1 /* linux/drivers/usb/gadget/s3c-hsotg.c
3 * Copyright 2008 Openmoko, Inc.
4 * Copyright 2008 Simtec Electronics
5 * Ben Dooks <ben@simtec.co.uk>
6 * http://armlinux.simtec.co.uk/
8 * S3C USB2.0 High-speed / OtG driver
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/platform_device.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/debugfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/delay.h>
25 #include <linux/slab.h>
26 #include <linux/clk.h>
28 #include <linux/usb/ch9.h>
29 #include <linux/usb/gadget.h>
33 #include <plat/regs-usb-hsotg-phy.h>
34 #include <plat/regs-usb-hsotg.h>
35 #include <mach/regs-sys.h>
36 #include <plat/udc-hs.h>
39 #define DMA_ADDR_INVALID (~((dma_addr_t)0))
43 * Unfortunately there seems to be a limit of the amount of data that can
44 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
45 * packets (which practically means 1 packet and 63 bytes of data) when the
48 * This means if we are wanting to move >127 bytes of data, we need to
49 * split the transactions up, but just doing one packet at a time does
50 * not work (this may be an implicit DATA0 PID on first packet of the
51 * transaction) and doing 2 packets is outside the controller's limits.
53 * If we try to lower the MPS size for EP0, then no transfers work properly
54 * for EP0, and the system will fail basic enumeration. As no cause for this
55 * has currently been found, we cannot support any large IN transfers for
58 #define EP0_MPS_LIMIT 64
64 * struct s3c_hsotg_ep - driver endpoint definition.
65 * @ep: The gadget layer representation of the endpoint.
66 * @name: The driver generated name for the endpoint.
67 * @queue: Queue of requests for this endpoint.
68 * @parent: Reference back to the parent device structure.
69 * @req: The current request that the endpoint is processing. This is
70 * used to indicate an request has been loaded onto the endpoint
71 * and has yet to be completed (maybe due to data move, or simply
72 * awaiting an ack from the core all the data has been completed).
73 * @debugfs: File entry for debugfs file for this endpoint.
74 * @lock: State lock to protect contents of endpoint.
75 * @dir_in: Set to true if this endpoint is of the IN direction, which
76 * means that it is sending data to the Host.
77 * @index: The index for the endpoint registers.
78 * @name: The name array passed to the USB core.
79 * @halted: Set if the endpoint has been halted.
80 * @periodic: Set if this is a periodic ep, such as Interrupt
81 * @sent_zlp: Set if we've sent a zero-length packet.
82 * @total_data: The total number of data bytes done.
83 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
84 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
85 * @last_load: The offset of data for the last start of request.
86 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
88 * This is the driver's state for each registered enpoint, allowing it
89 * to keep track of transactions that need doing. Each endpoint has a
90 * lock to protect the state, to try and avoid using an overall lock
91 * for the host controller as much as possible.
93 * For periodic IN endpoints, we have fifo_size and fifo_load to try
94 * and keep track of the amount of data in the periodic FIFO for each
95 * of these as we don't have a status register that tells us how much
96 * is in each of them. (note, this may actually be useless information
97 * as in shared-fifo mode periodic in acts like a single-frame packet
100 struct s3c_hsotg_ep
{
102 struct list_head queue
;
103 struct s3c_hsotg
*parent
;
104 struct s3c_hsotg_req
*req
;
105 struct dentry
*debugfs
;
109 unsigned long total_data
;
110 unsigned int size_loaded
;
111 unsigned int last_load
;
112 unsigned int fifo_load
;
113 unsigned short fifo_size
;
115 unsigned char dir_in
;
118 unsigned int halted
:1;
119 unsigned int periodic
:1;
120 unsigned int sent_zlp
:1;
125 #define S3C_HSOTG_EPS (8+1) /* limit to 9 for the moment */
128 * struct s3c_hsotg - driver state.
129 * @dev: The parent device supplied to the probe function
130 * @driver: USB gadget driver
131 * @plat: The platform specific configuration data.
132 * @regs: The memory area mapped for accessing registers.
133 * @regs_res: The resource that was allocated when claiming register space.
134 * @irq: The IRQ number we are using
135 * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
136 * @debug_root: root directrory for debugfs.
137 * @debug_file: main status file for debugfs.
138 * @debug_fifo: FIFO status file for debugfs.
139 * @ep0_reply: Request used for ep0 reply.
140 * @ep0_buff: Buffer for EP0 reply data, if needed.
141 * @ctrl_buff: Buffer for EP0 control requests.
142 * @ctrl_req: Request for EP0 control packets.
143 * @eps: The endpoints being supplied to the gadget framework
147 struct usb_gadget_driver
*driver
;
148 struct s3c_hsotg_plat
*plat
;
151 struct resource
*regs_res
;
155 unsigned int dedicated_fifos
:1;
157 struct dentry
*debug_root
;
158 struct dentry
*debug_file
;
159 struct dentry
*debug_fifo
;
161 struct usb_request
*ep0_reply
;
162 struct usb_request
*ctrl_req
;
166 struct usb_gadget gadget
;
167 struct s3c_hsotg_ep eps
[];
171 * struct s3c_hsotg_req - data transfer request
172 * @req: The USB gadget request
173 * @queue: The list of requests for the endpoint this is queued for.
174 * @in_progress: Has already had size/packets written to core
175 * @mapped: DMA buffer for this request has been mapped via dma_map_single().
177 struct s3c_hsotg_req
{
178 struct usb_request req
;
179 struct list_head queue
;
180 unsigned char in_progress
;
181 unsigned char mapped
;
184 /* conversion functions */
185 static inline struct s3c_hsotg_req
*our_req(struct usb_request
*req
)
187 return container_of(req
, struct s3c_hsotg_req
, req
);
190 static inline struct s3c_hsotg_ep
*our_ep(struct usb_ep
*ep
)
192 return container_of(ep
, struct s3c_hsotg_ep
, ep
);
195 static inline struct s3c_hsotg
*to_hsotg(struct usb_gadget
*gadget
)
197 return container_of(gadget
, struct s3c_hsotg
, gadget
);
200 static inline void __orr32(void __iomem
*ptr
, u32 val
)
202 writel(readl(ptr
) | val
, ptr
);
205 static inline void __bic32(void __iomem
*ptr
, u32 val
)
207 writel(readl(ptr
) & ~val
, ptr
);
210 /* forward decleration of functions */
211 static void s3c_hsotg_dump(struct s3c_hsotg
*hsotg
);
214 * using_dma - return the DMA status of the driver.
215 * @hsotg: The driver state.
217 * Return true if we're using DMA.
219 * Currently, we have the DMA support code worked into everywhere
220 * that needs it, but the AMBA DMA implementation in the hardware can
221 * only DMA from 32bit aligned addresses. This means that gadgets such
222 * as the CDC Ethernet cannot work as they often pass packets which are
225 * Unfortunately the choice to use DMA or not is global to the controller
226 * and seems to be only settable when the controller is being put through
227 * a core reset. This means we either need to fix the gadgets to take
228 * account of DMA alignment, or add bounce buffers (yuerk).
230 * Until this issue is sorted out, we always return 'false'.
232 static inline bool using_dma(struct s3c_hsotg
*hsotg
)
234 return false; /* support is not complete */
238 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
239 * @hsotg: The device state
240 * @ints: A bitmask of the interrupts to enable
242 static void s3c_hsotg_en_gsint(struct s3c_hsotg
*hsotg
, u32 ints
)
244 u32 gsintmsk
= readl(hsotg
->regs
+ S3C_GINTMSK
);
247 new_gsintmsk
= gsintmsk
| ints
;
249 if (new_gsintmsk
!= gsintmsk
) {
250 dev_dbg(hsotg
->dev
, "gsintmsk now 0x%08x\n", new_gsintmsk
);
251 writel(new_gsintmsk
, hsotg
->regs
+ S3C_GINTMSK
);
256 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
257 * @hsotg: The device state
258 * @ints: A bitmask of the interrupts to enable
260 static void s3c_hsotg_disable_gsint(struct s3c_hsotg
*hsotg
, u32 ints
)
262 u32 gsintmsk
= readl(hsotg
->regs
+ S3C_GINTMSK
);
265 new_gsintmsk
= gsintmsk
& ~ints
;
267 if (new_gsintmsk
!= gsintmsk
)
268 writel(new_gsintmsk
, hsotg
->regs
+ S3C_GINTMSK
);
272 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
273 * @hsotg: The device state
274 * @ep: The endpoint index
275 * @dir_in: True if direction is in.
276 * @en: The enable value, true to enable
278 * Set or clear the mask for an individual endpoint's interrupt
281 static void s3c_hsotg_ctrl_epint(struct s3c_hsotg
*hsotg
,
282 unsigned int ep
, unsigned int dir_in
,
292 local_irq_save(flags
);
293 daint
= readl(hsotg
->regs
+ S3C_DAINTMSK
);
298 writel(daint
, hsotg
->regs
+ S3C_DAINTMSK
);
299 local_irq_restore(flags
);
303 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
304 * @hsotg: The device instance.
306 static void s3c_hsotg_init_fifo(struct s3c_hsotg
*hsotg
)
314 /* the ryu 2.6.24 release ahs
315 writel(0x1C0, hsotg->regs + S3C_GRXFSIZ);
316 writel(S3C_GNPTXFSIZ_NPTxFStAddr(0x200) |
317 S3C_GNPTXFSIZ_NPTxFDep(0x1C0),
318 hsotg->regs + S3C_GNPTXFSIZ);
321 /* set FIFO sizes to 2048/1024 */
323 writel(2048, hsotg
->regs
+ S3C_GRXFSIZ
);
324 writel(S3C_GNPTXFSIZ_NPTxFStAddr(2048) |
325 S3C_GNPTXFSIZ_NPTxFDep(1024),
326 hsotg
->regs
+ S3C_GNPTXFSIZ
);
328 /* arange all the rest of the TX FIFOs, as some versions of this
329 * block have overlapping default addresses. This also ensures
330 * that if the settings have been changed, then they are set to
333 /* start at the end of the GNPTXFSIZ, rounded up */
337 /* currently we allocate TX FIFOs for all possible endpoints,
338 * and assume that they are all the same size. */
340 for (ep
= 0; ep
<= 15; ep
++) {
342 val
|= size
<< S3C_DPTXFSIZn_DPTxFSize_SHIFT
;
345 writel(val
, hsotg
->regs
+ S3C_DPTXFSIZn(ep
));
348 /* according to p428 of the design guide, we need to ensure that
349 * all fifos are flushed before continuing */
351 writel(S3C_GRSTCTL_TxFNum(0x10) | S3C_GRSTCTL_TxFFlsh
|
352 S3C_GRSTCTL_RxFFlsh
, hsotg
->regs
+ S3C_GRSTCTL
);
354 /* wait until the fifos are both flushed */
357 val
= readl(hsotg
->regs
+ S3C_GRSTCTL
);
359 if ((val
& (S3C_GRSTCTL_TxFFlsh
| S3C_GRSTCTL_RxFFlsh
)) == 0)
362 if (--timeout
== 0) {
364 "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
371 dev_dbg(hsotg
->dev
, "FIFOs reset, timeout at %d\n", timeout
);
375 * @ep: USB endpoint to allocate request for.
376 * @flags: Allocation flags
378 * Allocate a new USB request structure appropriate for the specified endpoint
380 static struct usb_request
*s3c_hsotg_ep_alloc_request(struct usb_ep
*ep
,
383 struct s3c_hsotg_req
*req
;
385 req
= kzalloc(sizeof(struct s3c_hsotg_req
), flags
);
389 INIT_LIST_HEAD(&req
->queue
);
391 req
->req
.dma
= DMA_ADDR_INVALID
;
396 * is_ep_periodic - return true if the endpoint is in periodic mode.
397 * @hs_ep: The endpoint to query.
399 * Returns true if the endpoint is in periodic mode, meaning it is being
400 * used for an Interrupt or ISO transfer.
402 static inline int is_ep_periodic(struct s3c_hsotg_ep
*hs_ep
)
404 return hs_ep
->periodic
;
408 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
409 * @hsotg: The device state.
410 * @hs_ep: The endpoint for the request
411 * @hs_req: The request being processed.
413 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
414 * of a request to ensure the buffer is ready for access by the caller.
416 static void s3c_hsotg_unmap_dma(struct s3c_hsotg
*hsotg
,
417 struct s3c_hsotg_ep
*hs_ep
,
418 struct s3c_hsotg_req
*hs_req
)
420 struct usb_request
*req
= &hs_req
->req
;
421 enum dma_data_direction dir
;
423 dir
= hs_ep
->dir_in
? DMA_TO_DEVICE
: DMA_FROM_DEVICE
;
425 /* ignore this if we're not moving any data */
426 if (hs_req
->req
.length
== 0)
429 if (hs_req
->mapped
) {
430 /* we mapped this, so unmap and remove the dma */
432 dma_unmap_single(hsotg
->dev
, req
->dma
, req
->length
, dir
);
434 req
->dma
= DMA_ADDR_INVALID
;
437 dma_sync_single_for_cpu(hsotg
->dev
, req
->dma
, req
->length
, dir
);
442 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
443 * @hsotg: The controller state.
444 * @hs_ep: The endpoint we're going to write for.
445 * @hs_req: The request to write data for.
447 * This is called when the TxFIFO has some space in it to hold a new
448 * transmission and we have something to give it. The actual setup of
449 * the data size is done elsewhere, so all we have to do is to actually
452 * The return value is zero if there is more space (or nothing was done)
453 * otherwise -ENOSPC is returned if the FIFO space was used up.
455 * This routine is only needed for PIO
457 static int s3c_hsotg_write_fifo(struct s3c_hsotg
*hsotg
,
458 struct s3c_hsotg_ep
*hs_ep
,
459 struct s3c_hsotg_req
*hs_req
)
461 bool periodic
= is_ep_periodic(hs_ep
);
462 u32 gnptxsts
= readl(hsotg
->regs
+ S3C_GNPTXSTS
);
463 int buf_pos
= hs_req
->req
.actual
;
464 int to_write
= hs_ep
->size_loaded
;
469 to_write
-= (buf_pos
- hs_ep
->last_load
);
471 /* if there's nothing to write, get out early */
475 if (periodic
&& !hsotg
->dedicated_fifos
) {
476 u32 epsize
= readl(hsotg
->regs
+ S3C_DIEPTSIZ(hs_ep
->index
));
480 /* work out how much data was loaded so we can calculate
481 * how much data is left in the fifo. */
483 size_left
= S3C_DxEPTSIZ_XferSize_GET(epsize
);
485 /* if shared fifo, we cannot write anything until the
486 * previous data has been completely sent.
