2 * Copyright (C) 2008 Red Hat. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/math64.h>
24 #include "free-space-cache.h"
25 #include "transaction.h"
27 #include "extent_io.h"
29 #define BITS_PER_BITMAP (PAGE_CACHE_SIZE * 8)
30 #define MAX_CACHE_BYTES_PER_GIG (32 * 1024)
32 static void recalculate_thresholds(struct btrfs_block_group_cache
34 static int link_free_space(struct btrfs_block_group_cache
*block_group
,
35 struct btrfs_free_space
*info
);
37 struct inode
*lookup_free_space_inode(struct btrfs_root
*root
,
38 struct btrfs_block_group_cache
39 *block_group
, struct btrfs_path
*path
)
42 struct btrfs_key location
;
43 struct btrfs_disk_key disk_key
;
44 struct btrfs_free_space_header
*header
;
45 struct extent_buffer
*leaf
;
46 struct inode
*inode
= NULL
;
49 spin_lock(&block_group
->lock
);
50 if (block_group
->inode
)
51 inode
= igrab(block_group
->inode
);
52 spin_unlock(&block_group
->lock
);
56 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
57 key
.offset
= block_group
->key
.objectid
;
60 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
64 btrfs_release_path(root
, path
);
65 return ERR_PTR(-ENOENT
);
68 leaf
= path
->nodes
[0];
69 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
70 struct btrfs_free_space_header
);
71 btrfs_free_space_key(leaf
, header
, &disk_key
);
72 btrfs_disk_key_to_cpu(&location
, &disk_key
);
73 btrfs_release_path(root
, path
);
75 inode
= btrfs_iget(root
->fs_info
->sb
, &location
, root
, NULL
);
77 return ERR_PTR(-ENOENT
);
80 if (is_bad_inode(inode
)) {
82 return ERR_PTR(-ENOENT
);
85 inode
->i_mapping
->flags
&= ~__GFP_FS
;
87 spin_lock(&block_group
->lock
);
88 if (!root
->fs_info
->closing
) {
89 block_group
->inode
= igrab(inode
);
90 block_group
->iref
= 1;
92 spin_unlock(&block_group
->lock
);
97 int create_free_space_inode(struct btrfs_root
*root
,
98 struct btrfs_trans_handle
*trans
,
99 struct btrfs_block_group_cache
*block_group
,
100 struct btrfs_path
*path
)
102 struct btrfs_key key
;
103 struct btrfs_disk_key disk_key
;
104 struct btrfs_free_space_header
*header
;
105 struct btrfs_inode_item
*inode_item
;
106 struct extent_buffer
*leaf
;
110 ret
= btrfs_find_free_objectid(trans
, root
, 0, &objectid
);
114 ret
= btrfs_insert_empty_inode(trans
, root
, path
, objectid
);
118 leaf
= path
->nodes
[0];
119 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
120 struct btrfs_inode_item
);
121 btrfs_item_key(leaf
, &disk_key
, path
->slots
[0]);
122 memset_extent_buffer(leaf
, 0, (unsigned long)inode_item
,
123 sizeof(*inode_item
));
124 btrfs_set_inode_generation(leaf
, inode_item
, trans
->transid
);
125 btrfs_set_inode_size(leaf
, inode_item
, 0);
126 btrfs_set_inode_nbytes(leaf
, inode_item
, 0);
127 btrfs_set_inode_uid(leaf
, inode_item
, 0);
128 btrfs_set_inode_gid(leaf
, inode_item
, 0);
129 btrfs_set_inode_mode(leaf
, inode_item
, S_IFREG
| 0600);
130 btrfs_set_inode_flags(leaf
, inode_item
, BTRFS_INODE_NOCOMPRESS
|
131 BTRFS_INODE_PREALLOC
| BTRFS_INODE_NODATASUM
);
132 btrfs_set_inode_nlink(leaf
, inode_item
, 1);
133 btrfs_set_inode_transid(leaf
, inode_item
, trans
->transid
);
134 btrfs_set_inode_block_group(leaf
, inode_item
,
135 block_group
->key
.objectid
);
136 btrfs_mark_buffer_dirty(leaf
);
137 btrfs_release_path(root
, path
);
139 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
140 key
.offset
= block_group
->key
.objectid
;
143 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
144 sizeof(struct btrfs_free_space_header
));
146 btrfs_release_path(root
, path
);
149 leaf
= path
->nodes
[0];
150 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
151 struct btrfs_free_space_header
);
152 memset_extent_buffer(leaf
, 0, (unsigned long)header
, sizeof(*header
));
153 btrfs_set_free_space_key(leaf
, header
, &disk_key
);
154 btrfs_mark_buffer_dirty(leaf
);
155 btrfs_release_path(root
, path
);
160 int btrfs_truncate_free_space_cache(struct btrfs_root
*root
,
161 struct btrfs_trans_handle
*trans
,
162 struct btrfs_path
*path
,
168 trans
->block_rsv
= root
->orphan_block_rsv
;
169 ret
= btrfs_block_rsv_check(trans
, root
,
170 root
->orphan_block_rsv
,
175 oldsize
= i_size_read(inode
);
176 btrfs_i_size_write(inode
, 0);
177 truncate_pagecache(inode
, oldsize
, 0);
180 * We don't need an orphan item because truncating the free space cache
181 * will never be split across transactions.
183 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
184 0, BTRFS_EXTENT_DATA_KEY
);
190 return btrfs_update_inode(trans
, root
, inode
);
193 static int readahead_cache(struct inode
*inode
)
195 struct file_ra_state
*ra
;
196 unsigned long last_index
;
198 ra
= kzalloc(sizeof(*ra
), GFP_NOFS
);
202 file_ra_state_init(ra
, inode
->i_mapping
);
203 last_index
= (i_size_read(inode
) - 1) >> PAGE_CACHE_SHIFT
;
205 page_cache_sync_readahead(inode
->i_mapping
, ra
, NULL
, 0, last_index
);
212 int load_free_space_cache(struct btrfs_fs_info
*fs_info
,
213 struct btrfs_block_group_cache
*block_group
)
215 struct btrfs_root
*root
= fs_info
->tree_root
;
217 struct btrfs_free_space_header
*header
;
218 struct extent_buffer
*leaf
;
220 struct btrfs_path
*path
;
221 u32
*checksums
= NULL
, *crc
;
222 char *disk_crcs
= NULL
;
223 struct btrfs_key key
;
224 struct list_head bitmaps
;
228 u64 used
= btrfs_block_group_used(&block_group
->item
);
229 u32 cur_crc
= ~(u32
)0;
231 unsigned long first_page_offset
;
236 * If we're unmounting then just return, since this does a search on the
237 * normal root and not the commit root and we could deadlock.
240 if (fs_info
->closing
)
244 * If this block group has been marked to be cleared for one reason or
245 * another then we can't trust the on disk cache, so just return.
