
);
685 hcd
->status_urb
= NULL
;
686 urb
->actual_length
= length
;
687 memcpy(urb
->transfer_buffer
, buffer
, length
);
689 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
690 spin_unlock(&hcd_root_hub_lock
);
691 usb_hcd_giveback_urb(hcd
, urb
, 0);
692 spin_lock(&hcd_root_hub_lock
);
695 set_bit(HCD_FLAG_POLL_PENDING
, &hcd
->flags
);
697 spin_unlock_irqrestore(&hcd_root_hub_lock
, flags
);
700 /* The USB 2.0 spec says 256 ms. This is close enough and won't
701 * exceed that limit if HZ is 100. The math is more clunky than
702 * maybe expected, this is to make sure that all timers for USB devices
703 * fire at the same time to give the CPU a break in between */
704 if (hcd
->uses_new_polling
? HCD_POLL_RH(hcd
) :
705 (length
== 0 && hcd
->status_urb
!= NULL
))
706 mod_timer (&hcd
->rh_timer
, (jiffies
/(HZ
/4) + 1) * (HZ
/4));
708 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status
);
711 static void rh_timer_func (unsigned long _hcd
)
713 usb_hcd_poll_rh_status((struct usb_hcd
*) _hcd
);
716 /*-------------------------------------------------------------------------*/
718 static int rh_queue_status (struct usb_hcd
*hcd
, struct urb
*urb
)
722 unsigned len
= 1 + (urb
->dev
->maxchild
/ 8);
724 spin_lock_irqsave (&hcd_root_hub_lock
, flags
);
725 if (hcd
->status_urb
|| urb
->transfer_buffer_length
< len
) {
726 dev_dbg (hcd
->self
.controller
, "not queuing rh status urb\n");
731 retval
= usb_hcd_link_urb_to_ep(hcd
, urb
);
735 hcd
->status_urb
= urb
;
736 urb
->hcpriv
= hcd
; /* indicate it's queued */
737 if (!hcd
->uses_new_polling
)
738 mod_timer(&hcd
->rh_timer
, (jiffies
/(HZ
/4) + 1) * (HZ
/4));
740 /* If a status change has already occurred, report it ASAP */
741 else if (HCD_POLL_PENDING(hcd
))
742 mod_timer(&hcd
->rh_timer
, jiffies
);
745 spin_unlock_irqrestore (&hcd_root_hub_lock
, flags
);
749 static int rh_urb_enqueue (struct usb_hcd
*hcd
, struct urb
*urb
)
751 if (usb_endpoint_xfer_int(&urb
->ep
->desc
))
752 return rh_queue_status (hcd
, urb
);
753 if (usb_endpoint_xfer_control(&urb
->ep
->desc
))
754 return rh_call_control (hcd
, urb
);
758 /*-------------------------------------------------------------------------*/
760 /* Unlinks of root-hub control URBs are legal, but they don't do anything
761 * since these URBs always execute synchronously.
763 static int usb_rh_urb_dequeue(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
768 spin_lock_irqsave(&hcd_root_hub_lock
, flags
);
769 rc
= usb_hcd_check_unlink_urb(hcd
, urb
, status
);
773 if (usb_endpoint_num(&urb
->ep
->desc
) == 0) { /* Control URB */
776 } else { /* Status URB */
777 if (!hcd
->uses_new_polling
)
778 del_timer (&hcd
->rh_timer
);
779 if (urb
== hcd
->status_urb
) {
780 hcd
->status_urb
= NULL
;
781 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
783 spin_unlock(&hcd_root_hub_lock
);
784 usb_hcd_giveback_urb(hcd
, urb
, status
);
785 spin_lock(&hcd_root_hub_lock
);
789 spin_unlock_irqrestore(&hcd_root_hub_lock
, flags
);
796 * Show & store the current value of authorized_default
798 static ssize_t
usb_host_authorized_default_show(struct device
*dev
,
799 struct device_attribute
*attr
,
802 struct usb_device
*rh_usb_dev
= to_usb_device(dev
);
803 struct usb_bus
*usb_bus
= rh_usb_dev
->bus
;
804 struct usb_hcd
*usb_hcd
;
806 if (usb_bus
== NULL
) /* FIXME: not sure if this case is possible */
808 usb_hcd
= bus_to_hcd(usb_bus
);
809 return snprintf(buf
, PAGE_SIZE
, "%u\n", usb_hcd
->authorized_default
);
812 static ssize_t
usb_host_authorized_default_store(struct device
*dev
,
813 struct device_attribute
*attr
,
814 const char *buf
, size_t size
)
818 struct usb_device
*rh_usb_dev
= to_usb_device(dev
);
819 struct usb_bus
*usb_bus
= rh_usb_dev
->bus
;
820 struct usb_hcd
*usb_hcd
;
822 if (usb_bus
== NULL
) /* FIXME: not sure if this case is possible */
824 usb_hcd
= bus_to_hcd(usb_bus
);
825 result
= sscanf(buf
, "%u\n", &val
);
827 usb_hcd
->authorized_default
= val
? 1 : 0;
835 static DEVICE_ATTR(authorized_default
, 0644,
836 usb_host_authorized_default_show
,
837 usb_host_authorized_default_store
);
840 /* Group all the USB bus attributes */
841 static struct attribute
*usb_bus_attrs
[] = {
842 &dev_attr_authorized_default
.attr
,
846 static struct attribute_group usb_bus_attr_group
= {
847 .name
= NULL
, /* we want them in the same directory */
848 .attrs
= usb_bus_attrs
,
853 /*-------------------------------------------------------------------------*/
856 * usb_bus_init - shared initialization code
857 * @bus: the bus structure being initialized
859 * This code is used to initialize a usb_bus structure, memory for which is
860 * separately managed.
862 static void usb_bus_init (struct usb_bus
*bus
)
864 memset (&bus
->devmap
, 0, sizeof(struct usb_devmap
));
866 bus
->devnum_next
= 1;
868 bus
->root_hub
= NULL
;
870 bus
->bandwidth_allocated
= 0;
871 bus
->bandwidth_int_reqs
= 0;
872 bus
->bandwidth_isoc_reqs
= 0;
874 INIT_LIST_HEAD (&bus
->bus_list
);
877 /*-------------------------------------------------------------------------*/
880 * usb_register_bus - registers the USB host controller with the usb core
881 * @bus: pointer to the bus to register
882 * Context: !in_interrupt()
884 * Assigns a bus number, and links the controller into usbcore data
885 * structures so that it can be seen by scanning the bus list.
887 static int usb_register_bus(struct usb_bus
*bus
)
892 mutex_lock(&usb_bus_list_lock
);
893 busnum
= find_next_zero_bit (busmap
.busmap
, USB_MAXBUS
, 1);
894 if (busnum
>= USB_MAXBUS
) {
895 printk (KERN_ERR
"%s: too many buses\n", usbcore_name
);
896 goto error_find_busnum
;
898 set_bit (busnum
, busmap
.busmap
);
899 bus
->busnum
= busnum
;
901 /* Add it to the local list of buses */
902 list_add (&bus
->bus_list
, &usb_bus_list
);
903 mutex_unlock(&usb_bus_list_lock
);
905 usb_notify_add_bus(bus
);
907 dev_info (bus
->controller
, "new USB bus registered, assigned bus "
908 "number %d\n", bus
->busnum
);
912 mutex_unlock(&usb_bus_list_lock
);
917 * usb_deregister_bus - deregisters the USB host controller
918 * @bus: pointer to the bus to deregister
919 * Context: !in_interrupt()
921 * Recycles the bus number, and unlinks the controller from usbcore data
922 * structures so that it won't be seen by scanning the bus list.
