2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
95 #include <net/compat.h>
97 #include <net/cls_cgroup.h>
100 #include <linux/netfilter.h>
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
108 static int sock_no_open(struct inode
*irrelevant
, struct file
*dontcare
);
109 static ssize_t
sock_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
110 unsigned long nr_segs
, loff_t pos
);
111 static ssize_t
sock_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
112 unsigned long nr_segs
, loff_t pos
);
113 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
);
115 static int sock_close(struct inode
*inode
, struct file
*file
);
116 static unsigned int sock_poll(struct file
*file
,
117 struct poll_table_struct
*wait
);
118 static long sock_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
);
120 static long compat_sock_ioctl(struct file
*file
,
121 unsigned int cmd
, unsigned long arg
);
123 static int sock_fasync(int fd
, struct file
*filp
, int on
);
124 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
125 int offset
, size_t size
, loff_t
*ppos
, int more
);
126 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
127 struct pipe_inode_info
*pipe
, size_t len
,
131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132 * in the operation structures but are done directly via the socketcall() multiplexor.
135 static const struct file_operations socket_file_ops
= {
136 .owner
= THIS_MODULE
,
138 .aio_read
= sock_aio_read
,
139 .aio_write
= sock_aio_write
,
141 .unlocked_ioctl
= sock_ioctl
,
143 .compat_ioctl
= compat_sock_ioctl
,
146 .open
= sock_no_open
, /* special open code to disallow open via /proc */
147 .release
= sock_close
,
148 .fasync
= sock_fasync
,
149 .sendpage
= sock_sendpage
,
150 .splice_write
= generic_splice_sendpage
,
151 .splice_read
= sock_splice_read
,
155 * The protocol list. Each protocol is registered in here.
158 static DEFINE_SPINLOCK(net_family_lock
);
159 static const struct net_proto_family __rcu
*net_families
[NPROTO
] __read_mostly
;
162 * Statistics counters of the socket lists
165 static DEFINE_PER_CPU(int, sockets_in_use
);
169 * Move socket addresses back and forth across the kernel/user
170 * divide and look after the messy bits.
174 * move_addr_to_kernel - copy a socket address into kernel space
175 * @uaddr: Address in user space
176 * @kaddr: Address in kernel space
177 * @ulen: Length in user space
179 * The address is copied into kernel space. If the provided address is
180 * too long an error code of -EINVAL is returned. If the copy gives
181 * invalid addresses -EFAULT is returned. On a success 0 is returned.
184 int move_addr_to_kernel(void __user
*uaddr
, int ulen
, struct sockaddr
*kaddr
)
186 if (ulen
< 0 || ulen
> sizeof(struct sockaddr_storage
))
190 if (copy_from_user(kaddr
, uaddr
, ulen
))
192 return audit_sockaddr(ulen
, kaddr
);
196 * move_addr_to_user - copy an address to user space
197 * @kaddr: kernel space address
198 * @klen: length of address in kernel
199 * @uaddr: user space address
200 * @ulen: pointer to user length field
202 * The value pointed to by ulen on entry is the buffer length available.
203 * This is overwritten with the buffer space used. -EINVAL is returned
204 * if an overlong buffer is specified or a negative buffer size. -EFAULT
205 * is returned if either the buffer or the length field are not
207 * After copying the data up to the limit the user specifies, the true
208 * length of the data is written over the length limit the user
209 * specified. Zero is returned for a success.
212 static int move_addr_to_user(struct sockaddr
*kaddr
, int klen
,
213 void __user
*uaddr
, int __user
*ulen
)
218 err
= get_user(len
, ulen
);
223 if (len
< 0 || len
> sizeof(struct sockaddr_storage
))
226 if (audit_sockaddr(klen
, kaddr
))
228 if (copy_to_user(uaddr
, kaddr
, len
))
232 * "fromlen shall refer to the value before truncation.."
235 return __put_user(klen
, ulen
);
238 static struct kmem_cache
*sock_inode_cachep __read_mostly
;
240 static struct inode
*sock_alloc_inode(struct super_block
*sb
)
242 struct socket_alloc
*ei
;
243 struct socket_wq
*wq
;
245 ei
= kmem_cache_alloc(sock_inode_cachep
, GFP_KERNEL
);
248 wq
= kmalloc(sizeof(*wq
), GFP_KERNEL
);
250 kmem_cache_free(sock_inode_cachep
, ei
);
253 init_waitqueue_head(&wq
->wait
);
254 wq
->fasync_list
= NULL
;
255 RCU_INIT_POINTER(ei
->socket
.wq
, wq
);
257 ei
->socket
.state
= SS_UNCONNECTED
;
258 ei
->socket
.flags
= 0;
259 ei
->socket
.ops
= NULL
;
260 ei
->socket
.sk
= NULL
;
261 ei
->socket
.file
= NULL
;
263 return &ei
->vfs_inode
;
268 static void wq_free_rcu(struct rcu_head
*head
)
270 struct socket_wq
*wq
= container_of(head
, struct socket_wq
, rcu
);
275 static void sock_destroy_inode(struct inode
*inode
)
277 struct socket_alloc
*ei
;
278 struct socket_wq
*wq
;
280 ei
= container_of(inode
, struct socket_alloc
, vfs_inode
);
281 wq
= rcu_dereference_protected(ei
->socket
.wq
, 1);
282 call_rcu(&wq
->rcu
, wq_free_rcu
);
283 kmem_cache_free(sock_inode_cachep
, ei
);
286 static void init_once(void *foo
)
288 struct socket_alloc
*ei
= (struct socket_alloc
*)foo
;
290 inode_init_once(&ei
->vfs_inode
);
293 static int init_inodecache(void)
295 sock_inode_cachep
= kmem_cache_create("sock_inode_cache",
296 sizeof(struct socket_alloc
),
298 (SLAB_HWCACHE_ALIGN
|
299 SLAB_RECLAIM_ACCOUNT
|
302 if (sock_inode_cachep
== NULL
)
307 static const struct super_operations sockfs_ops
= {
308 .alloc_inode
= sock_alloc_inode
,
309 .destroy_inode
= sock_destroy_inode
,
310 .statfs
= simple_statfs
,
314 * sockfs_dname() is called from d_path().
316 static char *sockfs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
318 return dynamic_dname(dentry
, buffer
, buflen
, "socket:[%lu]",
319 dentry
->d_inode
->i_ino
);
322 static const struct dentry_operations sockfs_dentry_operations
= {
323 .d_dname
= sockfs_dname
,
326 static struct dentry
*sockfs_mount(struct file_system_type
*fs_type
,
327 int flags
, const char *dev_name
, void *data
)
329 return mount_pseudo(fs_type
, "socket:", &sockfs_ops
,
330 &sockfs_dentry_operations
, SOCKFS_MAGIC
);
333 static struct vfsmount
*sock_mnt __read_mostly
;
335 static struct file_system_type sock_fs_type
= {
337 .mount
= sockfs_mount
,
338 .kill_sb
= kill_anon_super
,
342 * Obtains the first available file descriptor and sets it up for use.
344 * These functions create file structures and maps them to fd space
345 * of the current process. On success it returns file descriptor
346 * and file struct implicitly stored in sock->file.
347 * Note that another thread may close file descriptor before we return
348 * from this function. We use the fact that now we do not refer
349 * to socket after mapping. If one day we will need it, this
350 * function will increment ref. count on file by 1.
352 * In any case returned fd MAY BE not valid!
353 * This race condition is unavoidable
354 * with shared fd spaces, we cannot solve it inside kernel,
355 * but we take care of internal coherence yet.
358 static int sock_alloc_file(struct socket
*sock
, struct file
**f
, int flags
)
360 struct qstr name
= { .name
= "" };
365 fd
= get_unused_fd_flags(flags
);
366 if (unlikely(fd
< 0))
369 path
.dentry
= d_alloc_pseudo(sock_mnt
->mnt_sb
, &name
);
370 if (unlikely(!path
.dentry
)) {
374 path
.mnt
= mntget(sock_mnt
);
376 d_instantiate(path
.dentry
, SOCK_INODE(sock
));
377 SOCK_INODE(sock
)->i_fop
= &socket_file_ops
;
379 file
= alloc_file(&path
, FMODE_READ
| FMODE_WRITE
,
381 if (unlikely(!file
)) {
382 /* drop dentry, keep inode */
383 ihold(path
.dentry
->d_inode
);
390 file
->f_flags
= O_RDWR
| (flags
& O_NONBLOCK
);
392 file
->private_data
= sock
;
398 int sock_map_fd(struct socket
*sock
, int flags
)
400 struct file
*newfile
;
401 int fd
= sock_alloc_file(sock
, &newfile
, flags
);
404 fd_install(fd
, newfile
);
408 EXPORT_SYMBOL(sock_map_fd
);
410 static struct socket
*sock_from_file(struct file
*file
, int *err
)
412 if (file
->f_op
== &socket_file_ops
)
413 return file
->private_data
; /* set in sock_map_fd */
420 * sockfd_lookup - Go from a file number to its socket slot
422 * @err: pointer to an error code return
424 * The file handle passed in is locked and the socket it is bound
425 * too is returned. If an error occurs the err pointer is overwritten
426 * with a negative errno code and NULL is returned. The function checks
427 * for both invalid handles and passing a handle which is not a socket.
429 * On a success the socket object pointer is returned.
432 struct socket
*sockfd_lookup(int fd
, int *err
)
443 sock
= sock_from_file(file
, err
);
448 EXPORT_SYMBOL(sockfd_lookup
);
450 static struct socket
*sockfd_lookup_light(int fd
, int *err
, int *fput_needed
)
456 file
= fget_light(fd
, fput_needed
);
458 sock
= sock_from_file(file
, err
);
461 fput_light(file
, *fput_needed
);
467 * sock_alloc - allocate a socket
469 * Allocate a new inode and socket object. The two are bound together
470 * and initialised. The socket is then returned. If we are out of inodes
474 static struct socket
*sock_alloc(void)
479 inode
= new_inode(sock_mnt
->mnt_sb
);
483 sock
= SOCKET_I(inode
);
485 kmemcheck_annotate_bitfield(sock
, type
);
486 inode
->i_ino
= get_next_ino();
487 inode
->i_mode
= S_IFSOCK
| S_IRWXUGO
;
488 inode
->i_uid
= current_fsuid();
489 inode
->i_gid
= current_fsgid();
491 percpu_add(sockets_in_use
, 1);
496 * In theory you can't get an open on this inode, but /proc provides
497 * a back door. Remember to keep it shut otherwise you'll let the
498 * creepy crawlies in.