488 if (hs_ep
->fifo_load
!= 0) {
489 s3c_hsotg_en_gsint(hsotg
, S3C_GINTSTS_PTxFEmp
);
493 dev_dbg(hsotg
->dev
, "%s: left=%d, load=%d, fifo=%d, size %d\n",
495 hs_ep
->size_loaded
, hs_ep
->fifo_load
, hs_ep
->fifo_size
);
497 /* how much of the data has moved */
498 size_done
= hs_ep
->size_loaded
- size_left
;
500 /* how much data is left in the fifo */
501 can_write
= hs_ep
->fifo_load
- size_done
;
502 dev_dbg(hsotg
->dev
, "%s: => can_write1=%d\n",
503 __func__
, can_write
);
505 can_write
= hs_ep
->fifo_size
- can_write
;
506 dev_dbg(hsotg
->dev
, "%s: => can_write2=%d\n",
507 __func__
, can_write
);
509 if (can_write
<= 0) {
510 s3c_hsotg_en_gsint(hsotg
, S3C_GINTSTS_PTxFEmp
);
513 } else if (hsotg
->dedicated_fifos
&& hs_ep
->index
!= 0) {
514 can_write
= readl(hsotg
->regs
+ S3C_DTXFSTS(hs_ep
->index
));
519 if (S3C_GNPTXSTS_NPTxQSpcAvail_GET(gnptxsts
) == 0) {
521 "%s: no queue slots available (0x%08x)\n",
524 s3c_hsotg_en_gsint(hsotg
, S3C_GINTSTS_NPTxFEmp
);
528 can_write
= S3C_GNPTXSTS_NPTxFSpcAvail_GET(gnptxsts
);
529 can_write
*= 4; /* fifo size is in 32bit quantities. */
532 dev_dbg(hsotg
->dev
, "%s: GNPTXSTS=%08x, can=%d, to=%d, mps %d\n",
533 __func__
, gnptxsts
, can_write
, to_write
, hs_ep
->ep
.maxpacket
);
535 /* limit to 512 bytes of data, it seems at least on the non-periodic
536 * FIFO, requests of >512 cause the endpoint to get stuck with a
537 * fragment of the end of the transfer in it.
542 /* limit the write to one max-packet size worth of data, but allow
543 * the transfer to return that it did not run out of fifo space
545 if (to_write
> hs_ep
->ep
.maxpacket
) {
546 to_write
= hs_ep
->ep
.maxpacket
;
548 s3c_hsotg_en_gsint(hsotg
,
549 periodic
? S3C_GINTSTS_PTxFEmp
:
550 S3C_GINTSTS_NPTxFEmp
);
553 /* see if we can write data */
555 if (to_write
> can_write
) {
556 to_write
= can_write
;
557 pkt_round
= to_write
% hs_ep
->ep
.maxpacket
;
559 /* Not sure, but we probably shouldn't be writing partial
560 * packets into the FIFO, so round the write down to an
561 * exact number of packets.
563 * Note, we do not currently check to see if we can ever
564 * write a full packet or not to the FIFO.
568 to_write
-= pkt_round
;
570 /* enable correct FIFO interrupt to alert us when there
571 * is more room left. */
573 s3c_hsotg_en_gsint(hsotg
,
574 periodic
? S3C_GINTSTS_PTxFEmp
:
575 S3C_GINTSTS_NPTxFEmp
);
578 dev_dbg(hsotg
->dev
, "write %d/%d, can_write %d, done %d\n",
579 to_write
, hs_req
->req
.length
, can_write
, buf_pos
);
584 hs_req
->req
.actual
= buf_pos
+ to_write
;
585 hs_ep
->total_data
+= to_write
;
588 hs_ep
->fifo_load
+= to_write
;
590 to_write
= DIV_ROUND_UP(to_write
, 4);
591 data
= hs_req
->req
.buf
+ buf_pos
;
593 writesl(hsotg
->regs
+ S3C_EPFIFO(hs_ep
->index
), data
, to_write
);
595 return (to_write
>= can_write
) ? -ENOSPC
: 0;
599 * get_ep_limit - get the maximum data legnth for this endpoint
600 * @hs_ep: The endpoint
602 * Return the maximum data that can be queued in one go on a given endpoint
603 * so that transfers that are too long can be split.
605 static unsigned get_ep_limit(struct s3c_hsotg_ep
*hs_ep
)
607 int index
= hs_ep
->index
;
612 maxsize
= S3C_DxEPTSIZ_XferSize_LIMIT
+ 1;
613 maxpkt
= S3C_DxEPTSIZ_PktCnt_LIMIT
+ 1;
617 maxpkt
= S3C_DIEPTSIZ0_PktCnt_LIMIT
+ 1;
623 /* we made the constant loading easier above by using +1 */
627 /* constrain by packet count if maxpkts*pktsize is greater
628 * than the length register size. */
630 if ((maxpkt
* hs_ep
->ep
.maxpacket
) < maxsize
)
631 maxsize
= maxpkt
* hs_ep
->ep
.maxpacket
;
637 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
638 * @hsotg: The controller state.
639 * @hs_ep: The endpoint to process a request for
640 * @hs_req: The request to start.
641 * @continuing: True if we are doing more for the current request.
643 * Start the given request running by setting the endpoint registers
644 * appropriately, and writing any data to the FIFOs.
646 static void s3c_hsotg_start_req(struct s3c_hsotg
*hsotg
,
647 struct s3c_hsotg_ep
*hs_ep
,
648 struct s3c_hsotg_req
*hs_req
,
651 struct usb_request
*ureq
= &hs_req
->req
;
652 int index
= hs_ep
->index
;
653 int dir_in
= hs_ep
->dir_in
;
663 if (hs_ep
->req
&& !continuing
) {
664 dev_err(hsotg
->dev
, "%s: active request\n", __func__
);
667 } else if (hs_ep
->req
!= hs_req
&& continuing
) {
669 "%s: continue different req\n", __func__
);
675 epctrl_reg
= dir_in
? S3C_DIEPCTL(index
) : S3C_DOEPCTL(index
);
676 epsize_reg
= dir_in
? S3C_DIEPTSIZ(index
) : S3C_DOEPTSIZ(index
);
678 dev_dbg(hsotg
->dev
, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
679 __func__
, readl(hsotg
->regs
+ epctrl_reg
), index
,
680 hs_ep
->dir_in
? "in" : "out");
682 length
= ureq
->length
- ureq
->actual
;
686 "REQ buf %p len %d dma 0x%08x noi=%d zp=%d snok=%d\n",
687 ureq
->buf
, length
, ureq
->dma
,
688 ureq
->no_interrupt
, ureq
->zero
, ureq
->short_not_ok
);
690 maxreq
= get_ep_limit(hs_ep
);
691 if (length
> maxreq
) {
692 int round
= maxreq
% hs_ep
->ep
.maxpacket
;
694 dev_dbg(hsotg
->dev
, "%s: length %d, max-req %d, r %d\n",
695 __func__
, length
, maxreq
, round
);
697 /* round down to multiple of packets */
705 packets
= DIV_ROUND_UP(length
, hs_ep
->ep
.maxpacket
);
707 packets
= 1; /* send one packet if length is zero. */
709 if (dir_in
&& index
!= 0)
710 epsize
= S3C_DxEPTSIZ_MC(1);
714 if (index
!= 0 && ureq
->zero
) {
715 /* test for the packets being exactly right for the
718 if (length
== (packets
* hs_ep
->ep
.maxpacket
))
722 epsize
|= S3C_DxEPTSIZ_PktCnt(packets
);
723 epsize
|= S3C_DxEPTSIZ_XferSize(length
);
725 dev_dbg(hsotg
->dev
, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
726 __func__
, packets
, length
, ureq
->length
, epsize
, epsize_reg
);
728 /* store the request as the current one we're doing */
731 /* write size / packets */
732 writel(epsize
, hsotg
->regs
+ epsize_reg
);
734 ctrl
= readl(hsotg
->regs
+ epctrl_reg
);
736 if (ctrl
& S3C_DxEPCTL_Stall
) {
737 dev_warn(hsotg
->dev
, "%s: ep%d is stalled\n", __func__
, index
);
739 /* not sure what we can do here, if it is EP0 then we should
740 * get this cleared once the endpoint has transmitted the
741 * STALL packet, otherwise it needs to be cleared by the
746 if (using_dma(hsotg
)) {
747 unsigned int dma_reg
;
749 /* write DMA address to control register, buffer already
750 * synced by s3c_hsotg_ep_queue(). */
752 dma_reg
= dir_in
? S3C_DIEPDMA(index
) : S3C_DOEPDMA(index
);
753 writel(ureq
->dma
, hsotg
->regs
+ dma_reg
);
755 dev_dbg(hsotg
->dev
, "%s: 0x%08x => 0x%08x\n",
756 __func__
, ureq
->dma
, dma_reg
);
759 ctrl
|= S3C_DxEPCTL_EPEna
; /* ensure ep enabled */
760 ctrl
|= S3C_DxEPCTL_USBActEp
;
761 ctrl
|= S3C_DxEPCTL_CNAK
; /* clear NAK set by core */
763 dev_dbg(hsotg
->dev
, "%s: DxEPCTL=0x%08x\n", __func__
, ctrl
);
764 writel(ctrl
, hsotg
->regs
+ epctrl_reg
);
766 /* set these, it seems that DMA support increments past the end
767 * of the packet buffer so we need to calculate the length from
768 * this information. */
769 hs_ep
->size_loaded
= length
;
770 hs_ep
->last_load
= ureq
->actual
;
772 if (dir_in
&& !using_dma(hsotg
)) {
773 /* set these anyway, we may need them for non-periodic in */
774 hs_ep
->fifo_load
= 0;
776 s3c_hsotg_write_fifo(hsotg
, hs_ep
, hs_req
);
779 /* clear the INTknTXFEmpMsk when we start request, more as a aide
780 * to debugging to see what is going on. */
782 writel(S3C_DIEPMSK_INTknTXFEmpMsk
,
783 hsotg
->regs
+ S3C_DIEPINT(index
));
785 /* Note, trying to clear the NAK here causes problems with transmit
786 * on the S3C6400 ending up with the TXFIFO becoming full. */
788 /* check ep is enabled */
789 if (!(readl(hsotg
->regs
+ epctrl_reg
) & S3C_DxEPCTL_EPEna
))
791 "ep%d: failed to become enabled (DxEPCTL=0x%08x)?\n",
792 index
, readl(hsotg
->regs
+ epctrl_reg
));
794 dev_dbg(hsotg
->dev
, "%s: DxEPCTL=0x%08x\n",
795 __func__
, readl(hsotg
->regs
+ epctrl_reg
));
799 * s3c_hsotg_map_dma - map the DMA memory being used for the request
800 * @hsotg: The device state.
801 * @hs_ep: The endpoint the request is on.
802 * @req: The request being processed.
804 * We've been asked to queue a request, so ensure that the memory buffer
805 * is correctly setup for DMA. If we've been passed an extant DMA address
806 * then ensure the buffer has been synced to memory. If our buffer has no
807 * DMA memory, then we map the memory and mark our request to allow us to
808 * cleanup on completion.
810 static int s3c_hsotg_map_dma(struct s3c_hsotg
*hsotg
,
811 struct s3c_hsotg_ep
*hs_ep
,
812 struct usb_request
*req
)
814 enum dma_data_direction dir
;
815 struct s3c_hsotg_req
*hs_req
= our_req(req
);
817 dir
= hs_ep
->dir_in
? DMA_TO_DEVICE
: DMA_FROM_DEVICE
;
819 /* if the length is zero, ignore the DMA data */
820 if (hs_req
->req
.length
== 0)
823 if (req
->dma
== DMA_ADDR_INVALID
) {
826 dma
= dma_map_single(hsotg
->dev
, req
->buf
, req
->length
, dir
);
828 if (unlikely(dma_mapping_error(hsotg
->dev
, dma
)))
832 dev_err(hsotg
->dev
, "%s: unaligned dma buffer\n",
835 dma_unmap_single(hsotg
->dev
, dma
, req
->length
, dir
);
842 dma_sync_single_for_cpu(hsotg
->dev
, req
->dma
, req
->length
, dir
);
849 dev_err(hsotg
->dev
, "%s: failed to map buffer %p, %d bytes\n",
850 __func__
, req
->buf
, req
->length
);
855 static int s3c_hsotg_ep_queue(struct usb_ep
*ep
, struct usb_request
*req
,
858 struct s3c_hsotg_req
*hs_req
= our_req(req
);
859 struct s3c_hsotg_ep
*hs_ep
= our_ep(ep
);
860 struct s3c_hsotg
*hs
= hs_ep
->parent
;
861 unsigned long irqflags
;
864 dev_dbg(hs
->dev
, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
865 ep
->name
, req
, req
->length
, req
->buf
, req
->no_interrupt
,
866 req
->zero
, req
->short_not_ok
);
868 /* initialise status of the request */
869 INIT_LIST_HEAD(&hs_req
->queue
);
871 req
->status
= -EINPROGRESS
;
873 /* if we're using DMA, sync the buffers as necessary */
875 int ret
= s3c_hsotg_map_dma(hs
, hs_ep
, req
);
880 spin_lock_irqsave(&hs_ep
->lock
, irqflags
);
882 first
= list_empty(&hs_ep
->queue
);
883 list_add_tail(&hs_req
->queue
, &hs_ep
->queue
);
886 s3c_hsotg_start_req(hs
, hs_ep
, hs_req
, false);
888 spin_unlock_irqrestore(&hs_ep
->lock
, irqflags
);
893 static void s3c_hsotg_ep_free_request(struct usb_ep
*ep
,
894 struct usb_request
*req
)
896 struct s3c_hsotg_req
*hs_req
= our_req(req
);
902 * s3c_hsotg_complete_oursetup - setup completion callback
903 * @ep: The endpoint the request was on.
904 * @req: The request completed.
906 * Called on completion of any requests the driver itself
907 * submitted that need cleaning up.
909 static void s3c_hsotg_complete_oursetup(struct usb_ep
*ep
,
910 struct usb_request
*req
)
912 struct s3c_hsotg_ep
*hs_ep
= our_ep(ep
);
913 struct s3c_hsotg
*hsotg
= hs_ep
->parent
;
915 dev_dbg(hsotg
->dev
, "%s: ep %p, req %p\n", __func__
, ep
, req
);
917 s3c_hsotg_ep_free_request(ep
, req
);
921 * ep_from_windex - convert control wIndex value to endpoint
922 * @hsotg: The driver state.
923 * @windex: The control request wIndex field (in host order).
925 * Convert the given wIndex into a pointer to an driver endpoint
926 * structure, or return NULL if it is not a valid endpoint.
928 static struct s3c_hsotg_ep
*ep_from_windex(struct s3c_hsotg
*hsotg
,
931 struct s3c_hsotg_ep
*ep
= &hsotg
->eps
[windex
& 0x7F];
932 int dir
= (windex
& USB_DIR_IN
) ? 1 : 0;
933 int idx
= windex
& 0x7F;
938 if (idx
> S3C_HSOTG_EPS
)
941 if (idx
&& ep
->dir_in
!= dir
)
948 * s3c_hsotg_send_reply - send reply to control request
949 * @hsotg: The device state
951 * @buff: Buffer for request
952 * @length: Length of reply.