247 spin_lock(&block_group
->lock
);
248 if (block_group
->disk_cache_state
!= BTRFS_DC_WRITTEN
) {
249 spin_unlock(&block_group
->lock
);
252 spin_unlock(&block_group
->lock
);
254 INIT_LIST_HEAD(&bitmaps
);
256 path
= btrfs_alloc_path();
260 inode
= lookup_free_space_inode(root
, block_group
, path
);
262 btrfs_free_path(path
);
266 /* Nothing in the space cache, goodbye */
267 if (!i_size_read(inode
)) {
268 btrfs_free_path(path
);
272 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
273 key
.offset
= block_group
->key
.objectid
;
276 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
278 btrfs_free_path(path
);
282 leaf
= path
->nodes
[0];
283 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
284 struct btrfs_free_space_header
);
285 num_entries
= btrfs_free_space_entries(leaf
, header
);
286 num_bitmaps
= btrfs_free_space_bitmaps(leaf
, header
);
287 generation
= btrfs_free_space_generation(leaf
, header
);
288 btrfs_free_path(path
);
290 if (BTRFS_I(inode
)->generation
!= generation
) {
291 printk(KERN_ERR
"btrfs: free space inode generation (%llu) did"
292 " not match free space cache generation (%llu) for "
293 "block group %llu\n",
294 (unsigned long long)BTRFS_I(inode
)->generation
,
295 (unsigned long long)generation
,
296 (unsigned long long)block_group
->key
.objectid
);
303 /* Setup everything for doing checksumming */
304 num_checksums
= i_size_read(inode
) / PAGE_CACHE_SIZE
;
305 checksums
= crc
= kzalloc(sizeof(u32
) * num_checksums
, GFP_NOFS
);
308 first_page_offset
= (sizeof(u32
) * num_checksums
) + sizeof(u64
);
309 disk_crcs
= kzalloc(first_page_offset
, GFP_NOFS
);
313 ret
= readahead_cache(inode
);
320 struct btrfs_free_space_entry
*entry
;
321 struct btrfs_free_space
*e
;
323 unsigned long offset
= 0;
324 unsigned long start_offset
= 0;
327 if (!num_entries
&& !num_bitmaps
)
331 start_offset
= first_page_offset
;
332 offset
= start_offset
;
335 page
= grab_cache_page(inode
->i_mapping
, index
);
341 if (!PageUptodate(page
)) {
342 btrfs_readpage(NULL
, page
);
344 if (!PageUptodate(page
)) {
346 page_cache_release(page
);
347 printk(KERN_ERR
"btrfs: error reading free "
348 "space cache: %llu\n",
350 block_group
->key
.objectid
);
359 memcpy(disk_crcs
, addr
, first_page_offset
);
360 gen
= addr
+ (sizeof(u32
) * num_checksums
);
361 if (*gen
!= BTRFS_I(inode
)->generation
) {
362 printk(KERN_ERR
"btrfs: space cache generation"
363 " (%llu) does not match inode (%llu) "
364 "for block group %llu\n",
365 (unsigned long long)*gen
,
367 BTRFS_I(inode
)->generation
,
369 block_group
->key
.objectid
);
372 page_cache_release(page
);
375 crc
= (u32
*)disk_crcs
;
377 entry
= addr
+ start_offset
;
379 /* First lets check our crc before we do anything fun */
381 cur_crc
= btrfs_csum_data(root
, addr
+ start_offset
, cur_crc
,
382 PAGE_CACHE_SIZE
- start_offset
);
383 btrfs_csum_final(cur_crc
, (char *)&cur_crc
);
384 if (cur_crc
!= *crc
) {
385 printk(KERN_ERR
"btrfs: crc mismatch for page %lu in "
386 "block group %llu\n", index
,
387 (unsigned long long)block_group
->key
.objectid
);
390 page_cache_release(page
);
400 e
= kmem_cache_zalloc(btrfs_free_space_cachep
,
405 page_cache_release(page
);
409 e
->offset
= le64_to_cpu(entry
->offset
);
410 e
->bytes
= le64_to_cpu(entry
->bytes
);
413 kmem_cache_free(btrfs_free_space_cachep
, e
);
415 page_cache_release(page
);
419 if (entry
->type
== BTRFS_FREE_SPACE_EXTENT
) {
420 spin_lock(&block_group
->tree_lock
);
421 ret
= link_free_space(block_group
, e
);
422 spin_unlock(&block_group
->tree_lock
);
425 e
->bitmap
= kzalloc(PAGE_CACHE_SIZE
, GFP_NOFS
);
429 btrfs_free_space_cachep
, e
);
431 page_cache_release(page
);
434 spin_lock(&block_group
->tree_lock
);
435 ret
= link_free_space(block_group
, e
);
436 block_group
->total_bitmaps
++;
437 recalculate_thresholds(block_group
);
438 spin_unlock(&block_group
->tree_lock
);
439 list_add_tail(&e
->list
, &bitmaps
);
443 offset
+= sizeof(struct btrfs_free_space_entry
);
444 if (offset
+ sizeof(struct btrfs_free_space_entry
) >=
451 * We read an entry out of this page, we need to move on to the
460 * We add the bitmaps at the end of the entries in order that
461 * the bitmap entries are added to the cache.
463 e
= list_entry(bitmaps
.next
, struct btrfs_free_space
, list
);
464 list_del_init(&e
->list
);
465 memcpy(e
->bitmap
, addr
, PAGE_CACHE_SIZE
);
470 page_cache_release(page
);
474 spin_lock(&block_group
->tree_lock
);
475 if (block_group
->free_space
!= (block_group
->key
.offset
- used
-
476 block_group
->bytes_super
)) {
477 spin_unlock(&block_group
->tree_lock
);
478 printk(KERN_ERR
"block group %llu has an wrong amount of free "
479 "space\n", block_group
->key
.objectid
);
483 spin_unlock(&block_group
->tree_lock
);
493 /* This cache is bogus, make sure it gets cleared */
494 spin_lock(&block_group
->lock
);
495 block_group
->disk_cache_state
= BTRFS_DC_CLEAR
;
496 spin_unlock(&block_group
->lock
);
497 btrfs_remove_free_space_cache(block_group
);
501 int btrfs_write_out_cache(struct btrfs_root
*root
,
502 struct btrfs_trans_handle
*trans
,
503 struct btrfs_block_group_cache
*block_group
,
504 struct btrfs_path
*path
)
506 struct btrfs_free_space_header
*header
;
507 struct extent_buffer
*leaf
;
509 struct rb_node
*node
;
510 struct list_head
*pos
, *n
;
513 struct extent_state
*cached_state
= NULL
;
514 struct btrfs_free_cluster
*cluster
= NULL
;
515 struct extent_io_tree
*unpin
= NULL
;
516 struct list_head bitmap_list
;
517 struct btrfs_key key
;
520 u32
*crc
, *checksums
;
521 unsigned long first_page_offset
;
522 int index
= 0, num_pages
= 0;
526 bool next_page
= false;
527 bool out_of_space
= false;
529 root
= root
->fs_info
->tree_root
;
531 INIT_LIST_HEAD(&bitmap_list
);
533 spin_lock(&block_group
->lock
);
534 if (block_group
->disk_cache_state
< BTRFS_DC_SETUP
) {
535 spin_unlock(&block_group
->lock
);
538 spin_unlock(&block_group
->lock
);
540 inode
= lookup_free_space_inode(root
, block_group
, path
);
544 if (!i_size_read(inode
)) {
549 node
= rb_first(&block_group
->free_space_offset
);
555 num_pages
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >>
557 filemap_write_and_wait(inode
->i_mapping
);
558 btrfs_wait_ordered_range(inode
, inode
->i_size
&
559 ~(root
->sectorsize
- 1), (u64
)-1);
561 /* We need a checksum per page. */
562 crc
= checksums
= kzalloc(sizeof(u32
) * num_pages
, GFP_NOFS
);
568 pages
= kzalloc(sizeof(struct page
*) * num_pages
, GFP_NOFS
);
575 /* Since the first page has all of our checksums and our generation we
576 * need to calculate the offset into the page that we can start writing
579 first_page_offset
= (sizeof(u32
) * num_pages
) + sizeof(u64
);
581 /* Get the cluster for this block_group if it exists */
582 if (!list_empty(&block_group
->cluster_list
))
583 cluster
= list_entry(block_group
->cluster_list
.next
,
584 struct btrfs_free_cluster
,
588 * We shouldn't have switched the pinned extents yet so this is the
591 unpin
= root
->fs_info
->pinned_extents
;
594 * Lock all pages first so we can lock the extent safely.
596 * NOTE: Because we hold the ref the entire time we're going to write to
597 * the page find_get_page should never fail, so we don't do a check
598 * after find_get_page at this point. Just putting this here so people
599 * know and don't freak out.