501 static int sock_no_open(struct inode
*irrelevant
, struct file
*dontcare
)
506 const struct file_operations bad_sock_fops
= {
507 .owner
= THIS_MODULE
,
508 .open
= sock_no_open
,
509 .llseek
= noop_llseek
,
513 * sock_release - close a socket
514 * @sock: socket to close
516 * The socket is released from the protocol stack if it has a release
517 * callback, and the inode is then released if the socket is bound to
518 * an inode not a file.
521 void sock_release(struct socket
*sock
)
524 struct module
*owner
= sock
->ops
->owner
;
526 sock
->ops
->release(sock
);
531 if (rcu_dereference_protected(sock
->wq
, 1)->fasync_list
)
532 printk(KERN_ERR
"sock_release: fasync list not empty!\n");
534 percpu_sub(sockets_in_use
, 1);
536 iput(SOCK_INODE(sock
));
541 EXPORT_SYMBOL(sock_release
);
543 int sock_tx_timestamp(struct sock
*sk
, __u8
*tx_flags
)
546 if (sock_flag(sk
, SOCK_TIMESTAMPING_TX_HARDWARE
))
547 *tx_flags
|= SKBTX_HW_TSTAMP
;
548 if (sock_flag(sk
, SOCK_TIMESTAMPING_TX_SOFTWARE
))
549 *tx_flags
|= SKBTX_SW_TSTAMP
;
552 EXPORT_SYMBOL(sock_tx_timestamp
);
554 static inline int __sock_sendmsg(struct kiocb
*iocb
, struct socket
*sock
,
555 struct msghdr
*msg
, size_t size
)
557 struct sock_iocb
*si
= kiocb_to_siocb(iocb
);
560 sock_update_classid(sock
->sk
);
567 err
= security_socket_sendmsg(sock
, msg
, size
);
571 return sock
->ops
->sendmsg(iocb
, sock
, msg
, size
);
574 int sock_sendmsg(struct socket
*sock
, struct msghdr
*msg
, size_t size
)
577 struct sock_iocb siocb
;
580 init_sync_kiocb(&iocb
, NULL
);
581 iocb
.private = &siocb
;
582 ret
= __sock_sendmsg(&iocb
, sock
, msg
, size
);
583 if (-EIOCBQUEUED
== ret
)
584 ret
= wait_on_sync_kiocb(&iocb
);
587 EXPORT_SYMBOL(sock_sendmsg
);
589 int kernel_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
590 struct kvec
*vec
, size_t num
, size_t size
)
592 mm_segment_t oldfs
= get_fs();
597 * the following is safe, since for compiler definitions of kvec and
598 * iovec are identical, yielding the same in-core layout and alignment
600 msg
->msg_iov
= (struct iovec
*)vec
;
601 msg
->msg_iovlen
= num
;
602 result
= sock_sendmsg(sock
, msg
, size
);
606 EXPORT_SYMBOL(kernel_sendmsg
);
608 static int ktime2ts(ktime_t kt
, struct timespec
*ts
)
611 *ts
= ktime_to_timespec(kt
);
619 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
621 void __sock_recv_timestamp(struct msghdr
*msg
, struct sock
*sk
,
624 int need_software_tstamp
= sock_flag(sk
, SOCK_RCVTSTAMP
);
625 struct timespec ts
[3];
627 struct skb_shared_hwtstamps
*shhwtstamps
=
630 /* Race occurred between timestamp enabling and packet
631 receiving. Fill in the current time for now. */
632 if (need_software_tstamp
&& skb
->tstamp
.tv64
== 0)
633 __net_timestamp(skb
);
635 if (need_software_tstamp
) {
636 if (!sock_flag(sk
, SOCK_RCVTSTAMPNS
)) {
638 skb_get_timestamp(skb
, &tv
);
639 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMP
,
642 skb_get_timestampns(skb
, &ts
[0]);
643 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPNS
,
644 sizeof(ts
[0]), &ts
[0]);
649 memset(ts
, 0, sizeof(ts
));
650 if (skb
->tstamp
.tv64
&&
651 sock_flag(sk
, SOCK_TIMESTAMPING_SOFTWARE
)) {
652 skb_get_timestampns(skb
, ts
+ 0);
656 if (sock_flag(sk
, SOCK_TIMESTAMPING_SYS_HARDWARE
) &&
657 ktime2ts(shhwtstamps
->syststamp
, ts
+ 1))
659 if (sock_flag(sk
, SOCK_TIMESTAMPING_RAW_HARDWARE
) &&
660 ktime2ts(shhwtstamps
->hwtstamp
, ts
+ 2))
664 put_cmsg(msg
, SOL_SOCKET
,
665 SCM_TIMESTAMPING
, sizeof(ts
), &ts
);
667 EXPORT_SYMBOL_GPL(__sock_recv_timestamp
);
669 static inline void sock_recv_drops(struct msghdr
*msg
, struct sock
*sk
,
672 if (sock_flag(sk
, SOCK_RXQ_OVFL
) && skb
&& skb
->dropcount
)
673 put_cmsg(msg
, SOL_SOCKET
, SO_RXQ_OVFL
,
674 sizeof(__u32
), &skb
->dropcount
);
677 void __sock_recv_ts_and_drops(struct msghdr
*msg
, struct sock
*sk
,
680 sock_recv_timestamp(msg
, sk
, skb
);
681 sock_recv_drops(msg
, sk
, skb
);
683 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops
);
685 static inline int __sock_recvmsg_nosec(struct kiocb
*iocb
, struct socket
*sock
,
686 struct msghdr
*msg
, size_t size
, int flags
)
688 struct sock_iocb
*si
= kiocb_to_siocb(iocb
);
690 sock_update_classid(sock
->sk
);
698 return sock
->ops
->recvmsg(iocb
, sock
, msg
, size
, flags
);
701 static inline int __sock_recvmsg(struct kiocb
*iocb
, struct socket
*sock
,
702 struct msghdr
*msg
, size_t size
, int flags
)
704 int err
= security_socket_recvmsg(sock
, msg
, size
, flags
);
706 return err
?: __sock_recvmsg_nosec(iocb
, sock
, msg
, size
, flags
);
709 int sock_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
710 size_t size
, int flags
)
713 struct sock_iocb siocb
;
716 init_sync_kiocb(&iocb
, NULL
);
717 iocb
.private = &siocb
;
718 ret
= __sock_recvmsg(&iocb
, sock
, msg
, size
, flags
);
719 if (-EIOCBQUEUED
== ret
)
720 ret
= wait_on_sync_kiocb(&iocb
);
723 EXPORT_SYMBOL(sock_recvmsg
);
725 static int sock_recvmsg_nosec(struct socket
*sock
, struct msghdr
*msg
,
726 size_t size
, int flags
)
729 struct sock_iocb siocb
;
732 init_sync_kiocb(&iocb
, NULL
);
733 iocb
.private = &siocb
;
734 ret
= __sock_recvmsg_nosec(&iocb
, sock
, msg
, size
, flags
);
735 if (-EIOCBQUEUED
== ret
)
736 ret
= wait_on_sync_kiocb(&iocb
);
741 * kernel_recvmsg - Receive a message from a socket (kernel space)
742 * @sock: The socket to receive the message from
743 * @msg: Received message
744 * @vec: Input s/g array for message data
745 * @num: Size of input s/g array
746 * @size: Number of bytes to read
747 * @flags: Message flags (MSG_DONTWAIT, etc...)
749 * On return the msg structure contains the scatter/gather array passed in the
750 * vec argument. The array is modified so that it consists of the unfilled
751 * portion of the original array.
753 * The returned value is the total number of bytes received, or an error.
755 int kernel_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
756 struct kvec
*vec
, size_t num
, size_t size
, int flags
)
758 mm_segment_t oldfs
= get_fs();
763 * the following is safe, since for compiler definitions of kvec and
764 * iovec are identical, yielding the same in-core layout and alignment
766 msg
->msg_iov
= (struct iovec
*)vec
, msg
->msg_iovlen
= num
;
767 result
= sock_recvmsg(sock
, msg
, size
, flags
);
771 EXPORT_SYMBOL(kernel_recvmsg
);
773 static void sock_aio_dtor(struct kiocb
*iocb
)
775 kfree(iocb
->private);
778 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
779 int offset
, size_t size
, loff_t
*ppos
, int more
)
784 sock
= file
->private_data
;
786 flags
= !(file
->f_flags
& O_NONBLOCK
) ? 0 : MSG_DONTWAIT
;
790 return kernel_sendpage(sock
, page
, offset
, size
, flags
);
793 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
794 struct pipe_inode_info
*pipe
, size_t len
,
797 struct socket
*sock
= file
->private_data
;
799 if (unlikely(!sock
->ops
->splice_read
))
802 sock_update_classid(sock
->sk
);
804 return sock
->ops
->splice_read(sock
, ppos
, pipe
, len
, flags
);
807 static struct sock_iocb
*alloc_sock_iocb(struct kiocb
*iocb
,
808 struct sock_iocb
*siocb
)
810 if (!is_sync_kiocb(iocb
)) {
811 siocb
= kmalloc(sizeof(*siocb
), GFP_KERNEL
);
814 iocb
->ki_dtor
= sock_aio_dtor
;
818 iocb
->private = siocb
;
822 static ssize_t
do_sock_read(struct msghdr
*msg
, struct kiocb
*iocb
,
823 struct file
*file
, const struct iovec
*iov
,
824 unsigned long nr_segs
)
826 struct socket
*sock
= file
->private_data
;
830 for (i
= 0; i
< nr_segs
; i
++)
831 size
+= iov
[i
].iov_len
;
833 msg
->msg_name
= NULL
;
834 msg
->msg_namelen
= 0;
835 msg
->msg_control
= NULL
;
836 msg
->msg_controllen
= 0;
837 msg
->msg_iov
= (struct iovec
*)iov
;
838 msg
->msg_iovlen
= nr_segs
;
839 msg
->msg_flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
841 return __sock_recvmsg(iocb
, sock
, msg
, size
, msg
->msg_flags
);
844 static ssize_t
sock_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
845 unsigned long nr_segs
, loff_t pos
)
847 struct sock_iocb siocb
, *x
;
852 if (iocb
->ki_left
== 0) /* Match SYS5 behaviour */
856 x
= alloc_sock_iocb(iocb
, &siocb
);
859 return do_sock_read(&x
->async_msg
, iocb
, iocb
->ki_filp
, iov
, nr_segs
);
862 static ssize_t
do_sock_write(struct msghdr
*msg
, struct kiocb
*iocb
,
863 struct file
*file
, const struct iovec
*iov
,
864 unsigned long nr_segs
)
866 struct socket
*sock
= file
->private_data
;
870 for (i
= 0; i
< nr_segs
; i
++)
871 size
+= iov
[i
].iov_len
;
873 msg
->msg_name
= NULL
;
874 msg
->msg_namelen
= 0;
875 msg
->msg_control
= NULL
;
876 msg
->msg_controllen
= 0;
877 msg
->msg_iov
= (struct iovec
*)iov
;
878 msg
->msg_iovlen
= nr_segs
;
879 msg
->msg_flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
880 if (sock
->type
== SOCK_SEQPACKET
)
881 msg
->msg_flags
|= MSG_EOR
;
883 return __sock_sendmsg(iocb
, sock
, msg
, size
);
886 static ssize_t
sock_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
887 unsigned long nr_segs
, loff_t pos
)
889 struct sock_iocb siocb
, *x
;
894 x
= alloc_sock_iocb(iocb
, &siocb
);
898 return do_sock_write(&x
->async_msg
, iocb
, iocb
->ki_filp
, iov
, nr_segs
);
902 * Atomic setting of ioctl hooks to avoid race
903 * with module unload.