954 * Create a request and queue it on the given endpoint. This is useful as
955 * an internal method of sending replies to certain control requests, etc.
957 static int s3c_hsotg_send_reply(struct s3c_hsotg
*hsotg
,
958 struct s3c_hsotg_ep
*ep
,
962 struct usb_request
*req
;
965 dev_dbg(hsotg
->dev
, "%s: buff %p, len %d\n", __func__
, buff
, length
);
967 req
= s3c_hsotg_ep_alloc_request(&ep
->ep
, GFP_ATOMIC
);
968 hsotg
->ep0_reply
= req
;
970 dev_warn(hsotg
->dev
, "%s: cannot alloc req\n", __func__
);
974 req
->buf
= hsotg
->ep0_buff
;
975 req
->length
= length
;
976 req
->zero
= 1; /* always do zero-length final transfer */
977 req
->complete
= s3c_hsotg_complete_oursetup
;
980 memcpy(req
->buf
, buff
, length
);
984 ret
= s3c_hsotg_ep_queue(&ep
->ep
, req
, GFP_ATOMIC
);
986 dev_warn(hsotg
->dev
, "%s: cannot queue req\n", __func__
);
994 * s3c_hsotg_process_req_status - process request GET_STATUS
995 * @hsotg: The device state
996 * @ctrl: USB control request
998 static int s3c_hsotg_process_req_status(struct s3c_hsotg
*hsotg
,
999 struct usb_ctrlrequest
*ctrl
)
1001 struct s3c_hsotg_ep
*ep0
= &hsotg
->eps
[0];
1002 struct s3c_hsotg_ep
*ep
;
1006 dev_dbg(hsotg
->dev
, "%s: USB_REQ_GET_STATUS\n", __func__
);
1009 dev_warn(hsotg
->dev
, "%s: direction out?\n", __func__
);
1013 switch (ctrl
->bRequestType
& USB_RECIP_MASK
) {
1014 case USB_RECIP_DEVICE
:
1015 reply
= cpu_to_le16(0); /* bit 0 => self powered,
1016 * bit 1 => remote wakeup */
1019 case USB_RECIP_INTERFACE
:
1020 /* currently, the data result should be zero */
1021 reply
= cpu_to_le16(0);
1024 case USB_RECIP_ENDPOINT
:
1025 ep
= ep_from_windex(hsotg
, le16_to_cpu(ctrl
->wIndex
));
1029 reply
= cpu_to_le16(ep
->halted
? 1 : 0);
1036 if (le16_to_cpu(ctrl
->wLength
) != 2)
1039 ret
= s3c_hsotg_send_reply(hsotg
, ep0
, &reply
, 2);
1041 dev_err(hsotg
->dev
, "%s: failed to send reply\n", __func__
);
1048 static int s3c_hsotg_ep_sethalt(struct usb_ep
*ep
, int value
);
1051 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
1052 * @hsotg: The device state
1053 * @ctrl: USB control request
1055 static int s3c_hsotg_process_req_feature(struct s3c_hsotg
*hsotg
,
1056 struct usb_ctrlrequest
*ctrl
)
1058 bool set
= (ctrl
->bRequest
== USB_REQ_SET_FEATURE
);
1059 struct s3c_hsotg_ep
*ep
;
1061 dev_dbg(hsotg
->dev
, "%s: %s_FEATURE\n",
1062 __func__
, set
? "SET" : "CLEAR");
1064 if (ctrl
->bRequestType
== USB_RECIP_ENDPOINT
) {
1065 ep
= ep_from_windex(hsotg
, le16_to_cpu(ctrl
->wIndex
));
1067 dev_dbg(hsotg
->dev
, "%s: no endpoint for 0x%04x\n",
1068 __func__
, le16_to_cpu(ctrl
->wIndex
));
1072 switch (le16_to_cpu(ctrl
->wValue
)) {
1073 case USB_ENDPOINT_HALT
:
1074 s3c_hsotg_ep_sethalt(&ep
->ep
, set
);
1081 return -ENOENT
; /* currently only deal with endpoint */
1087 * s3c_hsotg_process_control - process a control request
1088 * @hsotg: The device state
1089 * @ctrl: The control request received
1091 * The controller has received the SETUP phase of a control request, and
1092 * needs to work out what to do next (and whether to pass it on to the
1095 static void s3c_hsotg_process_control(struct s3c_hsotg
*hsotg
,
1096 struct usb_ctrlrequest
*ctrl
)
1098 struct s3c_hsotg_ep
*ep0
= &hsotg
->eps
[0];
1104 dev_dbg(hsotg
->dev
, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
1105 ctrl
->bRequest
, ctrl
->bRequestType
,
1106 ctrl
->wValue
, ctrl
->wLength
);
1108 /* record the direction of the request, for later use when enquing
1109 * packets onto EP0. */
1111 ep0
->dir_in
= (ctrl
->bRequestType
& USB_DIR_IN
) ? 1 : 0;
1112 dev_dbg(hsotg
->dev
, "ctrl: dir_in=%d\n", ep0
->dir_in
);
1114 /* if we've no data with this request, then the last part of the
1115 * transaction is going to implicitly be IN. */
1116 if (ctrl
->wLength
== 0)
1119 if ((ctrl
->bRequestType
& USB_TYPE_MASK
) == USB_TYPE_STANDARD
) {
1120 switch (ctrl
->bRequest
) {
1121 case USB_REQ_SET_ADDRESS
:
1122 dcfg
= readl(hsotg
->regs
+ S3C_DCFG
);
1123 dcfg
&= ~S3C_DCFG_DevAddr_MASK
;
1124 dcfg
|= ctrl
->wValue
<< S3C_DCFG_DevAddr_SHIFT
;
1125 writel(dcfg
, hsotg
->regs
+ S3C_DCFG
);
1127 dev_info(hsotg
->dev
, "new address %d\n", ctrl
->wValue
);
1129 ret
= s3c_hsotg_send_reply(hsotg
, ep0
, NULL
, 0);
1132 case USB_REQ_GET_STATUS
:
1133 ret
= s3c_hsotg_process_req_status(hsotg
, ctrl
);
1136 case USB_REQ_CLEAR_FEATURE
:
1137 case USB_REQ_SET_FEATURE
:
1138 ret
= s3c_hsotg_process_req_feature(hsotg
, ctrl
);
1143 /* as a fallback, try delivering it to the driver to deal with */
1145 if (ret
== 0 && hsotg
->driver
) {
1146 ret
= hsotg
->driver
->setup(&hsotg
->gadget
, ctrl
);
1148 dev_dbg(hsotg
->dev
, "driver->setup() ret %d\n", ret
);
1153 /* need to generate zlp in reply or take data */
1154 /* todo - deal with any data we might be sent? */
1155 ret
= s3c_hsotg_send_reply(hsotg
, ep0
, NULL
, 0);
1159 /* the request is either unhandlable, or is not formatted correctly
1160 * so respond with a STALL for the status stage to indicate failure.
1167 dev_dbg(hsotg
->dev
, "ep0 stall (dir=%d)\n", ep0
->dir_in
);
1168 reg
= (ep0
->dir_in
) ? S3C_DIEPCTL0
: S3C_DOEPCTL0
;
1170 /* S3C_DxEPCTL_Stall will be cleared by EP once it has
1171 * taken effect, so no need to clear later. */
1173 ctrl
= readl(hsotg
->regs
+ reg
);
1174 ctrl
|= S3C_DxEPCTL_Stall
;
1175 ctrl
|= S3C_DxEPCTL_CNAK
;
1176 writel(ctrl
, hsotg
->regs
+ reg
);
1179 "written DxEPCTL=0x%08x to %08x (DxEPCTL=0x%08x)\n",
1180 ctrl
, reg
, readl(hsotg
->regs
+ reg
));
1182 /* don't believe we need to anything more to get the EP
1183 * to reply with a STALL packet */
1187 static void s3c_hsotg_enqueue_setup(struct s3c_hsotg
*hsotg
);
1190 * s3c_hsotg_complete_setup - completion of a setup transfer
1191 * @ep: The endpoint the request was on.
1192 * @req: The request completed.
1194 * Called on completion of any requests the driver itself submitted for
1197 static void s3c_hsotg_complete_setup(struct usb_ep
*ep
,
1198 struct usb_request
*req
)
1200 struct s3c_hsotg_ep
*hs_ep
= our_ep(ep
);
1201 struct s3c_hsotg
*hsotg
= hs_ep
->parent
;
1203 if (req
->status
< 0) {
1204 dev_dbg(hsotg
->dev
, "%s: failed %d\n", __func__
, req
->status
);
1208 if (req
->actual
== 0)
1209 s3c_hsotg_enqueue_setup(hsotg
);
1211 s3c_hsotg_process_control(hsotg
, req
->buf
);
1215 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
1216 * @hsotg: The device state.
1218 * Enqueue a request on EP0 if necessary to received any SETUP packets
1219 * received from the host.
1221 static void s3c_hsotg_enqueue_setup(struct s3c_hsotg
*hsotg
)
1223 struct usb_request
*req
= hsotg
->ctrl_req
;
1224 struct s3c_hsotg_req
*hs_req
= our_req(req
);
1227 dev_dbg(hsotg
->dev
, "%s: queueing setup request\n", __func__
);
1231 req
->buf
= hsotg
->ctrl_buff
;
1232 req
->complete
= s3c_hsotg_complete_setup
;
1234 if (!list_empty(&hs_req
->queue
)) {
1235 dev_dbg(hsotg
->dev
, "%s already queued???\n", __func__
);
1239 hsotg
->eps
[0].dir_in
= 0;
1241 ret
= s3c_hsotg_ep_queue(&hsotg
->eps
[0].ep
, req
, GFP_ATOMIC
);
1243 dev_err(hsotg
->dev
, "%s: failed queue (%d)\n", __func__
, ret
);
1244 /* Don't think there's much we can do other than watch the
1250 * get_ep_head - return the first request on the endpoint
1251 * @hs_ep: The controller endpoint to get
1253 * Get the first request on the endpoint.
1255 static struct s3c_hsotg_req
*get_ep_head(struct s3c_hsotg_ep
*hs_ep
)
1257 if (list_empty(&hs_ep
->queue
))
1260 return list_first_entry(&hs_ep
->queue
, struct s3c_hsotg_req
, queue
);
1264 * s3c_hsotg_complete_request - complete a request given to us
1265 * @hsotg: The device state.
1266 * @hs_ep: The endpoint the request was on.
1267 * @hs_req: The request to complete.
1268 * @result: The result code (0 => Ok, otherwise errno)
1270 * The given request has finished, so call the necessary completion
1271 * if it has one and then look to see if we can start a new request
1274 * Note, expects the ep to already be locked as appropriate.
1276 static void s3c_hsotg_complete_request(struct s3c_hsotg
*hsotg
,
1277 struct s3c_hsotg_ep
*hs_ep
,
1278 struct s3c_hsotg_req
*hs_req
,
1284 dev_dbg(hsotg
->dev
, "%s: nothing to complete?\n", __func__
);
1288 dev_dbg(hsotg
->dev
, "complete: ep %p %s, req %p, %d => %p\n",
1289 hs_ep
, hs_ep
->ep
.name
, hs_req
, result
, hs_req
->req
.complete
);
1291 /* only replace the status if we've not already set an error
1292 * from a previous transaction */
1294 if (hs_req
->req
.status
== -EINPROGRESS
)
1295 hs_req
->req
.status
= result
;
1298 list_del_init(&hs_req
->queue
);
1300 if (using_dma(hsotg
))
1301 s3c_hsotg_unmap_dma(hsotg
, hs_ep
, hs_req
);
1303 /* call the complete request with the locks off, just in case the
1304 * request tries to queue more work for this endpoint. */
1306 if (hs_req
->req
.complete
) {
1307 spin_unlock(&hs_ep
->lock
);
1308 hs_req
->req
.complete(&hs_ep
->ep
, &hs_req
->req
);
1309 spin_lock(&hs_ep
->lock
);
1312 /* Look to see if there is anything else to do. Note, the completion
1313 * of the previous request may have caused a new request to be started
1314 * so be careful when doing this. */
1316 if (!hs_ep
->req
&& result
>= 0) {
1317 restart
= !list_empty(&hs_ep
->queue
);
1319 hs_req
= get_ep_head(hs_ep
);
1320 s3c_hsotg_start_req(hsotg
, hs_ep
, hs_req
, false);
1326 * s3c_hsotg_complete_request_lock - complete a request given to us (locked)
1327 * @hsotg: The device state.
1328 * @hs_ep: The endpoint the request was on.
1329 * @hs_req: The request to complete.
1330 * @result: The result code (0 => Ok, otherwise errno)
1332 * See s3c_hsotg_complete_request(), but called with the endpoint's
1335 static void s3c_hsotg_complete_request_lock(struct s3c_hsotg
*hsotg
,
1336 struct s3c_hsotg_ep
*hs_ep
,
1337 struct s3c_hsotg_req
*hs_req
,
1340 unsigned long flags
;
1342 spin_lock_irqsave(&hs_ep
->lock
, flags
);
1343 s3c_hsotg_complete_request(hsotg
, hs_ep
, hs_req
, result
);
1344 spin_unlock_irqrestore(&hs_ep
->lock
, flags
);
1348 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
1349 * @hsotg: The device state.
1350 * @ep_idx: The endpoint index for the data
1351 * @size: The size of data in the fifo, in bytes
1353 * The FIFO status shows there is data to read from the FIFO for a given
1354 * endpoint, so sort out whether we need to read the data into a request
1355 * that has been made for that endpoint.
1357 static void s3c_hsotg_rx_data(struct s3c_hsotg
*hsotg
, int ep_idx
, int size
)
1359 struct s3c_hsotg_ep
*hs_ep
= &hsotg
->eps
[ep_idx
];
1360 struct s3c_hsotg_req
*hs_req
= hs_ep
->req
;
1361 void __iomem
*fifo
= hsotg
->regs
+ S3C_EPFIFO(ep_idx
);
1367 u32 epctl
= readl(hsotg
->regs
+ S3C_DOEPCTL(ep_idx
));
1370 dev_warn(hsotg
->dev
,
1371 "%s: FIFO %d bytes on ep%d but no req (DxEPCTl=0x%08x)\n",
1372 __func__
, size
, ep_idx
, epctl
);
1374 /* dump the data from the FIFO, we've nothing we can do */
1375 for (ptr
= 0; ptr
< size
; ptr
+= 4)
1381 spin_lock(&hs_ep
->lock
);
1384 read_ptr
= hs_req
->req
.actual
;
1385 max_req
= hs_req
->req
.length
- read_ptr
;
1387 dev_dbg(hsotg
->dev
, "%s: read %d/%d, done %d/%d\n",
1388 __func__
, to_read
, max_req
, read_ptr
, hs_req
->req
.length
);
1390 if (to_read
> max_req
) {
1391 /* more data appeared than we where willing
1392 * to deal with in this request.