924 static void usb_deregister_bus (struct usb_bus
*bus
)
926 dev_info (bus
->controller
, "USB bus %d deregistered\n", bus
->busnum
);
929 * NOTE: make sure that all the devices are removed by the
930 * controller code, as well as having it call this when cleaning
933 mutex_lock(&usb_bus_list_lock
);
934 list_del (&bus
->bus_list
);
935 mutex_unlock(&usb_bus_list_lock
);
937 usb_notify_remove_bus(bus
);
939 clear_bit (bus
->busnum
, busmap
.busmap
);
943 * register_root_hub - called by usb_add_hcd() to register a root hub
944 * @hcd: host controller for this root hub
946 * This function registers the root hub with the USB subsystem. It sets up
947 * the device properly in the device tree and then calls usb_new_device()
948 * to register the usb device. It also assigns the root hub's USB address
951 static int register_root_hub(struct usb_hcd
*hcd
)
953 struct device
*parent_dev
= hcd
->self
.controller
;
954 struct usb_device
*usb_dev
= hcd
->self
.root_hub
;
955 const int devnum
= 1;
958 usb_dev
->devnum
= devnum
;
959 usb_dev
->bus
->devnum_next
= devnum
+ 1;
960 memset (&usb_dev
->bus
->devmap
.devicemap
, 0,
961 sizeof usb_dev
->bus
->devmap
.devicemap
);
962 set_bit (devnum
, usb_dev
->bus
->devmap
.devicemap
);
963 usb_set_device_state(usb_dev
, USB_STATE_ADDRESS
);
965 mutex_lock(&usb_bus_list_lock
);
967 usb_dev
->ep0
.desc
.wMaxPacketSize
= cpu_to_le16(64);
968 retval
= usb_get_device_descriptor(usb_dev
, USB_DT_DEVICE_SIZE
);
969 if (retval
!= sizeof usb_dev
->descriptor
) {
970 mutex_unlock(&usb_bus_list_lock
);
971 dev_dbg (parent_dev
, "can't read %s device descriptor %d\n",
972 dev_name(&usb_dev
->dev
), retval
);
973 return (retval
< 0) ? retval
: -EMSGSIZE
;
976 retval
= usb_new_device (usb_dev
);
978 dev_err (parent_dev
, "can't register root hub for %s, %d\n",
979 dev_name(&usb_dev
->dev
), retval
);
981 mutex_unlock(&usb_bus_list_lock
);
984 spin_lock_irq (&hcd_root_hub_lock
);
985 hcd
->rh_registered
= 1;
986 spin_unlock_irq (&hcd_root_hub_lock
);
988 /* Did the HC die before the root hub was registered? */
989 if (HCD_DEAD(hcd
) || hcd
->state
== HC_STATE_HALT
)
990 usb_hc_died (hcd
); /* This time clean up */
997 /*-------------------------------------------------------------------------*/
1000 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1001 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1002 * @is_input: true iff the transaction sends data to the host
1003 * @isoc: true for isochronous transactions, false for interrupt ones
1004 * @bytecount: how many bytes in the transaction.
1006 * Returns approximate bus time in nanoseconds for a periodic transaction.
1007 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1008 * scheduled in software, this function is only used for such scheduling.
1010 long usb_calc_bus_time (int speed
, int is_input
, int isoc
, int bytecount
)
1015 case USB_SPEED_LOW
: /* INTR only */
1017 tmp
= (67667L * (31L + 10L * BitTime (bytecount
))) / 1000L;
1018 return (64060L + (2 * BW_HUB_LS_SETUP
) + BW_HOST_DELAY
+ tmp
);
1020 tmp
= (66700L * (31L + 10L * BitTime (bytecount
))) / 1000L;
1021 return (64107L + (2 * BW_HUB_LS_SETUP
) + BW_HOST_DELAY
+ tmp
);
1023 case USB_SPEED_FULL
: /* ISOC or INTR */
1025 tmp
= (8354L * (31L + 10L * BitTime (bytecount
))) / 1000L;
1026 return (((is_input
) ? 7268L : 6265L) + BW_HOST_DELAY
+ tmp
);
1028 tmp
= (8354L * (31L + 10L * BitTime (bytecount
))) / 1000L;
1029 return (9107L + BW_HOST_DELAY
+ tmp
);
1031 case USB_SPEED_HIGH
: /* ISOC or INTR */
1032 // FIXME adjust for input vs output
1034 tmp
= HS_NSECS_ISO (bytecount
);
1036 tmp
= HS_NSECS (bytecount
);
1039 pr_debug ("%s: bogus device speed!\n", usbcore_name
);
1043 EXPORT_SYMBOL_GPL(usb_calc_bus_time
);
1046 /*-------------------------------------------------------------------------*/
1049 * Generic HC operations.
1052 /*-------------------------------------------------------------------------*/
1055 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1056 * @hcd: host controller to which @urb was submitted
1057 * @urb: URB being submitted
1059 * Host controller drivers should call this routine in their enqueue()
1060 * method. The HCD's private spinlock must be held and interrupts must
1061 * be disabled. The actions carried out here are required for URB
1062 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1064 * Returns 0 for no error, otherwise a negative error code (in which case
1065 * the enqueue() method must fail). If no error occurs but enqueue() fails
1066 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1067 * the private spinlock and returning.
1069 int usb_hcd_link_urb_to_ep(struct usb_hcd
*hcd
, struct urb
*urb
)
1073 spin_lock(&hcd_urb_list_lock
);
1075 /* Check that the URB isn't being killed */
1076 if (unlikely(atomic_read(&urb
->reject
))) {
1081 if (unlikely(!urb
->ep
->enabled
)) {
1086 if (unlikely(!urb
->dev
->can_submit
)) {
1092 * Check the host controller's state and add the URB to the
1095 if (HCD_RH_RUNNING(hcd
)) {
1097 list_add_tail(&urb
->urb_list
, &urb
->ep
->urb_list
);
1103 spin_unlock(&hcd_urb_list_lock
);
1106 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep
);
1109 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1110 * @hcd: host controller to which @urb was submitted
1111 * @urb: URB being checked for unlinkability
1112 * @status: error code to store in @urb if the unlink succeeds
1114 * Host controller drivers should call this routine in their dequeue()
1115 * method. The HCD's private spinlock must be held and interrupts must
1116 * be disabled. The actions carried out here are required for making
1117 * sure than an unlink is valid.
1119 * Returns 0 for no error, otherwise a negative error code (in which case
1120 * the dequeue() method must fail). The possible error codes are:
1122 * -EIDRM: @urb was not submitted or has already completed.
1123 * The completion function may not have been called yet.
1125 * -EBUSY: @urb has already been unlinked.
1127 int usb_hcd_check_unlink_urb(struct usb_hcd
*hcd
, struct urb
*urb
,
1130 struct list_head
*tmp
;
1132 /* insist the urb is still queued */
1133 list_for_each(tmp
, &urb
->ep
->urb_list
) {
1134 if (tmp
== &urb
->urb_list
)
1137 if (tmp
!= &urb
->urb_list
)
1140 /* Any status except -EINPROGRESS means something already started to
1141 * unlink this URB from the hardware. So there's no more work to do.
1145 urb
->unlinked
= status
;
1147 /* IRQ setup can easily be broken so that USB controllers
1148 * never get completion IRQs ... maybe even the ones we need to
1149 * finish unlinking the initial failed usb_set_address()
1150 * or device descriptor fetch.
1152 if (!HCD_SAW_IRQ(hcd
) && !is_root_hub(urb
->dev
)) {
1153 dev_warn(hcd
->self
.controller
, "Unlink after no-IRQ? "
1154 "Controller is probably using the wrong IRQ.\n");
1155 set_bit(HCD_FLAG_SAW_IRQ
, &hcd
->flags
);
1156 if (hcd
->shared_hcd
)
1157 set_bit(HCD_FLAG_SAW_IRQ
, &hcd
->shared_hcd
->flags
);
1162 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb
);
1165 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1166 * @hcd: host controller to which @urb was submitted
1167 * @urb: URB being unlinked
1169 * Host controller drivers should call this routine before calling
1170 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1171 * interrupts must be disabled. The actions carried out here are required
1172 * for URB completion.
1174 void usb_hcd_unlink_urb_from_ep(struct usb_hcd
*hcd
, struct urb
*urb
)
1176 /* clear all state linking urb to this dev (and hcd) */
1177 spin_lock(&hcd_urb_list_lock
);
1178 list_del_init(&urb
->urb_list
);
1179 spin_unlock(&hcd_urb_list_lock
);
1181 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep
);
1184 * Some usb host controllers can only perform dma using a small SRAM area.
1185 * The usb core itself is however optimized for host controllers that can dma
1186 * using regular system memory - like pci devices doing bus mastering.
1188 * To support host controllers with limited dma capabilites we provide dma
1189 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1190 * For this to work properly the host controller code must first use the
1191 * function dma_declare_coherent_memory() to point out which memory area
1192 * that should be used for dma allocations.