906 static DEFINE_MUTEX(br_ioctl_mutex
);
907 static int (*br_ioctl_hook
) (struct net
*, unsigned int cmd
, void __user
*arg
);
909 void brioctl_set(int (*hook
) (struct net
*, unsigned int, void __user
*))
911 mutex_lock(&br_ioctl_mutex
);
912 br_ioctl_hook
= hook
;
913 mutex_unlock(&br_ioctl_mutex
);
915 EXPORT_SYMBOL(brioctl_set
);
917 static DEFINE_MUTEX(vlan_ioctl_mutex
);
918 static int (*vlan_ioctl_hook
) (struct net
*, void __user
*arg
);
920 void vlan_ioctl_set(int (*hook
) (struct net
*, void __user
*))
922 mutex_lock(&vlan_ioctl_mutex
);
923 vlan_ioctl_hook
= hook
;
924 mutex_unlock(&vlan_ioctl_mutex
);
926 EXPORT_SYMBOL(vlan_ioctl_set
);
928 static DEFINE_MUTEX(dlci_ioctl_mutex
);
929 static int (*dlci_ioctl_hook
) (unsigned int, void __user
*);
931 void dlci_ioctl_set(int (*hook
) (unsigned int, void __user
*))
933 mutex_lock(&dlci_ioctl_mutex
);
934 dlci_ioctl_hook
= hook
;
935 mutex_unlock(&dlci_ioctl_mutex
);
937 EXPORT_SYMBOL(dlci_ioctl_set
);
939 static long sock_do_ioctl(struct net
*net
, struct socket
*sock
,
940 unsigned int cmd
, unsigned long arg
)
943 void __user
*argp
= (void __user
*)arg
;
945 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
948 * If this ioctl is unknown try to hand it down
951 if (err
== -ENOIOCTLCMD
)
952 err
= dev_ioctl(net
, cmd
, argp
);
958 * With an ioctl, arg may well be a user mode pointer, but we don't know
959 * what to do with it - that's up to the protocol still.
962 static long sock_ioctl(struct file
*file
, unsigned cmd
, unsigned long arg
)
966 void __user
*argp
= (void __user
*)arg
;
970 sock
= file
->private_data
;
973 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15)) {
974 err
= dev_ioctl(net
, cmd
, argp
);
976 #ifdef CONFIG_WEXT_CORE
977 if (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
) {
978 err
= dev_ioctl(net
, cmd
, argp
);
985 if (get_user(pid
, (int __user
*)argp
))
987 err
= f_setown(sock
->file
, pid
, 1);
991 err
= put_user(f_getown(sock
->file
),
1000 request_module("bridge");
1002 mutex_lock(&br_ioctl_mutex
);
1004 err
= br_ioctl_hook(net
, cmd
, argp
);
1005 mutex_unlock(&br_ioctl_mutex
);
1010 if (!vlan_ioctl_hook
)
1011 request_module("8021q");
1013 mutex_lock(&vlan_ioctl_mutex
);
1014 if (vlan_ioctl_hook
)
1015 err
= vlan_ioctl_hook(net
, argp
);
1016 mutex_unlock(&vlan_ioctl_mutex
);
1021 if (!dlci_ioctl_hook
)
1022 request_module("dlci");
1024 mutex_lock(&dlci_ioctl_mutex
);
1025 if (dlci_ioctl_hook
)
1026 err
= dlci_ioctl_hook(cmd
, argp
);
1027 mutex_unlock(&dlci_ioctl_mutex
);
1030 err
= sock_do_ioctl(net
, sock
, cmd
, arg
);
1036 int sock_create_lite(int family
, int type
, int protocol
, struct socket
**res
)
1039 struct socket
*sock
= NULL
;
1041 err
= security_socket_create(family
, type
, protocol
, 1);
1045 sock
= sock_alloc();
1052 err
= security_socket_post_create(sock
, family
, type
, protocol
, 1);
1064 EXPORT_SYMBOL(sock_create_lite
);
1066 /* No kernel lock held - perfect */
1067 static unsigned int sock_poll(struct file
*file
, poll_table
*wait
)
1069 struct socket
*sock
;
1072 * We can't return errors to poll, so it's either yes or no.
1074 sock
= file
->private_data
;
1075 return sock
->ops
->poll(file
, sock
, wait
);
1078 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1080 struct socket
*sock
= file
->private_data
;
1082 return sock
->ops
->mmap(file
, sock
, vma
);
1085 static int sock_close(struct inode
*inode
, struct file
*filp
)
1088 * It was possible the inode is NULL we were
1089 * closing an unfinished socket.
1093 printk(KERN_DEBUG
"sock_close: NULL inode\n");
1096 sock_release(SOCKET_I(inode
));
1101 * Update the socket async list
1103 * Fasync_list locking strategy.
1105 * 1. fasync_list is modified only under process context socket lock
1106 * i.e. under semaphore.
1107 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1108 * or under socket lock
1111 static int sock_fasync(int fd
, struct file
*filp
, int on
)
1113 struct socket
*sock
= filp
->private_data
;
1114 struct sock
*sk
= sock
->sk
;
1115 struct socket_wq
*wq
;
1121 wq
= rcu_dereference_protected(sock
->wq
, sock_owned_by_user(sk
));
1122 fasync_helper(fd
, filp
, on
, &wq
->fasync_list
);
1124 if (!wq
->fasync_list
)
1125 sock_reset_flag(sk
, SOCK_FASYNC
);
1127 sock_set_flag(sk
, SOCK_FASYNC
);
1133 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1135 int sock_wake_async(struct socket
*sock
, int how
, int band
)
1137 struct socket_wq
*wq
;
1142 wq
= rcu_dereference(sock
->wq
);
1143 if (!wq
|| !wq
->fasync_list
) {
1148 case SOCK_WAKE_WAITD
:
1149 if (test_bit(SOCK_ASYNC_WAITDATA
, &sock
->flags
))
1152 case SOCK_WAKE_SPACE
:
1153 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE
, &sock
->flags
))
1158 kill_fasync(&wq
->fasync_list
, SIGIO
, band
);
1161 kill_fasync(&wq
->fasync_list
, SIGURG
, band
);
1166 EXPORT_SYMBOL(sock_wake_async
);
1168 int __sock_create(struct net
*net
, int family
, int type
, int protocol
,
1169 struct socket
**res
, int kern
)
1172 struct socket
*sock
;
1173 const struct net_proto_family
*pf
;
1176 * Check protocol is in range
1178 if (family
< 0 || family
>= NPROTO
)
1179 return -EAFNOSUPPORT
;
1180 if (type
< 0 || type
>= SOCK_MAX
)
1185 This uglymoron is moved from INET layer to here to avoid
1186 deadlock in module load.
1188 if (family
== PF_INET
&& type
== SOCK_PACKET
) {
1192 printk(KERN_INFO
"%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1198 err
= security_socket_create(family
, type
, protocol
, kern
);
1203 * Allocate the socket and allow the family to set things up. if
1204 * the protocol is 0, the family is instructed to select an appropriate
1207 sock
= sock_alloc();
1209 if (net_ratelimit())
1210 printk(KERN_WARNING
"socket: no more sockets\n");
1211 return -ENFILE
; /* Not exactly a match, but its the
1212 closest posix thing */
1217 #ifdef CONFIG_MODULES
1218 /* Attempt to load a protocol module if the find failed.
1220 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1221 * requested real, full-featured networking support upon configuration.
1222 * Otherwise module support will break!
1224 if (rcu_access_pointer(net_families
[family
]) == NULL
)
1225 request_module("net-pf-%d", family
);
1229 pf
= rcu_dereference(net_families
[family
]);
1230 err
= -EAFNOSUPPORT
;
1235 * We will call the ->create function, that possibly is in a loadable
1236 * module, so we have to bump that loadable module refcnt first.
1238 if (!try_module_get(pf
->owner
))
1241 /* Now protected by module ref count */
1244 err
= pf
->create(net
, sock
, protocol
, kern
);
1246 goto out_module_put
;
1249 * Now to bump the refcnt of the [loadable] module that owns this
1250 * socket at sock_release time we decrement its refcnt.
1252 if (!try_module_get(sock
->ops
->owner
))
1253 goto out_module_busy
;
1256 * Now that we're done with the ->create function, the [loadable]
1257 * module can have its refcnt decremented
1259 module_put(pf
->owner
);
1260 err
= security_socket_post_create(sock
, family
, type
, protocol
, kern
);
1262 goto out_sock_release
;
1268 err
= -EAFNOSUPPORT
;
1271 module_put(pf
->owner
);
1278 goto out_sock_release
;
1280 EXPORT_SYMBOL(__sock_create
);
1282 int sock_create(int family
, int type
, int protocol
, struct socket
**res
)
1284 return __sock_create(current
->nsproxy
->net_ns
, family
, type
, protocol
, res
, 0);
1286 EXPORT_SYMBOL(sock_create
);
1288 int sock_create_kern(int family
, int type
, int protocol
, struct socket
**res
)
1290 return __sock_create(&init_net
, family
, type
, protocol
, res
, 1);
1292 EXPORT_SYMBOL(sock_create_kern
);
1294 SYSCALL_DEFINE3(socket
, int, family
, int, type
, int, protocol
)
1297 struct socket
*sock
;
1300 /* Check the SOCK_* constants for consistency. */
1301 BUILD_BUG_ON(SOCK_CLOEXEC
!= O_CLOEXEC
);
1302 BUILD_BUG_ON((SOCK_MAX
| SOCK_TYPE_MASK
) != SOCK_TYPE_MASK
);
1303 BUILD_BUG_ON(SOCK_CLOEXEC
& SOCK_TYPE_MASK
);
1304 BUILD_BUG_ON(SOCK_NONBLOCK
& SOCK_TYPE_MASK
);
1306 flags
= type
& ~SOCK_TYPE_MASK
;
1307 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1309 type
&= SOCK_TYPE_MASK
;
1311 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1312 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1314 retval
= sock_create(family
, type
, protocol
, &sock
);
1318 retval
= sock_map_fd(sock
, flags
& (O_CLOEXEC
| O_NONBLOCK
));
1323 /* It may be already another descriptor 8) Not kernel problem. */
1332 * Create a pair of connected sockets.