601 while (index
< num_pages
) {
602 page
= grab_cache_page(inode
->i_mapping
, index
);
606 for (i
= 0; i
< num_pages
; i
++) {
607 unlock_page(pages
[i
]);
608 page_cache_release(pages
[i
]);
617 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, 0, i_size_read(inode
) - 1,
618 0, &cached_state
, GFP_NOFS
);
621 * When searching for pinned extents, we need to start at our start
624 start
= block_group
->key
.objectid
;
626 /* Write out the extent entries */
628 struct btrfs_free_space_entry
*entry
;
630 unsigned long offset
= 0;
631 unsigned long start_offset
= 0;
636 start_offset
= first_page_offset
;
637 offset
= start_offset
;
640 if (index
>= num_pages
) {
648 entry
= addr
+ start_offset
;
650 memset(addr
, 0, PAGE_CACHE_SIZE
);
651 while (node
&& !next_page
) {
652 struct btrfs_free_space
*e
;
654 e
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
657 entry
->offset
= cpu_to_le64(e
->offset
);
658 entry
->bytes
= cpu_to_le64(e
->bytes
);
660 entry
->type
= BTRFS_FREE_SPACE_BITMAP
;
661 list_add_tail(&e
->list
, &bitmap_list
);
664 entry
->type
= BTRFS_FREE_SPACE_EXTENT
;
666 node
= rb_next(node
);
667 if (!node
&& cluster
) {
668 node
= rb_first(&cluster
->root
);
671 offset
+= sizeof(struct btrfs_free_space_entry
);
672 if (offset
+ sizeof(struct btrfs_free_space_entry
) >=
679 * We want to add any pinned extents to our free space cache
680 * so we don't leak the space
682 while (!next_page
&& (start
< block_group
->key
.objectid
+
683 block_group
->key
.offset
)) {
684 ret
= find_first_extent_bit(unpin
, start
, &start
, &end
,
691 /* This pinned extent is out of our range */
692 if (start
>= block_group
->key
.objectid
+
693 block_group
->key
.offset
)
696 len
= block_group
->key
.objectid
+
697 block_group
->key
.offset
- start
;
698 len
= min(len
, end
+ 1 - start
);
701 entry
->offset
= cpu_to_le64(start
);
702 entry
->bytes
= cpu_to_le64(len
);
703 entry
->type
= BTRFS_FREE_SPACE_EXTENT
;
706 offset
+= sizeof(struct btrfs_free_space_entry
);
707 if (offset
+ sizeof(struct btrfs_free_space_entry
) >=
713 *crc
= btrfs_csum_data(root
, addr
+ start_offset
, *crc
,
714 PAGE_CACHE_SIZE
- start_offset
);
717 btrfs_csum_final(*crc
, (char *)crc
);
720 bytes
+= PAGE_CACHE_SIZE
;
723 } while (node
|| next_page
);
725 /* Write out the bitmaps */
726 list_for_each_safe(pos
, n
, &bitmap_list
) {
728 struct btrfs_free_space
*entry
=
729 list_entry(pos
, struct btrfs_free_space
, list
);
731 if (index
>= num_pages
) {
738 memcpy(addr
, entry
->bitmap
, PAGE_CACHE_SIZE
);
740 *crc
= btrfs_csum_data(root
, addr
, *crc
, PAGE_CACHE_SIZE
);
742 btrfs_csum_final(*crc
, (char *)crc
);
744 bytes
+= PAGE_CACHE_SIZE
;
746 list_del_init(&entry
->list
);
751 btrfs_drop_pages(pages
, num_pages
);
752 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, 0,
753 i_size_read(inode
) - 1, &cached_state
,
759 /* Zero out the rest of the pages just to make sure */
760 while (index
< num_pages
) {
765 memset(addr
, 0, PAGE_CACHE_SIZE
);
767 bytes
+= PAGE_CACHE_SIZE
;
771 /* Write the checksums and trans id to the first page */
779 memcpy(addr
, checksums
, sizeof(u32
) * num_pages
);
780 gen
= addr
+ (sizeof(u32
) * num_pages
);
781 *gen
= trans
->transid
;
785 ret
= btrfs_dirty_pages(root
, inode
, pages
, num_pages
, 0,
786 bytes
, &cached_state
);
787 btrfs_drop_pages(pages
, num_pages
);
788 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, 0,
789 i_size_read(inode
) - 1, &cached_state
, GFP_NOFS
);
796 BTRFS_I(inode
)->generation
= trans
->transid
;
798 filemap_write_and_wait(inode
->i_mapping
);
800 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
801 key
.offset
= block_group
->key
.objectid
;
804 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 1, 1);
807 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, 0, bytes
- 1,
808 EXTENT_DIRTY
| EXTENT_DELALLOC
|
809 EXTENT_DO_ACCOUNTING
, 0, 0, NULL
, GFP_NOFS
);
812 leaf
= path
->nodes
[0];
814 struct btrfs_key found_key
;
815 BUG_ON(!path
->slots
[0]);
817 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
818 if (found_key
.objectid
!= BTRFS_FREE_SPACE_OBJECTID
||
819 found_key
.offset
!= block_group
->key
.objectid
) {
821 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, 0, bytes
- 1,
822 EXTENT_DIRTY
| EXTENT_DELALLOC
|
823 EXTENT_DO_ACCOUNTING
, 0, 0, NULL
,
825 btrfs_release_path(root
, path
);
829 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
830 struct btrfs_free_space_header
);
831 btrfs_set_free_space_entries(leaf
, header
, entries
);
832 btrfs_set_free_space_bitmaps(leaf
, header
, bitmaps
);
833 btrfs_set_free_space_generation(leaf
, header
, trans
->transid
);
834 btrfs_mark_buffer_dirty(leaf
);
835 btrfs_release_path(root
, path
);
841 invalidate_inode_pages2_range(inode
->i_mapping
, 0, index
);
842 spin_lock(&block_group
->lock
);
843 block_group
->disk_cache_state
= BTRFS_DC_ERROR
;
844 spin_unlock(&block_group
->lock
);
845 BTRFS_I(inode
)->generation
= 0;
849 btrfs_update_inode(trans
, root
, inode
);
854 static inline unsigned long offset_to_bit(u64 bitmap_start
, u64 sectorsize
,
857 BUG_ON(offset
< bitmap_start
);
858 offset
-= bitmap_start
;
859 return (unsigned long)(div64_u64(offset
, sectorsize
));
862 static inline unsigned long bytes_to_bits(u64 bytes
, u64 sectorsize
)
864 return (unsigned long)(div64_u64(bytes
, sectorsize
));
867 static inline u64
offset_to_bitmap(struct btrfs_block_group_cache
*block_group
,
871 u64 bytes_per_bitmap
;
873 bytes_per_bitmap
= BITS_PER_BITMAP
* block_group
->sectorsize
;
874 bitmap_start
= offset
- block_group
->key
.objectid
;
875 bitmap_start
= div64_u64(bitmap_start
, bytes_per_bitmap
);
876 bitmap_start
*= bytes_per_bitmap
;
877 bitmap_start
+= block_group
->key
.objectid
;
882 static int tree_insert_offset(struct rb_root
*root
, u64 offset
,
883 struct rb_node
*node
, int bitmap
)
885 struct rb_node
**p
= &root
->rb_node
;
886 struct rb_node
*parent
= NULL
;
887 struct btrfs_free_space
*info
;
891 info
= rb_entry(parent
, struct btrfs_free_space
, offset_index
);
893 if (offset
< info
->offset
) {
895 } else if (offset
> info
->offset
) {
899 * we could have a bitmap entry and an extent entry
900 * share the same offset. If this is the case, we want
901 * the extent entry to always be found first if we do a
902 * linear search through the tree, since we want to have
903 * the quickest allocation time, and allocating from an
904 * extent is faster than allocating from a bitmap. So
905 * if we're inserting a bitmap and we find an entry at
906 * this offset, we want to go right, or after this entry
907 * logically. If we are inserting an extent and we've
908 * found a bitmap, we want to go left, or before
912 WARN_ON(info
->bitmap
);
915 WARN_ON(!info
->bitmap
);
921 rb_link_node(node
, parent
, p
);
922 rb_insert_color(node
, root
);
928 * searches the tree for the given offset.