1194 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1195 * dma using dma_alloc_coherent() which in turn allocates from the memory
1196 * area pointed out with dma_declare_coherent_memory().
1198 * So, to summarize...
1200 * - We need "local" memory, canonical example being
1201 * a small SRAM on a discrete controller being the
1202 * only memory that the controller can read ...
1203 * (a) "normal" kernel memory is no good, and
1204 * (b) there's not enough to share
1206 * - The only *portable* hook for such stuff in the
1207 * DMA framework is dma_declare_coherent_memory()
1209 * - So we use that, even though the primary requirement
1210 * is that the memory be "local" (hence addressible
1211 * by that device), not "coherent".
1215 static int hcd_alloc_coherent(struct usb_bus
*bus
,
1216 gfp_t mem_flags
, dma_addr_t
*dma_handle
,
1217 void **vaddr_handle
, size_t size
,
1218 enum dma_data_direction dir
)
1220 unsigned char *vaddr
;
1222 if (*vaddr_handle
== NULL
) {
1227 vaddr
= hcd_buffer_alloc(bus
, size
+ sizeof(vaddr
),
1228 mem_flags
, dma_handle
);
1233 * Store the virtual address of the buffer at the end
1234 * of the allocated dma buffer. The size of the buffer
1235 * may be uneven so use unaligned functions instead
1236 * of just rounding up. It makes sense to optimize for
1237 * memory footprint over access speed since the amount
1238 * of memory available for dma may be limited.
1240 put_unaligned((unsigned long)*vaddr_handle
,
1241 (unsigned long *)(vaddr
+ size
));
1243 if (dir
== DMA_TO_DEVICE
)
1244 memcpy(vaddr
, *vaddr_handle
, size
);
1246 *vaddr_handle
= vaddr
;
1250 static void hcd_free_coherent(struct usb_bus
*bus
, dma_addr_t
*dma_handle
,
1251 void **vaddr_handle
, size_t size
,
1252 enum dma_data_direction dir
)
1254 unsigned char *vaddr
= *vaddr_handle
;
1256 vaddr
= (void *)get_unaligned((unsigned long *)(vaddr
+ size
));
1258 if (dir
== DMA_FROM_DEVICE
)
1259 memcpy(vaddr
, *vaddr_handle
, size
);
1261 hcd_buffer_free(bus
, size
+ sizeof(vaddr
), *vaddr_handle
, *dma_handle
);
1263 *vaddr_handle
= vaddr
;
1267 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
)
1269 if (urb
->transfer_flags
& URB_SETUP_MAP_SINGLE
)
1270 dma_unmap_single(hcd
->self
.controller
,
1272 sizeof(struct usb_ctrlrequest
),
1274 else if (urb
->transfer_flags
& URB_SETUP_MAP_LOCAL
)
1275 hcd_free_coherent(urb
->dev
->bus
,
1277 (void **) &urb
->setup_packet
,
1278 sizeof(struct usb_ctrlrequest
),
1281 /* Make it safe to call this routine more than once */
1282 urb
->transfer_flags
&= ~(URB_SETUP_MAP_SINGLE
| URB_SETUP_MAP_LOCAL
);
1284 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma
);
1286 static void unmap_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
)
1288 if (hcd
->driver
->unmap_urb_for_dma
)
1289 hcd
->driver
->unmap_urb_for_dma(hcd
, urb
);
1291 usb_hcd_unmap_urb_for_dma(hcd
, urb
);
1294 void usb_hcd_unmap_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
)
1296 enum dma_data_direction dir
;
1298 usb_hcd_unmap_urb_setup_for_dma(hcd
, urb
);
1300 dir
= usb_urb_dir_in(urb
) ? DMA_FROM_DEVICE
: DMA_TO_DEVICE
;
1301 if (urb
->transfer_flags
& URB_DMA_MAP_SG
)
1302 dma_unmap_sg(hcd
->self
.controller
,
1306 else if (urb
->transfer_flags
& URB_DMA_MAP_PAGE
)
1307 dma_unmap_page(hcd
->self
.controller
,
1309 urb
->transfer_buffer_length
,
1311 else if (urb
->transfer_flags
& URB_DMA_MAP_SINGLE
)
1312 dma_unmap_single(hcd
->self
.controller
,
1314 urb
->transfer_buffer_length
,
1316 else if (urb
->transfer_flags
& URB_MAP_LOCAL
)
1317 hcd_free_coherent(urb
->dev
->bus
,
1319 &urb
->transfer_buffer
,
1320 urb
->transfer_buffer_length
,
1323 /* Make it safe to call this routine more than once */
1324 urb
->transfer_flags
&= ~(URB_DMA_MAP_SG
| URB_DMA_MAP_PAGE
|
1325 URB_DMA_MAP_SINGLE
| URB_MAP_LOCAL
);
1327 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma
);
1329 static int map_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
,
1332 if (hcd
->driver
->map_urb_for_dma
)
1333 return hcd
->driver
->map_urb_for_dma(hcd
, urb
, mem_flags
);
1335 return usb_hcd_map_urb_for_dma(hcd
, urb
, mem_flags
);
1338 int usb_hcd_map_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
,
1341 enum dma_data_direction dir
;
1344 /* Map the URB's buffers for DMA access.
1345 * Lower level HCD code should use *_dma exclusively,
1346 * unless it uses pio or talks to another transport,
1347 * or uses the provided scatter gather list for bulk.
1350 if (usb_endpoint_xfer_control(&urb
->ep
->desc
)) {
1351 if (hcd
->self
.uses_pio_for_control
)
1353 if (hcd
->self
.uses_dma
) {
1354 urb
->setup_dma
= dma_map_single(
1355 hcd
->self
.controller
,
1357 sizeof(struct usb_ctrlrequest
),
1359 if (dma_mapping_error(hcd
->self
.controller
,
1362 urb
->transfer_flags
|= URB_SETUP_MAP_SINGLE
;
1363 } else if (hcd
->driver
->flags
& HCD_LOCAL_MEM
) {
1364 ret
= hcd_alloc_coherent(
1365 urb
->dev
->bus
, mem_flags
,
1367 (void **)&urb
->setup_packet
,
1368 sizeof(struct usb_ctrlrequest
),
1372 urb
->transfer_flags
|= URB_SETUP_MAP_LOCAL
;
1376 dir
= usb_urb_dir_in(urb
) ? DMA_FROM_DEVICE
: DMA_TO_DEVICE
;
1377 if (urb
->transfer_buffer_length
!= 0
1378 && !(urb
->transfer_flags
& URB_NO_TRANSFER_DMA_MAP
)) {
1379 if (hcd
->self
.uses_dma
) {
1382 hcd
->self
.controller
,
1389 urb
->transfer_flags
|= URB_DMA_MAP_SG
;
1390 if (n
!= urb
->num_sgs
) {
1392 urb
->transfer_flags
|=
1393 URB_DMA_SG_COMBINED
;
1395 } else if (urb
->sg
) {
1396 struct scatterlist
*sg
= urb
->sg
;
1397 urb
->transfer_dma
= dma_map_page(
1398 hcd
->self
.controller
,
1401 urb
->transfer_buffer_length
,
1403 if (dma_mapping_error(hcd
->self
.controller
,
1407 urb
->transfer_flags
|= URB_DMA_MAP_PAGE
;
1409 urb
->transfer_dma
= dma_map_single(
1410 hcd
->self
.controller
,
1411 urb
->transfer_buffer
,
1412 urb
->transfer_buffer_length
,
1414 if (dma_mapping_error(hcd
->self
.controller
,
1418 urb
->transfer_flags
|= URB_DMA_MAP_SINGLE
;
1420 } else if (hcd
->driver
->flags
& HCD_LOCAL_MEM
) {
1421 ret
= hcd_alloc_coherent(
1422 urb
->dev
->bus
, mem_flags
,
1424 &urb
->transfer_buffer
,
1425 urb
->transfer_buffer_length
,
1428 urb
->transfer_flags
|= URB_MAP_LOCAL
;
1430 if (ret
&& (urb
->transfer_flags
& (URB_SETUP_MAP_SINGLE
|
1431 URB_SETUP_MAP_LOCAL
)))
1432 usb_hcd_unmap_urb_for_dma(hcd
, urb
);
1436 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma
);
1438 /*-------------------------------------------------------------------------*/
1440 /* may be called in any context with a valid urb->dev usecount
1441 * caller surrenders "ownership" of urb
1442 * expects usb_submit_urb() to have sanity checked and conditioned all
1445 int usb_hcd_submit_urb (struct urb
*urb
, gfp_t mem_flags
)
1448 struct usb_hcd
*hcd
= bus_to_hcd(urb
->dev
->bus
);
1450 /* increment urb's reference count as part of giving it to the HCD
1451 * (which will control it). HCD guarantees that it either returns
1452 * an error or calls giveback(), but not both.