1335 SYSCALL_DEFINE4(socketpair
, int, family
, int, type
, int, protocol
,
1336 int __user
*, usockvec
)
1338 struct socket
*sock1
, *sock2
;
1340 struct file
*newfile1
, *newfile2
;
1343 flags
= type
& ~SOCK_TYPE_MASK
;
1344 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1346 type
&= SOCK_TYPE_MASK
;
1348 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1349 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1352 * Obtain the first socket and check if the underlying protocol
1353 * supports the socketpair call.
1356 err
= sock_create(family
, type
, protocol
, &sock1
);
1360 err
= sock_create(family
, type
, protocol
, &sock2
);
1364 err
= sock1
->ops
->socketpair(sock1
, sock2
);
1366 goto out_release_both
;
1368 fd1
= sock_alloc_file(sock1
, &newfile1
, flags
);
1369 if (unlikely(fd1
< 0)) {
1371 goto out_release_both
;
1374 fd2
= sock_alloc_file(sock2
, &newfile2
, flags
);
1375 if (unlikely(fd2
< 0)) {
1379 sock_release(sock2
);
1383 audit_fd_pair(fd1
, fd2
);
1384 fd_install(fd1
, newfile1
);
1385 fd_install(fd2
, newfile2
);
1386 /* fd1 and fd2 may be already another descriptors.
1387 * Not kernel problem.
1390 err
= put_user(fd1
, &usockvec
[0]);
1392 err
= put_user(fd2
, &usockvec
[1]);
1401 sock_release(sock2
);
1403 sock_release(sock1
);
1409 * Bind a name to a socket. Nothing much to do here since it's
1410 * the protocol's responsibility to handle the local address.
1412 * We move the socket address to kernel space before we call
1413 * the protocol layer (having also checked the address is ok).
1416 SYSCALL_DEFINE3(bind
, int, fd
, struct sockaddr __user
*, umyaddr
, int, addrlen
)
1418 struct socket
*sock
;
1419 struct sockaddr_storage address
;
1420 int err
, fput_needed
;
1422 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1424 err
= move_addr_to_kernel(umyaddr
, addrlen
, (struct sockaddr
*)&address
);
1426 err
= security_socket_bind(sock
,
1427 (struct sockaddr
*)&address
,
1430 err
= sock
->ops
->bind(sock
,
1434 fput_light(sock
->file
, fput_needed
);
1440 * Perform a listen. Basically, we allow the protocol to do anything
1441 * necessary for a listen, and if that works, we mark the socket as
1442 * ready for listening.
1445 SYSCALL_DEFINE2(listen
, int, fd
, int, backlog
)
1447 struct socket
*sock
;
1448 int err
, fput_needed
;
1451 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1453 somaxconn
= sock_net(sock
->sk
)->core
.sysctl_somaxconn
;
1454 if ((unsigned)backlog
> somaxconn
)
1455 backlog
= somaxconn
;
1457 err
= security_socket_listen(sock
, backlog
);
1459 err
= sock
->ops
->listen(sock
, backlog
);
1461 fput_light(sock
->file
, fput_needed
);
1467 * For accept, we attempt to create a new socket, set up the link
1468 * with the client, wake up the client, then return the new
1469 * connected fd. We collect the address of the connector in kernel
1470 * space and move it to user at the very end. This is unclean because
1471 * we open the socket then return an error.
1473 * 1003.1g adds the ability to recvmsg() to query connection pending
1474 * status to recvmsg. We need to add that support in a way thats
1475 * clean when we restucture accept also.
1478 SYSCALL_DEFINE4(accept4
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1479 int __user
*, upeer_addrlen
, int, flags
)
1481 struct socket
*sock
, *newsock
;
1482 struct file
*newfile
;
1483 int err
, len
, newfd
, fput_needed
;
1484 struct sockaddr_storage address
;
1486 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1489 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1490 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1492 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1497 newsock
= sock_alloc();
1501 newsock
->type
= sock
->type
;
1502 newsock
->ops
= sock
->ops
;
1505 * We don't need try_module_get here, as the listening socket (sock)
1506 * has the protocol module (sock->ops->owner) held.
1508 __module_get(newsock
->ops
->owner
);
1510 newfd
= sock_alloc_file(newsock
, &newfile
, flags
);
1511 if (unlikely(newfd
< 0)) {
1513 sock_release(newsock
);
1517 err
= security_socket_accept(sock
, newsock
);
1521 err
= sock
->ops
->accept(sock
, newsock
, sock
->file
->f_flags
);
1525 if (upeer_sockaddr
) {
1526 if (newsock
->ops
->getname(newsock
, (struct sockaddr
*)&address
,
1528 err
= -ECONNABORTED
;
1531 err
= move_addr_to_user((struct sockaddr
*)&address
,
1532 len
, upeer_sockaddr
, upeer_addrlen
);
1537 /* File flags are not inherited via accept() unlike another OSes. */
1539 fd_install(newfd
, newfile
);
1543 fput_light(sock
->file
, fput_needed
);
1548 put_unused_fd(newfd
);
1552 SYSCALL_DEFINE3(accept
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1553 int __user
*, upeer_addrlen
)
1555 return sys_accept4(fd
, upeer_sockaddr
, upeer_addrlen
, 0);
1559 * Attempt to connect to a socket with the server address. The address
1560 * is in user space so we verify it is OK and move it to kernel space.
1562 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1565 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1566 * other SEQPACKET protocols that take time to connect() as it doesn't
1567 * include the -EINPROGRESS status for such sockets.
1570 SYSCALL_DEFINE3(connect
, int, fd
, struct sockaddr __user
*, uservaddr
,
1573 struct socket
*sock
;
1574 struct sockaddr_storage address
;
1575 int err
, fput_needed
;
1577 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1580 err
= move_addr_to_kernel(uservaddr
, addrlen
, (struct sockaddr
*)&address
);
1585 security_socket_connect(sock
, (struct sockaddr
*)&address
, addrlen
);
1589 err
= sock
->ops
->connect(sock
, (struct sockaddr
*)&address
, addrlen
,
1590 sock
->file
->f_flags
);
1592 fput_light(sock
->file
, fput_needed
);
1598 * Get the local address ('name') of a socket object. Move the obtained
1599 * name to user space.
1602 SYSCALL_DEFINE3(getsockname
, int, fd
, struct sockaddr __user
*, usockaddr
,
1603 int __user
*, usockaddr_len
)
1605 struct socket
*sock
;
1606 struct sockaddr_storage address
;
1607 int len
, err
, fput_needed
;
1609 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1613 err
= security_socket_getsockname(sock
);
1617 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, &len
, 0);
1620 err
= move_addr_to_user((struct sockaddr
*)&address
, len
, usockaddr
, usockaddr_len
);
1623 fput_light(sock
->file
, fput_needed
);
1629 * Get the remote address ('name') of a socket object. Move the obtained
1630 * name to user space.
1633 SYSCALL_DEFINE3(getpeername
, int, fd
, struct sockaddr __user
*, usockaddr
,
1634 int __user
*, usockaddr_len
)
1636 struct socket
*sock
;
1637 struct sockaddr_storage address
;
1638 int len
, err
, fput_needed
;
1640 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1642 err
= security_socket_getpeername(sock
);
1644 fput_light(sock
->file
, fput_needed
);
1649 sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, &len
,
1652 err
= move_addr_to_user((struct sockaddr
*)&address
, len
, usockaddr
,
1654 fput_light(sock
->file
, fput_needed
);
1660 * Send a datagram to a given address. We move the address into kernel
1661 * space and check the user space data area is readable before invoking
1665 SYSCALL_DEFINE6(sendto
, int, fd
, void __user
*, buff
, size_t, len
,
1666 unsigned, flags
, struct sockaddr __user
*, addr
,
1669 struct socket
*sock
;
1670 struct sockaddr_storage address
;
1678 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1682 iov
.iov_base
= buff
;
1684 msg
.msg_name
= NULL
;
1687 msg
.msg_control
= NULL
;
1688 msg
.msg_controllen
= 0;
1689 msg
.msg_namelen
= 0;
1691 err
= move_addr_to_kernel(addr
, addr_len
, (struct sockaddr
*)&address
);
1694 msg
.msg_name
= (struct sockaddr
*)&address
;
1695 msg
.msg_namelen
= addr_len
;
1697 if (sock
->file
->f_flags
& O_NONBLOCK
)
1698 flags
|= MSG_DONTWAIT
;
1699 msg
.msg_flags
= flags
;
1700 err
= sock_sendmsg(sock
, &msg
, len
);
1703 fput_light(sock
->file
, fput_needed
);
1709 * Send a datagram down a socket.
1712 SYSCALL_DEFINE4(send
, int, fd
, void __user
*, buff
, size_t, len
,
1715 return sys_sendto(fd
, buff
, len
, flags
, NULL
, 0);
1719 * Receive a frame from the socket and optionally record the address of the
1720 * sender. We verify the buffers are writable and if needed move the
1721 * sender address from kernel to user space.