930 * fuzzy - If this is set, then we are trying to make an allocation, and we just
931 * want a section that has at least bytes size and comes at or after the given
934 static struct btrfs_free_space
*
935 tree_search_offset(struct btrfs_block_group_cache
*block_group
,
936 u64 offset
, int bitmap_only
, int fuzzy
)
938 struct rb_node
*n
= block_group
->free_space_offset
.rb_node
;
939 struct btrfs_free_space
*entry
, *prev
= NULL
;
941 /* find entry that is closest to the 'offset' */
948 entry
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
951 if (offset
< entry
->offset
)
953 else if (offset
> entry
->offset
)
966 * bitmap entry and extent entry may share same offset,
967 * in that case, bitmap entry comes after extent entry.
972 entry
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
973 if (entry
->offset
!= offset
)
976 WARN_ON(!entry
->bitmap
);
981 * if previous extent entry covers the offset,
982 * we should return it instead of the bitmap entry
984 n
= &entry
->offset_index
;
989 prev
= rb_entry(n
, struct btrfs_free_space
,
992 if (prev
->offset
+ prev
->bytes
> offset
)
1004 /* find last entry before the 'offset' */
1006 if (entry
->offset
> offset
) {
1007 n
= rb_prev(&entry
->offset_index
);
1009 entry
= rb_entry(n
, struct btrfs_free_space
,
1011 BUG_ON(entry
->offset
> offset
);
1020 if (entry
->bitmap
) {
1021 n
= &entry
->offset_index
;
1026 prev
= rb_entry(n
, struct btrfs_free_space
,
1028 if (!prev
->bitmap
) {
1029 if (prev
->offset
+ prev
->bytes
> offset
)
1034 if (entry
->offset
+ BITS_PER_BITMAP
*
1035 block_group
->sectorsize
> offset
)
1037 } else if (entry
->offset
+ entry
->bytes
> offset
)
1044 if (entry
->bitmap
) {
1045 if (entry
->offset
+ BITS_PER_BITMAP
*
1046 block_group
->sectorsize
> offset
)
1049 if (entry
->offset
+ entry
->bytes
> offset
)
1053 n
= rb_next(&entry
->offset_index
);
1056 entry
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1062 __unlink_free_space(struct btrfs_block_group_cache
*block_group
,
1063 struct btrfs_free_space
*info
)
1065 rb_erase(&info
->offset_index
, &block_group
->free_space_offset
);
1066 block_group
->free_extents
--;
1069 static void unlink_free_space(struct btrfs_block_group_cache
*block_group
,
1070 struct btrfs_free_space
*info
)
1072 __unlink_free_space(block_group
, info
);
1073 block_group
->free_space
-= info
->bytes
;
1076 static int link_free_space(struct btrfs_block_group_cache
*block_group
,
1077 struct btrfs_free_space
*info
)
1081 BUG_ON(!info
->bitmap
&& !info
->bytes
);
1082 ret
= tree_insert_offset(&block_group
->free_space_offset
, info
->offset
,
1083 &info
->offset_index
, (info
->bitmap
!= NULL
));
1087 block_group
->free_space
+= info
->bytes
;
1088 block_group
->free_extents
++;
1092 static void recalculate_thresholds(struct btrfs_block_group_cache
*block_group
)
1097 u64 size
= block_group
->key
.offset
;
1100 * The goal is to keep the total amount of memory used per 1gb of space
1101 * at or below 32k, so we need to adjust how much memory we allow to be
1102 * used by extent based free space tracking
1104 if (size
< 1024 * 1024 * 1024)
1105 max_bytes
= MAX_CACHE_BYTES_PER_GIG
;
1107 max_bytes
= MAX_CACHE_BYTES_PER_GIG
*
1108 div64_u64(size
, 1024 * 1024 * 1024);
1111 * we want to account for 1 more bitmap than what we have so we can make
1112 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1113 * we add more bitmaps.
1115 bitmap_bytes
= (block_group
->total_bitmaps
+ 1) * PAGE_CACHE_SIZE
;
1117 if (bitmap_bytes
>= max_bytes
) {
1118 block_group
->extents_thresh
= 0;
1123 * we want the extent entry threshold to always be at most 1/2 the maxw
1124 * bytes we can have, or whatever is less than that.
1126 extent_bytes
= max_bytes
- bitmap_bytes
;
1127 extent_bytes
= min_t(u64
, extent_bytes
, div64_u64(max_bytes
, 2));
1129 block_group
->extents_thresh
=
1130 div64_u64(extent_bytes
, (sizeof(struct btrfs_free_space
)));
1133 static void bitmap_clear_bits(struct btrfs_block_group_cache
*block_group
,
1134 struct btrfs_free_space
*info
, u64 offset
,
1137 unsigned long start
, end
;
1140 start
= offset_to_bit(info
->offset
, block_group
->sectorsize
, offset
);
1141 end
= start
+ bytes_to_bits(bytes
, block_group
->sectorsize
);
1142 BUG_ON(end
> BITS_PER_BITMAP
);
1144 for (i
= start
; i
< end
; i
++)
1145 clear_bit(i
, info
->bitmap
);
1147 info
->bytes
-= bytes
;
1148 block_group
->free_space
-= bytes
;
1151 static void bitmap_set_bits(struct btrfs_block_group_cache
*block_group
,
1152 struct btrfs_free_space
*info
, u64 offset
,
1155 unsigned long start
, end
;
1158 start
= offset_to_bit(info
->offset
, block_group
->sectorsize
, offset
);
1159 end
= start
+ bytes_to_bits(bytes
, block_group
->sectorsize
);
1160 BUG_ON(end
> BITS_PER_BITMAP
);
1162 for (i
= start
; i
< end
; i
++)
1163 set_bit(i
, info
->bitmap
);
1165 info
->bytes
+= bytes
;
1166 block_group
->free_space
+= bytes
;
1169 static int search_bitmap(struct btrfs_block_group_cache
*block_group
,
1170 struct btrfs_free_space
*bitmap_info
, u64
*offset
,
1173 unsigned long found_bits
= 0;
1174 unsigned long bits
, i
;
1175 unsigned long next_zero
;
1177 i
= offset_to_bit(bitmap_info
->offset
, block_group
->sectorsize
,
1178 max_t(u64
, *offset
, bitmap_info
->offset
));
1179 bits
= bytes_to_bits(*bytes
, block_group
->sectorsize
);
1181 for (i
= find_next_bit(bitmap_info
->bitmap
, BITS_PER_BITMAP
, i
);
1182 i
< BITS_PER_BITMAP
;
1183 i
= find_next_bit(bitmap_info
->bitmap
, BITS_PER_BITMAP
, i
+ 1)) {
1184 next_zero
= find_next_zero_bit(bitmap_info
->bitmap
,
1185 BITS_PER_BITMAP
, i
);
1186 if ((next_zero
- i
) >= bits
) {
1187 found_bits
= next_zero
- i
;
1194 *offset
= (u64
)(i
* block_group
->sectorsize
) +
1195 bitmap_info
->offset
;
1196 *bytes
= (u64
)(found_bits
) * block_group
->sectorsize
;
1203 static struct btrfs_free_space
*find_free_space(struct btrfs_block_group_cache
1204 *block_group
, u64
*offset
,
1205 u64
*bytes
, int debug
)
1207 struct btrfs_free_space
*entry
;
1208 struct rb_node
*node
;
1211 if (!block_group
->free_space_offset
.rb_node
)
1214 entry
= tree_search_offset(block_group
,
1215 offset_to_bitmap(block_group
, *offset
),
1220 for (node
= &entry
->offset_index
; node
; node
= rb_next(node
)) {
1221 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
1222 if (entry
->bytes
< *bytes
)
1225 if (entry
->bitmap
) {
1226 ret
= search_bitmap(block_group
, entry
, offset
, bytes
);
1232 *offset
= entry
->offset
;
1233 *bytes
= entry
->bytes
;
1240 static void add_new_bitmap(struct btrfs_block_group_cache
*block_group
,
1241 struct btrfs_free_space
*info
, u64 offset
)
1243 u64 bytes_per_bg
= BITS_PER_BITMAP
* block_group
->sectorsize
;
1244 int max_bitmaps
= (int)div64_u64(block_group
->key
.offset
+
1245 bytes_per_bg
- 1, bytes_per_bg
);
1246 BUG_ON(block_group
->total_bitmaps
>= max_bitmaps
);
1248 info
->offset
= offset_to_bitmap(block_group
, offset
);
1250 link_free_space(block_group
, info
);
1251 block_group
->total_bitmaps
++;
1253 recalculate_thresholds(block_group
);
1256 static void free_bitmap(struct btrfs_block_group_cache
*block_group
,
1257 struct btrfs_free_space
*bitmap_info
)
1259 unlink_free_space(block_group
, bitmap_info
);
1260 kfree(bitmap_info
->bitmap
);
1261 kmem_cache_free(btrfs_free_space_cachep
, bitmap_info
);
1262 block_group
->total_bitmaps
--;
1263 recalculate_thresholds(block_group
);
1266 static noinline
int remove_from_bitmap(struct btrfs_block_group_cache
*block_group
,
1267 struct btrfs_free_space
*bitmap_info
,
1268 u64
*offset
, u64
*bytes
)
1271 u64 search_start
, search_bytes
;
1275 end
= bitmap_info
->offset
+
1276 (u64
)(BITS_PER_BITMAP
* block_group
->sectorsize
) - 1;
1279 * XXX - this can go away after a few releases.