1455 atomic_inc(&urb
->use_count
);
1456 atomic_inc(&urb
->dev
->urbnum
);
1457 usbmon_urb_submit(&hcd
->self
, urb
);
1459 /* NOTE requirements on root-hub callers (usbfs and the hub
1460 * driver, for now): URBs' urb->transfer_buffer must be
1461 * valid and usb_buffer_{sync,unmap}() not be needed, since
1462 * they could clobber root hub response data. Also, control
1463 * URBs must be submitted in process context with interrupts
1467 if (is_root_hub(urb
->dev
)) {
1468 status
= rh_urb_enqueue(hcd
, urb
);
1470 status
= map_urb_for_dma(hcd
, urb
, mem_flags
);
1471 if (likely(status
== 0)) {
1472 status
= hcd
->driver
->urb_enqueue(hcd
, urb
, mem_flags
);
1473 if (unlikely(status
))
1474 unmap_urb_for_dma(hcd
, urb
);
1478 if (unlikely(status
)) {
1479 usbmon_urb_submit_error(&hcd
->self
, urb
, status
);
1481 INIT_LIST_HEAD(&urb
->urb_list
);
1482 atomic_dec(&urb
->use_count
);
1483 atomic_dec(&urb
->dev
->urbnum
);
1484 if (atomic_read(&urb
->reject
))
1485 wake_up(&usb_kill_urb_queue
);
1491 /*-------------------------------------------------------------------------*/
1493 /* this makes the hcd giveback() the urb more quickly, by kicking it
1494 * off hardware queues (which may take a while) and returning it as
1495 * soon as practical. we've already set up the urb's return status,
1496 * but we can't know if the callback completed already.
1498 static int unlink1(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
1502 if (is_root_hub(urb
->dev
))
1503 value
= usb_rh_urb_dequeue(hcd
, urb
, status
);
1506 /* The only reason an HCD might fail this call is if
1507 * it has not yet fully queued the urb to begin with.
1508 * Such failures should be harmless. */
1509 value
= hcd
->driver
->urb_dequeue(hcd
, urb
, status
);
1515 * called in any context
1517 * caller guarantees urb won't be recycled till both unlink()
1518 * and the urb's completion function return
1520 int usb_hcd_unlink_urb (struct urb
*urb
, int status
)
1522 struct usb_hcd
*hcd
;
1523 int retval
= -EIDRM
;
1524 unsigned long flags
;
1526 /* Prevent the device and bus from going away while
1527 * the unlink is carried out. If they are already gone
1528 * then urb->use_count must be 0, since disconnected
1529 * devices can't have any active URBs.
1531 spin_lock_irqsave(&hcd_urb_unlink_lock
, flags
);
1532 if (atomic_read(&urb
->use_count
) > 0) {
1534 usb_get_dev(urb
->dev
);
1536 spin_unlock_irqrestore(&hcd_urb_unlink_lock
, flags
);
1538 hcd
= bus_to_hcd(urb
->dev
->bus
);
1539 retval
= unlink1(hcd
, urb
, status
);
1540 usb_put_dev(urb
->dev
);
1544 retval
= -EINPROGRESS
;
1545 else if (retval
!= -EIDRM
&& retval
!= -EBUSY
)
1546 dev_dbg(&urb
->dev
->dev
, "hcd_unlink_urb %p fail %d\n",
1551 /*-------------------------------------------------------------------------*/
1554 * usb_hcd_giveback_urb - return URB from HCD to device driver
1555 * @hcd: host controller returning the URB
1556 * @urb: urb being returned to the USB device driver.
1557 * @status: completion status code for the URB.
1558 * Context: in_interrupt()
1560 * This hands the URB from HCD to its USB device driver, using its
1561 * completion function. The HCD has freed all per-urb resources
1562 * (and is done using urb->hcpriv). It also released all HCD locks;
1563 * the device driver won't cause problems if it frees, modifies,
1564 * or resubmits this URB.
1566 * If @urb was unlinked, the value of @status will be overridden by
1567 * @urb->unlinked. Erroneous short transfers are detected in case
1568 * the HCD hasn't checked for them.
1570 void usb_hcd_giveback_urb(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
1573 if (unlikely(urb
->unlinked
))
1574 status
= urb
->unlinked
;
1575 else if (unlikely((urb
->transfer_flags
& URB_SHORT_NOT_OK
) &&
1576 urb
->actual_length
< urb
->transfer_buffer_length
&&
1578 status
= -EREMOTEIO
;
1580 unmap_urb_for_dma(hcd
, urb
);
1581 usbmon_urb_complete(&hcd
->self
, urb
, status
);
1582 usb_unanchor_urb(urb
);
1584 /* pass ownership to the completion handler */
1585 urb
->status
= status
;
1586 urb
->complete (urb
);
1587 atomic_dec (&urb
->use_count
);
1588 if (unlikely(atomic_read(&urb
->reject
)))
1589 wake_up (&usb_kill_urb_queue
);
1592 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb
);
1594 /*-------------------------------------------------------------------------*/
1596 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1597 * queue to drain completely. The caller must first insure that no more
1598 * URBs can be submitted for this endpoint.
1600 void usb_hcd_flush_endpoint(struct usb_device
*udev
,
1601 struct usb_host_endpoint
*ep
)
1603 struct usb_hcd
*hcd
;
1609 hcd
= bus_to_hcd(udev
->bus
);
1611 /* No more submits can occur */
1612 spin_lock_irq(&hcd_urb_list_lock
);
1614 list_for_each_entry (urb
, &ep
->urb_list
, urb_list
) {
1620 is_in
= usb_urb_dir_in(urb
);
1621 spin_unlock(&hcd_urb_list_lock
);
1624 unlink1(hcd
, urb
, -ESHUTDOWN
);
1625 dev_dbg (hcd
->self
.controller
,
1626 "shutdown urb %p ep%d%s%s\n",
1627 urb
, usb_endpoint_num(&ep
->desc
),
1628 is_in
? "in" : "out",
1631 switch (usb_endpoint_type(&ep
->desc
)) {
1632 case USB_ENDPOINT_XFER_CONTROL
:
1634 case USB_ENDPOINT_XFER_BULK
:
1636 case USB_ENDPOINT_XFER_INT
:
1645 /* list contents may have changed */
1646 spin_lock(&hcd_urb_list_lock
);
1649 spin_unlock_irq(&hcd_urb_list_lock
);
1651 /* Wait until the endpoint queue is completely empty */
1652 while (!list_empty (&ep
->urb_list
)) {
1653 spin_lock_irq(&hcd_urb_list_lock
);
1655 /* The list may have changed while we acquired the spinlock */
1657 if (!list_empty (&ep
->urb_list
)) {
1658 urb
= list_entry (ep
->urb_list
.prev
, struct urb
,
1662 spin_unlock_irq(&hcd_urb_list_lock
);
1672 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1674 * @udev: target &usb_device
1675 * @new_config: new configuration to install
1676 * @cur_alt: the current alternate interface setting
1677 * @new_alt: alternate interface setting that is being installed
1679 * To change configurations, pass in the new configuration in new_config,
1680 * and pass NULL for cur_alt and new_alt.
1682 * To reset a device's configuration (put the device in the ADDRESSED state),
1683 * pass in NULL for new_config, cur_alt, and new_alt.
1685 * To change alternate interface settings, pass in NULL for new_config,
1686 * pass in the current alternate interface setting in cur_alt,
1687 * and pass in the new alternate interface setting in new_alt.
1689 * Returns an error if the requested bandwidth change exceeds the
1690 * bus bandwidth or host controller internal resources.