1395 /* currently we don't deal this */
1399 hs_ep
->total_data
+= to_read
;
1400 hs_req
->req
.actual
+= to_read
;
1401 to_read
= DIV_ROUND_UP(to_read
, 4);
1403 /* note, we might over-write the buffer end by 3 bytes depending on
1404 * alignment of the data. */
1405 readsl(fifo
, hs_req
->req
.buf
+ read_ptr
, to_read
);
1407 spin_unlock(&hs_ep
->lock
);
1411 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
1412 * @hsotg: The device instance
1413 * @req: The request currently on this endpoint
1415 * Generate a zero-length IN packet request for terminating a SETUP
1418 * Note, since we don't write any data to the TxFIFO, then it is
1419 * currently believed that we do not need to wait for any space in
1422 static void s3c_hsotg_send_zlp(struct s3c_hsotg
*hsotg
,
1423 struct s3c_hsotg_req
*req
)
1428 dev_warn(hsotg
->dev
, "%s: no request?\n", __func__
);
1432 if (req
->req
.length
== 0) {
1433 hsotg
->eps
[0].sent_zlp
= 1;
1434 s3c_hsotg_enqueue_setup(hsotg
);
1438 hsotg
->eps
[0].dir_in
= 1;
1439 hsotg
->eps
[0].sent_zlp
= 1;
1441 dev_dbg(hsotg
->dev
, "sending zero-length packet\n");
1443 /* issue a zero-sized packet to terminate this */
1444 writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
1445 S3C_DxEPTSIZ_XferSize(0), hsotg
->regs
+ S3C_DIEPTSIZ(0));
1447 ctrl
= readl(hsotg
->regs
+ S3C_DIEPCTL0
);
1448 ctrl
|= S3C_DxEPCTL_CNAK
; /* clear NAK set by core */
1449 ctrl
|= S3C_DxEPCTL_EPEna
; /* ensure ep enabled */
1450 ctrl
|= S3C_DxEPCTL_USBActEp
;
1451 writel(ctrl
, hsotg
->regs
+ S3C_DIEPCTL0
);
1455 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1456 * @hsotg: The device instance
1457 * @epnum: The endpoint received from
1458 * @was_setup: Set if processing a SetupDone event.
1460 * The RXFIFO has delivered an OutDone event, which means that the data
1461 * transfer for an OUT endpoint has been completed, either by a short
1462 * packet or by the finish of a transfer.
1464 static void s3c_hsotg_handle_outdone(struct s3c_hsotg
*hsotg
,
1465 int epnum
, bool was_setup
)
1467 u32 epsize
= readl(hsotg
->regs
+ S3C_DOEPTSIZ(epnum
));
1468 struct s3c_hsotg_ep
*hs_ep
= &hsotg
->eps
[epnum
];
1469 struct s3c_hsotg_req
*hs_req
= hs_ep
->req
;
1470 struct usb_request
*req
= &hs_req
->req
;
1471 unsigned size_left
= S3C_DxEPTSIZ_XferSize_GET(epsize
);
1475 dev_dbg(hsotg
->dev
, "%s: no request active\n", __func__
);
1479 if (using_dma(hsotg
)) {
1482 /* Calculate the size of the transfer by checking how much
1483 * is left in the endpoint size register and then working it
1484 * out from the amount we loaded for the transfer.
1486 * We need to do this as DMA pointers are always 32bit aligned
1487 * so may overshoot/undershoot the transfer.
1490 size_done
= hs_ep
->size_loaded
- size_left
;
1491 size_done
+= hs_ep
->last_load
;
1493 req
->actual
= size_done
;
1496 /* if there is more request to do, schedule new transfer */
1497 if (req
->actual
< req
->length
&& size_left
== 0) {
1498 s3c_hsotg_start_req(hsotg
, hs_ep
, hs_req
, true);
1502 if (req
->actual
< req
->length
&& req
->short_not_ok
) {
1503 dev_dbg(hsotg
->dev
, "%s: got %d/%d (short not ok) => error\n",
1504 __func__
, req
->actual
, req
->length
);
1506 /* todo - what should we return here? there's no one else
1507 * even bothering to check the status. */
1511 if (!was_setup
&& req
->complete
!= s3c_hsotg_complete_setup
)
1512 s3c_hsotg_send_zlp(hsotg
, hs_req
);
1515 s3c_hsotg_complete_request_lock(hsotg
, hs_ep
, hs_req
, result
);
1519 * s3c_hsotg_read_frameno - read current frame number
1520 * @hsotg: The device instance
1522 * Return the current frame number
1524 static u32
s3c_hsotg_read_frameno(struct s3c_hsotg
*hsotg
)
1528 dsts
= readl(hsotg
->regs
+ S3C_DSTS
);
1529 dsts
&= S3C_DSTS_SOFFN_MASK
;
1530 dsts
>>= S3C_DSTS_SOFFN_SHIFT
;
1536 * s3c_hsotg_handle_rx - RX FIFO has data
1537 * @hsotg: The device instance
1539 * The IRQ handler has detected that the RX FIFO has some data in it
1540 * that requires processing, so find out what is in there and do the
1543 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1544 * chunks, so if you have x packets received on an endpoint you'll get x
1545 * FIFO events delivered, each with a packet's worth of data in it.
1547 * When using DMA, we should not be processing events from the RXFIFO
1548 * as the actual data should be sent to the memory directly and we turn
1549 * on the completion interrupts to get notifications of transfer completion.
1551 static void s3c_hsotg_handle_rx(struct s3c_hsotg
*hsotg
)
1553 u32 grxstsr
= readl(hsotg
->regs
+ S3C_GRXSTSP
);
1554 u32 epnum
, status
, size
;
1556 WARN_ON(using_dma(hsotg
));
1558 epnum
= grxstsr
& S3C_GRXSTS_EPNum_MASK
;
1559 status
= grxstsr
& S3C_GRXSTS_PktSts_MASK
;
1561 size
= grxstsr
& S3C_GRXSTS_ByteCnt_MASK
;
1562 size
>>= S3C_GRXSTS_ByteCnt_SHIFT
;
1565 dev_dbg(hsotg
->dev
, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1566 __func__
, grxstsr
, size
, epnum
);
1568 #define __status(x) ((x) >> S3C_GRXSTS_PktSts_SHIFT)
1570 switch (status
>> S3C_GRXSTS_PktSts_SHIFT
) {
1571 case __status(S3C_GRXSTS_PktSts_GlobalOutNAK
):
1572 dev_dbg(hsotg
->dev
, "GlobalOutNAK\n");
1575 case __status(S3C_GRXSTS_PktSts_OutDone
):
1576 dev_dbg(hsotg
->dev
, "OutDone (Frame=0x%08x)\n",
1577 s3c_hsotg_read_frameno(hsotg
));
1579 if (!using_dma(hsotg
))
1580 s3c_hsotg_handle_outdone(hsotg
, epnum
, false);
1583 case __status(S3C_GRXSTS_PktSts_SetupDone
):
1585 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1586 s3c_hsotg_read_frameno(hsotg
),
1587 readl(hsotg
->regs
+ S3C_DOEPCTL(0)));
1589 s3c_hsotg_handle_outdone(hsotg
, epnum
, true);
1592 case __status(S3C_GRXSTS_PktSts_OutRX
):
1593 s3c_hsotg_rx_data(hsotg
, epnum
, size
);
1596 case __status(S3C_GRXSTS_PktSts_SetupRX
):
1598 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1599 s3c_hsotg_read_frameno(hsotg
),
1600 readl(hsotg
->regs
+ S3C_DOEPCTL(0)));
1602 s3c_hsotg_rx_data(hsotg
, epnum
, size
);
1606 dev_warn(hsotg
->dev
, "%s: unknown status %08x\n",
1609 s3c_hsotg_dump(hsotg
);
1615 * s3c_hsotg_ep0_mps - turn max packet size into register setting
1616 * @mps: The maximum packet size in bytes.
1618 static u32
s3c_hsotg_ep0_mps(unsigned int mps
)
1622 return S3C_D0EPCTL_MPS_64
;
1624 return S3C_D0EPCTL_MPS_32
;
1626 return S3C_D0EPCTL_MPS_16
;
1628 return S3C_D0EPCTL_MPS_8
;
1631 /* bad max packet size, warn and return invalid result */
1637 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1638 * @hsotg: The driver state.
1639 * @ep: The index number of the endpoint
1640 * @mps: The maximum packet size in bytes
1642 * Configure the maximum packet size for the given endpoint, updating
1643 * the hardware control registers to reflect this.
1645 static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg
*hsotg
,
1646 unsigned int ep
, unsigned int mps
)
1648 struct s3c_hsotg_ep
*hs_ep
= &hsotg
->eps
[ep
];
1649 void __iomem
*regs
= hsotg
->regs
;
1654 /* EP0 is a special case */
1655 mpsval
= s3c_hsotg_ep0_mps(mps
);
1659 if (mps
>= S3C_DxEPCTL_MPS_LIMIT
+1)
1665 hs_ep
->ep
.maxpacket
= mps
;
1667 /* update both the in and out endpoint controldir_ registers, even
1668 * if one of the directions may not be in use. */
1670 reg
= readl(regs
+ S3C_DIEPCTL(ep
));
1671 reg
&= ~S3C_DxEPCTL_MPS_MASK
;
1673 writel(reg
, regs
+ S3C_DIEPCTL(ep
));
1675 reg
= readl(regs
+ S3C_DOEPCTL(ep
));
1676 reg
&= ~S3C_DxEPCTL_MPS_MASK
;
1678 writel(reg
, regs
+ S3C_DOEPCTL(ep
));
1683 dev_err(hsotg
->dev
, "ep%d: bad mps of %d\n", ep
, mps
);
1688 * s3c_hsotg_trytx - check to see if anything needs transmitting
1689 * @hsotg: The driver state
1690 * @hs_ep: The driver endpoint to check.
1692 * Check to see if there is a request that has data to send, and if so
1693 * make an attempt to write data into the FIFO.
1695 static int s3c_hsotg_trytx(struct s3c_hsotg
*hsotg
,
1696 struct s3c_hsotg_ep
*hs_ep
)
1698 struct s3c_hsotg_req
*hs_req
= hs_ep
->req
;
1700 if (!hs_ep
->dir_in
|| !hs_req
)
1703 if (hs_req
->req
.actual
< hs_req
->req
.length
) {
1704 dev_dbg(hsotg
->dev
, "trying to write more for ep%d\n",
1706 return s3c_hsotg_write_fifo(hsotg
, hs_ep
, hs_req
);
1713 * s3c_hsotg_complete_in - complete IN transfer
1714 * @hsotg: The device state.
1715 * @hs_ep: The endpoint that has just completed.
1717 * An IN transfer has been completed, update the transfer's state and then
1718 * call the relevant completion routines.
1720 static void s3c_hsotg_complete_in(struct s3c_hsotg
*hsotg
,
1721 struct s3c_hsotg_ep
*hs_ep
)
1723 struct s3c_hsotg_req
*hs_req
= hs_ep
->req
;
1724 u32 epsize
= readl(hsotg
->regs
+ S3C_DIEPTSIZ(hs_ep
->index
));
1725 int size_left
, size_done
;
1728 dev_dbg(hsotg
->dev
, "XferCompl but no req\n");
1732 /* Calculate the size of the transfer by checking how much is left
1733 * in the endpoint size register and then working it out from
1734 * the amount we loaded for the transfer.
1736 * We do this even for DMA, as the transfer may have incremented
1737 * past the end of the buffer (DMA transfers are always 32bit
1741 size_left
= S3C_DxEPTSIZ_XferSize_GET(epsize
);
1743 size_done
= hs_ep
->size_loaded
- size_left
;
1744 size_done
+= hs_ep
->last_load
;
1746 if (hs_req
->req
.actual
!= size_done
)
1747 dev_dbg(hsotg
->dev
, "%s: adjusting size done %d => %d\n",
1748 __func__
, hs_req
->req
.actual
, size_done
);
1750 hs_req
->req
.actual
= size_done
;
1752 /* if we did all of the transfer, and there is more data left
1753 * around, then try restarting the rest of the request */
1755 if (!size_left
&& hs_req
->req
.actual
< hs_req
->req
.length
) {
1756 dev_dbg(hsotg
->dev
, "%s trying more for req...\n", __func__
);
1757 s3c_hsotg_start_req(hsotg
, hs_ep
, hs_req
, true);
1759 s3c_hsotg_complete_request_lock(hsotg
, hs_ep
, hs_req
, 0);
1763 * s3c_hsotg_epint - handle an in/out endpoint interrupt
1764 * @hsotg: The driver state
1765 * @idx: The index for the endpoint (0..15)
1766 * @dir_in: Set if this is an IN endpoint
1768 * Process and clear any interrupt pending for an individual endpoint
1770 static void s3c_hsotg_epint(struct s3c_hsotg
*hsotg
, unsigned int idx
,
1773 struct s3c_hsotg_ep
*hs_ep
= &hsotg
->eps
[idx
];
1774 u32 epint_reg
= dir_in
? S3C_DIEPINT(idx
) : S3C_DOEPINT(idx
);
1775 u32 epctl_reg
= dir_in
? S3C_DIEPCTL(idx
) : S3C_DOEPCTL(idx
);
1776 u32 epsiz_reg
= dir_in
? S3C_DIEPTSIZ(idx
) : S3C_DOEPTSIZ(idx
);
1780 ints
= readl(hsotg
->regs
+ epint_reg
);
1782 dev_dbg(hsotg
->dev
, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1783 __func__
, idx
, dir_in
? "in" : "out", ints
);
1785 if (ints
& S3C_DxEPINT_XferCompl
) {
1787 "%s: XferCompl: DxEPCTL=0x%08x, DxEPTSIZ=%08x\n",
1788 __func__
, readl(hsotg
->regs
+ epctl_reg
),
1789 readl(hsotg
->regs
+ epsiz_reg
));
1791 /* we get OutDone from the FIFO, so we only need to look
1792 * at completing IN requests here */
1794 s3c_hsotg_complete_in(hsotg
, hs_ep
);
1796 if (idx
== 0 && !hs_ep
->req
)
1797 s3c_hsotg_enqueue_setup(hsotg
);
1798 } else if (using_dma(hsotg
)) {
1799 /* We're using DMA, we need to fire an OutDone here
1800 * as we ignore the RXFIFO. */
1802 s3c_hsotg_handle_outdone(hsotg
, idx
, false);
1805 clear
|= S3C_DxEPINT_XferCompl
;
1808 if (ints
& S3C_DxEPINT_EPDisbld
) {
1809 dev_dbg(hsotg
->dev
, "%s: EPDisbld\n", __func__
);
1810 clear
|= S3C_DxEPINT_EPDisbld
;
1813 if (ints
& S3C_DxEPINT_AHBErr
) {
1814 dev_dbg(hsotg
->dev
, "%s: AHBErr\n", __func__
);
1815 clear
|= S3C_DxEPINT_AHBErr
;
1818 if (ints
& S3C_DxEPINT_Setup
) { /* Setup or Timeout */
1819 dev_dbg(hsotg
->dev
, "%s: Setup/Timeout\n", __func__
);
1821 if (using_dma(hsotg
) && idx
== 0) {
1822 /* this is the notification we've received a
1823 * setup packet. In non-DMA mode we'd get this
1824 * from the RXFIFO, instead we need to process
1825 * the setup here. */
1830 s3c_hsotg_handle_outdone(hsotg
, 0, true);
1833 clear
|= S3C_DxEPINT_Setup
;
1836 if (ints
& S3C_DxEPINT_Back2BackSetup
) {
1837 dev_dbg(hsotg
->dev
, "%s: B2BSetup/INEPNakEff\n", __func__
);
1838 clear
|= S3C_DxEPINT_Back2BackSetup
;
1842 /* not sure if this is important, but we'll clear it anyway
1844 if (ints
& S3C_DIEPMSK_INTknTXFEmpMsk
) {
1845 dev_dbg(hsotg
->dev
, "%s: ep%d: INTknTXFEmpMsk\n",
1847 clear
|= S3C_DIEPMSK_INTknTXFEmpMsk
;
1850 /* this probably means something bad is happening */
1851 if (ints
& S3C_DIEPMSK_INTknEPMisMsk
) {
1852 dev_warn(hsotg
->dev
, "%s: ep%d: INTknEP\n",
1854 clear
|= S3C_DIEPMSK_INTknEPMisMsk
;
1857 /* FIFO has space or is empty (see GAHBCFG) */
1858 if (hsotg
->dedicated_fifos
&&
1859 ints
& S3C_DIEPMSK_TxFIFOEmpty
) {
1860 dev_dbg(hsotg
->dev
, "%s: ep%d: TxFIFOEmpty\n",
1862 s3c_hsotg_trytx(hsotg
, hs_ep
);
1863 clear
|= S3C_DIEPMSK_TxFIFOEmpty
;
1867 writel(clear
, hsotg
->regs
+ epint_reg
);
1871 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
1872 * @hsotg: The device state.