1281 * since the only user of btrfs_remove_free_space is the tree logging
1282 * stuff, and the only way to test that is under crash conditions, we
1283 * want to have this debug stuff here just in case somethings not
1284 * working. Search the bitmap for the space we are trying to use to
1285 * make sure its actually there. If its not there then we need to stop
1286 * because something has gone wrong.
1288 search_start
= *offset
;
1289 search_bytes
= *bytes
;
1290 search_bytes
= min(search_bytes
, end
- search_start
+ 1);
1291 ret
= search_bitmap(block_group
, bitmap_info
, &search_start
,
1293 BUG_ON(ret
< 0 || search_start
!= *offset
);
1295 if (*offset
> bitmap_info
->offset
&& *offset
+ *bytes
> end
) {
1296 bitmap_clear_bits(block_group
, bitmap_info
, *offset
,
1298 *bytes
-= end
- *offset
+ 1;
1300 } else if (*offset
>= bitmap_info
->offset
&& *offset
+ *bytes
<= end
) {
1301 bitmap_clear_bits(block_group
, bitmap_info
, *offset
, *bytes
);
1306 struct rb_node
*next
= rb_next(&bitmap_info
->offset_index
);
1307 if (!bitmap_info
->bytes
)
1308 free_bitmap(block_group
, bitmap_info
);
1311 * no entry after this bitmap, but we still have bytes to
1312 * remove, so something has gone wrong.
1317 bitmap_info
= rb_entry(next
, struct btrfs_free_space
,
1321 * if the next entry isn't a bitmap we need to return to let the
1322 * extent stuff do its work.
1324 if (!bitmap_info
->bitmap
)
1328 * Ok the next item is a bitmap, but it may not actually hold
1329 * the information for the rest of this free space stuff, so
1330 * look for it, and if we don't find it return so we can try
1331 * everything over again.
1333 search_start
= *offset
;
1334 search_bytes
= *bytes
;
1335 ret
= search_bitmap(block_group
, bitmap_info
, &search_start
,
1337 if (ret
< 0 || search_start
!= *offset
)
1341 } else if (!bitmap_info
->bytes
)
1342 free_bitmap(block_group
, bitmap_info
);
1347 static int insert_into_bitmap(struct btrfs_block_group_cache
*block_group
,
1348 struct btrfs_free_space
*info
)
1350 struct btrfs_free_space
*bitmap_info
;
1352 u64 bytes
, offset
, end
;
1356 * If we are below the extents threshold then we can add this as an
1357 * extent, and don't have to deal with the bitmap
1359 if (block_group
->free_extents
< block_group
->extents_thresh
) {
1361 * If this block group has some small extents we don't want to
1362 * use up all of our free slots in the cache with them, we want
1363 * to reserve them to larger extents, however if we have plent
1364 * of cache left then go ahead an dadd them, no sense in adding
1365 * the overhead of a bitmap if we don't have to.
1367 if (info
->bytes
<= block_group
->sectorsize
* 4) {
1368 if (block_group
->free_extents
* 2 <=
1369 block_group
->extents_thresh
)
1377 * some block groups are so tiny they can't be enveloped by a bitmap, so
1378 * don't even bother to create a bitmap for this
1380 if (BITS_PER_BITMAP
* block_group
->sectorsize
>
1381 block_group
->key
.offset
)
1384 bytes
= info
->bytes
;
1385 offset
= info
->offset
;
1388 bitmap_info
= tree_search_offset(block_group
,
1389 offset_to_bitmap(block_group
, offset
),
1396 end
= bitmap_info
->offset
+
1397 (u64
)(BITS_PER_BITMAP
* block_group
->sectorsize
);
1399 if (offset
>= bitmap_info
->offset
&& offset
+ bytes
> end
) {
1400 bitmap_set_bits(block_group
, bitmap_info
, offset
,
1402 bytes
-= end
- offset
;
1405 } else if (offset
>= bitmap_info
->offset
&& offset
+ bytes
<= end
) {
1406 bitmap_set_bits(block_group
, bitmap_info
, offset
, bytes
);
1419 if (info
&& info
->bitmap
) {
1420 add_new_bitmap(block_group
, info
, offset
);
1425 spin_unlock(&block_group
->tree_lock
);
1427 /* no pre-allocated info, allocate a new one */
1429 info
= kmem_cache_zalloc(btrfs_free_space_cachep
,
1432 spin_lock(&block_group
->tree_lock
);
1438 /* allocate the bitmap */
1439 info
->bitmap
= kzalloc(PAGE_CACHE_SIZE
, GFP_NOFS
);
1440 spin_lock(&block_group
->tree_lock
);
1441 if (!info
->bitmap
) {
1451 kfree(info
->bitmap
);
1452 kmem_cache_free(btrfs_free_space_cachep
, info
);
1458 bool try_merge_free_space(struct btrfs_block_group_cache
*block_group
,
1459 struct btrfs_free_space
*info
, bool update_stat
)
1461 struct btrfs_free_space
*left_info
;
1462 struct btrfs_free_space
*right_info
;
1463 bool merged
= false;
1464 u64 offset
= info
->offset
;
1465 u64 bytes
= info
->bytes
;
1468 * first we want to see if there is free space adjacent to the range we
1469 * are adding, if there is remove that struct and add a new one to
1470 * cover the entire range
1472 right_info
= tree_search_offset(block_group
, offset
+ bytes
, 0, 0);
1473 if (right_info
&& rb_prev(&right_info
->offset_index
))
1474 left_info
= rb_entry(rb_prev(&right_info
->offset_index
),
1475 struct btrfs_free_space
, offset_index
);
1477 left_info
= tree_search_offset(block_group
, offset
- 1, 0, 0);
1479 if (right_info
&& !right_info
->bitmap
) {
1481 unlink_free_space(block_group
, right_info
);
1483 __unlink_free_space(block_group
, right_info
);
1484 info
->bytes
+= right_info
->bytes
;
1485 kmem_cache_free(btrfs_free_space_cachep
, right_info
);
1489 if (left_info
&& !left_info
->bitmap
&&
1490 left_info
->offset
+ left_info
->bytes
== offset
) {
1492 unlink_free_space(block_group
, left_info
);
1494 __unlink_free_space(block_group
, left_info
);
1495 info
->offset
= left_info
->offset
;
1496 info
->bytes
+= left_info
->bytes
;
1497 kmem_cache_free(btrfs_free_space_cachep
, left_info
);
1504 int btrfs_add_free_space(struct btrfs_block_group_cache
*block_group
,
1505 u64 offset
, u64 bytes
)
1507 struct btrfs_free_space
*info
;
1510 info
= kmem_cache_zalloc(btrfs_free_space_cachep
, GFP_NOFS
);
1514 info
->offset
= offset
;
1515 info
->bytes
= bytes
;
1517 spin_lock(&block_group
->tree_lock
);
1519 if (try_merge_free_space(block_group
, info
, true))
1523 * There was no extent directly to the left or right of this new
1524 * extent then we know we're going to have to allocate a new extent, so
1525 * before we do that see if we need to drop this into a bitmap
1527 ret
= insert_into_bitmap(block_group
, info
);
1535 ret
= link_free_space(block_group
, info
);
1537 kmem_cache_free(btrfs_free_space_cachep
, info
);
1539 spin_unlock(&block_group
->tree_lock
);
1542 printk(KERN_CRIT
"btrfs: unable to add free space :%d\n", ret
);
1543 BUG_ON(ret
== -EEXIST
);
1549 int btrfs_remove_free_space(struct btrfs_block_group_cache
*block_group
,
1550 u64 offset
, u64 bytes
)
1552 struct btrfs_free_space
*info
;
1553 struct btrfs_free_space
*next_info
= NULL
;
1556 spin_lock(&block_group