1692 int usb_hcd_alloc_bandwidth(struct usb_device
*udev
,
1693 struct usb_host_config
*new_config
,
1694 struct usb_host_interface
*cur_alt
,
1695 struct usb_host_interface
*new_alt
)
1697 int num_intfs
, i
, j
;
1698 struct usb_host_interface
*alt
= NULL
;
1700 struct usb_hcd
*hcd
;
1701 struct usb_host_endpoint
*ep
;
1703 hcd
= bus_to_hcd(udev
->bus
);
1704 if (!hcd
->driver
->check_bandwidth
)
1707 /* Configuration is being removed - set configuration 0 */
1708 if (!new_config
&& !cur_alt
) {
1709 for (i
= 1; i
< 16; ++i
) {
1710 ep
= udev
->ep_out
[i
];
1712 hcd
->driver
->drop_endpoint(hcd
, udev
, ep
);
1713 ep
= udev
->ep_in
[i
];
1715 hcd
->driver
->drop_endpoint(hcd
, udev
, ep
);
1717 hcd
->driver
->check_bandwidth(hcd
, udev
);
1720 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1721 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1722 * of the bus. There will always be bandwidth for endpoint 0, so it's
1726 num_intfs
= new_config
->desc
.bNumInterfaces
;
1727 /* Remove endpoints (except endpoint 0, which is always on the
1728 * schedule) from the old config from the schedule
1730 for (i
= 1; i
< 16; ++i
) {
1731 ep
= udev
->ep_out
[i
];
1733 ret
= hcd
->driver
->drop_endpoint(hcd
, udev
, ep
);
1737 ep
= udev
->ep_in
[i
];
1739 ret
= hcd
->driver
->drop_endpoint(hcd
, udev
, ep
);
1744 for (i
= 0; i
< num_intfs
; ++i
) {
1745 struct usb_host_interface
*first_alt
;
1748 first_alt
= &new_config
->intf_cache
[i
]->altsetting
[0];
1749 iface_num
= first_alt
->desc
.bInterfaceNumber
;
1750 /* Set up endpoints for alternate interface setting 0 */
1751 alt
= usb_find_alt_setting(new_config
, iface_num
, 0);
1753 /* No alt setting 0? Pick the first setting. */
1756 for (j
= 0; j
< alt
->desc
.bNumEndpoints
; j
++) {
1757 ret
= hcd
->driver
->add_endpoint(hcd
, udev
, &alt
->endpoint
[j
]);
1763 if (cur_alt
&& new_alt
) {
1764 struct usb_interface
*iface
= usb_ifnum_to_if(udev
,
1765 cur_alt
->desc
.bInterfaceNumber
);
1767 if (iface
->resetting_device
) {
1769 * The USB core just reset the device, so the xHCI host
1770 * and the device will think alt setting 0 is installed.
1771 * However, the USB core will pass in the alternate
1772 * setting installed before the reset as cur_alt. Dig
1773 * out the alternate setting 0 structure, or the first
1774 * alternate setting if a broken device doesn't have alt
1777 cur_alt
= usb_altnum_to_altsetting(iface
, 0);
1779 cur_alt
= &iface
->altsetting
[0];
1782 /* Drop all the endpoints in the current alt setting */
1783 for (i
= 0; i
< cur_alt
->desc
.bNumEndpoints
; i
++) {
1784 ret
= hcd
->driver
->drop_endpoint(hcd
, udev
,
1785 &cur_alt
->endpoint
[i
]);
1789 /* Add all the endpoints in the new alt setting */
1790 for (i
= 0; i
< new_alt
->desc
.bNumEndpoints
; i
++) {
1791 ret
= hcd
->driver
->add_endpoint(hcd
, udev
,
1792 &new_alt
->endpoint
[i
]);
1797 ret
= hcd
->driver
->check_bandwidth(hcd
, udev
);
1800 hcd
->driver
->reset_bandwidth(hcd
, udev
);
1804 /* Disables the endpoint: synchronizes with the hcd to make sure all
1805 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1806 * have been called previously. Use for set_configuration, set_interface,
1807 * driver removal, physical disconnect.
1809 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1810 * type, maxpacket size, toggle, halt status, and scheduling.
1812 void usb_hcd_disable_endpoint(struct usb_device
*udev
,
1813 struct usb_host_endpoint
*ep
)
1815 struct usb_hcd
*hcd
;
1818 hcd
= bus_to_hcd(udev
->bus
);
1819 if (hcd
->driver
->endpoint_disable
)
1820 hcd
->driver
->endpoint_disable(hcd
, ep
);
1824 * usb_hcd_reset_endpoint - reset host endpoint state
1825 * @udev: USB device.
1826 * @ep: the endpoint to reset.
1828 * Resets any host endpoint state such as the toggle bit, sequence
1829 * number and current window.
1831 void usb_hcd_reset_endpoint(struct usb_device
*udev
,
1832 struct usb_host_endpoint
*ep
)
1834 struct usb_hcd
*hcd
= bus_to_hcd(udev
->bus
);
1836 if (hcd
->driver
->endpoint_reset
)
1837 hcd
->driver
->endpoint_reset(hcd
, ep
);
1839 int epnum
= usb_endpoint_num(&ep
->desc
);
1840 int is_out
= usb_endpoint_dir_out(&ep
->desc
);
1841 int is_control
= usb_endpoint_xfer_control(&ep
->desc
);
1843 usb_settoggle(udev
, epnum
, is_out
, 0);
1845 usb_settoggle(udev
, epnum
, !is_out
, 0);
1850 * usb_alloc_streams - allocate bulk endpoint stream IDs.
1851 * @interface: alternate setting that includes all endpoints.
1852 * @eps: array of endpoints that need streams.
1853 * @num_eps: number of endpoints in the array.
1854 * @num_streams: number of streams to allocate.
1855 * @mem_flags: flags hcd should use to allocate memory.
1857 * Sets up a group of bulk endpoints to have num_streams stream IDs available.
1858 * Drivers may queue multiple transfers to different stream IDs, which may
1859 * complete in a different order than they were queued.
1861 int usb_alloc_streams(struct usb_interface
*interface
,
1862 struct usb_host_endpoint
**eps
, unsigned int num_eps
,
1863 unsigned int num_streams
, gfp_t mem_flags
)
1865 struct usb_hcd
*hcd
;
1866 struct usb_device
*dev
;
1869 dev
= interface_to_usbdev(interface
);
1870 hcd
= bus_to_hcd(dev
->bus
);
1871 if (!hcd
->driver
->alloc_streams
|| !hcd
->driver
->free_streams
)
1873 if (dev
->speed
!= USB_SPEED_SUPER
)
1876 /* Streams only apply to bulk endpoints. */
1877 for (i
= 0; i
< num_eps
; i
++)
1878 if (!usb_endpoint_xfer_bulk(&eps
[i
]->desc
))
1881 return hcd
->driver
->alloc_streams(hcd
, dev
, eps
, num_eps
,
1882 num_streams
, mem_flags
);
1884 EXPORT_SYMBOL_GPL(usb_alloc_streams
);
1887 * usb_free_streams - free bulk endpoint stream IDs.
1888 * @interface: alternate setting that includes all endpoints.
1889 * @eps: array of endpoints to remove streams from.
1890 * @num_eps: number of endpoints in the array.
1891 * @mem_flags: flags hcd should use to allocate memory.
1893 * Reverts a group of bulk endpoints back to not using stream IDs.
1894 * Can fail if we are given bad arguments, or HCD is broken.
1896 void usb_free_streams(struct usb_interface
*interface
,
1897 struct usb_host_endpoint
**eps
, unsigned int num_eps
,
1900 struct usb_hcd
*hcd
;
1901 struct usb_device
*dev
;
1904 dev
= interface_to_usbdev(interface
);
1905 hcd
= bus_to_hcd(dev
->bus
);
1906 if (dev
->speed
!= USB_SPEED_SUPER
)
1909 /* Streams only apply to bulk endpoints. */
1910 for (i
= 0; i
< num_eps
; i
++)
1911 if (!eps
[i
] || !usb_endpoint_xfer_bulk(&eps
[i
]->desc
))
1914 hcd
->driver
->free_streams(hcd
, dev
, eps
, num_eps
, mem_flags
);
1916 EXPORT_SYMBOL_GPL(usb_free_streams
);
1918 /* Protect against drivers that try to unlink URBs after the device
1919 * is gone, by waiting until all unlinks for @udev are finished.