1874 * Handle updating the device settings after the enumeration phase has
1877 static void s3c_hsotg_irq_enumdone(struct s3c_hsotg
*hsotg
)
1879 u32 dsts
= readl(hsotg
->regs
+ S3C_DSTS
);
1880 int ep0_mps
= 0, ep_mps
;
1882 /* This should signal the finish of the enumeration phase
1883 * of the USB handshaking, so we should now know what rate
1884 * we connected at. */
1886 dev_dbg(hsotg
->dev
, "EnumDone (DSTS=0x%08x)\n", dsts
);
1888 /* note, since we're limited by the size of transfer on EP0, and
1889 * it seems IN transfers must be a even number of packets we do
1890 * not advertise a 64byte MPS on EP0. */
1892 /* catch both EnumSpd_FS and EnumSpd_FS48 */
1893 switch (dsts
& S3C_DSTS_EnumSpd_MASK
) {
1894 case S3C_DSTS_EnumSpd_FS
:
1895 case S3C_DSTS_EnumSpd_FS48
:
1896 hsotg
->gadget
.speed
= USB_SPEED_FULL
;
1897 dev_info(hsotg
->dev
, "new device is full-speed\n");
1899 ep0_mps
= EP0_MPS_LIMIT
;
1903 case S3C_DSTS_EnumSpd_HS
:
1904 dev_info(hsotg
->dev
, "new device is high-speed\n");
1905 hsotg
->gadget
.speed
= USB_SPEED_HIGH
;
1907 ep0_mps
= EP0_MPS_LIMIT
;
1911 case S3C_DSTS_EnumSpd_LS
:
1912 hsotg
->gadget
.speed
= USB_SPEED_LOW
;
1913 dev_info(hsotg
->dev
, "new device is low-speed\n");
1915 /* note, we don't actually support LS in this driver at the
1916 * moment, and the documentation seems to imply that it isn't
1917 * supported by the PHYs on some of the devices.
1922 /* we should now know the maximum packet size for an
1923 * endpoint, so set the endpoints to a default value. */
1927 s3c_hsotg_set_ep_maxpacket(hsotg
, 0, ep0_mps
);
1928 for (i
= 1; i
< S3C_HSOTG_EPS
; i
++)
1929 s3c_hsotg_set_ep_maxpacket(hsotg
, i
, ep_mps
);
1932 /* ensure after enumeration our EP0 is active */
1934 s3c_hsotg_enqueue_setup(hsotg
);
1936 dev_dbg(hsotg
->dev
, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
1937 readl(hsotg
->regs
+ S3C_DIEPCTL0
),
1938 readl(hsotg
->regs
+ S3C_DOEPCTL0
));
1942 * kill_all_requests - remove all requests from the endpoint's queue
1943 * @hsotg: The device state.
1944 * @ep: The endpoint the requests may be on.
1945 * @result: The result code to use.
1946 * @force: Force removal of any current requests
1948 * Go through the requests on the given endpoint and mark them
1949 * completed with the given result code.
1951 static void kill_all_requests(struct s3c_hsotg
*hsotg
,
1952 struct s3c_hsotg_ep
*ep
,
1953 int result
, bool force
)
1955 struct s3c_hsotg_req
*req
, *treq
;
1956 unsigned long flags
;
1958 spin_lock_irqsave(&ep
->lock
, flags
);
1960 list_for_each_entry_safe(req
, treq
, &ep
->queue
, queue
) {
1961 /* currently, we can't do much about an already
1962 * running request on an in endpoint */
1964 if (ep
->req
== req
&& ep
->dir_in
&& !force
)
1967 s3c_hsotg_complete_request(hsotg
, ep
, req
,
1971 spin_unlock_irqrestore(&ep
->lock
, flags
);
1974 #define call_gadget(_hs, _entry) \
1975 if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
1976 (_hs)->driver && (_hs)->driver->_entry) \
1977 (_hs)->driver->_entry(&(_hs)->gadget);
1980 * s3c_hsotg_disconnect_irq - disconnect irq service
1981 * @hsotg: The device state.
1983 * A disconnect IRQ has been received, meaning that the host has
1984 * lost contact with the bus. Remove all current transactions
1985 * and signal the gadget driver that this has happened.
1987 static void s3c_hsotg_disconnect_irq(struct s3c_hsotg
*hsotg
)
1991 for (ep
= 0; ep
< S3C_HSOTG_EPS
; ep
++)
1992 kill_all_requests(hsotg
, &hsotg
->eps
[ep
], -ESHUTDOWN
, true);
1994 call_gadget(hsotg
, disconnect
);
1998 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
1999 * @hsotg: The device state:
2000 * @periodic: True if this is a periodic FIFO interrupt
2002 static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg
*hsotg
, bool periodic
)
2004 struct s3c_hsotg_ep
*ep
;
2007 /* look through for any more data to transmit */
2009 for (epno
= 0; epno
< S3C_HSOTG_EPS
; epno
++) {
2010 ep
= &hsotg
->eps
[epno
];
2015 if ((periodic
&& !ep
->periodic
) ||
2016 (!periodic
&& ep
->periodic
))
2019 ret
= s3c_hsotg_trytx(hsotg
, ep
);
2025 static struct s3c_hsotg
*our_hsotg
;
2027 /* IRQ flags which will trigger a retry around the IRQ loop */
2028 #define IRQ_RETRY_MASK (S3C_GINTSTS_NPTxFEmp | \
2029 S3C_GINTSTS_PTxFEmp | \
2033 * s3c_hsotg_irq - handle device interrupt
2034 * @irq: The IRQ number triggered
2035 * @pw: The pw value when registered the handler.
2037 static irqreturn_t
s3c_hsotg_irq(int irq
, void *pw
)
2039 struct s3c_hsotg
*hsotg
= pw
;
2040 int retry_count
= 8;
2045 gintsts
= readl(hsotg
->regs
+ S3C_GINTSTS
);
2046 gintmsk
= readl(hsotg
->regs
+ S3C_GINTMSK
);
2048 dev_dbg(hsotg
->dev
, "%s: %08x %08x (%08x) retry %d\n",
2049 __func__
, gintsts
, gintsts
& gintmsk
, gintmsk
, retry_count
);
2053 if (gintsts
& S3C_GINTSTS_OTGInt
) {
2054 u32 otgint
= readl(hsotg
->regs
+ S3C_GOTGINT
);
2056 dev_info(hsotg
->dev
, "OTGInt: %08x\n", otgint
);
2058 writel(otgint
, hsotg
->regs
+ S3C_GOTGINT
);
2059 writel(S3C_GINTSTS_OTGInt
, hsotg
->regs
+ S3C_GINTSTS
);
2062 if (gintsts
& S3C_GINTSTS_DisconnInt
) {
2063 dev_dbg(hsotg
->dev
, "%s: DisconnInt\n", __func__
);
2064 writel(S3C_GINTSTS_DisconnInt
, hsotg
->regs
+ S3C_GINTSTS
);
2066 s3c_hsotg_disconnect_irq(hsotg
);
2069 if (gintsts
& S3C_GINTSTS_SessReqInt
) {
2070 dev_dbg(hsotg
->dev
, "%s: SessReqInt\n", __func__
);
2071 writel(S3C_GINTSTS_SessReqInt
, hsotg
->regs
+ S3C_GINTSTS
);
2074 if (gintsts
& S3C_GINTSTS_EnumDone
) {
2075 s3c_hsotg_irq_enumdone(hsotg
);
2076 writel(S3C_GINTSTS_EnumDone
, hsotg
->regs
+ S3C_GINTSTS
);
2079 if (gintsts
& S3C_GINTSTS_ConIDStsChng
) {
2080 dev_dbg(hsotg
->dev
, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
2081 readl(hsotg
->regs
+ S3C_DSTS
),
2082 readl(hsotg
->regs
+ S3C_GOTGCTL
));
2084 writel(S3C_GINTSTS_ConIDStsChng
, hsotg
->regs
+ S3C_GINTSTS
);
2087 if (gintsts
& (S3C_GINTSTS_OEPInt
| S3C_GINTSTS_IEPInt
)) {
2088 u32 daint
= readl(hsotg
->regs
+ S3C_DAINT
);
2089 u32 daint_out
= daint
>> S3C_DAINT_OutEP_SHIFT
;
2090 u32 daint_in
= daint
& ~(daint_out
<< S3C_DAINT_OutEP_SHIFT
);
2093 dev_dbg(hsotg
->dev
, "%s: daint=%08x\n", __func__
, daint
);
2095 for (ep
= 0; ep
< 15 && daint_out
; ep
++, daint_out
>>= 1) {
2097 s3c_hsotg_epint(hsotg
, ep
, 0);
2100 for (ep
= 0; ep
< 15 && daint_in
; ep
++, daint_in
>>= 1) {
2102 s3c_hsotg_epint(hsotg
, ep
, 1);
2105 writel(daint
, hsotg
->regs
+ S3C_DAINT
);
2106 writel(gintsts
& (S3C_GINTSTS_OEPInt
| S3C_GINTSTS_IEPInt
),
2107 hsotg
->regs
+ S3C_GINTSTS
);
2110 if (gintsts
& S3C_GINTSTS_USBRst
) {
2111 dev_info(hsotg
->dev
, "%s: USBRst\n", __func__
);
2112 dev_dbg(hsotg
->dev
, "GNPTXSTS=%08x\n",
2113 readl(hsotg
->regs
+ S3C_GNPTXSTS
));
2115 kill_all_requests(hsotg
, &hsotg
->eps
[0], -ECONNRESET
, true);
2117 /* it seems after a reset we can end up with a situation
2118 * where the TXFIFO still has data in it... the docs
2119 * suggest resetting all the fifos, so use the init_fifo
2120 * code to relayout and flush the fifos.
2123 s3c_hsotg_init_fifo(hsotg
);
2125 s3c_hsotg_enqueue_setup(hsotg
);
2127 writel(S3C_GINTSTS_USBRst
, hsotg
->regs
+ S3C_GINTSTS
);
2130 /* check both FIFOs */
2132 if (gintsts
& S3C_GINTSTS_NPTxFEmp
) {
2133 dev_dbg(hsotg
->dev
, "NPTxFEmp\n");
2135 /* Disable the interrupt to stop it happening again
2136 * unless one of these endpoint routines decides that
2137 * it needs re-enabling */
2139 s3c_hsotg_disable_gsint(hsotg
, S3C_GINTSTS_NPTxFEmp
);
2140 s3c_hsotg_irq_fifoempty(hsotg
, false);
2142 writel(S3C_GINTSTS_NPTxFEmp
, hsotg
->regs
+ S3C_GINTSTS
);
2145 if (gintsts
& S3C_GINTSTS_PTxFEmp
) {
2146 dev_dbg(hsotg
->dev
, "PTxFEmp\n");
2148 /* See note in S3C_GINTSTS_NPTxFEmp */
2150 s3c_hsotg_disable_gsint(hsotg
, S3C_GINTSTS_PTxFEmp
);
2151 s3c_hsotg_irq_fifoempty(hsotg
, true);
2153 writel(S3C_GINTSTS_PTxFEmp
, hsotg
->regs
+ S3C_GINTSTS
);
2156 if (gintsts
& S3C_GINTSTS_RxFLvl
) {
2157 /* note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2158 * we need to retry s3c_hsotg_handle_rx if this is still
2161 s3c_hsotg_handle_rx(hsotg
);
2162 writel(S3C_GINTSTS_RxFLvl
, hsotg
->regs
+ S3C_GINTSTS
);
2165 if (gintsts
& S3C_GINTSTS_ModeMis
) {
2166 dev_warn(hsotg
->dev
, "warning, mode mismatch triggered\n");
2167 writel(S3C_GINTSTS_ModeMis
, hsotg
->regs
+ S3C_GINTSTS
);
2170 if (gintsts
& S3C_GINTSTS_USBSusp
) {
2171 dev_info(hsotg
->dev
, "S3C_GINTSTS_USBSusp\n");
2172 writel(S3C_GINTSTS_USBSusp
, hsotg
->regs
+ S3C_GINTSTS
);
2174 call_gadget(hsotg
, suspend
);
2177 if (gintsts
& S3C_GINTSTS_WkUpInt
) {
2178 dev_info(hsotg
->dev
, "S3C_GINTSTS_WkUpIn\n");
2179 writel(S3C_GINTSTS_WkUpInt
, hsotg
->regs
+ S3C_GINTSTS
);
2181 call_gadget(hsotg
, resume
);
2184 if (gintsts
& S3C_GINTSTS_ErlySusp
) {
2185 dev_dbg(hsotg
->dev
, "S3C_GINTSTS_ErlySusp\n");
2186 writel(S3C_GINTSTS_ErlySusp
, hsotg
->regs
+ S3C_GINTSTS
);
2189 /* these next two seem to crop-up occasionally causing the core
2190 * to shutdown the USB transfer, so try clearing them and logging
2191 * the occurrence. */
2193 if (gintsts
& S3C_GINTSTS_GOUTNakEff
) {
2194 dev_info(hsotg
->dev
, "GOUTNakEff triggered\n");
2196 s3c_hsotg_dump(hsotg
);
2198 writel(S3C_DCTL_CGOUTNak
, hsotg
->regs
+ S3C_DCTL
);
2199 writel(S3C_GINTSTS_GOUTNakEff
, hsotg
->regs
+ S3C_GINTSTS
);
2202 if (gintsts
& S3C_GINTSTS_GINNakEff
) {
2203 dev_info(hsotg
->dev
, "GINNakEff triggered\n");
2205 s3c_hsotg_dump(hsotg
);
2207 writel(S3C_DCTL_CGNPInNAK
, hsotg
->regs
+ S3C_DCTL
);
2208 writel(S3C_GINTSTS_GINNakEff
, hsotg
->regs
+ S3C_GINTSTS
);
2211 /* if we've had fifo events, we should try and go around the
2212 * loop again to see if there's any point in returning yet. */
2214 if (gintsts
& IRQ_RETRY_MASK
&& --retry_count
> 0)
2221 * s3c_hsotg_ep_enable - enable the given endpoint
2222 * @ep: The USB endpint to configure
2223 * @desc: The USB endpoint descriptor to configure with.