->tree_lock
);
1559 info
= tree_search_offset(block_group
, offset
, 0, 0);
1562 * oops didn't find an extent that matched the space we wanted
1563 * to remove, look for a bitmap instead
1565 info
= tree_search_offset(block_group
,
1566 offset_to_bitmap(block_group
, offset
),
1574 if (info
->bytes
< bytes
&& rb_next(&info
->offset_index
)) {
1576 next_info
= rb_entry(rb_next(&info
->offset_index
),
1577 struct btrfs_free_space
,
1580 if (next_info
->bitmap
)
1581 end
= next_info
->offset
+ BITS_PER_BITMAP
*
1582 block_group
->sectorsize
- 1;
1584 end
= next_info
->offset
+ next_info
->bytes
;
1586 if (next_info
->bytes
< bytes
||
1587 next_info
->offset
> offset
|| offset
> end
) {
1588 printk(KERN_CRIT
"Found free space at %llu, size %llu,"
1589 " trying to use %llu\n",
1590 (unsigned long long)info
->offset
,
1591 (unsigned long long)info
->bytes
,
1592 (unsigned long long)bytes
);
1601 if (info
->bytes
== bytes
) {
1602 unlink_free_space(block_group
, info
);
1604 kfree(info
->bitmap
);
1605 block_group
->total_bitmaps
--;
1607 kmem_cache_free(btrfs_free_space_cachep
, info
);
1611 if (!info
->bitmap
&& info
->offset
== offset
) {
1612 unlink_free_space(block_group
, info
);
1613 info
->offset
+= bytes
;
1614 info
->bytes
-= bytes
;
1615 link_free_space(block_group
, info
);
1619 if (!info
->bitmap
&& info
->offset
<= offset
&&
1620 info
->offset
+ info
->bytes
>= offset
+ bytes
) {
1621 u64 old_start
= info
->offset
;
1623 * we're freeing space in the middle of the info,
1624 * this can happen during tree log replay
1626 * first unlink the old info and then
1627 * insert it again after the hole we're creating
1629 unlink_free_space(block_group
, info
);
1630 if (offset
+ bytes
< info
->offset
+ info
->bytes
) {
1631 u64 old_end
= info
->offset
+ info
->bytes
;
1633 info
->offset
= offset
+ bytes
;
1634 info
->bytes
= old_end
- info
->offset
;
1635 ret
= link_free_space(block_group
, info
);
1640 /* the hole we're creating ends at the end
1641 * of the info struct, just free the info
1643 kmem_cache_free(btrfs_free_space_cachep
, info
);
1645 spin_unlock(&block_group
->tree_lock
);
1647 /* step two, insert a new info struct to cover
1648 * anything before the hole
1650 ret
= btrfs_add_free_space(block_group
, old_start
,
1651 offset
- old_start
);
1656 ret
= remove_from_bitmap(block_group
, info
, &offset
, &bytes
);
1661 spin_unlock(&block_group
->tree_lock
);
1666 void btrfs_dump_free_space(struct btrfs_block_group_cache
*block_group
,
1669 struct btrfs_free_space
*info
;
1673 for (n
= rb_first(&block_group
->free_space_offset
); n
; n
= rb_next(n
)) {
1674 info
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1675 if (info
->bytes
>= bytes
)
1677 printk(KERN_CRIT
"entry offset %llu, bytes %llu, bitmap %s\n",
1678 (unsigned long long)info
->offset
,
1679 (unsigned long long)info
->bytes
,
1680 (info
->bitmap
) ? "yes" : "no");
1682 printk(KERN_INFO
"block group has cluster?: %s\n",
1683 list_empty(&block_group
->cluster_list
) ? "no" : "yes");
1684 printk(KERN_INFO
"%d blocks of free space at or bigger than bytes is"
1688 u64
btrfs_block_group_free_space(struct btrfs_block_group_cache
*block_group
)
1690 struct btrfs_free_space
*info
;
1694 for (n
= rb_first(&block_group
->free_space_offset
); n
;
1696 info
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1704 * for a given cluster, put all of its extents back into the free
1705 * space cache. If the block group passed doesn't match the block group
1706 * pointed to by the cluster, someone else raced in and freed the
1707 * cluster already. In that case, we just return without changing anything
1710 __btrfs_return_cluster_to_free_space(
1711 struct btrfs_block_group_cache
*block_group
,
1712 struct btrfs_free_cluster
*cluster
)
1714 struct btrfs_free_space
*entry
;
1715 struct rb_node
*node
;
1717 spin_lock(&cluster
->lock
);
1718 if (cluster
->block_group
!= block_group
)
1721 cluster
->block_group
= NULL
;
1722 cluster
->window_start
= 0;
1723 list_del_init(&cluster
->block_group_list
);
1725 node
= rb_first(&cluster
->root
);
1729 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
1730 node
= rb_next(&entry
->offset_index
);
1731 rb_erase(&entry
->offset_index
, &cluster
->root
);
1733 bitmap
= (entry
->bitmap
!= NULL
);
1735 try_merge_free_space(block_group
, entry
, false);
1736 tree_insert_offset(&block_group
->free_space_offset
,
1737 entry
->offset
, &entry
->offset_index
, bitmap
);
1739 cluster
->root
= RB_ROOT
;
1742 spin_unlock(&cluster
->lock
);
1743 btrfs_put_block_group(block_group
);
1747 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache
*block_group
)
1749 struct btrfs_free_space
*info
;
1750 struct rb_node
*node
;
1751 struct btrfs_free_cluster
*cluster
;
1752 struct list_head
*head
;
1754 spin_lock(&block_group
->tree_lock
);
1755 while ((head
= block_group
->cluster_list
.next
) !=
1756 &block_group
->cluster_list
) {
1757 cluster
= list_entry(head
, struct btrfs_free_cluster
,
1760 WARN_ON(cluster
->block_group
!= block_group
);
1761 __btrfs_return_cluster_to_free_space(block_group
, cluster
);
1762 if (need_resched()) {
1763 spin_unlock(&block_group
->tree_lock
);
1765 spin_lock(&block_group
->tree_lock
);
1769 while ((node
= rb_last(&block_group
->free_space_offset
)) != NULL
) {
1770 info
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
1771 unlink_free_space(block_group
, info
);
1773 kfree(info
->bitmap
);
1774 kmem_cache_free(btrfs_free_space_cachep
, info
);
1775 if (need_resched()) {
1776 spin_unlock(&block_group
->tree_lock
);
1778 spin_lock(&block_group
->tree_lock
);
1782 spin_unlock(&block_group
->tree_lock
);
1785 u64
btrfs_find_space_for_alloc(struct btrfs_block_group_cache
*block_group
,
1786 u64 offset
, u64 bytes
, u64 empty_size
)
1788 struct btrfs_free_space
*entry
= NULL
;
1789 u64 bytes_search
= bytes
+ empty_size
;
1792 spin_lock(&block_group
->tree_lock
);
1793 entry
= find_free_space(block_group
, &offset
, &bytes_search
, 0);
1798 if (entry
->bitmap
) {
1799 bitmap_clear_bits(block_group
, entry
, offset
, bytes
);
1801 free_bitmap(block_group
, entry
);
1803 unlink_free_space(block_group
, entry
);
1804 entry
->offset
+= bytes
;
1805 entry
->bytes
-= bytes
;
1807 kmem_cache_free(btrfs_free_space_cachep
, entry
);
1809 link_free_space(block_group
, entry
);
1813 spin_unlock(&block_group
->tree_lock
);
1819 * given a cluster, put all of its extents back into the free space
1820 * cache. If a block group is passed, this function will only free
1821 * a cluster that belongs to the passed block group.