1920 * Since we don't currently track URBs by device, simply wait until
1921 * nothing is running in the locked region of usb_hcd_unlink_urb().
1923 void usb_hcd_synchronize_unlinks(struct usb_device
*udev
)
1925 spin_lock_irq(&hcd_urb_unlink_lock
);
1926 spin_unlock_irq(&hcd_urb_unlink_lock
);
1929 /*-------------------------------------------------------------------------*/
1931 /* called in any context */
1932 int usb_hcd_get_frame_number (struct usb_device
*udev
)
1934 struct usb_hcd
*hcd
= bus_to_hcd(udev
->bus
);
1936 if (!HCD_RH_RUNNING(hcd
))
1938 return hcd
->driver
->get_frame_number (hcd
);
1941 /*-------------------------------------------------------------------------*/
1945 int hcd_bus_suspend(struct usb_device
*rhdev
, pm_message_t msg
)
1947 struct usb_hcd
*hcd
= container_of(rhdev
->bus
, struct usb_hcd
, self
);
1949 int old_state
= hcd
->state
;
1951 dev_dbg(&rhdev
->dev
, "bus %s%s\n",
1952 (msg
.event
& PM_EVENT_AUTO
? "auto-" : ""), "suspend");
1953 if (HCD_DEAD(hcd
)) {
1954 dev_dbg(&rhdev
->dev
, "skipped %s of dead bus\n", "suspend");
1958 if (!hcd
->driver
->bus_suspend
) {
1961 clear_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
1962 hcd
->state
= HC_STATE_QUIESCING
;
1963 status
= hcd
->driver
->bus_suspend(hcd
);
1966 usb_set_device_state(rhdev
, USB_STATE_SUSPENDED
);
1967 hcd
->state
= HC_STATE_SUSPENDED
;
1969 spin_lock_irq(&hcd_root_hub_lock
);
1970 if (!HCD_DEAD(hcd
)) {
1971 set_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
1972 hcd
->state
= old_state
;
1974 spin_unlock_irq(&hcd_root_hub_lock
);
1975 dev_dbg(&rhdev
->dev
, "bus %s fail, err %d\n",
1981 int hcd_bus_resume(struct usb_device
*rhdev
, pm_message_t msg
)
1983 struct usb_hcd
*hcd
= container_of(rhdev
->bus
, struct usb_hcd
, self
);
1985 int old_state
= hcd
->state
;
1987 dev_dbg(&rhdev
->dev
, "usb %s%s\n",
1988 (msg
.event
& PM_EVENT_AUTO
? "auto-" : ""), "resume");
1989 if (HCD_DEAD(hcd
)) {
1990 dev_dbg(&rhdev
->dev
, "skipped %s of dead bus\n", "resume");
1993 if (!hcd
->driver
->bus_resume
)
1995 if (HCD_RH_RUNNING(hcd
))
1998 hcd
->state
= HC_STATE_RESUMING
;
1999 status
= hcd
->driver
->bus_resume(hcd
);
2000 clear_bit(HCD_FLAG_WAKEUP_PENDING
, &hcd
->flags
);
2002 /* TRSMRCY = 10 msec */
2004 spin_lock_irq(&hcd_root_hub_lock
);
2005 if (!HCD_DEAD(hcd
)) {
2006 usb_set_device_state(rhdev
, rhdev
->actconfig
2007 ? USB_STATE_CONFIGURED
2008 : USB_STATE_ADDRESS
);
2009 set_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2010 hcd
->state
= HC_STATE_RUNNING
;
2012 spin_unlock_irq(&hcd_root_hub_lock
);
2014 hcd
->state
= old_state
;
2015 dev_dbg(&rhdev
->dev
, "bus %s fail, err %d\n",
2017 if (status
!= -ESHUTDOWN
)
2023 #endif /* CONFIG_PM */
2025 #ifdef CONFIG_USB_SUSPEND
2027 /* Workqueue routine for root-hub remote wakeup */
2028 static void hcd_resume_work(struct work_struct
*work
)
2030 struct usb_hcd
*hcd
= container_of(work
, struct usb_hcd
, wakeup_work
);
2031 struct usb_device
*udev
= hcd
->self
.root_hub
;
2033 usb_lock_device(udev
);
2034 usb_remote_wakeup(udev
);
2035 usb_unlock_device(udev
);
2039 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2040 * @hcd: host controller for this root hub
2042 * The USB host controller calls this function when its root hub is
2043 * suspended (with the remote wakeup feature enabled) and a remote
2044 * wakeup request is received. The routine submits a workqueue request
2045 * to resume the root hub (that is, manage its downstream ports again).
2047 void usb_hcd_resume_root_hub (struct usb_hcd
*hcd
)
2049 unsigned long flags
;
2051 spin_lock_irqsave (&hcd_root_hub_lock
, flags
);
2052 if (hcd
->rh_registered
) {
2053 set_bit(HCD_FLAG_WAKEUP_PENDING
, &hcd
->flags
);
2054 queue_work(pm_wq
, &hcd
->wakeup_work
);
2056 spin_unlock_irqrestore (&hcd_root_hub_lock
, flags
);
2058 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub
);
2060 #endif /* CONFIG_USB_SUSPEND */
2062 /*-------------------------------------------------------------------------*/
2064 #ifdef CONFIG_USB_OTG
2067 * usb_bus_start_enum - start immediate enumeration (for OTG)
2068 * @bus: the bus (must use hcd framework)
2069 * @port_num: 1-based number of port; usually bus->otg_port
2070 * Context: in_interrupt()
2072 * Starts enumeration, with an immediate reset followed later by
2073 * khubd identifying and possibly configuring the device.
2074 * This is needed by OTG controller drivers, where it helps meet
2075 * HNP protocol timing requirements for starting a port reset.
2077 int usb_bus_start_enum(struct usb_bus
*bus
, unsigned port_num
)
2079 struct usb_hcd
*hcd
;
2080 int status
= -EOPNOTSUPP
;
2082 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2083 * boards with root hubs hooked up to internal devices (instead of
2084 * just the OTG port) may need more attention to resetting...
2086 hcd
= container_of (bus
, struct usb_hcd
, self
);
2087 if (port_num
&& hcd
->driver
->start_port_reset
)
2088 status
= hcd
->driver
->start_port_reset(hcd
, port_num
);
2090 /* run khubd shortly after (first) root port reset finishes;
2091 * it may issue others, until at least 50 msecs have passed.
2094 mod_timer(&hcd
->rh_timer
, jiffies
+ msecs_to_jiffies(10));
2097 EXPORT_SYMBOL_GPL(usb_bus_start_enum
);
2101 /*-------------------------------------------------------------------------*/
2104 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2105 * @irq: the IRQ being raised
2106 * @__hcd: pointer to the HCD whose IRQ is being signaled
2108 * If the controller isn't HALTed, calls the driver's irq handler.
2109 * Checks whether the controller is now dead.
2111 irqreturn_t
usb_hcd_irq (int irq
, void *__hcd
)
2113 struct usb_hcd
*hcd
= __hcd
;
2114 unsigned long flags
;
2117 /* IRQF_DISABLED doesn't work correctly with shared IRQs
2118 * when the first handler doesn't use it. So let's just
2119 * assume it's never used.
2121 local_irq_save(flags
);
2123 if (unlikely(HCD_DEAD(hcd
) || !HCD_HW_ACCESSIBLE(hcd
))) {
2125 } else if (hcd
->driver
->irq(hcd
) == IRQ_NONE
) {
2128 set_bit(HCD_FLAG_SAW_IRQ
, &hcd
->flags
);
2129 if (hcd
->shared_hcd
)
2130 set_bit(HCD_FLAG_SAW_IRQ
, &hcd
->shared_hcd
->flags
);
2132 if (unlikely(hcd
->state
== HC_STATE_HALT
))
2137 local_irq_restore(flags
);
2140 EXPORT_SYMBOL_GPL(usb_hcd_irq
);
2142 /*-------------------------------------------------------------------------*/
2145 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2146 * @hcd: pointer to the HCD representing the controller
2148 * This is called by bus glue to report a USB host controller that died
2149 * while operations may still have been pending. It's called automatically
2150 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2152 * Only call this function with the primary HCD.