1724 SYSCALL_DEFINE6(recvfrom
, int, fd
, void __user
*, ubuf
, size_t, size
,
1725 unsigned, flags
, struct sockaddr __user
*, addr
,
1726 int __user
*, addr_len
)
1728 struct socket
*sock
;
1731 struct sockaddr_storage address
;
1737 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1741 msg
.msg_control
= NULL
;
1742 msg
.msg_controllen
= 0;
1746 iov
.iov_base
= ubuf
;
1747 msg
.msg_name
= (struct sockaddr
*)&address
;
1748 msg
.msg_namelen
= sizeof(address
);
1749 if (sock
->file
->f_flags
& O_NONBLOCK
)
1750 flags
|= MSG_DONTWAIT
;
1751 err
= sock_recvmsg(sock
, &msg
, size
, flags
);
1753 if (err
>= 0 && addr
!= NULL
) {
1754 err2
= move_addr_to_user((struct sockaddr
*)&address
,
1755 msg
.msg_namelen
, addr
, addr_len
);
1760 fput_light(sock
->file
, fput_needed
);
1766 * Receive a datagram from a socket.
1769 asmlinkage
long sys_recv(int fd
, void __user
*ubuf
, size_t size
,
1772 return sys_recvfrom(fd
, ubuf
, size
, flags
, NULL
, NULL
);
1776 * Set a socket option. Because we don't know the option lengths we have
1777 * to pass the user mode parameter for the protocols to sort out.
1780 SYSCALL_DEFINE5(setsockopt
, int, fd
, int, level
, int, optname
,
1781 char __user
*, optval
, int, optlen
)
1783 int err
, fput_needed
;
1784 struct socket
*sock
;
1789 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1791 err
= security_socket_setsockopt(sock
, level
, optname
);
1795 if (level
== SOL_SOCKET
)
1797 sock_setsockopt(sock
, level
, optname
, optval
,
1801 sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
1804 fput_light(sock
->file
, fput_needed
);
1810 * Get a socket option. Because we don't know the option lengths we have
1811 * to pass a user mode parameter for the protocols to sort out.
1814 SYSCALL_DEFINE5(getsockopt
, int, fd
, int, level
, int, optname
,
1815 char __user
*, optval
, int __user
*, optlen
)
1817 int err
, fput_needed
;
1818 struct socket
*sock
;
1820 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1822 err
= security_socket_getsockopt(sock
, level
, optname
);
1826 if (level
== SOL_SOCKET
)
1828 sock_getsockopt(sock
, level
, optname
, optval
,
1832 sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
1835 fput_light(sock
->file
, fput_needed
);
1841 * Shutdown a socket.
1844 SYSCALL_DEFINE2(shutdown
, int, fd
, int, how
)
1846 int err
, fput_needed
;
1847 struct socket
*sock
;
1849 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1851 err
= security_socket_shutdown(sock
, how
);
1853 err
= sock
->ops
->shutdown(sock
, how
);
1854 fput_light(sock
->file
, fput_needed
);
1859 /* A couple of helpful macros for getting the address of the 32/64 bit
1860 * fields which are the same type (int / unsigned) on our platforms.
1862 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1863 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1864 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1867 * BSD sendmsg interface
1870 SYSCALL_DEFINE3(sendmsg
, int, fd
, struct msghdr __user
*, msg
, unsigned, flags
)
1872 struct compat_msghdr __user
*msg_compat
=
1873 (struct compat_msghdr __user
*)msg
;
1874 struct socket
*sock
;
1875 struct sockaddr_storage address
;
1876 struct iovec iovstack
[UIO_FASTIOV
], *iov
= iovstack
;
1877 unsigned char ctl
[sizeof(struct cmsghdr
) + 20]
1878 __attribute__ ((aligned(sizeof(__kernel_size_t
))));
1879 /* 20 is size of ipv6_pktinfo */
1880 unsigned char *ctl_buf
= ctl
;
1881 struct msghdr msg_sys
;
1882 int err
, ctl_len
, iov_size
, total_len
;
1886 if (MSG_CMSG_COMPAT
& flags
) {
1887 if (get_compat_msghdr(&msg_sys
, msg_compat
))
1889 } else if (copy_from_user(&msg_sys
, msg
, sizeof(struct msghdr
)))
1892 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1896 /* do not move before msg_sys is valid */
1898 if (msg_sys
.msg_iovlen
> UIO_MAXIOV
)
1901 /* Check whether to allocate the iovec area */
1903 iov_size
= msg_sys
.msg_iovlen
* sizeof(struct iovec
);
1904 if (msg_sys
.msg_iovlen
> UIO_FASTIOV
) {
1905 iov
= sock_kmalloc(sock
->sk
, iov_size
, GFP_KERNEL
);
1910 /* This will also move the address data into kernel space */
1911 if (MSG_CMSG_COMPAT
& flags
) {
1912 err
= verify_compat_iovec(&msg_sys
, iov
,
1913 (struct sockaddr
*)&address
,
1916 err
= verify_iovec(&msg_sys
, iov
,
1917 (struct sockaddr
*)&address
,
1925 if (msg_sys
.msg_controllen
> INT_MAX
)
1927 ctl_len
= msg_sys
.msg_controllen
;
1928 if ((MSG_CMSG_COMPAT
& flags
) && ctl_len
) {
1930 cmsghdr_from_user_compat_to_kern(&msg_sys
, sock
->sk
, ctl
,
1934 ctl_buf
= msg_sys
.msg_control
;
1935 ctl_len
= msg_sys
.msg_controllen
;
1936 } else if (ctl_len
) {
1937 if (ctl_len
> sizeof(ctl
)) {
1938 ctl_buf
= sock_kmalloc(sock
->sk
, ctl_len
, GFP_KERNEL
);
1939 if (ctl_buf
== NULL
)
1944 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1945 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1946 * checking falls down on this.
1948 if (copy_from_user(ctl_buf
,
1949 (void __user __force
*)msg_sys
.msg_control
,
1952 msg_sys
.msg_control
= ctl_buf
;
1954 msg_sys
.msg_flags
= flags
;
1956 if (sock
->file
->f_flags
& O_NONBLOCK
)
1957 msg_sys
.msg_flags
|= MSG_DONTWAIT
;
1958 err
= sock_sendmsg(sock
, &msg_sys
, total_len
);
1962 sock_kfree_s(sock
->sk
, ctl_buf
, ctl_len
);
1964 if (iov
!= iovstack
)
1965 sock_kfree_s(sock
->sk
, iov
, iov_size
);
1967 fput_light(sock
->file
, fput_needed
);
1972 static int __sys_recvmsg(struct socket
*sock
, struct msghdr __user
*msg
,
1973 struct msghdr
*msg_sys
, unsigned flags
, int nosec
)
1975 struct compat_msghdr __user
*msg_compat
=
1976 (struct compat_msghdr __user
*)msg
;
1977 struct iovec iovstack
[UIO_FASTIOV
];
1978 struct iovec
*iov
= iovstack
;
1979 unsigned long cmsg_ptr
;
1980 int err
, iov_size
, total_len
, len
;
1982 /* kernel mode address */
1983 struct sockaddr_storage addr
;
1985 /* user mode address pointers */
1986 struct sockaddr __user
*uaddr
;
1987 int __user
*uaddr_len
;
1989 if (MSG_CMSG_COMPAT
& flags
) {
1990 if (get_compat_msghdr(msg_sys
, msg_compat
))
1992 } else if (copy_from_user(msg_sys
, msg
, sizeof(struct msghdr
)))
1996 if (msg_sys
->msg_iovlen
> UIO_MAXIOV
)
1999 /* Check whether to allocate the iovec area */
2001 iov_size
= msg_sys
->msg_iovlen
* sizeof(struct iovec
);
2002 if (msg_sys
->msg_iovlen
> UIO_FASTIOV
) {
2003 iov
= sock_kmalloc(sock
->sk
, iov_size
, GFP_KERNEL
);
2009 * Save the user-mode address (verify_iovec will change the
2010 * kernel msghdr to use the kernel address space)
2013 uaddr
= (__force
void __user
*)msg_sys
->msg_name
;
2014 uaddr_len
= COMPAT_NAMELEN(msg
);
2015 if (MSG_CMSG_COMPAT
& flags
) {
2016 err
= verify_compat_iovec(msg_sys
, iov
,
2017 (struct sockaddr
*)&addr
,
2020 err
= verify_iovec(msg_sys
, iov
,
2021 (struct sockaddr
*)&addr
,
2027 cmsg_ptr
= (unsigned long)msg_sys
->msg_control
;
2028 msg_sys
->msg_flags
= flags
& (MSG_CMSG_CLOEXEC
|MSG_CMSG_COMPAT
);
2030 if (sock
->file
->f_flags
& O_NONBLOCK
)
2031 flags
|= MSG_DONTWAIT
;
2032 err
= (nosec
? sock_recvmsg_nosec
: sock_recvmsg
)(sock
, msg_sys
,
2038 if (uaddr
!= NULL
) {
2039 err
= move_addr_to_user((struct sockaddr
*)&addr
,
2040 msg_sys
->msg_namelen
, uaddr
,
2045 err
= __put_user((msg_sys
->msg_flags
& ~MSG_CMSG_COMPAT
),
2049 if (MSG_CMSG_COMPAT
& flags
)
2050 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2051 &msg_compat
->msg_controllen
);
2053 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2054 &msg
->msg_controllen
);
2060 if (iov
!= iovstack
)
2061 sock_kfree_s(sock
->sk
, iov
, iov_size
);
2067 * BSD recvmsg interface
2070 SYSCALL_DEFINE3(recvmsg
, int, fd
, struct msghdr __user
*, msg
,
2071 unsigned int, flags
)
2073 int fput_needed
, err
;
2074 struct msghdr msg_sys
;
2075 struct socket
*sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2080 err
= __sys_recvmsg(sock
, msg
, &msg_sys
, flags
, 0);
2082 fput_light(sock
->file
, fput_needed
);
2088 * Linux recvmmsg interface
2091 int __sys_recvmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2092 unsigned int flags
, struct timespec
*timeout
)
2094 int fput_needed
, err
, datagrams
;
2095 struct socket
*sock
;
2096 struct mmsghdr __user
*entry
;
2097 struct compat_mmsghdr __user
*compat_entry
;
2098 struct msghdr msg_sys
;
2099 struct timespec end_time
;
2102 poll_select_set_timeout(&end_time
, timeout
->tv_sec
,
2108 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2112 err
= sock_error(sock
->sk
);
2117 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2119 while (datagrams
< vlen
) {
2121 * No need to ask LSM for more than the first datagram.