2225 * This is called from the USB gadget code's usb_ep_enable().
2227 static int s3c_hsotg_ep_enable(struct usb_ep
*ep
,
2228 const struct usb_endpoint_descriptor
*desc
)
2230 struct s3c_hsotg_ep
*hs_ep
= our_ep(ep
);
2231 struct s3c_hsotg
*hsotg
= hs_ep
->parent
;
2232 unsigned long flags
;
2233 int index
= hs_ep
->index
;
2241 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2242 __func__
, ep
->name
, desc
->bEndpointAddress
, desc
->bmAttributes
,
2243 desc
->wMaxPacketSize
, desc
->bInterval
);
2245 /* not to be called for EP0 */
2246 WARN_ON(index
== 0);
2248 dir_in
= (desc
->bEndpointAddress
& USB_ENDPOINT_DIR_MASK
) ? 1 : 0;
2249 if (dir_in
!= hs_ep
->dir_in
) {
2250 dev_err(hsotg
->dev
, "%s: direction mismatch!\n", __func__
);
2254 mps
= le16_to_cpu(desc
->wMaxPacketSize
);
2256 /* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
2258 epctrl_reg
= dir_in
? S3C_DIEPCTL(index
) : S3C_DOEPCTL(index
);
2259 epctrl
= readl(hsotg
->regs
+ epctrl_reg
);
2261 dev_dbg(hsotg
->dev
, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2262 __func__
, epctrl
, epctrl_reg
);
2264 spin_lock_irqsave(&hs_ep
->lock
, flags
);
2266 epctrl
&= ~(S3C_DxEPCTL_EPType_MASK
| S3C_DxEPCTL_MPS_MASK
);
2267 epctrl
|= S3C_DxEPCTL_MPS(mps
);
2269 /* mark the endpoint as active, otherwise the core may ignore
2270 * transactions entirely for this endpoint */
2271 epctrl
|= S3C_DxEPCTL_USBActEp
;
2273 /* set the NAK status on the endpoint, otherwise we might try and
2274 * do something with data that we've yet got a request to process
2275 * since the RXFIFO will take data for an endpoint even if the
2276 * size register hasn't been set.
2279 epctrl
|= S3C_DxEPCTL_SNAK
;
2281 /* update the endpoint state */
2282 hs_ep
->ep
.maxpacket
= mps
;
2284 /* default, set to non-periodic */
2285 hs_ep
->periodic
= 0;
2287 switch (desc
->bmAttributes
& USB_ENDPOINT_XFERTYPE_MASK
) {
2288 case USB_ENDPOINT_XFER_ISOC
:
2289 dev_err(hsotg
->dev
, "no current ISOC support\n");
2293 case USB_ENDPOINT_XFER_BULK
:
2294 epctrl
|= S3C_DxEPCTL_EPType_Bulk
;
2297 case USB_ENDPOINT_XFER_INT
:
2299 /* Allocate our TxFNum by simply using the index
2300 * of the endpoint for the moment. We could do
2301 * something better if the host indicates how
2302 * many FIFOs we are expecting to use. */
2304 hs_ep
->periodic
= 1;
2305 epctrl
|= S3C_DxEPCTL_TxFNum(index
);
2308 epctrl
|= S3C_DxEPCTL_EPType_Intterupt
;
2311 case USB_ENDPOINT_XFER_CONTROL
:
2312 epctrl
|= S3C_DxEPCTL_EPType_Control
;
2316 /* if the hardware has dedicated fifos, we must give each IN EP
2317 * a unique tx-fifo even if it is non-periodic.
2319 if (dir_in
&& hsotg
->dedicated_fifos
)
2320 epctrl
|= S3C_DxEPCTL_TxFNum(index
);
2322 /* for non control endpoints, set PID to D0 */
2324 epctrl
|= S3C_DxEPCTL_SetD0PID
;
2326 dev_dbg(hsotg
->dev
, "%s: write DxEPCTL=0x%08x\n",
2329 writel(epctrl
, hsotg
->regs
+ epctrl_reg
);
2330 dev_dbg(hsotg
->dev
, "%s: read DxEPCTL=0x%08x\n",
2331 __func__
, readl(hsotg
->regs
+ epctrl_reg
));
2333 /* enable the endpoint interrupt */
2334 s3c_hsotg_ctrl_epint(hsotg
, index
, dir_in
, 1);
2337 spin_unlock_irqrestore(&hs_ep
->lock
, flags
);
2341 static int s3c_hsotg_ep_disable(struct usb_ep
*ep
)
2343 struct s3c_hsotg_ep
*hs_ep
= our_ep(ep
);
2344 struct s3c_hsotg
*hsotg
= hs_ep
->parent
;
2345 int dir_in
= hs_ep
->dir_in
;
2346 int index
= hs_ep
->index
;
2347 unsigned long flags
;
2351 dev_info(hsotg
->dev
, "%s(ep %p)\n", __func__
, ep
);
2353 if (ep
== &hsotg
->eps
[0].ep
) {
2354 dev_err(hsotg
->dev
, "%s: called for ep0\n", __func__
);
2358 epctrl_reg
= dir_in
? S3C_DIEPCTL(index
) : S3C_DOEPCTL(index
);
2360 /* terminate all requests with shutdown */
2361 kill_all_requests(hsotg
, hs_ep
, -ESHUTDOWN
, false);
2363 spin_lock_irqsave(&hs_ep
->lock
, flags
);
2365 ctrl
= readl(hsotg
->regs
+ epctrl_reg
);
2366 ctrl
&= ~S3C_DxEPCTL_EPEna
;
2367 ctrl
&= ~S3C_DxEPCTL_USBActEp
;
2368 ctrl
|= S3C_DxEPCTL_SNAK
;
2370 dev_dbg(hsotg
->dev
, "%s: DxEPCTL=0x%08x\n", __func__
, ctrl
);
2371 writel(ctrl
, hsotg
->regs
+ epctrl_reg
);
2373 /* disable endpoint interrupts */
2374 s3c_hsotg_ctrl_epint(hsotg
, hs_ep
->index
, hs_ep
->dir_in
, 0);
2376 spin_unlock_irqrestore(&hs_ep
->lock
, flags
);
2381 * on_list - check request is on the given endpoint
2382 * @ep: The endpoint to check.
2383 * @test: The request to test if it is on the endpoint.
2385 static bool on_list(struct s3c_hsotg_ep
*ep
, struct s3c_hsotg_req
*test
)
2387 struct s3c_hsotg_req
*req
, *treq
;
2389 list_for_each_entry_safe(req
, treq
, &ep
->queue
, queue
) {
2397 static int s3c_hsotg_ep_dequeue(struct usb_ep
*ep
, struct usb_request
*req
)
2399 struct s3c_hsotg_req
*hs_req
= our_req(req
);
2400 struct s3c_hsotg_ep
*hs_ep
= our_ep(ep
);
2401 struct s3c_hsotg
*hs
= hs_ep
->parent
;
2402 unsigned long flags
;
2404 dev_info(hs
->dev
, "ep_dequeue(%p,%p)\n", ep
, req
);
2406 if (hs_req
== hs_ep
->req
) {
2407 dev_dbg(hs
->dev
, "%s: already in progress\n", __func__
);
2408 return -EINPROGRESS
;
2411 spin_lock_irqsave(&hs_ep
->lock
, flags
);
2413 if (!on_list(hs_ep
, hs_req
)) {
2414 spin_unlock_irqrestore(&hs_ep
->lock
, flags
);
2418 s3c_hsotg_complete_request(hs
, hs_ep
, hs_req
, -ECONNRESET
);
2419 spin_unlock_irqrestore(&hs_ep
->lock
, flags
);
2424 static int s3c_hsotg_ep_sethalt(struct usb_ep
*ep
, int value
)
2426 struct s3c_hsotg_ep
*hs_ep
= our_ep(ep
);
2427 struct s3c_hsotg
*hs
= hs_ep
->parent
;
2428 int index
= hs_ep
->index
;
2429 unsigned long irqflags
;
2433 dev_info(hs
->dev
, "%s(ep %p %s, %d)\n", __func__
, ep
, ep
->name
, value
);
2435 spin_lock_irqsave(&hs_ep
->lock
, irqflags
);
2437 /* write both IN and OUT control registers */
2439 epreg
= S3C_DIEPCTL(index
);
2440 epctl
= readl(hs
->regs
+ epreg
);
2443 epctl
|= S3C_DxEPCTL_Stall
;
2445 epctl
&= ~S3C_DxEPCTL_Stall
;
2447 writel(epctl
, hs
->regs
+ epreg
);
2449 epreg
= S3C_DOEPCTL(index
);
2450 epctl
= readl(hs
->regs
+ epreg
);
2453 epctl
|= S3C_DxEPCTL_Stall
;
2455 epctl
&= ~S3C_DxEPCTL_Stall
;
2457 writel(epctl
, hs
->regs
+ epreg
);
2459 spin_unlock_irqrestore(&hs_ep
->lock
, irqflags
);
2464 static struct usb_ep_ops s3c_hsotg_ep_ops
= {
2465 .enable
= s3c_hsotg_ep_enable
,
2466 .disable
= s3c_hsotg_ep_disable
,
2467 .alloc_request
= s3c_hsotg_ep_alloc_request
,
2468 .free_request
= s3c_hsotg_ep_free_request
,
2469 .queue
= s3c_hsotg_ep_queue
,
2470 .dequeue
= s3c_hsotg_ep_dequeue
,
2471 .set_halt
= s3c_hsotg_ep_sethalt
,
2472 /* note, don't believe we have any call for the fifo routines */
2476 * s3c_hsotg_corereset - issue softreset to the core
2477 * @hsotg: The device state
2479 * Issue a soft reset to the core, and await the core finishing it.