1823 * Otherwise, it'll get a reference on the block group pointed to by the
1824 * cluster and remove the cluster from it.
1826 int btrfs_return_cluster_to_free_space(
1827 struct btrfs_block_group_cache
*block_group
,
1828 struct btrfs_free_cluster
*cluster
)
1832 /* first, get a safe pointer to the block group */
1833 spin_lock(&cluster
->lock
);
1835 block_group
= cluster
->block_group
;
1837 spin_unlock(&cluster
->lock
);
1840 } else if (cluster
->block_group
!= block_group
) {
1841 /* someone else has already freed it don't redo their work */
1842 spin_unlock(&cluster
->lock
);
1845 atomic_inc(&block_group
->count
);
1846 spin_unlock(&cluster
->lock
);
1848 /* now return any extents the cluster had on it */
1849 spin_lock(&block_group
->tree_lock
);
1850 ret
= __btrfs_return_cluster_to_free_space(block_group
, cluster
);
1851 spin_unlock(&block_group
->tree_lock
);
1853 /* finally drop our ref */
1854 btrfs_put_block_group(block_group
);
1858 static u64
btrfs_alloc_from_bitmap(struct btrfs_block_group_cache
*block_group
,
1859 struct btrfs_free_cluster
*cluster
,
1860 struct btrfs_free_space
*entry
,
1861 u64 bytes
, u64 min_start
)
1864 u64 search_start
= cluster
->window_start
;
1865 u64 search_bytes
= bytes
;
1868 search_start
= min_start
;
1869 search_bytes
= bytes
;
1871 err
= search_bitmap(block_group
, entry
, &search_start
,
1877 bitmap_clear_bits(block_group
, entry
, ret
, bytes
);
1883 * given a cluster, try to allocate 'bytes' from it, returns 0
1884 * if it couldn't find anything suitably large, or a logical disk offset
1885 * if things worked out
1887 u64
btrfs_alloc_from_cluster(struct btrfs_block_group_cache
*block_group
,
1888 struct btrfs_free_cluster
*cluster
, u64 bytes
,
1891 struct btrfs_free_space
*entry
= NULL
;
1892 struct rb_node
*node
;
1895 spin_lock(&cluster
->lock
);
1896 if (bytes
> cluster
->max_size
)
1899 if (cluster
->block_group
!= block_group
)
1902 node
= rb_first(&cluster
->root
);
1906 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
1908 if (entry
->bytes
< bytes
||
1909 (!entry
->bitmap
&& entry
->offset
< min_start
)) {
1910 struct rb_node
*node
;
1912 node
= rb_next(&entry
->offset_index
);
1915 entry
= rb_entry(node
, struct btrfs_free_space
,
1920 if (entry
->bitmap
) {
1921 ret
= btrfs_alloc_from_bitmap(block_group
,
1922 cluster
, entry
, bytes
,
1925 struct rb_node
*node
;
1926 node
= rb_next(&entry
->offset_index
);
1929 entry
= rb_entry(node
, struct btrfs_free_space
,
1935 ret
= entry
->offset
;
1937 entry
->offset
+= bytes
;
1938 entry
->bytes
-= bytes
;
1941 if (entry
->bytes
== 0)
1942 rb_erase(&entry
->offset_index
, &cluster
->root
);
1946 spin_unlock(&cluster
->lock
);
1951 spin_lock(&block_group
->tree_lock
);
1953 block_group
->free_space
-= bytes
;
1954 if (entry
->bytes
== 0) {
1955 block_group
->free_extents
--;
1956 if (entry
->bitmap
) {
1957 kfree(entry
->bitmap
);
1958 block_group
->total_bitmaps
--;
1959 recalculate_thresholds(block_group
);
1961 kmem_cache_free(btrfs_free_space_cachep
, entry
);
1964 spin_unlock(&block_group
->tree_lock
);
1969 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache
*block_group
,
1970 struct btrfs_free_space
*entry
,
1971 struct btrfs_free_cluster
*cluster
,
1972 u64 offset
, u64 bytes
, u64 min_bytes
)
1974 unsigned long next_zero
;
1976 unsigned long search_bits
;
1977 unsigned long total_bits
;
1978 unsigned long found_bits
;
1979 unsigned long start
= 0;
1980 unsigned long total_found
= 0;
1984 i
= offset_to_bit(entry
->offset
, block_group
->sectorsize
,
1985 max_t(u64
, offset
, entry
->offset
));
1986 search_bits
= bytes_to_bits(bytes
, block_group
->sectorsize
);
1987 total_bits
= bytes_to_bits(min_bytes
, block_group
->sectorsize
);
1991 for (i
= find_next_bit(entry
->bitmap
, BITS_PER_BITMAP
, i
);
1992 i
< BITS_PER_BITMAP
;
1993 i
= find_next_bit(entry
->bitmap
, BITS_PER_BITMAP
, i
+ 1)) {
1994 next_zero
= find_next_zero_bit(entry
->bitmap
,
1995 BITS_PER_BITMAP
, i
);
1996 if (next_zero
- i
>= search_bits
) {
1997 found_bits
= next_zero
- i
;
2011 total_found
+= found_bits
;
2013 if (cluster
->max_size
< found_bits
* block_group
->sectorsize
)
2014 cluster
->max_size
= found_bits
* block_group
->sectorsize
;
2016 if (total_found
< total_bits
) {
2017 i
= find_next_bit(entry
->bitmap
, BITS_PER_BITMAP
, next_zero
);
2018 if (i
- start
> total_bits
* 2) {
2020 cluster
->max_size
= 0;
2026 cluster
->window_start
= start
* block_group
->sectorsize
+
2028 rb_erase(&entry
->offset_index
, &block_group
->free_space_offset
);
2029 ret
= tree_insert_offset(&cluster
->root
, entry
->offset
,
2030 &entry
->offset_index
, 1);
2037 * This searches the block group for just extents to fill the cluster with.