2123 if (MSG_CMSG_COMPAT
& flags
) {
2124 err
= __sys_recvmsg(sock
, (struct msghdr __user
*)compat_entry
,
2125 &msg_sys
, flags
, datagrams
);
2128 err
= __put_user(err
, &compat_entry
->msg_len
);
2131 err
= __sys_recvmsg(sock
, (struct msghdr __user
*)entry
,
2132 &msg_sys
, flags
, datagrams
);
2135 err
= put_user(err
, &entry
->msg_len
);
2143 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2144 if (flags
& MSG_WAITFORONE
)
2145 flags
|= MSG_DONTWAIT
;
2148 ktime_get_ts(timeout
);
2149 *timeout
= timespec_sub(end_time
, *timeout
);
2150 if (timeout
->tv_sec
< 0) {
2151 timeout
->tv_sec
= timeout
->tv_nsec
= 0;
2155 /* Timeout, return less than vlen datagrams */
2156 if (timeout
->tv_nsec
== 0 && timeout
->tv_sec
== 0)
2160 /* Out of band data, return right away */
2161 if (msg_sys
.msg_flags
& MSG_OOB
)
2166 fput_light(sock
->file
, fput_needed
);
2171 if (datagrams
!= 0) {
2173 * We may return less entries than requested (vlen) if the
2174 * sock is non block and there aren't enough datagrams...
2176 if (err
!= -EAGAIN
) {
2178 * ... or if recvmsg returns an error after we
2179 * received some datagrams, where we record the
2180 * error to return on the next call or if the
2181 * app asks about it using getsockopt(SO_ERROR).
2183 sock
->sk
->sk_err
= -err
;
2192 SYSCALL_DEFINE5(recvmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2193 unsigned int, vlen
, unsigned int, flags
,
2194 struct timespec __user
*, timeout
)
2197 struct timespec timeout_sys
;
2200 return __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, NULL
);
2202 if (copy_from_user(&timeout_sys
, timeout
, sizeof(timeout_sys
)))
2205 datagrams
= __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, &timeout_sys
);
2207 if (datagrams
> 0 &&
2208 copy_to_user(timeout
, &timeout_sys
, sizeof(timeout_sys
)))
2209 datagrams
= -EFAULT
;
2214 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2215 /* Argument list sizes for sys_socketcall */
2216 #define AL(x) ((x) * sizeof(unsigned long))
2217 static const unsigned char nargs
[20] = {
2218 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2219 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2220 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2227 * System call vectors.
2229 * Argument checking cleaned up. Saved 20% in size.
2230 * This function doesn't need to set the kernel lock because
2231 * it is set by the callees.
2234 SYSCALL_DEFINE2(socketcall
, int, call
, unsigned long __user
*, args
)
2237 unsigned long a0
, a1
;
2241 if (call
< 1 || call
> SYS_RECVMMSG
)
2245 if (len
> sizeof(a
))
2248 /* copy_from_user should be SMP safe. */
2249 if (copy_from_user(a
, args
, len
))
2252 audit_socketcall(nargs
[call
] / sizeof(unsigned long), a
);
2259 err
= sys_socket(a0
, a1
, a
[2]);
2262 err
= sys_bind(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2265 err
= sys_connect(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2268 err
= sys_listen(a0
, a1
);
2271 err
= sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2272 (int __user
*)a
[2], 0);
2274 case SYS_GETSOCKNAME
:
2276 sys_getsockname(a0
, (struct sockaddr __user
*)a1
,
2277 (int __user
*)a
[2]);
2279 case SYS_GETPEERNAME
:
2281 sys_getpeername(a0
, (struct sockaddr __user
*)a1
,
2282 (int __user
*)a
[2]);
2284 case SYS_SOCKETPAIR
:
2285 err
= sys_socketpair(a0
, a1
, a
[2], (int __user
*)a
[3]);
2288 err
= sys_send(a0
, (void __user
*)a1
, a
[2], a
[3]);
2291 err
= sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2292 (struct sockaddr __user
*)a
[4], a
[5]);
2295 err
= sys_recv(a0
, (void __user
*)a1
, a
[2], a
[3]);
2298 err
= sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2299 (struct sockaddr __user
*)a
[4],
2300 (int __user
*)a
[5]);
2303 err
= sys_shutdown(a0
, a1
);
2305 case SYS_SETSOCKOPT
:
2306 err
= sys_setsockopt(a0
, a1
, a
[2], (char __user
*)a
[3], a
[4]);
2308 case SYS_GETSOCKOPT
:
2310 sys_getsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2311 (int __user
*)a
[4]);
2314 err
= sys_sendmsg(a0
, (struct msghdr __user
*)a1
, a
[2]);
2317 err
= sys_recvmsg(a0
, (struct msghdr __user
*)a1
, a
[2]);
2320 err
= sys_recvmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2], a
[3],
2321 (struct timespec __user
*)a
[4]);
2324 err
= sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2325 (int __user
*)a
[2], a
[3]);
2334 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2337 * sock_register - add a socket protocol handler
2338 * @ops: description of protocol
2340 * This function is called by a protocol handler that wants to
2341 * advertise its address family, and have it linked into the
2342 * socket interface. The value ops->family coresponds to the
2343 * socket system call protocol family.
2345 int sock_register(const struct net_proto_family
*ops
)
2349 if (ops
->family
>= NPROTO
) {
2350 printk(KERN_CRIT
"protocol %d >= NPROTO(%d)\n", ops
->family
,
2355 spin_lock(&net_family_lock
);
2356 if (rcu_dereference_protected(net_families
[ops
->family
],
2357 lockdep_is_held(&net_family_lock
)))
2360 rcu_assign_pointer(net_families
[ops
->family
], ops
);
2363 spin_unlock(&net_family_lock
);
2365 printk(KERN_INFO
"NET: Registered protocol family %d\n", ops
->family
);
2368 EXPORT_SYMBOL(sock_register
);
2371 * sock_unregister - remove a protocol handler
2372 * @family: protocol family to remove
2374 * This function is called by a protocol handler that wants to
2375 * remove its address family, and have it unlinked from the
2376 * new socket creation.
2378 * If protocol handler is a module, then it can use module reference
2379 * counts to protect against new references. If protocol handler is not
2380 * a module then it needs to provide its own protection in
2381 * the ops->create routine.
2383 void sock_unregister(int family
)
2385 BUG_ON(family
< 0 || family
>= NPROTO
);
2387 spin_lock(&net_family_lock
);
2388 rcu_assign_pointer(net_families
[family
], NULL
);
2389 spin_unlock(&net_family_lock
);
2393 printk(KERN_INFO
"NET: Unregistered protocol family %d\n", family
);
2395 EXPORT_SYMBOL(sock_unregister
);
2397 static int __init
sock_init(void)
2402 * Initialize sock SLAB cache.
2408 * Initialize skbuff SLAB cache
2413 * Initialize the protocols module.
2418 err
= register_filesystem(&sock_fs_type
);
2421 sock_mnt
= kern_mount(&sock_fs_type
);
2422 if (IS_ERR(sock_mnt
)) {
2423 err
= PTR_ERR(sock_mnt
);
2427 /* The real protocol initialization is performed in later initcalls.
2430 #ifdef CONFIG_NETFILTER
2434 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2435 skb_timestamping_init();
2442 unregister_filesystem(&sock_fs_type
);
2447 core_initcall(sock_init
); /* early initcall */
2449 #ifdef CONFIG_PROC_FS
2450 void socket_seq_show(struct seq_file
*seq
)
2455 for_each_possible_cpu(cpu
)
2456 counter
+= per_cpu(sockets_in_use
, cpu
);
2458 /* It can be negative, by the way. 8) */
2462 seq_printf(seq
, "sockets: used %d\n", counter
);
2464 #endif /* CONFIG_PROC_FS */
2466 #ifdef CONFIG_COMPAT
2467 static int do_siocgstamp(struct net
*net
, struct socket
*sock
,
2468 unsigned int cmd
, struct compat_timeval __user
*up
)
2470 mm_segment_t old_fs
= get_fs();
2475 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)&ktv
);
2478 err
= put_user(ktv
.tv_sec
, &up
->tv_sec
);
2479 err
|= __put_user(ktv
.tv_usec
, &up
->tv_usec
);
2484 static int do_siocgstampns(struct net
*net
, struct socket
*sock
,
2485 unsigned int cmd
, struct compat_timespec __user
*up
)
2487 mm_segment_t old_fs
= get_fs();
2488 struct timespec kts
;
2492 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)&kts
);
2495 err
= put_user(kts
.tv_sec
, &up
->tv_sec
);
2496 err
|= __put_user(kts
.tv_nsec
, &up
->tv_nsec
);
2501 static int dev_ifname32(struct net
*net
, struct compat_ifreq __user
*uifr32
)
2503 struct ifreq __user
*uifr
;
2506 uifr
= compat_alloc_user_space(sizeof(struct ifreq
));
2507 if (copy_in_user(uifr
, uifr32
, sizeof(struct compat_ifreq
)))
2510 err
= dev_ioctl(net
, SIOCGIFNAME
, uifr
);
2514 if (copy_in_user(uifr32
, uifr
, sizeof(struct compat_ifreq
)))
2520 static int dev_ifconf(struct net
*net
, struct compat_ifconf __user
*uifc32
)
2522 struct compat_ifconf ifc32
;
2524 struct ifconf __user
*uifc
;
2525 struct compat_ifreq __user
*ifr32
;
2526 struct ifreq __user
*ifr
;
2530 if (copy_from_user(&ifc32
, uifc32
, sizeof(struct compat_ifconf
)))
2533 if (ifc32
.ifcbuf
== 0) {
2537 uifc
= compat_alloc_user_space(sizeof(struct ifconf
));
2539 size_t len
= ((ifc32
.ifc_len
/ sizeof(struct compat_ifreq
)) + 1) *
2540 sizeof(struct ifreq
);
2541 uifc
= compat_alloc_user_space(sizeof(struct ifconf
) + len
);
2543 ifr
= ifc
.ifc_req
= (void __user
*)(uifc
+ 1);
2544 ifr32
= compat_ptr(ifc32
.ifcbuf
);
2545 for (i
= 0; i
< ifc32
.ifc_len
; i
+= sizeof(struct compat_ifreq
)) {
2546 if (copy_in_user(ifr
, ifr32
, sizeof(struct compat_ifreq
)))
2552 if (copy_to_user(uifc
, &ifc
, sizeof(struct ifconf
)))
2555 err
= dev_ioctl(net
, SIOCGIFCONF
, uifc
);
2559 if (copy_from_user(&ifc
, uifc
, sizeof(struct ifconf
)))
2563 ifr32
= compat_ptr(ifc32
.ifcbuf
);
2565 i
+ sizeof(struct compat_ifreq
) <= ifc32
.ifc_len
&& j
< ifc
.ifc_len
;
2566 i
+= sizeof(struct compat_ifreq
), j
+= sizeof(struct ifreq
)) {
2567 if (copy_in_user(ifr32
, ifr
, sizeof(struct compat_ifreq
)))
2573 if (ifc32
.ifcbuf
== 0) {
2574 /* Translate from 64-bit structure multiple to
2578 i
= ((i
/ sizeof(struct ifreq
)) * sizeof(struct compat_ifreq
));
2583 if (copy_to_user(uifc32
, &ifc32
, sizeof(struct compat_ifconf
)))
2589 static int ethtool_ioctl(struct net
*net
, struct compat_ifreq __user
*ifr32
)
2591 struct compat_ethtool_rxnfc __user
*compat_rxnfc
;
2592 bool convert_in
= false, convert_out
= false;
2593 size_t buf_size
= ALIGN(sizeof(struct ifreq
), 8);
2594 struct ethtool_rxnfc __user
*rxnfc
;
2595 struct ifreq __user
*ifr
;
2596 u32 rule_cnt
= 0, actual_rule_cnt
;
2601 if (get_user(data
, &ifr32
->ifr_ifru
.ifru_data
))
2604 compat_rxnfc
= compat_ptr(data
);
2606 if (get_user(ethcmd
, &compat_rxnfc
->cmd
))
2609 /* Most ethtool structures are defined without padding.