2481 static int s3c_hsotg_corereset(struct s3c_hsotg
*hsotg
)
2486 dev_dbg(hsotg
->dev
, "resetting core\n");
2488 /* issue soft reset */
2489 writel(S3C_GRSTCTL_CSftRst
, hsotg
->regs
+ S3C_GRSTCTL
);
2493 grstctl
= readl(hsotg
->regs
+ S3C_GRSTCTL
);
2494 } while (!(grstctl
& S3C_GRSTCTL_CSftRst
) && timeout
-- > 0);
2496 if (!(grstctl
& S3C_GRSTCTL_CSftRst
)) {
2497 dev_err(hsotg
->dev
, "Failed to get CSftRst asserted\n");
2504 u32 grstctl
= readl(hsotg
->regs
+ S3C_GRSTCTL
);
2506 if (timeout
-- < 0) {
2507 dev_info(hsotg
->dev
,
2508 "%s: reset failed, GRSTCTL=%08x\n",
2513 if (grstctl
& S3C_GRSTCTL_CSftRst
)
2516 if (!(grstctl
& S3C_GRSTCTL_AHBIdle
))
2519 break; /* reset done */
2522 dev_dbg(hsotg
->dev
, "reset successful\n");
2526 int usb_gadget_probe_driver(struct usb_gadget_driver
*driver
,
2527 int (*bind
)(struct usb_gadget
*))
2529 struct s3c_hsotg
*hsotg
= our_hsotg
;
2533 printk(KERN_ERR
"%s: called with no device\n", __func__
);
2538 dev_err(hsotg
->dev
, "%s: no driver\n", __func__
);
2542 if (driver
->speed
!= USB_SPEED_HIGH
&&
2543 driver
->speed
!= USB_SPEED_FULL
) {
2544 dev_err(hsotg
->dev
, "%s: bad speed\n", __func__
);
2547 if (!bind
|| !driver
->setup
) {
2548 dev_err(hsotg
->dev
, "%s: missing entry points\n", __func__
);
2552 WARN_ON(hsotg
->driver
);
2554 driver
->driver
.bus
= NULL
;
2555 hsotg
->driver
= driver
;
2556 hsotg
->gadget
.dev
.driver
= &driver
->driver
;
2557 hsotg
->gadget
.dev
.dma_mask
= hsotg
->dev
->dma_mask
;
2558 hsotg
->gadget
.speed
= USB_SPEED_UNKNOWN
;
2560 ret
= device_add(&hsotg
->gadget
.dev
);
2562 dev_err(hsotg
->dev
, "failed to register gadget device\n");
2566 ret
= bind(&hsotg
->gadget
);
2568 dev_err(hsotg
->dev
, "failed bind %s\n", driver
->driver
.name
);
2570 hsotg
->gadget
.dev
.driver
= NULL
;
2571 hsotg
->driver
= NULL
;
2575 /* we must now enable ep0 ready for host detection and then
2576 * set configuration. */
2578 s3c_hsotg_corereset(hsotg
);
2580 /* set the PLL on, remove the HNP/SRP and set the PHY */
2581 writel(S3C_GUSBCFG_PHYIf16
| S3C_GUSBCFG_TOutCal(7) |
2582 (0x5 << 10), hsotg
->regs
+ S3C_GUSBCFG
);
2584 /* looks like soft-reset changes state of FIFOs */
2585 s3c_hsotg_init_fifo(hsotg
);
2587 __orr32(hsotg
->regs
+ S3C_DCTL
, S3C_DCTL_SftDiscon
);
2589 writel(1 << 18 | S3C_DCFG_DevSpd_HS
, hsotg
->regs
+ S3C_DCFG
);
2591 writel(S3C_GINTSTS_DisconnInt
| S3C_GINTSTS_SessReqInt
|
2592 S3C_GINTSTS_ConIDStsChng
| S3C_GINTSTS_USBRst
|
2593 S3C_GINTSTS_EnumDone
| S3C_GINTSTS_OTGInt
|
2594 S3C_GINTSTS_USBSusp
| S3C_GINTSTS_WkUpInt
|
2595 S3C_GINTSTS_GOUTNakEff
| S3C_GINTSTS_GINNakEff
|
2596 S3C_GINTSTS_ErlySusp
,
2597 hsotg
->regs
+ S3C_GINTMSK
);
2599 if (using_dma(hsotg
))
2600 writel(S3C_GAHBCFG_GlblIntrEn
| S3C_GAHBCFG_DMAEn
|
2601 S3C_GAHBCFG_HBstLen_Incr4
,
2602 hsotg
->regs
+ S3C_GAHBCFG
);
2604 writel(S3C_GAHBCFG_GlblIntrEn
, hsotg
->regs
+ S3C_GAHBCFG
);
2606 /* Enabling INTknTXFEmpMsk here seems to be a big mistake, we end
2607 * up being flooded with interrupts if the host is polling the
2608 * endpoint to try and read data. */
2610 writel(S3C_DIEPMSK_TimeOUTMsk
| S3C_DIEPMSK_AHBErrMsk
|
2611 S3C_DIEPMSK_INTknEPMisMsk
|
2612 S3C_DIEPMSK_EPDisbldMsk
| S3C_DIEPMSK_XferComplMsk
|
2613 ((hsotg
->dedicated_fifos
) ? S3C_DIEPMSK_TxFIFOEmpty
: 0),
2614 hsotg
->regs
+ S3C_DIEPMSK
);
2616 /* don't need XferCompl, we get that from RXFIFO in slave mode. In
2617 * DMA mode we may need this. */
2618 writel(S3C_DOEPMSK_SetupMsk
| S3C_DOEPMSK_AHBErrMsk
|
2619 S3C_DOEPMSK_EPDisbldMsk
|
2620 (using_dma(hsotg
) ? (S3C_DIEPMSK_XferComplMsk
|
2621 S3C_DIEPMSK_TimeOUTMsk
) : 0),
2622 hsotg
->regs
+ S3C_DOEPMSK
);
2624 writel(0, hsotg
->regs
+ S3C_DAINTMSK
);
2626 dev_info(hsotg
->dev
, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2627 readl(hsotg
->regs
+ S3C_DIEPCTL0
),
2628 readl(hsotg
->regs
+ S3C_DOEPCTL0
));
2630 /* enable in and out endpoint interrupts */
2631 s3c_hsotg_en_gsint(hsotg
, S3C_GINTSTS_OEPInt
| S3C_GINTSTS_IEPInt
);
2633 /* Enable the RXFIFO when in slave mode, as this is how we collect
2634 * the data. In DMA mode, we get events from the FIFO but also
2635 * things we cannot process, so do not use it. */
2636 if (!using_dma(hsotg
))
2637 s3c_hsotg_en_gsint(hsotg
, S3C_GINTSTS_RxFLvl
);
2639 /* Enable interrupts for EP0 in and out */
2640 s3c_hsotg_ctrl_epint(hsotg
, 0, 0, 1);
2641 s3c_hsotg_ctrl_epint(hsotg
, 0, 1, 1);
2643 __orr32(hsotg
->regs
+ S3C_DCTL
, S3C_DCTL_PWROnPrgDone
);
2644 udelay(10); /* see openiboot */
2645 __bic32(hsotg
->regs
+ S3C_DCTL
, S3C_DCTL_PWROnPrgDone
);
2647 dev_info(hsotg
->dev
, "DCTL=0x%08x\n", readl(hsotg
->regs
+ S3C_DCTL
));
2649 /* S3C_DxEPCTL_USBActEp says RO in manual, but seems to be set by
2650 writing to the EPCTL register.. */
2652 /* set to read 1 8byte packet */
2653 writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
2654 S3C_DxEPTSIZ_XferSize(8), hsotg
->regs
+ DOEPTSIZ0
);
2656 writel(s3c_hsotg_ep0_mps(hsotg
->eps
[0].ep
.maxpacket
) |
2657 S3C_DxEPCTL_CNAK
| S3C_DxEPCTL_EPEna
|
2658 S3C_DxEPCTL_USBActEp
,
2659 hsotg
->regs
+ S3C_DOEPCTL0
);
2661 /* enable, but don't activate EP0in */
2662 writel(s3c_hsotg_ep0_mps(hsotg
->eps
[0].ep
.maxpacket
) |
2663 S3C_DxEPCTL_USBActEp
, hsotg
->regs
+ S3C_DIEPCTL0
);
2665 s3c_hsotg_enqueue_setup(hsotg
);
2667 dev_info(hsotg
->dev
, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2668 readl(hsotg
->regs
+ S3C_DIEPCTL0
),
2669 readl(hsotg
->regs
+ S3C_DOEPCTL0
));
2671 /* clear global NAKs */
2672 writel(S3C_DCTL_CGOUTNak
| S3C_DCTL_CGNPInNAK
,
2673 hsotg
->regs
+ S3C_DCTL
);
2675 /* must be at-least 3ms to allow bus to see disconnect */
2678 /* remove the soft-disconnect and let's go */
2679 __bic32(hsotg
->regs
+ S3C_DCTL
, S3C_DCTL_SftDiscon
);
2681 /* report to the user, and return */
2683 dev_info(hsotg
->dev
, "bound driver %s\n", driver
->driver
.name
);
2687 hsotg
->driver
= NULL
;
2688 hsotg
->gadget
.dev
.driver
= NULL
;
2691 EXPORT_SYMBOL(usb_gadget_probe_driver
);
2693 int usb_gadget_unregister_driver(struct usb_gadget_driver
*driver
)
2695 struct s3c_hsotg
*hsotg
= our_hsotg
;
2701 if (!driver
|| driver
!= hsotg
->driver
|| !driver
->unbind
)
2704 /* all endpoints should be shutdown */
2705 for (ep
= 0; ep
< S3C_HSOTG_EPS
; ep
++)
2706 s3c_hsotg_ep_disable(&hsotg
->eps
[ep
].ep
);
2708 call_gadget(hsotg
, disconnect
);
2710 driver
->unbind(&hsotg
->gadget
);
2711 hsotg
->driver
= NULL
;
2712 hsotg
->gadget
.speed
= USB_SPEED_UNKNOWN
;
2714 device_del(&hsotg
->gadget
.dev
);
2716 dev_info(hsotg
->dev
, "unregistered gadget driver '%s'\n",
2717 driver
->driver
.name
);
2721 EXPORT_SYMBOL(usb_gadget_unregister_driver
);
2723 static int s3c_hsotg_gadget_getframe(struct usb_gadget
*gadget
)
2725 return s3c_hsotg_read_frameno(to_hsotg(gadget
));
2728 static struct usb_gadget_ops s3c_hsotg_gadget_ops
= {
2729 .get_frame
= s3c_hsotg_gadget_getframe
,
2733 * s3c_hsotg_initep - initialise a single endpoint
2734 * @hsotg: The device state.
2735 * @hs_ep: The endpoint to be initialised.
2736 * @epnum: The endpoint number
2738 * Initialise the given endpoint (as part of the probe and device state
2739 * creation) to give to the gadget driver. Setup the endpoint name, any
2740 * direction information and other state that may be required.
2742 static void __devinit
s3c_hsotg_initep(struct s3c_hsotg
*hsotg
,
2743 struct s3c_hsotg_ep
*hs_ep
,
2751 else if ((epnum
% 2) == 0) {
2758 hs_ep
->index
= epnum
;
2760 snprintf(hs_ep
->name
, sizeof(hs_ep
->name
), "ep%d%s", epnum
, dir
);
2762 INIT_LIST_HEAD(&hs_ep
->queue
);
2763 INIT_LIST_HEAD(&hs_ep
->ep
.ep_list
);
2765 spin_lock_init(&hs_ep
->lock
);
2767 /* add to the list of endpoints known by the gadget driver */
2769 list_add_tail(&hs_ep
->ep
.ep_list
, &hsotg
->gadget
.ep_list
);
2771 hs_ep
->parent
= hsotg
;
2772 hs_ep
->ep
.name
= hs_ep
->name
;
2773 hs_ep
->ep
.maxpacket
= epnum
? 512 : EP0_MPS_LIMIT
;
2774 hs_ep
->ep
.ops
= &s3c_hsotg_ep_ops
;
2776 /* Read the FIFO size for the Periodic TX FIFO, even if we're
2777 * an OUT endpoint, we may as well do this if in future the
2778 * code is changed to make each endpoint's direction changeable.
2781 ptxfifo
= readl(hsotg
->regs
+ S3C_DPTXFSIZn(epnum
));
2782 hs_ep
->fifo_size
= S3C_DPTXFSIZn_DPTxFSize_GET(ptxfifo
) * 4;
2784 /* if we're using dma, we need to set the next-endpoint pointer
2785 * to be something valid.
2788 if (using_dma(hsotg
)) {
2789 u32 next
= S3C_DxEPCTL_NextEp((epnum
+ 1) % 15);
2790 writel(next
, hsotg
->regs
+ S3C_DIEPCTL(epnum
));
2791 writel(next
, hsotg
->regs
+ S3C_DOEPCTL(epnum
));
2796 * s3c_hsotg_otgreset - reset the OtG phy block
2797 * @hsotg: The host state.
2799 * Power up the phy, set the basic configuration and start the PHY.
2801 static void s3c_hsotg_otgreset(struct s3c_hsotg
*hsotg
)
2803 struct clk
*xusbxti
;
2806 pwr
= readl(S3C_PHYPWR
);
2808 writel(pwr
, S3C_PHYPWR
);
2811 osc
= hsotg
->plat
->is_osc
? S3C_PHYCLK_EXT_OSC
: 0;
2813 xusbxti
= clk_get(hsotg
->dev
, "xusbxti");
2814 if (xusbxti
&& !IS_ERR(xusbxti
)) {
2815 switch (clk_get_rate(xusbxti
)) {
2817 osc
|= S3C_PHYCLK_CLKSEL_12M
;
2820 osc
|= S3C_PHYCLK_CLKSEL_24M
;
2824 /* default reference clock */
2830 writel(osc
| 0x10, S3C_PHYCLK
);
2832 /* issue a full set of resets to the otg and core */
2834 writel(S3C_RSTCON_PHY
, S3C_RSTCON
);
2835 udelay(20); /* at-least 10uS */
2836 writel(0, S3C_RSTCON
);
2840 static void s3c_hsotg_init(struct s3c_hsotg
*hsotg
)
2844 /* unmask subset of endpoint interrupts */
2846 writel(S3C_DIEPMSK_TimeOUTMsk
| S3C_DIEPMSK_AHBErrMsk
|
2847 S3C_DIEPMSK_EPDisbldMsk
| S3C_DIEPMSK_XferComplMsk
,
2848 hsotg
->regs
+ S3C_DIEPMSK
);
2850 writel(S3C_DOEPMSK_SetupMsk
| S3C_DOEPMSK_AHBErrMsk
|
2851 S3C_DOEPMSK_EPDisbldMsk
| S3C_DOEPMSK_XferComplMsk
,
2852 hsotg
->regs
+ S3C_DOEPMSK
);
2854 writel(0, hsotg
->regs
+ S3C_DAINTMSK
);
2856 /* Be in disconnected state until gadget is registered */
2857 __orr32(hsotg
->regs
+ S3C_DCTL
, S3C_DCTL_SftDiscon
);
2860 /* post global nak until we're ready */
2861 writel(S3C_DCTL_SGNPInNAK
| S3C_DCTL_SGOUTNak
,
2862 hsotg
->regs
+ S3C_DCTL
);
2867 dev_info(hsotg
->dev
, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2868 readl(hsotg
->regs
+ S3C_GRXFSIZ
),
2869 readl(hsotg
->regs
+ S3C_GNPTXFSIZ
));
2871 s3c_hsotg_init_fifo(hsotg
);
2873 /* set the PLL on, remove the HNP/SRP and set the PHY */
2874 writel(S3C_GUSBCFG_PHYIf16
| S3C_GUSBCFG_TOutCal(7) | (0x5 << 10),
2875 hsotg
->regs
+ S3C_GUSBCFG
);
2877 writel(using_dma(hsotg
) ? S3C_GAHBCFG_DMAEn
: 0x0,
2878 hsotg
->regs
+ S3C_GAHBCFG
);
2880 /* check hardware configuration */
2882 cfg4
= readl(hsotg
->regs
+ 0x50);
2883 hsotg
->dedicated_fifos
= (cfg4
>> 25) & 1;
2885 dev_info(hsotg
->dev
, "%s fifos\n",
2886 hsotg
->dedicated_fifos
? "dedicated" : "shared");
2889 static void s3c_hsotg_dump(struct s3c_hsotg
*hsotg
)
2891 struct device
*dev
= hsotg
->dev
;
2892 void __iomem
*regs
= hsotg
->regs
;
2896 dev_info(dev
, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
2897 readl(regs
+ S3C_DCFG
), readl(regs
+ S3C_DCTL
),
2898 readl(regs
+ S3C_DIEPMSK
));
2900 dev_info(dev
, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
2901 readl(regs
+ S3C_GAHBCFG
), readl(regs
+ 0x44));
2903 dev_info(dev
, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2904 readl(regs
+ S3C_GRXFSIZ
), readl(regs
+ S3C_GNPTXFSIZ
));
2906 /* show periodic fifo settings */
2908 for (idx
= 1; idx
<= 15; idx
++) {
2909 val
= readl(regs
+ S3C_DPTXFSIZn(idx
));
2910 dev_info(dev
, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx
,
2911 val
>> S3C_DPTXFSIZn_DPTxFSize_SHIFT
,
2912 val
& S3C_DPTXFSIZn_DPTxFStAddr_MASK
);
2915 for (idx
= 0; idx
< 15; idx
++) {
2917 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx
,
2918 readl(regs
+ S3C_DIEPCTL(idx
)),
2919 readl(regs
+ S3C_DIEPTSIZ(idx
)),
2920 readl(regs
+ S3C_DIEPDMA(idx
)));
2922 val
= readl(regs
+ S3C_DOEPCTL(idx
));
2924 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
2925 idx
, readl(regs
+ S3C_DOEPCTL(idx
)),
2926 readl(regs
+ S3C_DOEPTSIZ(idx
)),
2927 readl(regs
+ S3C_DOEPDMA(idx
)));
2931 dev_info(dev
, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
2932 readl(regs
+ S3C_DVBUSDIS
), readl(regs
+ S3C_DVBUSPULSE
));
2937 * state_show - debugfs: show overall driver and device state.
2938 * @seq: The seq file to write to.
2939 * @v: Unused parameter.