2039 static int setup_cluster_no_bitmap(struct btrfs_block_group_cache
*block_group
,
2040 struct btrfs_free_cluster
*cluster
,
2041 u64 offset
, u64 bytes
, u64 min_bytes
)
2043 struct btrfs_free_space
*first
= NULL
;
2044 struct btrfs_free_space
*entry
= NULL
;
2045 struct btrfs_free_space
*prev
= NULL
;
2046 struct btrfs_free_space
*last
;
2047 struct rb_node
*node
;
2051 u64 max_gap
= 128 * 1024;
2053 entry
= tree_search_offset(block_group
, offset
, 0, 1);
2058 * We don't want bitmaps, so just move along until we find a normal
2061 while (entry
->bitmap
) {
2062 node
= rb_next(&entry
->offset_index
);
2065 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2068 window_start
= entry
->offset
;
2069 window_free
= entry
->bytes
;
2070 max_extent
= entry
->bytes
;
2075 while (window_free
<= min_bytes
) {
2076 node
= rb_next(&entry
->offset_index
);
2079 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2084 * we haven't filled the empty size and the window is
2085 * very large. reset and try again
2087 if (entry
->offset
- (prev
->offset
+ prev
->bytes
) > max_gap
||
2088 entry
->offset
- window_start
> (min_bytes
* 2)) {
2090 window_start
= entry
->offset
;
2091 window_free
= entry
->bytes
;
2093 max_extent
= entry
->bytes
;
2096 window_free
+= entry
->bytes
;
2097 if (entry
->bytes
> max_extent
)
2098 max_extent
= entry
->bytes
;
2103 cluster
->window_start
= first
->offset
;
2105 node
= &first
->offset_index
;
2108 * now we've found our entries, pull them out of the free space
2109 * cache and put them into the cluster rbtree
2114 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2115 node
= rb_next(&entry
->offset_index
);
2119 rb_erase(&entry
->offset_index
, &block_group
->free_space_offset
);
2120 ret
= tree_insert_offset(&cluster
->root
, entry
->offset
,
2121 &entry
->offset_index
, 0);
2123 } while (node
&& entry
!= last
);
2125 cluster
->max_size
= max_extent
;
2131 * This specifically looks for bitmaps that may work in the cluster, we assume
2132 * that we have already failed to find extents that will work.
2134 static int setup_cluster_bitmap(struct btrfs_block_group_cache
*block_group
,
2135 struct btrfs_free_cluster
*cluster
,
2136 u64 offset
, u64 bytes
, u64 min_bytes
)
2138 struct btrfs_free_space
*entry
;
2139 struct rb_node
*node
;
2142 if (block_group
->total_bitmaps
== 0)
2145 entry
= tree_search_offset(block_group
,
2146 offset_to_bitmap(block_group
, offset
),
2151 node
= &entry
->offset_index
;
2153 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2154 node
= rb_next(&entry
->offset_index
);
2157 if (entry
->bytes
< min_bytes
)
2159 ret
= btrfs_bitmap_cluster(block_group
, entry
, cluster
, offset
,
2161 } while (ret
&& node
);
2167 * here we try to find a cluster of blocks in a block group. The goal
2168 * is to find at least bytes free and up to empty_size + bytes free.
2169 * We might not find them all in one contiguous area.
2171 * returns zero and sets up cluster if things worked out, otherwise
2172 * it returns -enospc
2174 int btrfs_find_space_cluster(struct btrfs_trans_handle
*trans
,
2175 struct btrfs_root
*root
,
2176 struct btrfs_block_group_cache
*block_group
,
2177 struct btrfs_free_cluster
*cluster
,
2178 u64 offset
, u64 bytes
, u64 empty_size
)
2183 /* for metadata, allow allocates with more holes */
2184 if (btrfs_test_opt(root
, SSD_SPREAD
)) {
2185 min_bytes
= bytes
+ empty_size
;
2186 } else if (block_group
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
2188 * we want to do larger allocations when we are
2189 * flushing out the delayed refs, it helps prevent
2190 * making more work as we go along.
2192 if (trans
->transaction
->delayed_refs
.flushing
)
2193 min_bytes
= max(bytes
, (bytes
+ empty_size
) >> 1);
2195 min_bytes
= max(bytes
, (bytes
+ empty_size
) >> 4);
2197 min_bytes
= max(bytes
, (bytes
+ empty_size
) >> 2);
2199 spin_lock(&block_group
->tree_lock
);
2202 * If we know we don't have enough space to make a cluster don't even
2203 * bother doing all the work to try and find one.
2205 if (block_group
->free_space
< min_bytes
) {
2206 spin_unlock(&block_group
->tree_lock
);
2210 spin_lock(&cluster
->lock
);
2212 /* someone already found a cluster, hooray */
2213 if (cluster
->block_group
) {
2218 ret
= setup_cluster_no_bitmap(block_group
, cluster
, offset
, bytes
,
2221 ret
= setup_cluster_bitmap(block_group
, cluster
, offset
,
2225 atomic_inc(&block_group
->count
);
2226 list_add_tail(&cluster
->block_group_list
,
2227 &block_group
->cluster_list
);
2228 cluster
->block_group
= block_group
;
2231 spin_unlock(&cluster
->lock
);
2232 spin_unlock(&block_group
->tree_lock
);
2238 * simple code to zero out a cluster
2240 void btrfs_init_free_cluster(struct btrfs_free_cluster
*cluster
)
2242 spin_lock_init(&cluster
->lock
);
2243 spin_lock_init(&cluster
->refill_lock
);
2244 cluster
->root
= RB_ROOT
;
2245 cluster
->max_size
= 0;
2246 INIT_LIST_HEAD(&cluster
->block_group_list
);
2247 cluster
->block_group
= NULL
;
2250 int btrfs_trim_block_group(struct btrfs_block_group_cache
*block_group
,
2251 u64
*trimmed
, u64 start
, u64 end
, u64 minlen
)
2253 struct btrfs_free_space
*entry
= NULL
;
2254 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
2256 u64 actually_trimmed
;
2261 while (start
< end
) {
2262 spin_lock(&block_group
->tree_lock
);
2264 if (block_group
->free_space
< minlen
) {
2265 spin_unlock(&block_group
->tree_lock
);
2269 entry
= tree_search_offset(block_group
, start
, 0, 1);
2271 entry
= tree_search_offset(block_group
,
2272 offset_to_bitmap(block_group
,
2276 if (!entry
|| entry
->offset
>= end
) {
2277 spin_unlock(&block_group
->tree_lock
);
2281 if (entry
->bitmap
) {
2282 ret
= search_bitmap(block_group
, entry
, &start
, &bytes
);
2285 spin_unlock(&block_group
->tree_lock
);
2288 bytes
= min(bytes
, end
- start
);
2289 bitmap_clear_bits(block_group
, entry
,
2291 if (entry
->bytes
== 0)
2292 free_bitmap(block_group
, entry
);
2294 start
= entry
->offset
+ BITS_PER_BITMAP
*
2295 block_group
->sectorsize
;
2296 spin_unlock(&block_group
->tree_lock
);
2301 start
= entry
->offset
;
2302 bytes
= min(entry
->bytes
, end
- start
);
2303 unlink_free_space(block_group
, entry
);
2307 spin_unlock(&block_group
->tree_lock
);
2309 if (bytes
>= minlen
) {
2311 update_ret
= btrfs_update_reserved_bytes(block_group
,
2314 ret
= btrfs_error_discard_extent(fs_info
->extent_root
,
2319 btrfs_add_free_space(block_group
,
2322 btrfs_update_reserved_bytes(block_group
,
2327 *trimmed
+= actually_trimmed
;
2332 if (fatal_signal_pending(current
)) {