2610 * Unfortunately struct ethtool_rxnfc is an exception.
2615 case ETHTOOL_GRXCLSRLALL
:
2616 /* Buffer size is variable */
2617 if (get_user(rule_cnt
, &compat_rxnfc
->rule_cnt
))
2619 if (rule_cnt
> KMALLOC_MAX_SIZE
/ sizeof(u32
))
2621 buf_size
+= rule_cnt
* sizeof(u32
);
2623 case ETHTOOL_GRXRINGS
:
2624 case ETHTOOL_GRXCLSRLCNT
:
2625 case ETHTOOL_GRXCLSRULE
:
2628 case ETHTOOL_SRXCLSRLDEL
:
2629 case ETHTOOL_SRXCLSRLINS
:
2630 buf_size
+= sizeof(struct ethtool_rxnfc
);
2635 ifr
= compat_alloc_user_space(buf_size
);
2636 rxnfc
= (void *)ifr
+ ALIGN(sizeof(struct ifreq
), 8);
2638 if (copy_in_user(&ifr
->ifr_name
, &ifr32
->ifr_name
, IFNAMSIZ
))
2641 if (put_user(convert_in
? rxnfc
: compat_ptr(data
),
2642 &ifr
->ifr_ifru
.ifru_data
))
2646 /* We expect there to be holes between fs.m_ext and
2647 * fs.ring_cookie and at the end of fs, but nowhere else.
2649 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc
, fs
.m_ext
) +
2650 sizeof(compat_rxnfc
->fs
.m_ext
) !=
2651 offsetof(struct ethtool_rxnfc
, fs
.m_ext
) +
2652 sizeof(rxnfc
->fs
.m_ext
));
2654 offsetof(struct compat_ethtool_rxnfc
, fs
.location
) -
2655 offsetof(struct compat_ethtool_rxnfc
, fs
.ring_cookie
) !=
2656 offsetof(struct ethtool_rxnfc
, fs
.location
) -
2657 offsetof(struct ethtool_rxnfc
, fs
.ring_cookie
));
2659 if (copy_in_user(rxnfc
, compat_rxnfc
,
2660 (void *)(&rxnfc
->fs
.m_ext
+ 1) -
2662 copy_in_user(&rxnfc
->fs
.ring_cookie
,
2663 &compat_rxnfc
->fs
.ring_cookie
,
2664 (void *)(&rxnfc
->fs
.location
+ 1) -
2665 (void *)&rxnfc
->fs
.ring_cookie
) ||
2666 copy_in_user(&rxnfc
->rule_cnt
, &compat_rxnfc
->rule_cnt
,
2667 sizeof(rxnfc
->rule_cnt
)))
2671 ret
= dev_ioctl(net
, SIOCETHTOOL
, ifr
);
2676 if (copy_in_user(compat_rxnfc
, rxnfc
,
2677 (const void *)(&rxnfc
->fs
.m_ext
+ 1) -
2678 (const void *)rxnfc
) ||
2679 copy_in_user(&compat_rxnfc
->fs
.ring_cookie
,
2680 &rxnfc
->fs
.ring_cookie
,
2681 (const void *)(&rxnfc
->fs
.location
+ 1) -
2682 (const void *)&rxnfc
->fs
.ring_cookie
) ||
2683 copy_in_user(&compat_rxnfc
->rule_cnt
, &rxnfc
->rule_cnt
,
2684 sizeof(rxnfc
->rule_cnt
)))
2687 if (ethcmd
== ETHTOOL_GRXCLSRLALL
) {
2688 /* As an optimisation, we only copy the actual
2689 * number of rules that the underlying
2690 * function returned. Since Mallory might
2691 * change the rule count in user memory, we
2692 * check that it is less than the rule count
2693 * originally given (as the user buffer size),
2694 * which has been range-checked.
2696 if (get_user(actual_rule_cnt
, &rxnfc
->rule_cnt
))
2698 if (actual_rule_cnt
< rule_cnt
)
2699 rule_cnt
= actual_rule_cnt
;
2700 if (copy_in_user(&compat_rxnfc
->rule_locs
[0],
2701 &rxnfc
->rule_locs
[0],
2702 rule_cnt
* sizeof(u32
)))
2710 static int compat_siocwandev(struct net
*net
, struct compat_ifreq __user
*uifr32
)
2713 compat_uptr_t uptr32
;
2714 struct ifreq __user
*uifr
;
2716 uifr
= compat_alloc_user_space(sizeof(*uifr
));
2717 if (copy_in_user(uifr
, uifr32
, sizeof(struct compat_ifreq
)))
2720 if (get_user(uptr32
, &uifr32
->ifr_settings
.ifs_ifsu
))
2723 uptr
= compat_ptr(uptr32
);
2725 if (put_user(uptr
, &uifr
->ifr_settings
.ifs_ifsu
.raw_hdlc
))
2728 return dev_ioctl(net
, SIOCWANDEV
, uifr
);
2731 static int bond_ioctl(struct net
*net
, unsigned int cmd
,
2732 struct compat_ifreq __user
*ifr32
)
2735 struct ifreq __user
*uifr
;
2736 mm_segment_t old_fs
;
2742 case SIOCBONDENSLAVE
:
2743 case SIOCBONDRELEASE
:
2744 case SIOCBONDSETHWADDR
:
2745 case SIOCBONDCHANGEACTIVE
:
2746 if (copy_from_user(&kifr
, ifr32
, sizeof(struct compat_ifreq
)))
2751 err
= dev_ioctl(net
, cmd
,
2752 (struct ifreq __user __force
*) &kifr
);
2756 case SIOCBONDSLAVEINFOQUERY
:
2757 case SIOCBONDINFOQUERY
:
2758 uifr
= compat_alloc_user_space(sizeof(*uifr
));
2759 if (copy_in_user(&uifr
->ifr_name
, &ifr32
->ifr_name
, IFNAMSIZ
))
2762 if (get_user(data
, &ifr32
->ifr_ifru
.ifru_data
))
2765 datap
= compat_ptr(data
);
2766 if (put_user(datap
, &uifr
->ifr_ifru
.ifru_data
))
2769 return dev_ioctl(net
, cmd
, uifr
);
2775 static int siocdevprivate_ioctl(struct net
*net
, unsigned int cmd
,
2776 struct compat_ifreq __user
*u_ifreq32
)
2778 struct ifreq __user
*u_ifreq64
;
2779 char tmp_buf
[IFNAMSIZ
];
2780 void __user
*data64
;
2783 if (copy_from_user(&tmp_buf
[0], &(u_ifreq32
->ifr_ifrn
.ifrn_name
[0]),
2786 if (__get_user(data32
, &u_ifreq32
->ifr_ifru
.ifru_data
))
2788 data64
= compat_ptr(data32
);
2790 u_ifreq64
= compat_alloc_user_space(sizeof(*u_ifreq64
));
2792 /* Don't check these user accesses, just let that get trapped
2793 * in the ioctl handler instead.
2795 if (copy_to_user(&u_ifreq64
->ifr_ifrn
.ifrn_name
[0], &tmp_buf
[0],
2798 if (__put_user(data64
, &u_ifreq64
->ifr_ifru
.ifru_data
))
2801 return dev_ioctl(net
, cmd
, u_ifreq64
);
2804 static int dev_ifsioc(struct net
*net
, struct socket
*sock
,
2805 unsigned int cmd
, struct compat_ifreq __user
*uifr32
)
2807 struct ifreq __user
*uifr
;
2810 uifr
= compat_alloc_user_space(sizeof(*uifr
));
2811 if (copy_in_user(uifr
, uifr32
, sizeof(*uifr32
)))
2814 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)uifr
);
2825 case SIOCGIFBRDADDR
:
2826 case SIOCGIFDSTADDR
:
2827 case SIOCGIFNETMASK
:
2832 if (copy_in_user(uifr32
, uifr
, sizeof(*uifr32
)))
2840 static int compat_sioc_ifmap(struct net
*net
, unsigned int cmd
,
2841 struct compat_ifreq __user
*uifr32
)
2844 struct compat_ifmap __user
*uifmap32
;
2845 mm_segment_t old_fs
;
2848 uifmap32
= &uifr32
->ifr_ifru
.ifru_map
;
2849 err
= copy_from_user(&ifr
, uifr32
, sizeof(ifr
.ifr_name
));
2850 err
|= __get_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
2851 err
|= __get_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
2852 err
|= __get_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
2853 err
|= __get_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
2854 err
|= __get_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
2855 err
|= __get_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
2861 err
= dev_ioctl(net
, cmd
, (void __user __force
*)&ifr
);
2864 if (cmd
== SIOCGIFMAP
&& !err
) {
2865 err
= copy_to_user(uifr32
, &ifr
, sizeof(ifr
.ifr_name
));
2866 err
|= __put_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
2867 err
|= __put_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
2868 err
|= __put_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
2869 err
|= __put_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
2870 err
|= __put_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
2871 err
|= __put_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
2878 static int compat_siocshwtstamp(struct net
*net
, struct compat_ifreq __user
*uifr32
)
2881 compat_uptr_t uptr32
;
2882 struct ifreq __user
*uifr
;
2884 uifr
= compat_alloc_user_space(sizeof(*uifr
));
2885 if (copy_in_user(uifr
, uifr32
, sizeof(struct compat_ifreq
)))
2888 if (get_user(uptr32
, &uifr32
->ifr_data
))
2891 uptr
= compat_ptr(uptr32
);
2893 if (put_user(uptr
, &uifr
->ifr_data
))
2896 return dev_ioctl(net
, SIOCSHWTSTAMP
, uifr
);
2901 struct sockaddr rt_dst
; /* target address */
2902 struct sockaddr rt_gateway
; /* gateway addr (RTF_GATEWAY) */
2903 struct sockaddr rt_genmask
; /* target network mask (IP) */
2904 unsigned short rt_flags
;
2907 unsigned char rt_tos
;
2908 unsigned char rt_class
;
2910 short rt_metric
; /* +1 for binary compatibility! */
2911 /* char * */ u32 rt_dev
; /* forcing the device at add */
2912 u32 rt_mtu
; /* per route MTU/Window */
2913 u32 rt_window
; /* Window clamping */
2914 unsigned short rt_irtt
; /* Initial RTT */
2917 struct in6_rtmsg32
{
2918 struct in6_addr rtmsg_dst
;
2919 struct in6_addr rtmsg_src
;
2920 struct in6_addr rtmsg_gateway
;
2930 static int routing_ioctl(struct net
*net
, struct socket
*sock
,
2931 unsigned int cmd
, void __user
*argp
)
2935 struct in6_rtmsg r6
;
2939 mm_segment_t old_fs
= get_fs();
2941 if (sock
&& sock
->sk
&& sock
->sk
->sk_family
== AF_INET6
) { /* ipv6 */
2942 struct in6_rtmsg32 __user
*ur6
= argp
;
2943 ret
= copy_from_user(&r6
.rtmsg_dst
, &(ur6
->rtmsg_dst
),
2944 3 * sizeof(struct in6_addr
));
2945 ret
|= __get_user(r6
.rtmsg_type
, &(ur6
->rtmsg_type
));
2946 ret
|= __get_user(r6
.rtmsg_dst_len
, &(ur6
->rtmsg_dst_len
));
2947 ret
|= __get_user(r6
.rtmsg_src_len
, &(ur6
->rtmsg_src_len
));
2948 ret
|= __get_user(r6
.rtmsg_metric
, &(ur6
->rtmsg_metric
));
2949 ret
|= __get_user(r6
.rtmsg_info
, &(ur6
->rtmsg_info
));
2950 ret
|= __get_user(r6
.rtmsg_flags
, &(ur6
->rtmsg_flags
));
2951 ret
|= __get_user(r6
.rtmsg_ifindex
, &(ur6
->rtmsg_ifindex
));
2955 struct rtentry32 __user
*ur4
= argp
;
2956 ret
= copy_from_user(&r4
.rt_dst
, &(ur4
->rt_dst
),
2957 3 * sizeof(struct sockaddr
));
2958 ret
|= __get_user(r4
.rt_flags
, &(ur4
->rt_flags
));
2959 ret
|= __get_user(r4
.rt_metric
, &(ur4
->rt_metric
));
2960 ret
|= __get_user(r4
.rt_mtu
, &(ur4
->rt_mtu
));
2961 ret
|= __get_user(r4
.rt_window
, &(ur4
->rt_window
));
2962 ret
|= __get_user(r4
.rt_irtt
, &(ur4
->rt_irtt
));
2963 ret
|= __get_user(rtdev
, &(ur4
->rt_dev
));
2965 ret
|= copy_from_user(devname
, compat_ptr(rtdev
), 15);
2966 r4
.rt_dev
= (char __user __force
*)devname
;
2980 ret
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long) r
);
2987 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
2988 * for some operations; this forces use of the newer bridge-utils that
2989 * use compatible ioctls
2991 static int old_bridge_ioctl(compat_ulong_t __user
*argp
)
2995 if (get_user(tmp
, argp
))
2997 if (tmp
== BRCTL_GET_VERSION
)
2998 return BRCTL_VERSION
+ 1;
3002 static int compat_sock_ioctl_trans(struct file
*file
, struct socket
*sock
,
3003 unsigned int cmd
, unsigned long arg
)
3005 void __user
*argp
= compat_ptr(arg
);
3006 struct sock
*sk
= sock
->sk
;
3007 struct net
*net
= sock_net(sk
);
3009 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))
3010 return siocdevprivate_ioctl(net
, cmd
, argp
);
3015 return old_bridge_ioctl(argp
);
3017 return dev_ifname32(net
, argp
);
3019 return dev_ifconf(net
, argp
);
3021 return ethtool_ioctl(net
, argp
);
3023 return compat_siocwandev(net
, argp
);
3026 return compat_sioc_ifmap(net
, cmd
, argp
);
3027 case SIOCBONDENSLAVE
:
3028 case SIOCBONDRELEASE
:
3029 case SIOCBONDSETHWADDR
:
3030 case SIOCBONDSLAVEINFOQUERY
:
3031 case SIOCBONDINFOQUERY
:
3032 case SIOCBONDCHANGEACTIVE
:
3033 return bond_ioctl(net
, cmd
, argp
);
3036 return routing_ioctl(net
, sock
, cmd
, argp
);
3038 return do_siocgstamp(net
, sock
, cmd
, argp
);
3040 return do_siocgstampns(net
, sock
, cmd
, argp
);
3042 return compat_siocshwtstamp(net
, argp
);
3054 return sock_ioctl(file
, cmd
, arg
);
3071 case SIOCSIFHWBROADCAST
:
3073 case SIOCGIFBRDADDR
:
3074 case SIOCSIFBRDADDR
:
3075 case SIOCGIFDSTADDR
:
3076 case SIOCSIFDSTADDR
:
3077 case SIOCGIFNETMASK
:
3078 case SIOCSIFNETMASK
:
3089 return dev_ifsioc(net
, sock
, cmd
, argp
);
3095 return sock_do_ioctl(net
, sock
, cmd
, arg
);
3098 /* Prevent warning from compat_sys_ioctl, these always
3099 * result in -EINVAL in the native case anyway. */
3112 return -ENOIOCTLCMD
;
3115 static long compat_sock_ioctl(struct file
*file
, unsigned cmd
,
3118 struct socket
*sock
= file
->private_data
;
3119 int ret
= -ENOIOCTLCMD
;
3126 if (sock
->ops
->compat_ioctl
)
3127 ret
= sock
->ops
->compat_ioctl(sock
, cmd
, arg
);
3129 if (ret
== -ENOIOCTLCMD
&&
3130 (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
))
3131 ret
= compat_wext_handle_ioctl(net
, cmd
, arg
);
3133 if (ret
== -ENOIOCTLCMD
)
3134 ret
= compat_sock_ioctl_trans(file
, sock
, cmd
, arg
);
3140 int kernel_bind(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
)
3142 return sock
->ops
->bind(sock
, addr
, addrlen
);
3144 EXPORT_SYMBOL(kernel_bind
);
3146 int kernel_listen(struct socket
*sock
, int backlog
)
3148 return sock
->ops
->listen(sock
, backlog
);
3150 EXPORT_SYMBOL(kernel_listen
);
3152 int kernel_accept(struct socket
*sock
, struct socket
**newsock
, int flags
)
3154 struct sock
*sk
= sock
->sk
;
3157 err
= sock_create_lite(sk
->sk_family
, sk
->sk_type
, sk
->sk_protocol
,
3162 err
= sock
->ops
->accept(sock
, *newsock
, flags
);
3164 sock_release(*newsock
);
3169 (*newsock
)->ops
= sock
->ops
;
3170 __module_get((*newsock
)->ops
->owner
);
3175 EXPORT_SYMBOL(kernel_accept
);
3177 int kernel_connect(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
,
3180 return sock
->ops
->connect(sock
, addr
, addrlen
, flags
);
3182 EXPORT_SYMBOL(kernel_connect
);
3184 int kernel_getsockname(struct socket
*sock
, struct sockaddr
*addr
,
3187 return sock
->ops
->getname(sock
, addr
, addrlen
, 0);
3189 EXPORT_SYMBOL(kernel_getsockname
);
3191 int kernel_getpeername(struct socket
*sock
, struct sockaddr
*addr
,
3194 return sock
->ops
->getname(sock
, addr
, addrlen
, 1);
3196 EXPORT_SYMBOL(kernel_getpeername
);
3198 int kernel_getsockopt(struct socket
*sock
, int level
, int optname
,
3199 char *optval
, int *optlen
)
3201 mm_segment_t oldfs
= get_fs();
3202 char __user
*uoptval
;
3203 int __user
*uoptlen
;
3206 uoptval
= (char __user __force
*) optval
;
3207 uoptlen
= (int __user __force
*) optlen
;
3210 if (level
== SOL_SOCKET
)
3211 err
= sock_getsockopt(sock
, level
, optname
, uoptval
, uoptlen
);
3213 err
= sock
->ops
->getsockopt(sock
, level
, optname
, uoptval
,
3218 EXPORT_SYMBOL(kernel_getsockopt
);
3220 int kernel_setsockopt(struct socket
*sock
, int level
, int optname
,
3221 char *optval
, unsigned int optlen
)
3223 mm_segment_t oldfs
= get_fs();
3224 char __user
*uoptval
;
3227 uoptval
= (char __user __force
*) optval
;
3230 if (level
== SOL_SOCKET
)
3231 err
= sock_setsockopt(sock
, level
, optname
, uoptval
, optlen
);
3233 err
= sock
->ops
->setsockopt(sock
, level
, optname
, uoptval
,
3238 EXPORT_SYMBOL(kernel_setsockopt
);
3240 int kernel_sendpage(struct socket
*sock
, struct page
*page
, int offset
,
3241 size_t size
, int flags
)
3243 sock_update_classid(sock
->sk
);
3245 if (sock
->ops
->sendpage
)
3246 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
3248 return sock_no_sendpage(sock
, page
, offset
, size
, flags
);
3250 EXPORT_SYMBOL(kernel_sendpage
);
3252 int kernel_sock_ioctl(struct socket
*sock
, int cmd
, unsigned long arg
)
3254 mm_segment_t oldfs
= get_fs();
3258 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
3263 EXPORT_SYMBOL(kernel_sock_ioctl
);
3265 int kernel_sock_shutdown(struct socket
*sock
, enum sock_shutdown_cmd how
)
3267 return sock
->ops
->shutdown(sock
, how
);
3269 EXPORT_SYMBOL(kernel_sock_shutdown
);