2154 void usb_hc_died (struct usb_hcd
*hcd
)
2156 unsigned long flags
;
2158 dev_err (hcd
->self
.controller
, "HC died; cleaning up\n");
2160 spin_lock_irqsave (&hcd_root_hub_lock
, flags
);
2161 clear_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2162 set_bit(HCD_FLAG_DEAD
, &hcd
->flags
);
2163 if (hcd
->rh_registered
) {
2164 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
2166 /* make khubd clean up old urbs and devices */
2167 usb_set_device_state (hcd
->self
.root_hub
,
2168 USB_STATE_NOTATTACHED
);
2169 usb_kick_khubd (hcd
->self
.root_hub
);
2171 if (usb_hcd_is_primary_hcd(hcd
) && hcd
->shared_hcd
) {
2172 hcd
= hcd
->shared_hcd
;
2173 if (hcd
->rh_registered
) {
2174 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
2176 /* make khubd clean up old urbs and devices */
2177 usb_set_device_state(hcd
->self
.root_hub
,
2178 USB_STATE_NOTATTACHED
);
2179 usb_kick_khubd(hcd
->self
.root_hub
);
2182 spin_unlock_irqrestore (&hcd_root_hub_lock
, flags
);
2183 /* Make sure that the other roothub is also deallocated. */
2185 EXPORT_SYMBOL_GPL (usb_hc_died
);
2187 /*-------------------------------------------------------------------------*/
2190 * usb_create_shared_hcd - create and initialize an HCD structure
2191 * @driver: HC driver that will use this hcd
2192 * @dev: device for this HC, stored in hcd->self.controller
2193 * @bus_name: value to store in hcd->self.bus_name
2194 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2195 * PCI device. Only allocate certain resources for the primary HCD
2196 * Context: !in_interrupt()
2198 * Allocate a struct usb_hcd, with extra space at the end for the
2199 * HC driver's private data. Initialize the generic members of the
2202 * If memory is unavailable, returns NULL.
2204 struct usb_hcd
*usb_create_shared_hcd(const struct hc_driver
*driver
,
2205 struct device
*dev
, const char *bus_name
,
2206 struct usb_hcd
*primary_hcd
)
2208 struct usb_hcd
*hcd
;
2210 hcd
= kzalloc(sizeof(*hcd
) + driver
->hcd_priv_size
, GFP_KERNEL
);
2212 dev_dbg (dev
, "hcd alloc failed\n");
2215 if (primary_hcd
== NULL
) {
2216 hcd
->bandwidth_mutex
= kmalloc(sizeof(*hcd
->bandwidth_mutex
),
2218 if (!hcd
->bandwidth_mutex
) {
2220 dev_dbg(dev
, "hcd bandwidth mutex alloc failed\n");
2223 mutex_init(hcd
->bandwidth_mutex
);
2224 dev_set_drvdata(dev
, hcd
);
2226 hcd
->bandwidth_mutex
= primary_hcd
->bandwidth_mutex
;
2227 hcd
->primary_hcd
= primary_hcd
;
2228 primary_hcd
->primary_hcd
= primary_hcd
;
2229 hcd
->shared_hcd
= primary_hcd
;
2230 primary_hcd
->shared_hcd
= hcd
;
2233 kref_init(&hcd
->kref
);
2235 usb_bus_init(&hcd
->self
);
2236 hcd
->self
.controller
= dev
;
2237 hcd
->self
.bus_name
= bus_name
;
2238 hcd
->self
.uses_dma
= (dev
->dma_mask
!= NULL
);
2240 init_timer(&hcd
->rh_timer
);
2241 hcd
->rh_timer
.function
= rh_timer_func
;
2242 hcd
->rh_timer
.data
= (unsigned long) hcd
;
2243 #ifdef CONFIG_USB_SUSPEND
2244 INIT_WORK(&hcd
->wakeup_work
, hcd_resume_work
);
2247 hcd
->driver
= driver
;
2248 hcd
->speed
= driver
->flags
& HCD_MASK
;
2249 hcd
->product_desc
= (driver
->product_desc
) ? driver
->product_desc
:
2250 "USB Host Controller";
2253 EXPORT_SYMBOL_GPL(usb_create_shared_hcd
);
2256 * usb_create_hcd - create and initialize an HCD structure
2257 * @driver: HC driver that will use this hcd
2258 * @dev: device for this HC, stored in hcd->self.controller
2259 * @bus_name: value to store in hcd->self.bus_name
2260 * Context: !in_interrupt()
2262 * Allocate a struct usb_hcd, with extra space at the end for the
2263 * HC driver's private data. Initialize the generic members of the
2266 * If memory is unavailable, returns NULL.
2268 struct usb_hcd
*usb_create_hcd(const struct hc_driver
*driver
,
2269 struct device
*dev
, const char *bus_name
)
2271 return usb_create_shared_hcd(driver
, dev
, bus_name
, NULL
);
2273 EXPORT_SYMBOL_GPL(usb_create_hcd
);
2276 * Roothubs that share one PCI device must also share the bandwidth mutex.
2277 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2280 * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2281 * freed. When hcd_release() is called for the non-primary HCD, set the
2282 * primary_hcd's shared_hcd pointer to null (since the non-primary HCD will be
2285 static void hcd_release (struct kref
*kref
)
2287 struct usb_hcd
*hcd
= container_of (kref
, struct usb_hcd
, kref
);
2289 if (usb_hcd_is_primary_hcd(hcd
))
2290 kfree(hcd
->bandwidth_mutex
);
2292 hcd
->shared_hcd
->shared_hcd
= NULL
;
2296 struct usb_hcd
*usb_get_hcd (struct usb_hcd
*hcd
)
2299 kref_get (&hcd
->kref
);
2302 EXPORT_SYMBOL_GPL(usb_get_hcd
);
2304 void usb_put_hcd (struct usb_hcd
*hcd
)
2307 kref_put (&hcd
->kref
, hcd_release
);
2309 EXPORT_SYMBOL_GPL(usb_put_hcd
);
2311 int usb_hcd_is_primary_hcd(struct usb_hcd
*hcd
)
2313 if (!hcd
->primary_hcd
)
2315 return hcd
== hcd
->primary_hcd
;
2317 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd
);
2319 static int usb_hcd_request_irqs(struct usb_hcd
*hcd
,
2320 unsigned int irqnum
, unsigned long irqflags
)
2324 if (hcd
->driver
->irq
) {
2326 /* IRQF_DISABLED doesn't work as advertised when used together
2327 * with IRQF_SHARED. As usb_hcd_irq() will always disable
2328 * interrupts we can remove it here.
2330 if (irqflags
& IRQF_SHARED
)
2331 irqflags
&= ~IRQF_DISABLED
;
2333 snprintf(hcd
->irq_descr
, sizeof(hcd
->irq_descr
), "%s:usb%d",
2334 hcd
->driver
->description
, hcd
->self
.busnum
);
2335 retval
= request_irq(irqnum
, &usb_hcd_irq
, irqflags
,
2336 hcd
->irq_descr
, hcd
);
2338 dev_err(hcd
->self
.controller
,
2339 "request interrupt %d failed\n",
2344 dev_info(hcd
->self
.controller
, "irq %d, %s 0x%08llx\n", irqnum
,
2345 (hcd
->driver
->flags
& HCD_MEMORY
) ?
2346 "io mem" : "io base",
2347 (unsigned long long)hcd
->rsrc_start
);
2350 if (hcd
->rsrc_start
)
2351 dev_info(hcd
->self
.controller
, "%s 0x%08llx\n",
2352 (hcd
->driver
->flags
& HCD_MEMORY
) ?
2353 "io mem" : "io base",
2354 (unsigned long long)hcd
->rsrc_start
);
2360 * usb_add_hcd - finish generic HCD structure initialization and register
2361 * @hcd: the usb_hcd structure to initialize
2362 * @irqnum: Interrupt line to allocate
2363 * @irqflags: Interrupt type flags
2365 * Finish the remaining parts of generic HCD initialization: allocate the
2366 * buffers of consistent memory, register the bus, request the IRQ line,
2367 * and call the driver's reset() and start() routines.