2941 * This debugfs entry shows the overall state of the hardware and
2942 * some general information about each of the endpoints available
2945 static int state_show(struct seq_file
*seq
, void *v
)
2947 struct s3c_hsotg
*hsotg
= seq
->private;
2948 void __iomem
*regs
= hsotg
->regs
;
2951 seq_printf(seq
, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
2952 readl(regs
+ S3C_DCFG
),
2953 readl(regs
+ S3C_DCTL
),
2954 readl(regs
+ S3C_DSTS
));
2956 seq_printf(seq
, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
2957 readl(regs
+ S3C_DIEPMSK
), readl(regs
+ S3C_DOEPMSK
));
2959 seq_printf(seq
, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
2960 readl(regs
+ S3C_GINTMSK
),
2961 readl(regs
+ S3C_GINTSTS
));
2963 seq_printf(seq
, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
2964 readl(regs
+ S3C_DAINTMSK
),
2965 readl(regs
+ S3C_DAINT
));
2967 seq_printf(seq
, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
2968 readl(regs
+ S3C_GNPTXSTS
),
2969 readl(regs
+ S3C_GRXSTSR
));
2971 seq_printf(seq
, "\nEndpoint status:\n");
2973 for (idx
= 0; idx
< 15; idx
++) {
2976 in
= readl(regs
+ S3C_DIEPCTL(idx
));
2977 out
= readl(regs
+ S3C_DOEPCTL(idx
));
2979 seq_printf(seq
, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
2982 in
= readl(regs
+ S3C_DIEPTSIZ(idx
));
2983 out
= readl(regs
+ S3C_DOEPTSIZ(idx
));
2985 seq_printf(seq
, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
2988 seq_printf(seq
, "\n");
2994 static int state_open(struct inode
*inode
, struct file
*file
)
2996 return single_open(file
, state_show
, inode
->i_private
);
2999 static const struct file_operations state_fops
= {
3000 .owner
= THIS_MODULE
,
3003 .llseek
= seq_lseek
,
3004 .release
= single_release
,
3008 * fifo_show - debugfs: show the fifo information
3009 * @seq: The seq_file to write data to.
3010 * @v: Unused parameter.
3012 * Show the FIFO information for the overall fifo and all the
3013 * periodic transmission FIFOs.
3015 static int fifo_show(struct seq_file
*seq
, void *v
)
3017 struct s3c_hsotg
*hsotg
= seq
->private;
3018 void __iomem
*regs
= hsotg
->regs
;
3022 seq_printf(seq
, "Non-periodic FIFOs:\n");
3023 seq_printf(seq
, "RXFIFO: Size %d\n", readl(regs
+ S3C_GRXFSIZ
));
3025 val
= readl(regs
+ S3C_GNPTXFSIZ
);
3026 seq_printf(seq
, "NPTXFIFO: Size %d, Start 0x%08x\n",
3027 val
>> S3C_GNPTXFSIZ_NPTxFDep_SHIFT
,
3028 val
& S3C_GNPTXFSIZ_NPTxFStAddr_MASK
);
3030 seq_printf(seq
, "\nPeriodic TXFIFOs:\n");
3032 for (idx
= 1; idx
<= 15; idx
++) {
3033 val
= readl(regs
+ S3C_DPTXFSIZn(idx
));
3035 seq_printf(seq
, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx
,
3036 val
>> S3C_DPTXFSIZn_DPTxFSize_SHIFT
,
3037 val
& S3C_DPTXFSIZn_DPTxFStAddr_MASK
);
3043 static int fifo_open(struct inode
*inode
, struct file
*file
)
3045 return single_open(file
, fifo_show
, inode
->i_private
);
3048 static const struct file_operations fifo_fops
= {
3049 .owner
= THIS_MODULE
,
3052 .llseek
= seq_lseek
,
3053 .release
= single_release
,
3057 static const char *decode_direction(int is_in
)
3059 return is_in
? "in" : "out";
3063 * ep_show - debugfs: show the state of an endpoint.
3064 * @seq: The seq_file to write data to.
3065 * @v: Unused parameter.
3067 * This debugfs entry shows the state of the given endpoint (one is
3068 * registered for each available).
3070 static int ep_show(struct seq_file
*seq
, void *v
)
3072 struct s3c_hsotg_ep
*ep
= seq
->private;
3073 struct s3c_hsotg
*hsotg
= ep
->parent
;
3074 struct s3c_hsotg_req
*req
;
3075 void __iomem
*regs
= hsotg
->regs
;
3076 int index
= ep
->index
;
3077 int show_limit
= 15;
3078 unsigned long flags
;
3080 seq_printf(seq
, "Endpoint index %d, named %s, dir %s:\n",
3081 ep
->index
, ep
->ep
.name
, decode_direction(ep
->dir_in
));
3083 /* first show the register state */
3085 seq_printf(seq
, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3086 readl(regs
+ S3C_DIEPCTL(index
)),
3087 readl(regs
+ S3C_DOEPCTL(index
)));
3089 seq_printf(seq
, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3090 readl(regs
+ S3C_DIEPDMA(index
)),
3091 readl(regs
+ S3C_DOEPDMA(index
)));
3093 seq_printf(seq
, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3094 readl(regs
+ S3C_DIEPINT(index
)),
3095 readl(regs
+ S3C_DOEPINT(index
)));
3097 seq_printf(seq
, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3098 readl(regs
+ S3C_DIEPTSIZ(index
)),
3099 readl(regs
+ S3C_DOEPTSIZ(index
)));
3101 seq_printf(seq
, "\n");
3102 seq_printf(seq
, "mps %d\n", ep
->ep
.maxpacket
);
3103 seq_printf(seq
, "total_data=%ld\n", ep
->total_data
);
3105 seq_printf(seq
, "request list (%p,%p):\n",
3106 ep
->queue
.next
, ep
->queue
.prev
);
3108 spin_lock_irqsave(&ep
->lock
, flags
);
3110 list_for_each_entry(req
, &ep
->queue
, queue
) {
3111 if (--show_limit
< 0) {
3112 seq_printf(seq
, "not showing more requests...\n");
3116 seq_printf(seq
, "%c req %p: %d bytes @%p, ",
3117 req
== ep
->req
? '*' : ' ',
3118 req
, req
->req
.length
, req
->req
.buf
);
3119 seq_printf(seq
, "%d done, res %d\n",
3120 req
->req
.actual
, req
->req
.status
);
3123 spin_unlock_irqrestore(&ep
->lock
, flags
);
3128 static int ep_open(struct inode
*inode
, struct file
*file
)
3130 return single_open(file
, ep_show
, inode
->i_private
);
3133 static const struct file_operations ep_fops
= {
3134 .owner
= THIS_MODULE
,
3137 .llseek
= seq_lseek
,
3138 .release
= single_release
,
3142 * s3c_hsotg_create_debug - create debugfs directory and files
3143 * @hsotg: The driver state
3145 * Create the debugfs files to allow the user to get information
3146 * about the state of the system. The directory name is created
3147 * with the same name as the device itself, in case we end up
3148 * with multiple blocks in future systems.
3150 static void __devinit
s3c_hsotg_create_debug(struct s3c_hsotg
*hsotg
)
3152 struct dentry
*root
;
3155 root
= debugfs_create_dir(dev_name(hsotg
->dev
), NULL
);
3156 hsotg
->debug_root
= root
;
3158 dev_err(hsotg
->dev
, "cannot create debug root\n");
3162 /* create general state file */
3164 hsotg
->debug_file
= debugfs_create_file("state", 0444, root
,
3165 hsotg
, &state_fops
);
3167 if (IS_ERR(hsotg
->debug_file
))
3168 dev_err(hsotg
->dev
, "%s: failed to create state\n", __func__
);
3170 hsotg
->debug_fifo
= debugfs_create_file("fifo", 0444, root
,
3173 if (IS_ERR(hsotg
->debug_fifo
))
3174 dev_err(hsotg
->dev
, "%s: failed to create fifo\n", __func__
);
3176 /* create one file for each endpoint */
3178 for (epidx
= 0; epidx
< S3C_HSOTG_EPS
; epidx
++) {
3179 struct s3c_hsotg_ep
*ep
= &hsotg
->eps
[epidx
];
3181 ep
->debugfs
= debugfs_create_file(ep
->name
, 0444,
3182 root
, ep
, &ep_fops
);
3184 if (IS_ERR(ep
->debugfs
))
3185 dev_err(hsotg
->dev
, "failed to create %s debug file\n",
3191 * s3c_hsotg_delete_debug - cleanup debugfs entries
3192 * @hsotg: The driver state
3194 * Cleanup (remove) the debugfs files for use on module exit.
3196 static void __devexit
s3c_hsotg_delete_debug(struct s3c_hsotg
*hsotg
)
3200 for (epidx
= 0; epidx
< S3C_HSOTG_EPS
; epidx
++) {
3201 struct s3c_hsotg_ep
*ep
= &hsotg
->eps
[epidx
];
3202 debugfs_remove(ep
->debugfs
);
3205 debugfs_remove(hsotg
->debug_file
);
3206 debugfs_remove(hsotg
->debug_fifo
);
3207 debugfs_remove(hsotg
->debug_root
);
3211 * s3c_hsotg_gate - set the hardware gate for the block
3212 * @pdev: The device we bound to
3215 * Set the hardware gate setting into the block. If we end up on
3216 * something other than an S3C64XX, then we might need to change this
3217 * to using a platform data callback, or some other mechanism.
3219 static void s3c_hsotg_gate(struct platform_device
*pdev
, bool on
)
3221 unsigned long flags
;
3224 local_irq_save(flags
);
3226 others
= __raw_readl(S3C64XX_OTHERS
);
3228 others
|= S3C64XX_OTHERS_USBMASK
;
3230 others
&= ~S3C64XX_OTHERS_USBMASK
;
3231 __raw_writel(others
, S3C64XX_OTHERS
);
3233 local_irq_restore(flags
);
3236 static struct s3c_hsotg_plat s3c_hsotg_default_pdata
;
3238 static int __devinit
s3c_hsotg_probe(struct platform_device
*pdev
)
3240 struct s3c_hsotg_plat
*plat
= pdev
->dev
.platform_data
;
3241 struct device
*dev
= &pdev
->dev
;
3242 struct s3c_hsotg
*hsotg
;
3243 struct resource
*res
;
3248 plat
= &s3c_hsotg_default_pdata
;
3250 hsotg
= kzalloc(sizeof(struct s3c_hsotg
) +
3251 sizeof(struct s3c_hsotg_ep
) * S3C_HSOTG_EPS
,
3254 dev_err(dev
, "cannot get memory\n");
3261 hsotg
->clk
= clk_get(&pdev
->dev
, "otg");
3262 if (IS_ERR(hsotg
->clk
)) {
3263 dev_err(dev
, "cannot get otg clock\n");
3268 platform_set_drvdata(pdev
, hsotg
);
3270 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
3272 dev_err(dev
, "cannot find register resource 0\n");
3277 hsotg
->regs_res
= request_mem_region(res
->start
, resource_size(res
),
3279 if (!hsotg
->regs_res
) {
3280 dev_err(dev
, "cannot reserve registers\n");
3285 hsotg
->regs
= ioremap(res
->start
, resource_size(res
));
3287 dev_err(dev
, "cannot map registers\n");
3292 ret
= platform_get_irq(pdev
, 0);
3294 dev_err(dev
, "cannot find IRQ\n");
3300 ret
= request_irq(ret
, s3c_hsotg_irq
, 0, dev_name(dev
), hsotg
);
3302 dev_err(dev
, "cannot claim IRQ\n");
3306 dev_info(dev
, "regs %p, irq %d\n", hsotg
->regs
, hsotg
->irq
);
3308 device_initialize(&hsotg
->gadget
.dev
);
3310 dev_set_name(&hsotg
->gadget
.dev
, "gadget");
3312 hsotg
->gadget
.is_dualspeed
= 1;
3313 hsotg
->gadget
.ops
= &s3c_hsotg_gadget_ops
;
3314 hsotg
->gadget
.name
= dev_name(dev
);
3316 hsotg
->gadget
.dev
.parent
= dev
;
3317 hsotg
->gadget
.dev
.dma_mask
= dev
->dma_mask
;
3319 /* setup endpoint information */
3321 INIT_LIST_HEAD(&hsotg
->gadget
.ep_list
);
3322 hsotg
->gadget
.ep0
= &hsotg
->eps
[0].ep
;
3324 /* allocate EP0 request */
3326 hsotg
->ctrl_req
= s3c_hsotg_ep_alloc_request(&hsotg
->eps
[0].ep
,
3328 if (!hsotg
->ctrl_req
) {
3329 dev_err(dev
, "failed to allocate ctrl req\n");
3333 /* reset the system */
3335 clk_enable(hsotg
->clk
);
3337 s3c_hsotg_gate(pdev
, true);
3339 s3c_hsotg_otgreset(hsotg
);
3340 s3c_hsotg_corereset(hsotg
);
3341 s3c_hsotg_init(hsotg
);
3343 /* initialise the endpoints now the core has been initialised */
3344 for (epnum
= 0; epnum
< S3C_HSOTG_EPS
; epnum
++)
3345 s3c_hsotg_initep(hsotg
, &hsotg
->eps
[epnum
], epnum
);
3347 s3c_hsotg_create_debug(hsotg
);
3349 s3c_hsotg_dump(hsotg
);
3355 iounmap(hsotg
->regs
);
3358 release_resource(hsotg
->regs_res
);
3359 kfree(hsotg
->regs_res
);
3361 clk_put(hsotg
->clk
);
3367 static int __devexit
s3c_hsotg_remove(struct platform_device
*pdev
)
3369 struct s3c_hsotg
*hsotg
= platform_get_drvdata(pdev
);
3371 s3c_hsotg_delete_debug(hsotg
);
3373 usb_gadget_unregister_driver(hsotg
->driver
);
3375 free_irq(hsotg
->irq
, hsotg
);
3376 iounmap(hsotg
->regs
);
3378 release_resource(hsotg
->regs_res
);
3379 kfree(hsotg
->regs_res
);
3381 s3c_hsotg_gate(pdev
, false);
3383 clk_disable(hsotg
->clk
);
3384 clk_put(hsotg
->clk
);
3391 #define s3c_hsotg_suspend NULL
3392 #define s3c_hsotg_resume NULL
3395 static struct platform_driver s3c_hsotg_driver
= {
3397 .name
= "s3c-hsotg",
3398 .owner
= THIS_MODULE
,
3400 .probe
= s3c_hsotg_probe
,
3401 .remove
= __devexit_p(s3c_hsotg_remove
),
3402 .suspend
= s3c_hsotg_suspend
,
3403 .resume
= s3c_hsotg_resume
,
3406 static int __init
s3c_hsotg_modinit(void)
3408 return platform_driver_register(&s3c_hsotg_driver
);
3411 static void __exit
s3c_hsotg_modexit(void)
3413 platform_driver_unregister(&s3c_hsotg_driver
);
3416 module_init(s3c_hsotg_modinit
);
3417 module_exit(s3c_hsotg_modexit
);
3419 MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
3420 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
3421 MODULE_LICENSE("GPL");
3422 MODULE_ALIAS("platform:s3c-hsotg");