2369 int usb_add_hcd(struct usb_hcd
*hcd
,
2370 unsigned int irqnum
, unsigned long irqflags
)
2373 struct usb_device
*rhdev
;
2375 dev_info(hcd
->self
.controller
, "%s\n", hcd
->product_desc
);
2377 hcd
->authorized_default
= hcd
->wireless
? 0 : 1;
2378 set_bit(HCD_FLAG_HW_ACCESSIBLE
, &hcd
->flags
);
2380 /* HC is in reset state, but accessible. Now do the one-time init,
2381 * bottom up so that hcds can customize the root hubs before khubd
2382 * starts talking to them. (Note, bus id is assigned early too.)
2384 if ((retval
= hcd_buffer_create(hcd
)) != 0) {
2385 dev_dbg(hcd
->self
.controller
, "pool alloc failed\n");
2389 if ((retval
= usb_register_bus(&hcd
->self
)) < 0)
2390 goto err_register_bus
;
2392 if ((rhdev
= usb_alloc_dev(NULL
, &hcd
->self
, 0)) == NULL
) {
2393 dev_err(hcd
->self
.controller
, "unable to allocate root hub\n");
2395 goto err_allocate_root_hub
;
2397 hcd
->self
.root_hub
= rhdev
;
2399 switch (hcd
->speed
) {
2401 rhdev
->speed
= USB_SPEED_FULL
;
2404 rhdev
->speed
= USB_SPEED_HIGH
;
2407 rhdev
->speed
= USB_SPEED_SUPER
;
2410 goto err_set_rh_speed
;
2413 /* wakeup flag init defaults to "everything works" for root hubs,
2414 * but drivers can override it in reset() if needed, along with
2415 * recording the overall controller's system wakeup capability.
2417 device_init_wakeup(&rhdev
->dev
, 1);
2419 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2420 * registered. But since the controller can die at any time,
2421 * let's initialize the flag before touching the hardware.
2423 set_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2425 /* "reset" is misnamed; its role is now one-time init. the controller
2426 * should already have been reset (and boot firmware kicked off etc).
2428 if (hcd
->driver
->reset
&& (retval
= hcd
->driver
->reset(hcd
)) < 0) {
2429 dev_err(hcd
->self
.controller
, "can't setup\n");
2430 goto err_hcd_driver_setup
;
2432 hcd
->rh_pollable
= 1;
2434 /* NOTE: root hub and controller capabilities may not be the same */
2435 if (device_can_wakeup(hcd
->self
.controller
)
2436 && device_can_wakeup(&hcd
->self
.root_hub
->dev
))
2437 dev_dbg(hcd
->self
.controller
, "supports USB remote wakeup\n");
2439 /* enable irqs just before we start the controller */
2440 if (usb_hcd_is_primary_hcd(hcd
)) {
2441 retval
= usb_hcd_request_irqs(hcd
, irqnum
, irqflags
);
2443 goto err_request_irq
;
2446 hcd
->state
= HC_STATE_RUNNING
;
2447 retval
= hcd
->driver
->start(hcd
);
2449 dev_err(hcd
->self
.controller
, "startup error %d\n", retval
);
2450 goto err_hcd_driver_start
;
2453 /* starting here, usbcore will pay attention to this root hub */
2454 rhdev
->bus_mA
= min(500u, hcd
->power_budget
);
2455 if ((retval
= register_root_hub(hcd
)) != 0)
2456 goto err_register_root_hub
;
2458 retval
= sysfs_create_group(&rhdev
->dev
.kobj
, &usb_bus_attr_group
);
2460 printk(KERN_ERR
"Cannot register USB bus sysfs attributes: %d\n",
2462 goto error_create_attr_group
;
2464 if (hcd
->uses_new_polling
&& HCD_POLL_RH(hcd
))
2465 usb_hcd_poll_rh_status(hcd
);
2468 error_create_attr_group
:
2469 clear_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2470 if (HC_IS_RUNNING(hcd
->state
))
2471 hcd
->state
= HC_STATE_QUIESCING
;
2472 spin_lock_irq(&hcd_root_hub_lock
);
2473 hcd
->rh_registered
= 0;
2474 spin_unlock_irq(&hcd_root_hub_lock
);
2476 #ifdef CONFIG_USB_SUSPEND
2477 cancel_work_sync(&hcd
->wakeup_work
);
2479 mutex_lock(&usb_bus_list_lock
);
2480 usb_disconnect(&rhdev
); /* Sets rhdev to NULL */
2481 mutex_unlock(&usb_bus_list_lock
);
2482 err_register_root_hub
:
2483 hcd
->rh_pollable
= 0;
2484 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
2485 del_timer_sync(&hcd
->rh_timer
);
2486 hcd
->driver
->stop(hcd
);
2487 hcd
->state
= HC_STATE_HALT
;
2488 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
2489 del_timer_sync(&hcd
->rh_timer
);
2490 err_hcd_driver_start
:
2491 if (usb_hcd_is_primary_hcd(hcd
) && hcd
->irq
>= 0)
2492 free_irq(irqnum
, hcd
);
2494 err_hcd_driver_setup
:
2496 usb_put_dev(hcd
->self
.root_hub
);
2497 err_allocate_root_hub
:
2498 usb_deregister_bus(&hcd
->self
);
2500 hcd_buffer_destroy(hcd
);
2503 EXPORT_SYMBOL_GPL(usb_add_hcd
);
2506 * usb_remove_hcd - shutdown processing for generic HCDs
2507 * @hcd: the usb_hcd structure to remove
2508 * Context: !in_interrupt()
2510 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2511 * invoking the HCD's stop() method.
2513 void usb_remove_hcd(struct usb_hcd
*hcd
)
2515 struct usb_device
*rhdev
= hcd
->self
.root_hub
;
2517 dev_info(hcd
->self
.controller
, "remove, state %x\n", hcd
->state
);
2520 sysfs_remove_group(&rhdev
->dev
.kobj
, &usb_bus_attr_group
);
2522 clear_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2523 if (HC_IS_RUNNING (hcd
->state
))
2524 hcd
->state
= HC_STATE_QUIESCING
;
2526 dev_dbg(hcd
->self
.controller
, "roothub graceful disconnect\n");
2527 spin_lock_irq (&hcd_root_hub_lock
);
2528 hcd
->rh_registered
= 0;
2529 spin_unlock_irq (&hcd_root_hub_lock
);
2531 #ifdef CONFIG_USB_SUSPEND
2532 cancel_work_sync(&hcd
->wakeup_work
);
2535 mutex_lock(&usb_bus_list_lock
);
2536 usb_disconnect(&rhdev
); /* Sets rhdev to NULL */
2537 mutex_unlock(&usb_bus_list_lock
);
2539 /* Prevent any more root-hub status calls from the timer.
2540 * The HCD might still restart the timer (if a port status change
2541 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2542 * the hub_status_data() callback.
2544 hcd
->rh_pollable
= 0;
2545 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
2546 del_timer_sync(&hcd
->rh_timer
);
2548 hcd
->driver
->stop(hcd
);
2549 hcd
->state
= HC_STATE_HALT
;
2551 /* In case the HCD restarted the timer, stop it again. */
2552 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
2553 del_timer_sync(&hcd
->rh_timer
);
2555 if (usb_hcd_is_primary_hcd(hcd
)) {
2557 free_irq(hcd
->irq
, hcd
);
2560 usb_put_dev(hcd
->self
.root_hub
);
2561 usb_deregister_bus(&hcd
->self
);
2562 hcd_buffer_destroy(hcd
);
2564 EXPORT_SYMBOL_GPL(usb_remove_hcd
);
2567 usb_hcd_platform_shutdown(struct platform_device
* dev
)
2569 struct usb_hcd
*hcd
= platform_get_drvdata(dev
);
2571 if (hcd
->driver
->shutdown
)
2572 hcd
->driver
->shutdown(hcd
);
2574 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown
);
2576 /*-------------------------------------------------------------------------*/
2578 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2580 struct usb_mon_operations
*mon_ops
;
2583 * The registration is unlocked.
2584 * We do it this way because we do not want to lock in hot paths.
2586 * Notice that the code is minimally error-proof. Because usbmon needs
2587 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2590 int usb_mon_register (struct usb_mon_operations
*ops
)
2600 EXPORT_SYMBOL_GPL (usb_mon_register
);
2602 void usb_mon_deregister (void)
2605 if (mon_ops
== NULL
) {
2606 printk(KERN_ERR
"USB: monitor was not registered\n");
2612 EXPORT_SYMBOL_GPL (usb_mon_deregister
);
2614 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */