mm: kswapd: keep kswapd awake for high-order allocations until a percentage of the...
[linux-2.6/next.git] / kernel / workqueue.c
blob8ee6ec82f88a9cc2982bfcd73bc3bd86dcd490a8
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
4 * Copyright (C) 2002 Ingo Molnar
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
12 * Made to use alloc_percpu by Christoph Lameter.
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
23 * Please read Documentation/workqueue.txt for details.
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
45 #include "workqueue_sched.h"
47 enum {
48 /* global_cwq flags */
49 GCWQ_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
50 GCWQ_MANAGING_WORKERS = 1 << 1, /* managing workers */
51 GCWQ_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
52 GCWQ_FREEZING = 1 << 3, /* freeze in progress */
53 GCWQ_HIGHPRI_PENDING = 1 << 4, /* highpri works on queue */
55 /* worker flags */
56 WORKER_STARTED = 1 << 0, /* started */
57 WORKER_DIE = 1 << 1, /* die die die */
58 WORKER_IDLE = 1 << 2, /* is idle */
59 WORKER_PREP = 1 << 3, /* preparing to run works */
60 WORKER_ROGUE = 1 << 4, /* not bound to any cpu */
61 WORKER_REBIND = 1 << 5, /* mom is home, come back */
62 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
63 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
65 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_ROGUE | WORKER_REBIND |
66 WORKER_CPU_INTENSIVE | WORKER_UNBOUND,
68 /* gcwq->trustee_state */
69 TRUSTEE_START = 0, /* start */
70 TRUSTEE_IN_CHARGE = 1, /* trustee in charge of gcwq */
71 TRUSTEE_BUTCHER = 2, /* butcher workers */
72 TRUSTEE_RELEASE = 3, /* release workers */
73 TRUSTEE_DONE = 4, /* trustee is done */
75 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
76 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
77 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
79 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
80 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
82 MAYDAY_INITIAL_TIMEOUT = HZ / 100, /* call for help after 10ms */
83 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
84 CREATE_COOLDOWN = HZ, /* time to breath after fail */
85 TRUSTEE_COOLDOWN = HZ / 10, /* for trustee draining */
88 * Rescue workers are used only on emergencies and shared by
89 * all cpus. Give -20.
91 RESCUER_NICE_LEVEL = -20,
95 * Structure fields follow one of the following exclusion rules.
97 * I: Modifiable by initialization/destruction paths and read-only for
98 * everyone else.
100 * P: Preemption protected. Disabling preemption is enough and should
101 * only be modified and accessed from the local cpu.
103 * L: gcwq->lock protected. Access with gcwq->lock held.
105 * X: During normal operation, modification requires gcwq->lock and
106 * should be done only from local cpu. Either disabling preemption
107 * on local cpu or grabbing gcwq->lock is enough for read access.
108 * If GCWQ_DISASSOCIATED is set, it's identical to L.
110 * F: wq->flush_mutex protected.
112 * W: workqueue_lock protected.
115 struct global_cwq;
118 * The poor guys doing the actual heavy lifting. All on-duty workers
119 * are either serving the manager role, on idle list or on busy hash.
121 struct worker {
122 /* on idle list while idle, on busy hash table while busy */
123 union {
124 struct list_head entry; /* L: while idle */
125 struct hlist_node hentry; /* L: while busy */
128 struct work_struct *current_work; /* L: work being processed */
129 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
130 struct list_head scheduled; /* L: scheduled works */
131 struct task_struct *task; /* I: worker task */
132 struct global_cwq *gcwq; /* I: the associated gcwq */
133 /* 64 bytes boundary on 64bit, 32 on 32bit */
134 unsigned long last_active; /* L: last active timestamp */
135 unsigned int flags; /* X: flags */
136 int id; /* I: worker id */
137 struct work_struct rebind_work; /* L: rebind worker to cpu */
141 * Global per-cpu workqueue. There's one and only one for each cpu
142 * and all works are queued and processed here regardless of their
143 * target workqueues.
145 struct global_cwq {
146 spinlock_t lock; /* the gcwq lock */
147 struct list_head worklist; /* L: list of pending works */
148 unsigned int cpu; /* I: the associated cpu */
149 unsigned int flags; /* L: GCWQ_* flags */
151 int nr_workers; /* L: total number of workers */
152 int nr_idle; /* L: currently idle ones */
154 /* workers are chained either in the idle_list or busy_hash */
155 struct list_head idle_list; /* X: list of idle workers */
156 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
157 /* L: hash of busy workers */
159 struct timer_list idle_timer; /* L: worker idle timeout */
160 struct timer_list mayday_timer; /* L: SOS timer for dworkers */
162 struct ida worker_ida; /* L: for worker IDs */
164 struct task_struct *trustee; /* L: for gcwq shutdown */
165 unsigned int trustee_state; /* L: trustee state */
166 wait_queue_head_t trustee_wait; /* trustee wait */
167 struct worker *first_idle; /* L: first idle worker */
168 } ____cacheline_aligned_in_smp;
171 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
172 * work_struct->data are used for flags and thus cwqs need to be
173 * aligned at two's power of the number of flag bits.
175 struct cpu_workqueue_struct {
176 struct global_cwq *gcwq; /* I: the associated gcwq */
177 struct workqueue_struct *wq; /* I: the owning workqueue */
178 int work_color; /* L: current color */
179 int flush_color; /* L: flushing color */
180 int nr_in_flight[WORK_NR_COLORS];
181 /* L: nr of in_flight works */
182 int nr_active; /* L: nr of active works */
183 int max_active; /* L: max active works */
184 struct list_head delayed_works; /* L: delayed works */
188 * Structure used to wait for workqueue flush.
190 struct wq_flusher {
191 struct list_head list; /* F: list of flushers */
192 int flush_color; /* F: flush color waiting for */
193 struct completion done; /* flush completion */
197 * All cpumasks are assumed to be always set on UP and thus can't be
198 * used to determine whether there's something to be done.
200 #ifdef CONFIG_SMP
201 typedef cpumask_var_t mayday_mask_t;
202 #define mayday_test_and_set_cpu(cpu, mask) \
203 cpumask_test_and_set_cpu((cpu), (mask))
204 #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
205 #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
206 #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
207 #define free_mayday_mask(mask) free_cpumask_var((mask))
208 #else
209 typedef unsigned long mayday_mask_t;
210 #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
211 #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
212 #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
213 #define alloc_mayday_mask(maskp, gfp) true
214 #define free_mayday_mask(mask) do { } while (0)
215 #endif
218 * The externally visible workqueue abstraction is an array of
219 * per-CPU workqueues:
221 struct workqueue_struct {
222 unsigned int flags; /* I: WQ_* flags */
223 union {
224 struct cpu_workqueue_struct __percpu *pcpu;
225 struct cpu_workqueue_struct *single;
226 unsigned long v;
227 } cpu_wq; /* I: cwq's */
228 struct list_head list; /* W: list of all workqueues */
230 struct mutex flush_mutex; /* protects wq flushing */
231 int work_color; /* F: current work color */
232 int flush_color; /* F: current flush color */
233 atomic_t nr_cwqs_to_flush; /* flush in progress */
234 struct wq_flusher *first_flusher; /* F: first flusher */
235 struct list_head flusher_queue; /* F: flush waiters */
236 struct list_head flusher_overflow; /* F: flush overflow list */
238 mayday_mask_t mayday_mask; /* cpus requesting rescue */
239 struct worker *rescuer; /* I: rescue worker */
241 int saved_max_active; /* W: saved cwq max_active */
242 const char *name; /* I: workqueue name */
243 #ifdef CONFIG_LOCKDEP
244 struct lockdep_map lockdep_map;
245 #endif
248 struct workqueue_struct *system_wq __read_mostly;
249 struct workqueue_struct *system_long_wq __read_mostly;
250 struct workqueue_struct *system_nrt_wq __read_mostly;
251 struct workqueue_struct *system_unbound_wq __read_mostly;
252 EXPORT_SYMBOL_GPL(system_wq);
253 EXPORT_SYMBOL_GPL(system_long_wq);
254 EXPORT_SYMBOL_GPL(system_nrt_wq);
255 EXPORT_SYMBOL_GPL(system_unbound_wq);
257 #define CREATE_TRACE_POINTS
258 #include <trace/events/workqueue.h>
260 #define for_each_busy_worker(worker, i, pos, gcwq) \
261 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
262 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
264 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
265 unsigned int sw)
267 if (cpu < nr_cpu_ids) {
268 if (sw & 1) {
269 cpu = cpumask_next(cpu, mask);
270 if (cpu < nr_cpu_ids)
271 return cpu;
273 if (sw & 2)
274 return WORK_CPU_UNBOUND;
276 return WORK_CPU_NONE;
279 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
280 struct workqueue_struct *wq)
282 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
286 * CPU iterators
288 * An extra gcwq is defined for an invalid cpu number
289 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
290 * specific CPU. The following iterators are similar to
291 * for_each_*_cpu() iterators but also considers the unbound gcwq.
293 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
294 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
295 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
296 * WORK_CPU_UNBOUND for unbound workqueues
298 #define for_each_gcwq_cpu(cpu) \
299 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
300 (cpu) < WORK_CPU_NONE; \
301 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
303 #define for_each_online_gcwq_cpu(cpu) \
304 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
305 (cpu) < WORK_CPU_NONE; \
306 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
308 #define for_each_cwq_cpu(cpu, wq) \
309 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
310 (cpu) < WORK_CPU_NONE; \
311 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
313 #ifdef CONFIG_DEBUG_OBJECTS_WORK
315 static struct debug_obj_descr work_debug_descr;
318 * fixup_init is called when:
319 * - an active object is initialized
321 static int work_fixup_init(void *addr, enum debug_obj_state state)
323 struct work_struct *work = addr;
325 switch (state) {
326 case ODEBUG_STATE_ACTIVE:
327 cancel_work_sync(work);
328 debug_object_init(work, &work_debug_descr);
329 return 1;
330 default:
331 return 0;
336 * fixup_activate is called when:
337 * - an active object is activated
338 * - an unknown object is activated (might be a statically initialized object)
340 static int work_fixup_activate(void *addr, enum debug_obj_state state)
342 struct work_struct *work = addr;
344 switch (state) {
346 case ODEBUG_STATE_NOTAVAILABLE:
348 * This is not really a fixup. The work struct was
349 * statically initialized. We just make sure that it
350 * is tracked in the object tracker.
352 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
353 debug_object_init(work, &work_debug_descr);
354 debug_object_activate(work, &work_debug_descr);
355 return 0;
357 WARN_ON_ONCE(1);
358 return 0;
360 case ODEBUG_STATE_ACTIVE:
361 WARN_ON(1);
363 default:
364 return 0;
369 * fixup_free is called when:
370 * - an active object is freed
372 static int work_fixup_free(void *addr, enum debug_obj_state state)
374 struct work_struct *work = addr;
376 switch (state) {
377 case ODEBUG_STATE_ACTIVE:
378 cancel_work_sync(work);
379 debug_object_free(work, &work_debug_descr);
380 return 1;
381 default:
382 return 0;
386 static struct debug_obj_descr work_debug_descr = {
387 .name = "work_struct",
388 .fixup_init = work_fixup_init,
389 .fixup_activate = work_fixup_activate,
390 .fixup_free = work_fixup_free,
393 static inline void debug_work_activate(struct work_struct *work)
395 debug_object_activate(work, &work_debug_descr);
398 static inline void debug_work_deactivate(struct work_struct *work)
400 debug_object_deactivate(work, &work_debug_descr);
403 void __init_work(struct work_struct *work, int onstack)
405 if (onstack)
406 debug_object_init_on_stack(work, &work_debug_descr);
407 else
408 debug_object_init(work, &work_debug_descr);
410 EXPORT_SYMBOL_GPL(__init_work);
412 void destroy_work_on_stack(struct work_struct *work)
414 debug_object_free(work, &work_debug_descr);
416 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
418 #else
419 static inline void debug_work_activate(struct work_struct *work) { }
420 static inline void debug_work_deactivate(struct work_struct *work) { }
421 #endif
423 /* Serializes the accesses to the list of workqueues. */
424 static DEFINE_SPINLOCK(workqueue_lock);
425 static LIST_HEAD(workqueues);
426 static bool workqueue_freezing; /* W: have wqs started freezing? */
429 * The almighty global cpu workqueues. nr_running is the only field
430 * which is expected to be used frequently by other cpus via
431 * try_to_wake_up(). Put it in a separate cacheline.
433 static DEFINE_PER_CPU(struct global_cwq, global_cwq);
434 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running);
437 * Global cpu workqueue and nr_running counter for unbound gcwq. The
438 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
439 * workers have WORKER_UNBOUND set.
441 static struct global_cwq unbound_global_cwq;
442 static atomic_t unbound_gcwq_nr_running = ATOMIC_INIT(0); /* always 0 */
444 static int worker_thread(void *__worker);
446 static struct global_cwq *get_gcwq(unsigned int cpu)
448 if (cpu != WORK_CPU_UNBOUND)
449 return &per_cpu(global_cwq, cpu);
450 else
451 return &unbound_global_cwq;
454 static atomic_t *get_gcwq_nr_running(unsigned int cpu)
456 if (cpu != WORK_CPU_UNBOUND)
457 return &per_cpu(gcwq_nr_running, cpu);
458 else
459 return &unbound_gcwq_nr_running;
462 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
463 struct workqueue_struct *wq)
465 if (!(wq->flags & WQ_UNBOUND)) {
466 if (likely(cpu < nr_cpu_ids)) {
467 #ifdef CONFIG_SMP
468 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
469 #else
470 return wq->cpu_wq.single;
471 #endif
473 } else if (likely(cpu == WORK_CPU_UNBOUND))
474 return wq->cpu_wq.single;
475 return NULL;
478 static unsigned int work_color_to_flags(int color)
480 return color << WORK_STRUCT_COLOR_SHIFT;
483 static int get_work_color(struct work_struct *work)
485 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
486 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
489 static int work_next_color(int color)
491 return (color + 1) % WORK_NR_COLORS;
495 * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
496 * work is on queue. Once execution starts, WORK_STRUCT_CWQ is
497 * cleared and the work data contains the cpu number it was last on.
499 * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
500 * cwq, cpu or clear work->data. These functions should only be
501 * called while the work is owned - ie. while the PENDING bit is set.
503 * get_work_[g]cwq() can be used to obtain the gcwq or cwq
504 * corresponding to a work. gcwq is available once the work has been
505 * queued anywhere after initialization. cwq is available only from
506 * queueing until execution starts.
508 static inline void set_work_data(struct work_struct *work, unsigned long data,
509 unsigned long flags)
511 BUG_ON(!work_pending(work));
512 atomic_long_set(&work->data, data | flags | work_static(work));
515 static void set_work_cwq(struct work_struct *work,
516 struct cpu_workqueue_struct *cwq,
517 unsigned long extra_flags)
519 set_work_data(work, (unsigned long)cwq,
520 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
523 static void set_work_cpu(struct work_struct *work, unsigned int cpu)
525 set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
528 static void clear_work_data(struct work_struct *work)
530 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
533 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
535 unsigned long data = atomic_long_read(&work->data);
537 if (data & WORK_STRUCT_CWQ)
538 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
539 else
540 return NULL;
543 static struct global_cwq *get_work_gcwq(struct work_struct *work)
545 unsigned long data = atomic_long_read(&work->data);
546 unsigned int cpu;
548 if (data & WORK_STRUCT_CWQ)
549 return ((struct cpu_workqueue_struct *)
550 (data & WORK_STRUCT_WQ_DATA_MASK))->gcwq;
552 cpu = data >> WORK_STRUCT_FLAG_BITS;
553 if (cpu == WORK_CPU_NONE)
554 return NULL;
556 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
557 return get_gcwq(cpu);
561 * Policy functions. These define the policies on how the global
562 * worker pool is managed. Unless noted otherwise, these functions
563 * assume that they're being called with gcwq->lock held.
566 static bool __need_more_worker(struct global_cwq *gcwq)
568 return !atomic_read(get_gcwq_nr_running(gcwq->cpu)) ||
569 gcwq->flags & GCWQ_HIGHPRI_PENDING;
573 * Need to wake up a worker? Called from anything but currently
574 * running workers.
576 static bool need_more_worker(struct global_cwq *gcwq)
578 return !list_empty(&gcwq->worklist) && __need_more_worker(gcwq);
581 /* Can I start working? Called from busy but !running workers. */
582 static bool may_start_working(struct global_cwq *gcwq)
584 return gcwq->nr_idle;
587 /* Do I need to keep working? Called from currently running workers. */
588 static bool keep_working(struct global_cwq *gcwq)
590 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
592 return !list_empty(&gcwq->worklist) &&
593 (atomic_read(nr_running) <= 1 ||
594 gcwq->flags & GCWQ_HIGHPRI_PENDING);
597 /* Do we need a new worker? Called from manager. */
598 static bool need_to_create_worker(struct global_cwq *gcwq)
600 return need_more_worker(gcwq) && !may_start_working(gcwq);
603 /* Do I need to be the manager? */
604 static bool need_to_manage_workers(struct global_cwq *gcwq)
606 return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS;
609 /* Do we have too many workers and should some go away? */
610 static bool too_many_workers(struct global_cwq *gcwq)
612 bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS;
613 int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */
614 int nr_busy = gcwq->nr_workers - nr_idle;
616 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
620 * Wake up functions.
623 /* Return the first worker. Safe with preemption disabled */
624 static struct worker *first_worker(struct global_cwq *gcwq)
626 if (unlikely(list_empty(&gcwq->idle_list)))
627 return NULL;
629 return list_first_entry(&gcwq->idle_list, struct worker, entry);
633 * wake_up_worker - wake up an idle worker
634 * @gcwq: gcwq to wake worker for
636 * Wake up the first idle worker of @gcwq.
638 * CONTEXT:
639 * spin_lock_irq(gcwq->lock).
641 static void wake_up_worker(struct global_cwq *gcwq)
643 struct worker *worker = first_worker(gcwq);
645 if (likely(worker))
646 wake_up_process(worker->task);
650 * wq_worker_waking_up - a worker is waking up
651 * @task: task waking up
652 * @cpu: CPU @task is waking up to
654 * This function is called during try_to_wake_up() when a worker is
655 * being awoken.
657 * CONTEXT:
658 * spin_lock_irq(rq->lock)
660 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
662 struct worker *worker = kthread_data(task);
664 if (!(worker->flags & WORKER_NOT_RUNNING))
665 atomic_inc(get_gcwq_nr_running(cpu));
669 * wq_worker_sleeping - a worker is going to sleep
670 * @task: task going to sleep
671 * @cpu: CPU in question, must be the current CPU number
673 * This function is called during schedule() when a busy worker is
674 * going to sleep. Worker on the same cpu can be woken up by
675 * returning pointer to its task.
677 * CONTEXT:
678 * spin_lock_irq(rq->lock)
680 * RETURNS:
681 * Worker task on @cpu to wake up, %NULL if none.
683 struct task_struct *wq_worker_sleeping(struct task_struct *task,
684 unsigned int cpu)
686 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
687 struct global_cwq *gcwq = get_gcwq(cpu);
688 atomic_t *nr_running = get_gcwq_nr_running(cpu);
690 if (worker->flags & WORKER_NOT_RUNNING)
691 return NULL;
693 /* this can only happen on the local cpu */
694 BUG_ON(cpu != raw_smp_processor_id());
697 * The counterpart of the following dec_and_test, implied mb,
698 * worklist not empty test sequence is in insert_work().
699 * Please read comment there.
701 * NOT_RUNNING is clear. This means that trustee is not in
702 * charge and we're running on the local cpu w/ rq lock held
703 * and preemption disabled, which in turn means that none else
704 * could be manipulating idle_list, so dereferencing idle_list
705 * without gcwq lock is safe.
707 if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist))
708 to_wakeup = first_worker(gcwq);
709 return to_wakeup ? to_wakeup->task : NULL;
713 * worker_set_flags - set worker flags and adjust nr_running accordingly
714 * @worker: self
715 * @flags: flags to set
716 * @wakeup: wakeup an idle worker if necessary
718 * Set @flags in @worker->flags and adjust nr_running accordingly. If
719 * nr_running becomes zero and @wakeup is %true, an idle worker is
720 * woken up.
722 * CONTEXT:
723 * spin_lock_irq(gcwq->lock)
725 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
726 bool wakeup)
728 struct global_cwq *gcwq = worker->gcwq;
730 WARN_ON_ONCE(worker->task != current);
733 * If transitioning into NOT_RUNNING, adjust nr_running and
734 * wake up an idle worker as necessary if requested by
735 * @wakeup.
737 if ((flags & WORKER_NOT_RUNNING) &&
738 !(worker->flags & WORKER_NOT_RUNNING)) {
739 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
741 if (wakeup) {
742 if (atomic_dec_and_test(nr_running) &&
743 !list_empty(&gcwq->worklist))
744 wake_up_worker(gcwq);
745 } else
746 atomic_dec(nr_running);
749 worker->flags |= flags;
753 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
754 * @worker: self
755 * @flags: flags to clear
757 * Clear @flags in @worker->flags and adjust nr_running accordingly.
759 * CONTEXT:
760 * spin_lock_irq(gcwq->lock)
762 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
764 struct global_cwq *gcwq = worker->gcwq;
765 unsigned int oflags = worker->flags;
767 WARN_ON_ONCE(worker->task != current);
769 worker->flags &= ~flags;
771 /* if transitioning out of NOT_RUNNING, increment nr_running */
772 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
773 if (!(worker->flags & WORKER_NOT_RUNNING))
774 atomic_inc(get_gcwq_nr_running(gcwq->cpu));
778 * busy_worker_head - return the busy hash head for a work
779 * @gcwq: gcwq of interest
780 * @work: work to be hashed
782 * Return hash head of @gcwq for @work.
784 * CONTEXT:
785 * spin_lock_irq(gcwq->lock).
787 * RETURNS:
788 * Pointer to the hash head.
790 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
791 struct work_struct *work)
793 const int base_shift = ilog2(sizeof(struct work_struct));
794 unsigned long v = (unsigned long)work;
796 /* simple shift and fold hash, do we need something better? */
797 v >>= base_shift;
798 v += v >> BUSY_WORKER_HASH_ORDER;
799 v &= BUSY_WORKER_HASH_MASK;
801 return &gcwq->busy_hash[v];
805 * __find_worker_executing_work - find worker which is executing a work
806 * @gcwq: gcwq of interest
807 * @bwh: hash head as returned by busy_worker_head()
808 * @work: work to find worker for
810 * Find a worker which is executing @work on @gcwq. @bwh should be
811 * the hash head obtained by calling busy_worker_head() with the same
812 * work.
814 * CONTEXT:
815 * spin_lock_irq(gcwq->lock).
817 * RETURNS:
818 * Pointer to worker which is executing @work if found, NULL
819 * otherwise.
821 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
822 struct hlist_head *bwh,
823 struct work_struct *work)
825 struct worker *worker;
826 struct hlist_node *tmp;
828 hlist_for_each_entry(worker, tmp, bwh, hentry)
829 if (worker->current_work == work)
830 return worker;
831 return NULL;
835 * find_worker_executing_work - find worker which is executing a work
836 * @gcwq: gcwq of interest
837 * @work: work to find worker for
839 * Find a worker which is executing @work on @gcwq. This function is
840 * identical to __find_worker_executing_work() except that this
841 * function calculates @bwh itself.
843 * CONTEXT:
844 * spin_lock_irq(gcwq->lock).
846 * RETURNS:
847 * Pointer to worker which is executing @work if found, NULL
848 * otherwise.
850 static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
851 struct work_struct *work)
853 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
854 work);
858 * gcwq_determine_ins_pos - find insertion position
859 * @gcwq: gcwq of interest
860 * @cwq: cwq a work is being queued for
862 * A work for @cwq is about to be queued on @gcwq, determine insertion
863 * position for the work. If @cwq is for HIGHPRI wq, the work is
864 * queued at the head of the queue but in FIFO order with respect to
865 * other HIGHPRI works; otherwise, at the end of the queue. This
866 * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that
867 * there are HIGHPRI works pending.
869 * CONTEXT:
870 * spin_lock_irq(gcwq->lock).
872 * RETURNS:
873 * Pointer to inserstion position.
875 static inline struct list_head *gcwq_determine_ins_pos(struct global_cwq *gcwq,
876 struct cpu_workqueue_struct *cwq)
878 struct work_struct *twork;
880 if (likely(!(cwq->wq->flags & WQ_HIGHPRI)))
881 return &gcwq->worklist;
883 list_for_each_entry(twork, &gcwq->worklist, entry) {
884 struct cpu_workqueue_struct *tcwq = get_work_cwq(twork);
886 if (!(tcwq->wq->flags & WQ_HIGHPRI))
887 break;
890 gcwq->flags |= GCWQ_HIGHPRI_PENDING;
891 return &twork->entry;
895 * insert_work - insert a work into gcwq
896 * @cwq: cwq @work belongs to
897 * @work: work to insert
898 * @head: insertion point
899 * @extra_flags: extra WORK_STRUCT_* flags to set
901 * Insert @work which belongs to @cwq into @gcwq after @head.
902 * @extra_flags is or'd to work_struct flags.
904 * CONTEXT:
905 * spin_lock_irq(gcwq->lock).
907 static void insert_work(struct cpu_workqueue_struct *cwq,
908 struct work_struct *work, struct list_head *head,
909 unsigned int extra_flags)
911 struct global_cwq *gcwq = cwq->gcwq;
913 /* we own @work, set data and link */
914 set_work_cwq(work, cwq, extra_flags);
917 * Ensure that we get the right work->data if we see the
918 * result of list_add() below, see try_to_grab_pending().
920 smp_wmb();
922 list_add_tail(&work->entry, head);
925 * Ensure either worker_sched_deactivated() sees the above
926 * list_add_tail() or we see zero nr_running to avoid workers
927 * lying around lazily while there are works to be processed.
929 smp_mb();
931 if (__need_more_worker(gcwq))
932 wake_up_worker(gcwq);
936 * Test whether @work is being queued from another work executing on the
937 * same workqueue. This is rather expensive and should only be used from
938 * cold paths.
940 static bool is_chained_work(struct workqueue_struct *wq)
942 unsigned long flags;
943 unsigned int cpu;
945 for_each_gcwq_cpu(cpu) {
946 struct global_cwq *gcwq = get_gcwq(cpu);
947 struct worker *worker;
948 struct hlist_node *pos;
949 int i;
951 spin_lock_irqsave(&gcwq->lock, flags);
952 for_each_busy_worker(worker, i, pos, gcwq) {
953 if (worker->task != current)
954 continue;
955 spin_unlock_irqrestore(&gcwq->lock, flags);
957 * I'm @worker, no locking necessary. See if @work
958 * is headed to the same workqueue.
960 return worker->current_cwq->wq == wq;
962 spin_unlock_irqrestore(&gcwq->lock, flags);
964 return false;
967 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
968 struct work_struct *work)
970 struct global_cwq *gcwq;
971 struct cpu_workqueue_struct *cwq;
972 struct list_head *worklist;
973 unsigned int work_flags;
974 unsigned long flags;
976 debug_work_activate(work);
978 /* if dying, only works from the same workqueue are allowed */
979 if (unlikely(wq->flags & WQ_DYING) &&
980 WARN_ON_ONCE(!is_chained_work(wq)))
981 return;
983 /* determine gcwq to use */
984 if (!(wq->flags & WQ_UNBOUND)) {
985 struct global_cwq *last_gcwq;
987 if (unlikely(cpu == WORK_CPU_UNBOUND))
988 cpu = raw_smp_processor_id();
991 * It's multi cpu. If @wq is non-reentrant and @work
992 * was previously on a different cpu, it might still
993 * be running there, in which case the work needs to
994 * be queued on that cpu to guarantee non-reentrance.
996 gcwq = get_gcwq(cpu);
997 if (wq->flags & WQ_NON_REENTRANT &&
998 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
999 struct worker *worker;
1001 spin_lock_irqsave(&last_gcwq->lock, flags);
1003 worker = find_worker_executing_work(last_gcwq, work);
1005 if (worker && worker->current_cwq->wq == wq)
1006 gcwq = last_gcwq;
1007 else {
1008 /* meh... not running there, queue here */
1009 spin_unlock_irqrestore(&last_gcwq->lock, flags);
1010 spin_lock_irqsave(&gcwq->lock, flags);
1012 } else
1013 spin_lock_irqsave(&gcwq->lock, flags);
1014 } else {
1015 gcwq = get_gcwq(WORK_CPU_UNBOUND);
1016 spin_lock_irqsave(&gcwq->lock, flags);
1019 /* gcwq determined, get cwq and queue */
1020 cwq = get_cwq(gcwq->cpu, wq);
1021 trace_workqueue_queue_work(cpu, cwq, work);
1023 BUG_ON(!list_empty(&work->entry));
1025 cwq->nr_in_flight[cwq->work_color]++;
1026 work_flags = work_color_to_flags(cwq->work_color);
1028 if (likely(cwq->nr_active < cwq->max_active)) {
1029 trace_workqueue_activate_work(work);
1030 cwq->nr_active++;
1031 worklist = gcwq_determine_ins_pos(gcwq, cwq);
1032 } else {
1033 work_flags |= WORK_STRUCT_DELAYED;
1034 worklist = &cwq->delayed_works;
1037 insert_work(cwq, work, worklist, work_flags);
1039 spin_unlock_irqrestore(&gcwq->lock, flags);
1043 * queue_work - queue work on a workqueue
1044 * @wq: workqueue to use
1045 * @work: work to queue
1047 * Returns 0 if @work was already on a queue, non-zero otherwise.
1049 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1050 * it can be processed by another CPU.
1052 int queue_work(struct workqueue_struct *wq, struct work_struct *work)
1054 int ret;
1056 ret = queue_work_on(get_cpu(), wq, work);
1057 put_cpu();
1059 return ret;
1061 EXPORT_SYMBOL_GPL(queue_work);
1064 * queue_work_on - queue work on specific cpu
1065 * @cpu: CPU number to execute work on
1066 * @wq: workqueue to use
1067 * @work: work to queue
1069 * Returns 0 if @work was already on a queue, non-zero otherwise.
1071 * We queue the work to a specific CPU, the caller must ensure it
1072 * can't go away.
1075 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
1077 int ret = 0;
1079 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1080 __queue_work(cpu, wq, work);
1081 ret = 1;
1083 return ret;
1085 EXPORT_SYMBOL_GPL(queue_work_on);
1087 static void delayed_work_timer_fn(unsigned long __data)
1089 struct delayed_work *dwork = (struct delayed_work *)__data;
1090 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1092 __queue_work(smp_processor_id(), cwq->wq, &dwork->work);
1096 * queue_delayed_work - queue work on a workqueue after delay
1097 * @wq: workqueue to use
1098 * @dwork: delayable work to queue
1099 * @delay: number of jiffies to wait before queueing
1101 * Returns 0 if @work was already on a queue, non-zero otherwise.
1103 int queue_delayed_work(struct workqueue_struct *wq,
1104 struct delayed_work *dwork, unsigned long delay)
1106 if (delay == 0)
1107 return queue_work(wq, &dwork->work);
1109 return queue_delayed_work_on(-1, wq, dwork, delay);
1111 EXPORT_SYMBOL_GPL(queue_delayed_work);
1114 * queue_delayed_work_on - queue work on specific CPU after delay
1115 * @cpu: CPU number to execute work on
1116 * @wq: workqueue to use
1117 * @dwork: work to queue
1118 * @delay: number of jiffies to wait before queueing
1120 * Returns 0 if @work was already on a queue, non-zero otherwise.
1122 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1123 struct delayed_work *dwork, unsigned long delay)
1125 int ret = 0;
1126 struct timer_list *timer = &dwork->timer;
1127 struct work_struct *work = &dwork->work;
1129 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1130 unsigned int lcpu;
1132 BUG_ON(timer_pending(timer));
1133 BUG_ON(!list_empty(&work->entry));
1135 timer_stats_timer_set_start_info(&dwork->timer);
1138 * This stores cwq for the moment, for the timer_fn.
1139 * Note that the work's gcwq is preserved to allow
1140 * reentrance detection for delayed works.
1142 if (!(wq->flags & WQ_UNBOUND)) {
1143 struct global_cwq *gcwq = get_work_gcwq(work);
1145 if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1146 lcpu = gcwq->cpu;
1147 else
1148 lcpu = raw_smp_processor_id();
1149 } else
1150 lcpu = WORK_CPU_UNBOUND;
1152 set_work_cwq(work, get_cwq(lcpu, wq), 0);
1154 timer->expires = jiffies + delay;
1155 timer->data = (unsigned long)dwork;
1156 timer->function = delayed_work_timer_fn;
1158 if (unlikely(cpu >= 0))
1159 add_timer_on(timer, cpu);
1160 else
1161 add_timer(timer);
1162 ret = 1;
1164 return ret;
1166 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1169 * worker_enter_idle - enter idle state
1170 * @worker: worker which is entering idle state
1172 * @worker is entering idle state. Update stats and idle timer if
1173 * necessary.
1175 * LOCKING:
1176 * spin_lock_irq(gcwq->lock).
1178 static void worker_enter_idle(struct worker *worker)
1180 struct global_cwq *gcwq = worker->gcwq;
1182 BUG_ON(worker->flags & WORKER_IDLE);
1183 BUG_ON(!list_empty(&worker->entry) &&
1184 (worker->hentry.next || worker->hentry.pprev));
1186 /* can't use worker_set_flags(), also called from start_worker() */
1187 worker->flags |= WORKER_IDLE;
1188 gcwq->nr_idle++;
1189 worker->last_active = jiffies;
1191 /* idle_list is LIFO */
1192 list_add(&worker->entry, &gcwq->idle_list);
1194 if (likely(!(worker->flags & WORKER_ROGUE))) {
1195 if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer))
1196 mod_timer(&gcwq->idle_timer,
1197 jiffies + IDLE_WORKER_TIMEOUT);
1198 } else
1199 wake_up_all(&gcwq->trustee_wait);
1201 /* sanity check nr_running */
1202 WARN_ON_ONCE(gcwq->nr_workers == gcwq->nr_idle &&
1203 atomic_read(get_gcwq_nr_running(gcwq->cpu)));
1207 * worker_leave_idle - leave idle state
1208 * @worker: worker which is leaving idle state
1210 * @worker is leaving idle state. Update stats.
1212 * LOCKING:
1213 * spin_lock_irq(gcwq->lock).
1215 static void worker_leave_idle(struct worker *worker)
1217 struct global_cwq *gcwq = worker->gcwq;
1219 BUG_ON(!(worker->flags & WORKER_IDLE));
1220 worker_clr_flags(worker, WORKER_IDLE);
1221 gcwq->nr_idle--;
1222 list_del_init(&worker->entry);
1226 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1227 * @worker: self
1229 * Works which are scheduled while the cpu is online must at least be
1230 * scheduled to a worker which is bound to the cpu so that if they are
1231 * flushed from cpu callbacks while cpu is going down, they are
1232 * guaranteed to execute on the cpu.
1234 * This function is to be used by rogue workers and rescuers to bind
1235 * themselves to the target cpu and may race with cpu going down or
1236 * coming online. kthread_bind() can't be used because it may put the
1237 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1238 * verbatim as it's best effort and blocking and gcwq may be
1239 * [dis]associated in the meantime.
1241 * This function tries set_cpus_allowed() and locks gcwq and verifies
1242 * the binding against GCWQ_DISASSOCIATED which is set during
1243 * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters
1244 * idle state or fetches works without dropping lock, it can guarantee
1245 * the scheduling requirement described in the first paragraph.
1247 * CONTEXT:
1248 * Might sleep. Called without any lock but returns with gcwq->lock
1249 * held.
1251 * RETURNS:
1252 * %true if the associated gcwq is online (@worker is successfully
1253 * bound), %false if offline.
1255 static bool worker_maybe_bind_and_lock(struct worker *worker)
1256 __acquires(&gcwq->lock)
1258 struct global_cwq *gcwq = worker->gcwq;
1259 struct task_struct *task = worker->task;
1261 while (true) {
1263 * The following call may fail, succeed or succeed
1264 * without actually migrating the task to the cpu if
1265 * it races with cpu hotunplug operation. Verify
1266 * against GCWQ_DISASSOCIATED.
1268 if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1269 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1271 spin_lock_irq(&gcwq->lock);
1272 if (gcwq->flags & GCWQ_DISASSOCIATED)
1273 return false;
1274 if (task_cpu(task) == gcwq->cpu &&
1275 cpumask_equal(&current->cpus_allowed,
1276 get_cpu_mask(gcwq->cpu)))
1277 return true;
1278 spin_unlock_irq(&gcwq->lock);
1280 /* CPU has come up inbetween, retry migration */
1281 cpu_relax();
1286 * Function for worker->rebind_work used to rebind rogue busy workers
1287 * to the associated cpu which is coming back online. This is
1288 * scheduled by cpu up but can race with other cpu hotplug operations
1289 * and may be executed twice without intervening cpu down.
1291 static void worker_rebind_fn(struct work_struct *work)
1293 struct worker *worker = container_of(work, struct worker, rebind_work);
1294 struct global_cwq *gcwq = worker->gcwq;
1296 if (worker_maybe_bind_and_lock(worker))
1297 worker_clr_flags(worker, WORKER_REBIND);
1299 spin_unlock_irq(&gcwq->lock);
1302 static struct worker *alloc_worker(void)
1304 struct worker *worker;
1306 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1307 if (worker) {
1308 INIT_LIST_HEAD(&worker->entry);
1309 INIT_LIST_HEAD(&worker->scheduled);
1310 INIT_WORK(&worker->rebind_work, worker_rebind_fn);
1311 /* on creation a worker is in !idle && prep state */
1312 worker->flags = WORKER_PREP;
1314 return worker;
1318 * create_worker - create a new workqueue worker
1319 * @gcwq: gcwq the new worker will belong to
1320 * @bind: whether to set affinity to @cpu or not
1322 * Create a new worker which is bound to @gcwq. The returned worker
1323 * can be started by calling start_worker() or destroyed using
1324 * destroy_worker().
1326 * CONTEXT:
1327 * Might sleep. Does GFP_KERNEL allocations.
1329 * RETURNS:
1330 * Pointer to the newly created worker.
1332 static struct worker *create_worker(struct global_cwq *gcwq, bool bind)
1334 bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND;
1335 struct worker *worker = NULL;
1336 int id = -1;
1338 spin_lock_irq(&gcwq->lock);
1339 while (ida_get_new(&gcwq->worker_ida, &id)) {
1340 spin_unlock_irq(&gcwq->lock);
1341 if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL))
1342 goto fail;
1343 spin_lock_irq(&gcwq->lock);
1345 spin_unlock_irq(&gcwq->lock);
1347 worker = alloc_worker();
1348 if (!worker)
1349 goto fail;
1351 worker->gcwq = gcwq;
1352 worker->id = id;
1354 if (!on_unbound_cpu)
1355 worker->task = kthread_create(worker_thread, worker,
1356 "kworker/%u:%d", gcwq->cpu, id);
1357 else
1358 worker->task = kthread_create(worker_thread, worker,
1359 "kworker/u:%d", id);
1360 if (IS_ERR(worker->task))
1361 goto fail;
1364 * A rogue worker will become a regular one if CPU comes
1365 * online later on. Make sure every worker has
1366 * PF_THREAD_BOUND set.
1368 if (bind && !on_unbound_cpu)
1369 kthread_bind(worker->task, gcwq->cpu);
1370 else {
1371 worker->task->flags |= PF_THREAD_BOUND;
1372 if (on_unbound_cpu)
1373 worker->flags |= WORKER_UNBOUND;
1376 return worker;
1377 fail:
1378 if (id >= 0) {
1379 spin_lock_irq(&gcwq->lock);
1380 ida_remove(&gcwq->worker_ida, id);
1381 spin_unlock_irq(&gcwq->lock);
1383 kfree(worker);
1384 return NULL;
1388 * start_worker - start a newly created worker
1389 * @worker: worker to start
1391 * Make the gcwq aware of @worker and start it.
1393 * CONTEXT:
1394 * spin_lock_irq(gcwq->lock).
1396 static void start_worker(struct worker *worker)
1398 worker->flags |= WORKER_STARTED;
1399 worker->gcwq->nr_workers++;
1400 worker_enter_idle(worker);
1401 wake_up_process(worker->task);
1405 * destroy_worker - destroy a workqueue worker
1406 * @worker: worker to be destroyed
1408 * Destroy @worker and adjust @gcwq stats accordingly.
1410 * CONTEXT:
1411 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1413 static void destroy_worker(struct worker *worker)
1415 struct global_cwq *gcwq = worker->gcwq;
1416 int id = worker->id;
1418 /* sanity check frenzy */
1419 BUG_ON(worker->current_work);
1420 BUG_ON(!list_empty(&worker->scheduled));
1422 if (worker->flags & WORKER_STARTED)
1423 gcwq->nr_workers--;
1424 if (worker->flags & WORKER_IDLE)
1425 gcwq->nr_idle--;
1427 list_del_init(&worker->entry);
1428 worker->flags |= WORKER_DIE;
1430 spin_unlock_irq(&gcwq->lock);
1432 kthread_stop(worker->task);
1433 kfree(worker);
1435 spin_lock_irq(&gcwq->lock);
1436 ida_remove(&gcwq->worker_ida, id);
1439 static void idle_worker_timeout(unsigned long __gcwq)
1441 struct global_cwq *gcwq = (void *)__gcwq;
1443 spin_lock_irq(&gcwq->lock);
1445 if (too_many_workers(gcwq)) {
1446 struct worker *worker;
1447 unsigned long expires;
1449 /* idle_list is kept in LIFO order, check the last one */
1450 worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1451 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1453 if (time_before(jiffies, expires))
1454 mod_timer(&gcwq->idle_timer, expires);
1455 else {
1456 /* it's been idle for too long, wake up manager */
1457 gcwq->flags |= GCWQ_MANAGE_WORKERS;
1458 wake_up_worker(gcwq);
1462 spin_unlock_irq(&gcwq->lock);
1465 static bool send_mayday(struct work_struct *work)
1467 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1468 struct workqueue_struct *wq = cwq->wq;
1469 unsigned int cpu;
1471 if (!(wq->flags & WQ_RESCUER))
1472 return false;
1474 /* mayday mayday mayday */
1475 cpu = cwq->gcwq->cpu;
1476 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1477 if (cpu == WORK_CPU_UNBOUND)
1478 cpu = 0;
1479 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1480 wake_up_process(wq->rescuer->task);
1481 return true;
1484 static void gcwq_mayday_timeout(unsigned long __gcwq)
1486 struct global_cwq *gcwq = (void *)__gcwq;
1487 struct work_struct *work;
1489 spin_lock_irq(&gcwq->lock);
1491 if (need_to_create_worker(gcwq)) {
1493 * We've been trying to create a new worker but
1494 * haven't been successful. We might be hitting an
1495 * allocation deadlock. Send distress signals to
1496 * rescuers.
1498 list_for_each_entry(work, &gcwq->worklist, entry)
1499 send_mayday(work);
1502 spin_unlock_irq(&gcwq->lock);
1504 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INTERVAL);
1508 * maybe_create_worker - create a new worker if necessary
1509 * @gcwq: gcwq to create a new worker for
1511 * Create a new worker for @gcwq if necessary. @gcwq is guaranteed to
1512 * have at least one idle worker on return from this function. If
1513 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1514 * sent to all rescuers with works scheduled on @gcwq to resolve
1515 * possible allocation deadlock.
1517 * On return, need_to_create_worker() is guaranteed to be false and
1518 * may_start_working() true.
1520 * LOCKING:
1521 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1522 * multiple times. Does GFP_KERNEL allocations. Called only from
1523 * manager.
1525 * RETURNS:
1526 * false if no action was taken and gcwq->lock stayed locked, true
1527 * otherwise.
1529 static bool maybe_create_worker(struct global_cwq *gcwq)
1530 __releases(&gcwq->lock)
1531 __acquires(&gcwq->lock)
1533 if (!need_to_create_worker(gcwq))
1534 return false;
1535 restart:
1536 spin_unlock_irq(&gcwq->lock);
1538 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1539 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1541 while (true) {
1542 struct worker *worker;
1544 worker = create_worker(gcwq, true);
1545 if (worker) {
1546 del_timer_sync(&gcwq->mayday_timer);
1547 spin_lock_irq(&gcwq->lock);
1548 start_worker(worker);
1549 BUG_ON(need_to_create_worker(gcwq));
1550 return true;
1553 if (!need_to_create_worker(gcwq))
1554 break;
1556 __set_current_state(TASK_INTERRUPTIBLE);
1557 schedule_timeout(CREATE_COOLDOWN);
1559 if (!need_to_create_worker(gcwq))
1560 break;
1563 del_timer_sync(&gcwq->mayday_timer);
1564 spin_lock_irq(&gcwq->lock);
1565 if (need_to_create_worker(gcwq))
1566 goto restart;
1567 return true;
1571 * maybe_destroy_worker - destroy workers which have been idle for a while
1572 * @gcwq: gcwq to destroy workers for
1574 * Destroy @gcwq workers which have been idle for longer than
1575 * IDLE_WORKER_TIMEOUT.
1577 * LOCKING:
1578 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1579 * multiple times. Called only from manager.
1581 * RETURNS:
1582 * false if no action was taken and gcwq->lock stayed locked, true
1583 * otherwise.
1585 static bool maybe_destroy_workers(struct global_cwq *gcwq)
1587 bool ret = false;
1589 while (too_many_workers(gcwq)) {
1590 struct worker *worker;
1591 unsigned long expires;
1593 worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1594 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1596 if (time_before(jiffies, expires)) {
1597 mod_timer(&gcwq->idle_timer, expires);
1598 break;
1601 destroy_worker(worker);
1602 ret = true;
1605 return ret;
1609 * manage_workers - manage worker pool
1610 * @worker: self
1612 * Assume the manager role and manage gcwq worker pool @worker belongs
1613 * to. At any given time, there can be only zero or one manager per
1614 * gcwq. The exclusion is handled automatically by this function.
1616 * The caller can safely start processing works on false return. On
1617 * true return, it's guaranteed that need_to_create_worker() is false
1618 * and may_start_working() is true.
1620 * CONTEXT:
1621 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1622 * multiple times. Does GFP_KERNEL allocations.
1624 * RETURNS:
1625 * false if no action was taken and gcwq->lock stayed locked, true if
1626 * some action was taken.
1628 static bool manage_workers(struct worker *worker)
1630 struct global_cwq *gcwq = worker->gcwq;
1631 bool ret = false;
1633 if (gcwq->flags & GCWQ_MANAGING_WORKERS)
1634 return ret;
1636 gcwq->flags &= ~GCWQ_MANAGE_WORKERS;
1637 gcwq->flags |= GCWQ_MANAGING_WORKERS;
1640 * Destroy and then create so that may_start_working() is true
1641 * on return.
1643 ret |= maybe_destroy_workers(gcwq);
1644 ret |= maybe_create_worker(gcwq);
1646 gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
1649 * The trustee might be waiting to take over the manager
1650 * position, tell it we're done.
1652 if (unlikely(gcwq->trustee))
1653 wake_up_all(&gcwq->trustee_wait);
1655 return ret;
1659 * move_linked_works - move linked works to a list
1660 * @work: start of series of works to be scheduled
1661 * @head: target list to append @work to
1662 * @nextp: out paramter for nested worklist walking
1664 * Schedule linked works starting from @work to @head. Work series to
1665 * be scheduled starts at @work and includes any consecutive work with
1666 * WORK_STRUCT_LINKED set in its predecessor.
1668 * If @nextp is not NULL, it's updated to point to the next work of
1669 * the last scheduled work. This allows move_linked_works() to be
1670 * nested inside outer list_for_each_entry_safe().
1672 * CONTEXT:
1673 * spin_lock_irq(gcwq->lock).
1675 static void move_linked_works(struct work_struct *work, struct list_head *head,
1676 struct work_struct **nextp)
1678 struct work_struct *n;
1681 * Linked worklist will always end before the end of the list,
1682 * use NULL for list head.
1684 list_for_each_entry_safe_from(work, n, NULL, entry) {
1685 list_move_tail(&work->entry, head);
1686 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1687 break;
1691 * If we're already inside safe list traversal and have moved
1692 * multiple works to the scheduled queue, the next position
1693 * needs to be updated.
1695 if (nextp)
1696 *nextp = n;
1699 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
1701 struct work_struct *work = list_first_entry(&cwq->delayed_works,
1702 struct work_struct, entry);
1703 struct list_head *pos = gcwq_determine_ins_pos(cwq->gcwq, cwq);
1705 trace_workqueue_activate_work(work);
1706 move_linked_works(work, pos, NULL);
1707 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1708 cwq->nr_active++;
1712 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1713 * @cwq: cwq of interest
1714 * @color: color of work which left the queue
1715 * @delayed: for a delayed work
1717 * A work either has completed or is removed from pending queue,
1718 * decrement nr_in_flight of its cwq and handle workqueue flushing.
1720 * CONTEXT:
1721 * spin_lock_irq(gcwq->lock).
1723 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
1724 bool delayed)
1726 /* ignore uncolored works */
1727 if (color == WORK_NO_COLOR)
1728 return;
1730 cwq->nr_in_flight[color]--;
1732 if (!delayed) {
1733 cwq->nr_active--;
1734 if (!list_empty(&cwq->delayed_works)) {
1735 /* one down, submit a delayed one */
1736 if (cwq->nr_active < cwq->max_active)
1737 cwq_activate_first_delayed(cwq);
1741 /* is flush in progress and are we at the flushing tip? */
1742 if (likely(cwq->flush_color != color))
1743 return;
1745 /* are there still in-flight works? */
1746 if (cwq->nr_in_flight[color])
1747 return;
1749 /* this cwq is done, clear flush_color */
1750 cwq->flush_color = -1;
1753 * If this was the last cwq, wake up the first flusher. It
1754 * will handle the rest.
1756 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1757 complete(&cwq->wq->first_flusher->done);
1761 * process_one_work - process single work
1762 * @worker: self
1763 * @work: work to process
1765 * Process @work. This function contains all the logics necessary to
1766 * process a single work including synchronization against and
1767 * interaction with other workers on the same cpu, queueing and
1768 * flushing. As long as context requirement is met, any worker can
1769 * call this function to process a work.
1771 * CONTEXT:
1772 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1774 static void process_one_work(struct worker *worker, struct work_struct *work)
1775 __releases(&gcwq->lock)
1776 __acquires(&gcwq->lock)
1778 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1779 struct global_cwq *gcwq = cwq->gcwq;
1780 struct hlist_head *bwh = busy_worker_head(gcwq, work);
1781 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
1782 work_func_t f = work->func;
1783 int work_color;
1784 struct worker *collision;
1785 #ifdef CONFIG_LOCKDEP
1787 * It is permissible to free the struct work_struct from
1788 * inside the function that is called from it, this we need to
1789 * take into account for lockdep too. To avoid bogus "held
1790 * lock freed" warnings as well as problems when looking into
1791 * work->lockdep_map, make a copy and use that here.
1793 struct lockdep_map lockdep_map = work->lockdep_map;
1794 #endif
1796 * A single work shouldn't be executed concurrently by
1797 * multiple workers on a single cpu. Check whether anyone is
1798 * already processing the work. If so, defer the work to the
1799 * currently executing one.
1801 collision = __find_worker_executing_work(gcwq, bwh, work);
1802 if (unlikely(collision)) {
1803 move_linked_works(work, &collision->scheduled, NULL);
1804 return;
1807 /* claim and process */
1808 debug_work_deactivate(work);
1809 hlist_add_head(&worker->hentry, bwh);
1810 worker->current_work = work;
1811 worker->current_cwq = cwq;
1812 work_color = get_work_color(work);
1814 /* record the current cpu number in the work data and dequeue */
1815 set_work_cpu(work, gcwq->cpu);
1816 list_del_init(&work->entry);
1819 * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI,
1820 * wake up another worker; otherwise, clear HIGHPRI_PENDING.
1822 if (unlikely(gcwq->flags & GCWQ_HIGHPRI_PENDING)) {
1823 struct work_struct *nwork = list_first_entry(&gcwq->worklist,
1824 struct work_struct, entry);
1826 if (!list_empty(&gcwq->worklist) &&
1827 get_work_cwq(nwork)->wq->flags & WQ_HIGHPRI)
1828 wake_up_worker(gcwq);
1829 else
1830 gcwq->flags &= ~GCWQ_HIGHPRI_PENDING;
1834 * CPU intensive works don't participate in concurrency
1835 * management. They're the scheduler's responsibility.
1837 if (unlikely(cpu_intensive))
1838 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
1840 spin_unlock_irq(&gcwq->lock);
1842 work_clear_pending(work);
1843 lock_map_acquire(&cwq->wq->lockdep_map);
1844 lock_map_acquire(&lockdep_map);
1845 trace_workqueue_execute_start(work);
1846 f(work);
1848 * While we must be careful to not use "work" after this, the trace
1849 * point will only record its address.
1851 trace_workqueue_execute_end(work);
1852 lock_map_release(&lockdep_map);
1853 lock_map_release(&cwq->wq->lockdep_map);
1855 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
1856 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
1857 "%s/0x%08x/%d\n",
1858 current->comm, preempt_count(), task_pid_nr(current));
1859 printk(KERN_ERR " last function: ");
1860 print_symbol("%s\n", (unsigned long)f);
1861 debug_show_held_locks(current);
1862 dump_stack();
1865 spin_lock_irq(&gcwq->lock);
1867 /* clear cpu intensive status */
1868 if (unlikely(cpu_intensive))
1869 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
1871 /* we're done with it, release */
1872 hlist_del_init(&worker->hentry);
1873 worker->current_work = NULL;
1874 worker->current_cwq = NULL;
1875 cwq_dec_nr_in_flight(cwq, work_color, false);
1879 * process_scheduled_works - process scheduled works
1880 * @worker: self
1882 * Process all scheduled works. Please note that the scheduled list
1883 * may change while processing a work, so this function repeatedly
1884 * fetches a work from the top and executes it.
1886 * CONTEXT:
1887 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1888 * multiple times.
1890 static void process_scheduled_works(struct worker *worker)
1892 while (!list_empty(&worker->scheduled)) {
1893 struct work_struct *work = list_first_entry(&worker->scheduled,
1894 struct work_struct, entry);
1895 process_one_work(worker, work);
1900 * worker_thread - the worker thread function
1901 * @__worker: self
1903 * The gcwq worker thread function. There's a single dynamic pool of
1904 * these per each cpu. These workers process all works regardless of
1905 * their specific target workqueue. The only exception is works which
1906 * belong to workqueues with a rescuer which will be explained in
1907 * rescuer_thread().
1909 static int worker_thread(void *__worker)
1911 struct worker *worker = __worker;
1912 struct global_cwq *gcwq = worker->gcwq;
1914 /* tell the scheduler that this is a workqueue worker */
1915 worker->task->flags |= PF_WQ_WORKER;
1916 woke_up:
1917 spin_lock_irq(&gcwq->lock);
1919 /* DIE can be set only while we're idle, checking here is enough */
1920 if (worker->flags & WORKER_DIE) {
1921 spin_unlock_irq(&gcwq->lock);
1922 worker->task->flags &= ~PF_WQ_WORKER;
1923 return 0;
1926 worker_leave_idle(worker);
1927 recheck:
1928 /* no more worker necessary? */
1929 if (!need_more_worker(gcwq))
1930 goto sleep;
1932 /* do we need to manage? */
1933 if (unlikely(!may_start_working(gcwq)) && manage_workers(worker))
1934 goto recheck;
1937 * ->scheduled list can only be filled while a worker is
1938 * preparing to process a work or actually processing it.
1939 * Make sure nobody diddled with it while I was sleeping.
1941 BUG_ON(!list_empty(&worker->scheduled));
1944 * When control reaches this point, we're guaranteed to have
1945 * at least one idle worker or that someone else has already
1946 * assumed the manager role.
1948 worker_clr_flags(worker, WORKER_PREP);
1950 do {
1951 struct work_struct *work =
1952 list_first_entry(&gcwq->worklist,
1953 struct work_struct, entry);
1955 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
1956 /* optimization path, not strictly necessary */
1957 process_one_work(worker, work);
1958 if (unlikely(!list_empty(&worker->scheduled)))
1959 process_scheduled_works(worker);
1960 } else {
1961 move_linked_works(work, &worker->scheduled, NULL);
1962 process_scheduled_works(worker);
1964 } while (keep_working(gcwq));
1966 worker_set_flags(worker, WORKER_PREP, false);
1967 sleep:
1968 if (unlikely(need_to_manage_workers(gcwq)) && manage_workers(worker))
1969 goto recheck;
1972 * gcwq->lock is held and there's no work to process and no
1973 * need to manage, sleep. Workers are woken up only while
1974 * holding gcwq->lock or from local cpu, so setting the
1975 * current state before releasing gcwq->lock is enough to
1976 * prevent losing any event.
1978 worker_enter_idle(worker);
1979 __set_current_state(TASK_INTERRUPTIBLE);
1980 spin_unlock_irq(&gcwq->lock);
1981 schedule();
1982 goto woke_up;
1986 * rescuer_thread - the rescuer thread function
1987 * @__wq: the associated workqueue
1989 * Workqueue rescuer thread function. There's one rescuer for each
1990 * workqueue which has WQ_RESCUER set.
1992 * Regular work processing on a gcwq may block trying to create a new
1993 * worker which uses GFP_KERNEL allocation which has slight chance of
1994 * developing into deadlock if some works currently on the same queue
1995 * need to be processed to satisfy the GFP_KERNEL allocation. This is
1996 * the problem rescuer solves.
1998 * When such condition is possible, the gcwq summons rescuers of all
1999 * workqueues which have works queued on the gcwq and let them process
2000 * those works so that forward progress can be guaranteed.
2002 * This should happen rarely.
2004 static int rescuer_thread(void *__wq)
2006 struct workqueue_struct *wq = __wq;
2007 struct worker *rescuer = wq->rescuer;
2008 struct list_head *scheduled = &rescuer->scheduled;
2009 bool is_unbound = wq->flags & WQ_UNBOUND;
2010 unsigned int cpu;
2012 set_user_nice(current, RESCUER_NICE_LEVEL);
2013 repeat:
2014 set_current_state(TASK_INTERRUPTIBLE);
2016 if (kthread_should_stop())
2017 return 0;
2020 * See whether any cpu is asking for help. Unbounded
2021 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2023 for_each_mayday_cpu(cpu, wq->mayday_mask) {
2024 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2025 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2026 struct global_cwq *gcwq = cwq->gcwq;
2027 struct work_struct *work, *n;
2029 __set_current_state(TASK_RUNNING);
2030 mayday_clear_cpu(cpu, wq->mayday_mask);
2032 /* migrate to the target cpu if possible */
2033 rescuer->gcwq = gcwq;
2034 worker_maybe_bind_and_lock(rescuer);
2037 * Slurp in all works issued via this workqueue and
2038 * process'em.
2040 BUG_ON(!list_empty(&rescuer->scheduled));
2041 list_for_each_entry_safe(work, n, &gcwq->worklist, entry)
2042 if (get_work_cwq(work) == cwq)
2043 move_linked_works(work, scheduled, &n);
2045 process_scheduled_works(rescuer);
2046 spin_unlock_irq(&gcwq->lock);
2049 schedule();
2050 goto repeat;
2053 struct wq_barrier {
2054 struct work_struct work;
2055 struct completion done;
2058 static void wq_barrier_func(struct work_struct *work)
2060 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2061 complete(&barr->done);
2065 * insert_wq_barrier - insert a barrier work
2066 * @cwq: cwq to insert barrier into
2067 * @barr: wq_barrier to insert
2068 * @target: target work to attach @barr to
2069 * @worker: worker currently executing @target, NULL if @target is not executing
2071 * @barr is linked to @target such that @barr is completed only after
2072 * @target finishes execution. Please note that the ordering
2073 * guarantee is observed only with respect to @target and on the local
2074 * cpu.
2076 * Currently, a queued barrier can't be canceled. This is because
2077 * try_to_grab_pending() can't determine whether the work to be
2078 * grabbed is at the head of the queue and thus can't clear LINKED
2079 * flag of the previous work while there must be a valid next work
2080 * after a work with LINKED flag set.
2082 * Note that when @worker is non-NULL, @target may be modified
2083 * underneath us, so we can't reliably determine cwq from @target.
2085 * CONTEXT:
2086 * spin_lock_irq(gcwq->lock).
2088 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2089 struct wq_barrier *barr,
2090 struct work_struct *target, struct worker *worker)
2092 struct list_head *head;
2093 unsigned int linked = 0;
2096 * debugobject calls are safe here even with gcwq->lock locked
2097 * as we know for sure that this will not trigger any of the
2098 * checks and call back into the fixup functions where we
2099 * might deadlock.
2101 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2102 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2103 init_completion(&barr->done);
2106 * If @target is currently being executed, schedule the
2107 * barrier to the worker; otherwise, put it after @target.
2109 if (worker)
2110 head = worker->scheduled.next;
2111 else {
2112 unsigned long *bits = work_data_bits(target);
2114 head = target->entry.next;
2115 /* there can already be other linked works, inherit and set */
2116 linked = *bits & WORK_STRUCT_LINKED;
2117 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2120 debug_work_activate(&barr->work);
2121 insert_work(cwq, &barr->work, head,
2122 work_color_to_flags(WORK_NO_COLOR) | linked);
2126 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2127 * @wq: workqueue being flushed
2128 * @flush_color: new flush color, < 0 for no-op
2129 * @work_color: new work color, < 0 for no-op
2131 * Prepare cwqs for workqueue flushing.
2133 * If @flush_color is non-negative, flush_color on all cwqs should be
2134 * -1. If no cwq has in-flight commands at the specified color, all
2135 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2136 * has in flight commands, its cwq->flush_color is set to
2137 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2138 * wakeup logic is armed and %true is returned.
2140 * The caller should have initialized @wq->first_flusher prior to
2141 * calling this function with non-negative @flush_color. If
2142 * @flush_color is negative, no flush color update is done and %false
2143 * is returned.
2145 * If @work_color is non-negative, all cwqs should have the same
2146 * work_color which is previous to @work_color and all will be
2147 * advanced to @work_color.
2149 * CONTEXT:
2150 * mutex_lock(wq->flush_mutex).
2152 * RETURNS:
2153 * %true if @flush_color >= 0 and there's something to flush. %false
2154 * otherwise.
2156 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2157 int flush_color, int work_color)
2159 bool wait = false;
2160 unsigned int cpu;
2162 if (flush_color >= 0) {
2163 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2164 atomic_set(&wq->nr_cwqs_to_flush, 1);
2167 for_each_cwq_cpu(cpu, wq) {
2168 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2169 struct global_cwq *gcwq = cwq->gcwq;
2171 spin_lock_irq(&gcwq->lock);
2173 if (flush_color >= 0) {
2174 BUG_ON(cwq->flush_color != -1);
2176 if (cwq->nr_in_flight[flush_color]) {
2177 cwq->flush_color = flush_color;
2178 atomic_inc(&wq->nr_cwqs_to_flush);
2179 wait = true;
2183 if (work_color >= 0) {
2184 BUG_ON(work_color != work_next_color(cwq->work_color));
2185 cwq->work_color = work_color;
2188 spin_unlock_irq(&gcwq->lock);
2191 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2192 complete(&wq->first_flusher->done);
2194 return wait;
2198 * flush_workqueue - ensure that any scheduled work has run to completion.
2199 * @wq: workqueue to flush
2201 * Forces execution of the workqueue and blocks until its completion.
2202 * This is typically used in driver shutdown handlers.
2204 * We sleep until all works which were queued on entry have been handled,
2205 * but we are not livelocked by new incoming ones.
2207 void flush_workqueue(struct workqueue_struct *wq)
2209 struct wq_flusher this_flusher = {
2210 .list = LIST_HEAD_INIT(this_flusher.list),
2211 .flush_color = -1,
2212 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2214 int next_color;
2216 lock_map_acquire(&wq->lockdep_map);
2217 lock_map_release(&wq->lockdep_map);
2219 mutex_lock(&wq->flush_mutex);
2222 * Start-to-wait phase
2224 next_color = work_next_color(wq->work_color);
2226 if (next_color != wq->flush_color) {
2228 * Color space is not full. The current work_color
2229 * becomes our flush_color and work_color is advanced
2230 * by one.
2232 BUG_ON(!list_empty(&wq->flusher_overflow));
2233 this_flusher.flush_color = wq->work_color;
2234 wq->work_color = next_color;
2236 if (!wq->first_flusher) {
2237 /* no flush in progress, become the first flusher */
2238 BUG_ON(wq->flush_color != this_flusher.flush_color);
2240 wq->first_flusher = &this_flusher;
2242 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2243 wq->work_color)) {
2244 /* nothing to flush, done */
2245 wq->flush_color = next_color;
2246 wq->first_flusher = NULL;
2247 goto out_unlock;
2249 } else {
2250 /* wait in queue */
2251 BUG_ON(wq->flush_color == this_flusher.flush_color);
2252 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2253 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2255 } else {
2257 * Oops, color space is full, wait on overflow queue.
2258 * The next flush completion will assign us
2259 * flush_color and transfer to flusher_queue.
2261 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2264 mutex_unlock(&wq->flush_mutex);
2266 wait_for_completion(&this_flusher.done);
2269 * Wake-up-and-cascade phase
2271 * First flushers are responsible for cascading flushes and
2272 * handling overflow. Non-first flushers can simply return.
2274 if (wq->first_flusher != &this_flusher)
2275 return;
2277 mutex_lock(&wq->flush_mutex);
2279 /* we might have raced, check again with mutex held */
2280 if (wq->first_flusher != &this_flusher)
2281 goto out_unlock;
2283 wq->first_flusher = NULL;
2285 BUG_ON(!list_empty(&this_flusher.list));
2286 BUG_ON(wq->flush_color != this_flusher.flush_color);
2288 while (true) {
2289 struct wq_flusher *next, *tmp;
2291 /* complete all the flushers sharing the current flush color */
2292 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2293 if (next->flush_color != wq->flush_color)
2294 break;
2295 list_del_init(&next->list);
2296 complete(&next->done);
2299 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2300 wq->flush_color != work_next_color(wq->work_color));
2302 /* this flush_color is finished, advance by one */
2303 wq->flush_color = work_next_color(wq->flush_color);
2305 /* one color has been freed, handle overflow queue */
2306 if (!list_empty(&wq->flusher_overflow)) {
2308 * Assign the same color to all overflowed
2309 * flushers, advance work_color and append to
2310 * flusher_queue. This is the start-to-wait
2311 * phase for these overflowed flushers.
2313 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2314 tmp->flush_color = wq->work_color;
2316 wq->work_color = work_next_color(wq->work_color);
2318 list_splice_tail_init(&wq->flusher_overflow,
2319 &wq->flusher_queue);
2320 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2323 if (list_empty(&wq->flusher_queue)) {
2324 BUG_ON(wq->flush_color != wq->work_color);
2325 break;
2329 * Need to flush more colors. Make the next flusher
2330 * the new first flusher and arm cwqs.
2332 BUG_ON(wq->flush_color == wq->work_color);
2333 BUG_ON(wq->flush_color != next->flush_color);
2335 list_del_init(&next->list);
2336 wq->first_flusher = next;
2338 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2339 break;
2342 * Meh... this color is already done, clear first
2343 * flusher and repeat cascading.
2345 wq->first_flusher = NULL;
2348 out_unlock:
2349 mutex_unlock(&wq->flush_mutex);
2351 EXPORT_SYMBOL_GPL(flush_workqueue);
2353 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2354 bool wait_executing)
2356 struct worker *worker = NULL;
2357 struct global_cwq *gcwq;
2358 struct cpu_workqueue_struct *cwq;
2360 might_sleep();
2361 gcwq = get_work_gcwq(work);
2362 if (!gcwq)
2363 return false;
2365 spin_lock_irq(&gcwq->lock);
2366 if (!list_empty(&work->entry)) {
2368 * See the comment near try_to_grab_pending()->smp_rmb().
2369 * If it was re-queued to a different gcwq under us, we
2370 * are not going to wait.
2372 smp_rmb();
2373 cwq = get_work_cwq(work);
2374 if (unlikely(!cwq || gcwq != cwq->gcwq))
2375 goto already_gone;
2376 } else if (wait_executing) {
2377 worker = find_worker_executing_work(gcwq, work);
2378 if (!worker)
2379 goto already_gone;
2380 cwq = worker->current_cwq;
2381 } else
2382 goto already_gone;
2384 insert_wq_barrier(cwq, barr, work, worker);
2385 spin_unlock_irq(&gcwq->lock);
2387 lock_map_acquire(&cwq->wq->lockdep_map);
2388 lock_map_release(&cwq->wq->lockdep_map);
2389 return true;
2390 already_gone:
2391 spin_unlock_irq(&gcwq->lock);
2392 return false;
2396 * flush_work - wait for a work to finish executing the last queueing instance
2397 * @work: the work to flush
2399 * Wait until @work has finished execution. This function considers
2400 * only the last queueing instance of @work. If @work has been
2401 * enqueued across different CPUs on a non-reentrant workqueue or on
2402 * multiple workqueues, @work might still be executing on return on
2403 * some of the CPUs from earlier queueing.
2405 * If @work was queued only on a non-reentrant, ordered or unbound
2406 * workqueue, @work is guaranteed to be idle on return if it hasn't
2407 * been requeued since flush started.
2409 * RETURNS:
2410 * %true if flush_work() waited for the work to finish execution,
2411 * %false if it was already idle.
2413 bool flush_work(struct work_struct *work)
2415 struct wq_barrier barr;
2417 if (start_flush_work(work, &barr, true)) {
2418 wait_for_completion(&barr.done);
2419 destroy_work_on_stack(&barr.work);
2420 return true;
2421 } else
2422 return false;
2424 EXPORT_SYMBOL_GPL(flush_work);
2426 static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2428 struct wq_barrier barr;
2429 struct worker *worker;
2431 spin_lock_irq(&gcwq->lock);
2433 worker = find_worker_executing_work(gcwq, work);
2434 if (unlikely(worker))
2435 insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2437 spin_unlock_irq(&gcwq->lock);
2439 if (unlikely(worker)) {
2440 wait_for_completion(&barr.done);
2441 destroy_work_on_stack(&barr.work);
2442 return true;
2443 } else
2444 return false;
2447 static bool wait_on_work(struct work_struct *work)
2449 bool ret = false;
2450 int cpu;
2452 might_sleep();
2454 lock_map_acquire(&work->lockdep_map);
2455 lock_map_release(&work->lockdep_map);
2457 for_each_gcwq_cpu(cpu)
2458 ret |= wait_on_cpu_work(get_gcwq(cpu), work);
2459 return ret;
2463 * flush_work_sync - wait until a work has finished execution
2464 * @work: the work to flush
2466 * Wait until @work has finished execution. On return, it's
2467 * guaranteed that all queueing instances of @work which happened
2468 * before this function is called are finished. In other words, if
2469 * @work hasn't been requeued since this function was called, @work is
2470 * guaranteed to be idle on return.
2472 * RETURNS:
2473 * %true if flush_work_sync() waited for the work to finish execution,
2474 * %false if it was already idle.
2476 bool flush_work_sync(struct work_struct *work)
2478 struct wq_barrier barr;
2479 bool pending, waited;
2481 /* we'll wait for executions separately, queue barr only if pending */
2482 pending = start_flush_work(work, &barr, false);
2484 /* wait for executions to finish */
2485 waited = wait_on_work(work);
2487 /* wait for the pending one */
2488 if (pending) {
2489 wait_for_completion(&barr.done);
2490 destroy_work_on_stack(&barr.work);
2493 return pending || waited;
2495 EXPORT_SYMBOL_GPL(flush_work_sync);
2498 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
2499 * so this work can't be re-armed in any way.
2501 static int try_to_grab_pending(struct work_struct *work)
2503 struct global_cwq *gcwq;
2504 int ret = -1;
2506 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2507 return 0;
2510 * The queueing is in progress, or it is already queued. Try to
2511 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2513 gcwq = get_work_gcwq(work);
2514 if (!gcwq)
2515 return ret;
2517 spin_lock_irq(&gcwq->lock);
2518 if (!list_empty(&work->entry)) {
2520 * This work is queued, but perhaps we locked the wrong gcwq.
2521 * In that case we must see the new value after rmb(), see
2522 * insert_work()->wmb().
2524 smp_rmb();
2525 if (gcwq == get_work_gcwq(work)) {
2526 debug_work_deactivate(work);
2527 list_del_init(&work->entry);
2528 cwq_dec_nr_in_flight(get_work_cwq(work),
2529 get_work_color(work),
2530 *work_data_bits(work) & WORK_STRUCT_DELAYED);
2531 ret = 1;
2534 spin_unlock_irq(&gcwq->lock);
2536 return ret;
2539 static bool __cancel_work_timer(struct work_struct *work,
2540 struct timer_list* timer)
2542 int ret;
2544 do {
2545 ret = (timer && likely(del_timer(timer)));
2546 if (!ret)
2547 ret = try_to_grab_pending(work);
2548 wait_on_work(work);
2549 } while (unlikely(ret < 0));
2551 clear_work_data(work);
2552 return ret;
2556 * cancel_work_sync - cancel a work and wait for it to finish
2557 * @work: the work to cancel
2559 * Cancel @work and wait for its execution to finish. This function
2560 * can be used even if the work re-queues itself or migrates to
2561 * another workqueue. On return from this function, @work is
2562 * guaranteed to be not pending or executing on any CPU.
2564 * cancel_work_sync(&delayed_work->work) must not be used for
2565 * delayed_work's. Use cancel_delayed_work_sync() instead.
2567 * The caller must ensure that the workqueue on which @work was last
2568 * queued can't be destroyed before this function returns.
2570 * RETURNS:
2571 * %true if @work was pending, %false otherwise.
2573 bool cancel_work_sync(struct work_struct *work)
2575 return __cancel_work_timer(work, NULL);
2577 EXPORT_SYMBOL_GPL(cancel_work_sync);
2580 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2581 * @dwork: the delayed work to flush
2583 * Delayed timer is cancelled and the pending work is queued for
2584 * immediate execution. Like flush_work(), this function only
2585 * considers the last queueing instance of @dwork.
2587 * RETURNS:
2588 * %true if flush_work() waited for the work to finish execution,
2589 * %false if it was already idle.
2591 bool flush_delayed_work(struct delayed_work *dwork)
2593 if (del_timer_sync(&dwork->timer))
2594 __queue_work(raw_smp_processor_id(),
2595 get_work_cwq(&dwork->work)->wq, &dwork->work);
2596 return flush_work(&dwork->work);
2598 EXPORT_SYMBOL(flush_delayed_work);
2601 * flush_delayed_work_sync - wait for a dwork to finish
2602 * @dwork: the delayed work to flush
2604 * Delayed timer is cancelled and the pending work is queued for
2605 * execution immediately. Other than timer handling, its behavior
2606 * is identical to flush_work_sync().
2608 * RETURNS:
2609 * %true if flush_work_sync() waited for the work to finish execution,
2610 * %false if it was already idle.
2612 bool flush_delayed_work_sync(struct delayed_work *dwork)
2614 if (del_timer_sync(&dwork->timer))
2615 __queue_work(raw_smp_processor_id(),
2616 get_work_cwq(&dwork->work)->wq, &dwork->work);
2617 return flush_work_sync(&dwork->work);
2619 EXPORT_SYMBOL(flush_delayed_work_sync);
2622 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2623 * @dwork: the delayed work cancel
2625 * This is cancel_work_sync() for delayed works.
2627 * RETURNS:
2628 * %true if @dwork was pending, %false otherwise.
2630 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2632 return __cancel_work_timer(&dwork->work, &dwork->timer);
2634 EXPORT_SYMBOL(cancel_delayed_work_sync);
2637 * schedule_work - put work task in global workqueue
2638 * @work: job to be done
2640 * Returns zero if @work was already on the kernel-global workqueue and
2641 * non-zero otherwise.
2643 * This puts a job in the kernel-global workqueue if it was not already
2644 * queued and leaves it in the same position on the kernel-global
2645 * workqueue otherwise.
2647 int schedule_work(struct work_struct *work)
2649 return queue_work(system_wq, work);
2651 EXPORT_SYMBOL(schedule_work);
2654 * schedule_work_on - put work task on a specific cpu
2655 * @cpu: cpu to put the work task on
2656 * @work: job to be done
2658 * This puts a job on a specific cpu
2660 int schedule_work_on(int cpu, struct work_struct *work)
2662 return queue_work_on(cpu, system_wq, work);
2664 EXPORT_SYMBOL(schedule_work_on);
2667 * schedule_delayed_work - put work task in global workqueue after delay
2668 * @dwork: job to be done
2669 * @delay: number of jiffies to wait or 0 for immediate execution
2671 * After waiting for a given time this puts a job in the kernel-global
2672 * workqueue.
2674 int schedule_delayed_work(struct delayed_work *dwork,
2675 unsigned long delay)
2677 return queue_delayed_work(system_wq, dwork, delay);
2679 EXPORT_SYMBOL(schedule_delayed_work);
2682 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2683 * @cpu: cpu to use
2684 * @dwork: job to be done
2685 * @delay: number of jiffies to wait
2687 * After waiting for a given time this puts a job in the kernel-global
2688 * workqueue on the specified CPU.
2690 int schedule_delayed_work_on(int cpu,
2691 struct delayed_work *dwork, unsigned long delay)
2693 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
2695 EXPORT_SYMBOL(schedule_delayed_work_on);
2698 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2699 * @func: the function to call
2701 * schedule_on_each_cpu() executes @func on each online CPU using the
2702 * system workqueue and blocks until all CPUs have completed.
2703 * schedule_on_each_cpu() is very slow.
2705 * RETURNS:
2706 * 0 on success, -errno on failure.
2708 int schedule_on_each_cpu(work_func_t func)
2710 int cpu;
2711 struct work_struct __percpu *works;
2713 works = alloc_percpu(struct work_struct);
2714 if (!works)
2715 return -ENOMEM;
2717 get_online_cpus();
2719 for_each_online_cpu(cpu) {
2720 struct work_struct *work = per_cpu_ptr(works, cpu);
2722 INIT_WORK(work, func);
2723 schedule_work_on(cpu, work);
2726 for_each_online_cpu(cpu)
2727 flush_work(per_cpu_ptr(works, cpu));
2729 put_online_cpus();
2730 free_percpu(works);
2731 return 0;
2735 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2737 * Forces execution of the kernel-global workqueue and blocks until its
2738 * completion.
2740 * Think twice before calling this function! It's very easy to get into
2741 * trouble if you don't take great care. Either of the following situations
2742 * will lead to deadlock:
2744 * One of the work items currently on the workqueue needs to acquire
2745 * a lock held by your code or its caller.
2747 * Your code is running in the context of a work routine.
2749 * They will be detected by lockdep when they occur, but the first might not
2750 * occur very often. It depends on what work items are on the workqueue and
2751 * what locks they need, which you have no control over.
2753 * In most situations flushing the entire workqueue is overkill; you merely
2754 * need to know that a particular work item isn't queued and isn't running.
2755 * In such cases you should use cancel_delayed_work_sync() or
2756 * cancel_work_sync() instead.
2758 void flush_scheduled_work(void)
2760 flush_workqueue(system_wq);
2762 EXPORT_SYMBOL(flush_scheduled_work);
2765 * execute_in_process_context - reliably execute the routine with user context
2766 * @fn: the function to execute
2767 * @ew: guaranteed storage for the execute work structure (must
2768 * be available when the work executes)
2770 * Executes the function immediately if process context is available,
2771 * otherwise schedules the function for delayed execution.
2773 * Returns: 0 - function was executed
2774 * 1 - function was scheduled for execution
2776 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2778 if (!in_interrupt()) {
2779 fn(&ew->work);
2780 return 0;
2783 INIT_WORK(&ew->work, fn);
2784 schedule_work(&ew->work);
2786 return 1;
2788 EXPORT_SYMBOL_GPL(execute_in_process_context);
2790 int keventd_up(void)
2792 return system_wq != NULL;
2795 static int alloc_cwqs(struct workqueue_struct *wq)
2798 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
2799 * Make sure that the alignment isn't lower than that of
2800 * unsigned long long.
2802 const size_t size = sizeof(struct cpu_workqueue_struct);
2803 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
2804 __alignof__(unsigned long long));
2805 #ifdef CONFIG_SMP
2806 bool percpu = !(wq->flags & WQ_UNBOUND);
2807 #else
2808 bool percpu = false;
2809 #endif
2811 if (percpu)
2812 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
2813 else {
2814 void *ptr;
2817 * Allocate enough room to align cwq and put an extra
2818 * pointer at the end pointing back to the originally
2819 * allocated pointer which will be used for free.
2821 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
2822 if (ptr) {
2823 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
2824 *(void **)(wq->cpu_wq.single + 1) = ptr;
2828 /* just in case, make sure it's actually aligned
2829 * - this is affected by PERCPU() alignment in vmlinux.lds.S
2831 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
2832 return wq->cpu_wq.v ? 0 : -ENOMEM;
2835 static void free_cwqs(struct workqueue_struct *wq)
2837 #ifdef CONFIG_SMP
2838 bool percpu = !(wq->flags & WQ_UNBOUND);
2839 #else
2840 bool percpu = false;
2841 #endif
2843 if (percpu)
2844 free_percpu(wq->cpu_wq.pcpu);
2845 else if (wq->cpu_wq.single) {
2846 /* the pointer to free is stored right after the cwq */
2847 kfree(*(void **)(wq->cpu_wq.single + 1));
2851 static int wq_clamp_max_active(int max_active, unsigned int flags,
2852 const char *name)
2854 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
2856 if (max_active < 1 || max_active > lim)
2857 printk(KERN_WARNING "workqueue: max_active %d requested for %s "
2858 "is out of range, clamping between %d and %d\n",
2859 max_active, name, 1, lim);
2861 return clamp_val(max_active, 1, lim);
2864 struct workqueue_struct *__alloc_workqueue_key(const char *name,
2865 unsigned int flags,
2866 int max_active,
2867 struct lock_class_key *key,
2868 const char *lock_name)
2870 struct workqueue_struct *wq;
2871 unsigned int cpu;
2874 * Workqueues which may be used during memory reclaim should
2875 * have a rescuer to guarantee forward progress.
2877 if (flags & WQ_MEM_RECLAIM)
2878 flags |= WQ_RESCUER;
2881 * Unbound workqueues aren't concurrency managed and should be
2882 * dispatched to workers immediately.
2884 if (flags & WQ_UNBOUND)
2885 flags |= WQ_HIGHPRI;
2887 max_active = max_active ?: WQ_DFL_ACTIVE;
2888 max_active = wq_clamp_max_active(max_active, flags, name);
2890 wq = kzalloc(sizeof(*wq), GFP_KERNEL);
2891 if (!wq)
2892 goto err;
2894 wq->flags = flags;
2895 wq->saved_max_active = max_active;
2896 mutex_init(&wq->flush_mutex);
2897 atomic_set(&wq->nr_cwqs_to_flush, 0);
2898 INIT_LIST_HEAD(&wq->flusher_queue);
2899 INIT_LIST_HEAD(&wq->flusher_overflow);
2901 wq->name = name;
2902 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
2903 INIT_LIST_HEAD(&wq->list);
2905 if (alloc_cwqs(wq) < 0)
2906 goto err;
2908 for_each_cwq_cpu(cpu, wq) {
2909 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2910 struct global_cwq *gcwq = get_gcwq(cpu);
2912 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
2913 cwq->gcwq = gcwq;
2914 cwq->wq = wq;
2915 cwq->flush_color = -1;
2916 cwq->max_active = max_active;
2917 INIT_LIST_HEAD(&cwq->delayed_works);
2920 if (flags & WQ_RESCUER) {
2921 struct worker *rescuer;
2923 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
2924 goto err;
2926 wq->rescuer = rescuer = alloc_worker();
2927 if (!rescuer)
2928 goto err;
2930 rescuer->task = kthread_create(rescuer_thread, wq, "%s", name);
2931 if (IS_ERR(rescuer->task))
2932 goto err;
2934 rescuer->task->flags |= PF_THREAD_BOUND;
2935 wake_up_process(rescuer->task);
2939 * workqueue_lock protects global freeze state and workqueues
2940 * list. Grab it, set max_active accordingly and add the new
2941 * workqueue to workqueues list.
2943 spin_lock(&workqueue_lock);
2945 if (workqueue_freezing && wq->flags & WQ_FREEZEABLE)
2946 for_each_cwq_cpu(cpu, wq)
2947 get_cwq(cpu, wq)->max_active = 0;
2949 list_add(&wq->list, &workqueues);
2951 spin_unlock(&workqueue_lock);
2953 return wq;
2954 err:
2955 if (wq) {
2956 free_cwqs(wq);
2957 free_mayday_mask(wq->mayday_mask);
2958 kfree(wq->rescuer);
2959 kfree(wq);
2961 return NULL;
2963 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
2966 * destroy_workqueue - safely terminate a workqueue
2967 * @wq: target workqueue
2969 * Safely destroy a workqueue. All work currently pending will be done first.
2971 void destroy_workqueue(struct workqueue_struct *wq)
2973 unsigned int flush_cnt = 0;
2974 unsigned int cpu;
2977 * Mark @wq dying and drain all pending works. Once WQ_DYING is
2978 * set, only chain queueing is allowed. IOW, only currently
2979 * pending or running work items on @wq can queue further work
2980 * items on it. @wq is flushed repeatedly until it becomes empty.
2981 * The number of flushing is detemined by the depth of chaining and
2982 * should be relatively short. Whine if it takes too long.
2984 wq->flags |= WQ_DYING;
2985 reflush:
2986 flush_workqueue(wq);
2988 for_each_cwq_cpu(cpu, wq) {
2989 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2991 if (!cwq->nr_active && list_empty(&cwq->delayed_works))
2992 continue;
2994 if (++flush_cnt == 10 ||
2995 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2996 printk(KERN_WARNING "workqueue %s: flush on "
2997 "destruction isn't complete after %u tries\n",
2998 wq->name, flush_cnt);
2999 goto reflush;
3003 * wq list is used to freeze wq, remove from list after
3004 * flushing is complete in case freeze races us.
3006 spin_lock(&workqueue_lock);
3007 list_del(&wq->list);
3008 spin_unlock(&workqueue_lock);
3010 /* sanity check */
3011 for_each_cwq_cpu(cpu, wq) {
3012 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3013 int i;
3015 for (i = 0; i < WORK_NR_COLORS; i++)
3016 BUG_ON(cwq->nr_in_flight[i]);
3017 BUG_ON(cwq->nr_active);
3018 BUG_ON(!list_empty(&cwq->delayed_works));
3021 if (wq->flags & WQ_RESCUER) {
3022 kthread_stop(wq->rescuer->task);
3023 free_mayday_mask(wq->mayday_mask);
3024 kfree(wq->rescuer);
3027 free_cwqs(wq);
3028 kfree(wq);
3030 EXPORT_SYMBOL_GPL(destroy_workqueue);
3033 * workqueue_set_max_active - adjust max_active of a workqueue
3034 * @wq: target workqueue
3035 * @max_active: new max_active value.
3037 * Set max_active of @wq to @max_active.
3039 * CONTEXT:
3040 * Don't call from IRQ context.
3042 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3044 unsigned int cpu;
3046 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3048 spin_lock(&workqueue_lock);
3050 wq->saved_max_active = max_active;
3052 for_each_cwq_cpu(cpu, wq) {
3053 struct global_cwq *gcwq = get_gcwq(cpu);
3055 spin_lock_irq(&gcwq->lock);
3057 if (!(wq->flags & WQ_FREEZEABLE) ||
3058 !(gcwq->flags & GCWQ_FREEZING))
3059 get_cwq(gcwq->cpu, wq)->max_active = max_active;
3061 spin_unlock_irq(&gcwq->lock);
3064 spin_unlock(&workqueue_lock);
3066 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3069 * workqueue_congested - test whether a workqueue is congested
3070 * @cpu: CPU in question
3071 * @wq: target workqueue
3073 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3074 * no synchronization around this function and the test result is
3075 * unreliable and only useful as advisory hints or for debugging.
3077 * RETURNS:
3078 * %true if congested, %false otherwise.
3080 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
3082 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3084 return !list_empty(&cwq->delayed_works);
3086 EXPORT_SYMBOL_GPL(workqueue_congested);
3089 * work_cpu - return the last known associated cpu for @work
3090 * @work: the work of interest
3092 * RETURNS:
3093 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
3095 unsigned int work_cpu(struct work_struct *work)
3097 struct global_cwq *gcwq = get_work_gcwq(work);
3099 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3101 EXPORT_SYMBOL_GPL(work_cpu);
3104 * work_busy - test whether a work is currently pending or running
3105 * @work: the work to be tested
3107 * Test whether @work is currently pending or running. There is no
3108 * synchronization around this function and the test result is
3109 * unreliable and only useful as advisory hints or for debugging.
3110 * Especially for reentrant wqs, the pending state might hide the
3111 * running state.
3113 * RETURNS:
3114 * OR'd bitmask of WORK_BUSY_* bits.
3116 unsigned int work_busy(struct work_struct *work)
3118 struct global_cwq *gcwq = get_work_gcwq(work);
3119 unsigned long flags;
3120 unsigned int ret = 0;
3122 if (!gcwq)
3123 return false;
3125 spin_lock_irqsave(&gcwq->lock, flags);
3127 if (work_pending(work))
3128 ret |= WORK_BUSY_PENDING;
3129 if (find_worker_executing_work(gcwq, work))
3130 ret |= WORK_BUSY_RUNNING;
3132 spin_unlock_irqrestore(&gcwq->lock, flags);
3134 return ret;
3136 EXPORT_SYMBOL_GPL(work_busy);
3139 * CPU hotplug.
3141 * There are two challenges in supporting CPU hotplug. Firstly, there
3142 * are a lot of assumptions on strong associations among work, cwq and
3143 * gcwq which make migrating pending and scheduled works very
3144 * difficult to implement without impacting hot paths. Secondly,
3145 * gcwqs serve mix of short, long and very long running works making
3146 * blocked draining impractical.
3148 * This is solved by allowing a gcwq to be detached from CPU, running
3149 * it with unbound (rogue) workers and allowing it to be reattached
3150 * later if the cpu comes back online. A separate thread is created
3151 * to govern a gcwq in such state and is called the trustee of the
3152 * gcwq.
3154 * Trustee states and their descriptions.
3156 * START Command state used on startup. On CPU_DOWN_PREPARE, a
3157 * new trustee is started with this state.
3159 * IN_CHARGE Once started, trustee will enter this state after
3160 * assuming the manager role and making all existing
3161 * workers rogue. DOWN_PREPARE waits for trustee to
3162 * enter this state. After reaching IN_CHARGE, trustee
3163 * tries to execute the pending worklist until it's empty
3164 * and the state is set to BUTCHER, or the state is set
3165 * to RELEASE.
3167 * BUTCHER Command state which is set by the cpu callback after
3168 * the cpu has went down. Once this state is set trustee
3169 * knows that there will be no new works on the worklist
3170 * and once the worklist is empty it can proceed to
3171 * killing idle workers.
3173 * RELEASE Command state which is set by the cpu callback if the
3174 * cpu down has been canceled or it has come online
3175 * again. After recognizing this state, trustee stops
3176 * trying to drain or butcher and clears ROGUE, rebinds
3177 * all remaining workers back to the cpu and releases
3178 * manager role.
3180 * DONE Trustee will enter this state after BUTCHER or RELEASE
3181 * is complete.
3183 * trustee CPU draining
3184 * took over down complete
3185 * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE
3186 * | | ^
3187 * | CPU is back online v return workers |
3188 * ----------------> RELEASE --------------
3192 * trustee_wait_event_timeout - timed event wait for trustee
3193 * @cond: condition to wait for
3194 * @timeout: timeout in jiffies
3196 * wait_event_timeout() for trustee to use. Handles locking and
3197 * checks for RELEASE request.
3199 * CONTEXT:
3200 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3201 * multiple times. To be used by trustee.
3203 * RETURNS:
3204 * Positive indicating left time if @cond is satisfied, 0 if timed
3205 * out, -1 if canceled.
3207 #define trustee_wait_event_timeout(cond, timeout) ({ \
3208 long __ret = (timeout); \
3209 while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) && \
3210 __ret) { \
3211 spin_unlock_irq(&gcwq->lock); \
3212 __wait_event_timeout(gcwq->trustee_wait, (cond) || \
3213 (gcwq->trustee_state == TRUSTEE_RELEASE), \
3214 __ret); \
3215 spin_lock_irq(&gcwq->lock); \
3217 gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret); \
3221 * trustee_wait_event - event wait for trustee
3222 * @cond: condition to wait for
3224 * wait_event() for trustee to use. Automatically handles locking and
3225 * checks for CANCEL request.
3227 * CONTEXT:
3228 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3229 * multiple times. To be used by trustee.
3231 * RETURNS:
3232 * 0 if @cond is satisfied, -1 if canceled.
3234 #define trustee_wait_event(cond) ({ \
3235 long __ret1; \
3236 __ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\
3237 __ret1 < 0 ? -1 : 0; \
3240 static int __cpuinit trustee_thread(void *__gcwq)
3242 struct global_cwq *gcwq = __gcwq;
3243 struct worker *worker;
3244 struct work_struct *work;
3245 struct hlist_node *pos;
3246 long rc;
3247 int i;
3249 BUG_ON(gcwq->cpu != smp_processor_id());
3251 spin_lock_irq(&gcwq->lock);
3253 * Claim the manager position and make all workers rogue.
3254 * Trustee must be bound to the target cpu and can't be
3255 * cancelled.
3257 BUG_ON(gcwq->cpu != smp_processor_id());
3258 rc = trustee_wait_event(!(gcwq->flags & GCWQ_MANAGING_WORKERS));
3259 BUG_ON(rc < 0);
3261 gcwq->flags |= GCWQ_MANAGING_WORKERS;
3263 list_for_each_entry(worker, &gcwq->idle_list, entry)
3264 worker->flags |= WORKER_ROGUE;
3266 for_each_busy_worker(worker, i, pos, gcwq)
3267 worker->flags |= WORKER_ROGUE;
3270 * Call schedule() so that we cross rq->lock and thus can
3271 * guarantee sched callbacks see the rogue flag. This is
3272 * necessary as scheduler callbacks may be invoked from other
3273 * cpus.
3275 spin_unlock_irq(&gcwq->lock);
3276 schedule();
3277 spin_lock_irq(&gcwq->lock);
3280 * Sched callbacks are disabled now. Zap nr_running. After
3281 * this, nr_running stays zero and need_more_worker() and
3282 * keep_working() are always true as long as the worklist is
3283 * not empty.
3285 atomic_set(get_gcwq_nr_running(gcwq->cpu), 0);
3287 spin_unlock_irq(&gcwq->lock);
3288 del_timer_sync(&gcwq->idle_timer);
3289 spin_lock_irq(&gcwq->lock);
3292 * We're now in charge. Notify and proceed to drain. We need
3293 * to keep the gcwq running during the whole CPU down
3294 * procedure as other cpu hotunplug callbacks may need to
3295 * flush currently running tasks.
3297 gcwq->trustee_state = TRUSTEE_IN_CHARGE;
3298 wake_up_all(&gcwq->trustee_wait);
3301 * The original cpu is in the process of dying and may go away
3302 * anytime now. When that happens, we and all workers would
3303 * be migrated to other cpus. Try draining any left work. We
3304 * want to get it over with ASAP - spam rescuers, wake up as
3305 * many idlers as necessary and create new ones till the
3306 * worklist is empty. Note that if the gcwq is frozen, there
3307 * may be frozen works in freezeable cwqs. Don't declare
3308 * completion while frozen.
3310 while (gcwq->nr_workers != gcwq->nr_idle ||
3311 gcwq->flags & GCWQ_FREEZING ||
3312 gcwq->trustee_state == TRUSTEE_IN_CHARGE) {
3313 int nr_works = 0;
3315 list_for_each_entry(work, &gcwq->worklist, entry) {
3316 send_mayday(work);
3317 nr_works++;
3320 list_for_each_entry(worker, &gcwq->idle_list, entry) {
3321 if (!nr_works--)
3322 break;
3323 wake_up_process(worker->task);
3326 if (need_to_create_worker(gcwq)) {
3327 spin_unlock_irq(&gcwq->lock);
3328 worker = create_worker(gcwq, false);
3329 spin_lock_irq(&gcwq->lock);
3330 if (worker) {
3331 worker->flags |= WORKER_ROGUE;
3332 start_worker(worker);
3336 /* give a breather */
3337 if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0)
3338 break;
3342 * Either all works have been scheduled and cpu is down, or
3343 * cpu down has already been canceled. Wait for and butcher
3344 * all workers till we're canceled.
3346 do {
3347 rc = trustee_wait_event(!list_empty(&gcwq->idle_list));
3348 while (!list_empty(&gcwq->idle_list))
3349 destroy_worker(list_first_entry(&gcwq->idle_list,
3350 struct worker, entry));
3351 } while (gcwq->nr_workers && rc >= 0);
3354 * At this point, either draining has completed and no worker
3355 * is left, or cpu down has been canceled or the cpu is being
3356 * brought back up. There shouldn't be any idle one left.
3357 * Tell the remaining busy ones to rebind once it finishes the
3358 * currently scheduled works by scheduling the rebind_work.
3360 WARN_ON(!list_empty(&gcwq->idle_list));
3362 for_each_busy_worker(worker, i, pos, gcwq) {
3363 struct work_struct *rebind_work = &worker->rebind_work;
3366 * Rebind_work may race with future cpu hotplug
3367 * operations. Use a separate flag to mark that
3368 * rebinding is scheduled.
3370 worker->flags |= WORKER_REBIND;
3371 worker->flags &= ~WORKER_ROGUE;
3373 /* queue rebind_work, wq doesn't matter, use the default one */
3374 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
3375 work_data_bits(rebind_work)))
3376 continue;
3378 debug_work_activate(rebind_work);
3379 insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
3380 worker->scheduled.next,
3381 work_color_to_flags(WORK_NO_COLOR));
3384 /* relinquish manager role */
3385 gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
3387 /* notify completion */
3388 gcwq->trustee = NULL;
3389 gcwq->trustee_state = TRUSTEE_DONE;
3390 wake_up_all(&gcwq->trustee_wait);
3391 spin_unlock_irq(&gcwq->lock);
3392 return 0;
3396 * wait_trustee_state - wait for trustee to enter the specified state
3397 * @gcwq: gcwq the trustee of interest belongs to
3398 * @state: target state to wait for
3400 * Wait for the trustee to reach @state. DONE is already matched.
3402 * CONTEXT:
3403 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3404 * multiple times. To be used by cpu_callback.
3406 static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state)
3407 __releases(&gcwq->lock)
3408 __acquires(&gcwq->lock)
3410 if (!(gcwq->trustee_state == state ||
3411 gcwq->trustee_state == TRUSTEE_DONE)) {
3412 spin_unlock_irq(&gcwq->lock);
3413 __wait_event(gcwq->trustee_wait,
3414 gcwq->trustee_state == state ||
3415 gcwq->trustee_state == TRUSTEE_DONE);
3416 spin_lock_irq(&gcwq->lock);
3420 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
3421 unsigned long action,
3422 void *hcpu)
3424 unsigned int cpu = (unsigned long)hcpu;
3425 struct global_cwq *gcwq = get_gcwq(cpu);
3426 struct task_struct *new_trustee = NULL;
3427 struct worker *uninitialized_var(new_worker);
3428 unsigned long flags;
3430 action &= ~CPU_TASKS_FROZEN;
3432 switch (action) {
3433 case CPU_DOWN_PREPARE:
3434 new_trustee = kthread_create(trustee_thread, gcwq,
3435 "workqueue_trustee/%d\n", cpu);
3436 if (IS_ERR(new_trustee))
3437 return notifier_from_errno(PTR_ERR(new_trustee));
3438 kthread_bind(new_trustee, cpu);
3439 /* fall through */
3440 case CPU_UP_PREPARE:
3441 BUG_ON(gcwq->first_idle);
3442 new_worker = create_worker(gcwq, false);
3443 if (!new_worker) {
3444 if (new_trustee)
3445 kthread_stop(new_trustee);
3446 return NOTIFY_BAD;
3450 /* some are called w/ irq disabled, don't disturb irq status */
3451 spin_lock_irqsave(&gcwq->lock, flags);
3453 switch (action) {
3454 case CPU_DOWN_PREPARE:
3455 /* initialize trustee and tell it to acquire the gcwq */
3456 BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE);
3457 gcwq->trustee = new_trustee;
3458 gcwq->trustee_state = TRUSTEE_START;
3459 wake_up_process(gcwq->trustee);
3460 wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE);
3461 /* fall through */
3462 case CPU_UP_PREPARE:
3463 BUG_ON(gcwq->first_idle);
3464 gcwq->first_idle = new_worker;
3465 break;
3467 case CPU_DYING:
3469 * Before this, the trustee and all workers except for
3470 * the ones which are still executing works from
3471 * before the last CPU down must be on the cpu. After
3472 * this, they'll all be diasporas.
3474 gcwq->flags |= GCWQ_DISASSOCIATED;
3475 break;
3477 case CPU_POST_DEAD:
3478 gcwq->trustee_state = TRUSTEE_BUTCHER;
3479 /* fall through */
3480 case CPU_UP_CANCELED:
3481 destroy_worker(gcwq->first_idle);
3482 gcwq->first_idle = NULL;
3483 break;
3485 case CPU_DOWN_FAILED:
3486 case CPU_ONLINE:
3487 gcwq->flags &= ~GCWQ_DISASSOCIATED;
3488 if (gcwq->trustee_state != TRUSTEE_DONE) {
3489 gcwq->trustee_state = TRUSTEE_RELEASE;
3490 wake_up_process(gcwq->trustee);
3491 wait_trustee_state(gcwq, TRUSTEE_DONE);
3495 * Trustee is done and there might be no worker left.
3496 * Put the first_idle in and request a real manager to
3497 * take a look.
3499 spin_unlock_irq(&gcwq->lock);
3500 kthread_bind(gcwq->first_idle->task, cpu);
3501 spin_lock_irq(&gcwq->lock);
3502 gcwq->flags |= GCWQ_MANAGE_WORKERS;
3503 start_worker(gcwq->first_idle);
3504 gcwq->first_idle = NULL;
3505 break;
3508 spin_unlock_irqrestore(&gcwq->lock, flags);
3510 return notifier_from_errno(0);
3513 #ifdef CONFIG_SMP
3515 struct work_for_cpu {
3516 struct completion completion;
3517 long (*fn)(void *);
3518 void *arg;
3519 long ret;
3522 static int do_work_for_cpu(void *_wfc)
3524 struct work_for_cpu *wfc = _wfc;
3525 wfc->ret = wfc->fn(wfc->arg);
3526 complete(&wfc->completion);
3527 return 0;
3531 * work_on_cpu - run a function in user context on a particular cpu
3532 * @cpu: the cpu to run on
3533 * @fn: the function to run
3534 * @arg: the function arg
3536 * This will return the value @fn returns.
3537 * It is up to the caller to ensure that the cpu doesn't go offline.
3538 * The caller must not hold any locks which would prevent @fn from completing.
3540 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3542 struct task_struct *sub_thread;
3543 struct work_for_cpu wfc = {
3544 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3545 .fn = fn,
3546 .arg = arg,
3549 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3550 if (IS_ERR(sub_thread))
3551 return PTR_ERR(sub_thread);
3552 kthread_bind(sub_thread, cpu);
3553 wake_up_process(sub_thread);
3554 wait_for_completion(&wfc.completion);
3555 return wfc.ret;
3557 EXPORT_SYMBOL_GPL(work_on_cpu);
3558 #endif /* CONFIG_SMP */
3560 #ifdef CONFIG_FREEZER
3563 * freeze_workqueues_begin - begin freezing workqueues
3565 * Start freezing workqueues. After this function returns, all
3566 * freezeable workqueues will queue new works to their frozen_works
3567 * list instead of gcwq->worklist.
3569 * CONTEXT:
3570 * Grabs and releases workqueue_lock and gcwq->lock's.
3572 void freeze_workqueues_begin(void)
3574 unsigned int cpu;
3576 spin_lock(&workqueue_lock);
3578 BUG_ON(workqueue_freezing);
3579 workqueue_freezing = true;
3581 for_each_gcwq_cpu(cpu) {
3582 struct global_cwq *gcwq = get_gcwq(cpu);
3583 struct workqueue_struct *wq;
3585 spin_lock_irq(&gcwq->lock);
3587 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3588 gcwq->flags |= GCWQ_FREEZING;
3590 list_for_each_entry(wq, &workqueues, list) {
3591 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3593 if (cwq && wq->flags & WQ_FREEZEABLE)
3594 cwq->max_active = 0;
3597 spin_unlock_irq(&gcwq->lock);
3600 spin_unlock(&workqueue_lock);
3604 * freeze_workqueues_busy - are freezeable workqueues still busy?
3606 * Check whether freezing is complete. This function must be called
3607 * between freeze_workqueues_begin() and thaw_workqueues().
3609 * CONTEXT:
3610 * Grabs and releases workqueue_lock.
3612 * RETURNS:
3613 * %true if some freezeable workqueues are still busy. %false if
3614 * freezing is complete.
3616 bool freeze_workqueues_busy(void)
3618 unsigned int cpu;
3619 bool busy = false;
3621 spin_lock(&workqueue_lock);
3623 BUG_ON(!workqueue_freezing);
3625 for_each_gcwq_cpu(cpu) {
3626 struct workqueue_struct *wq;
3628 * nr_active is monotonically decreasing. It's safe
3629 * to peek without lock.
3631 list_for_each_entry(wq, &workqueues, list) {
3632 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3634 if (!cwq || !(wq->flags & WQ_FREEZEABLE))
3635 continue;
3637 BUG_ON(cwq->nr_active < 0);
3638 if (cwq->nr_active) {
3639 busy = true;
3640 goto out_unlock;
3644 out_unlock:
3645 spin_unlock(&workqueue_lock);
3646 return busy;
3650 * thaw_workqueues - thaw workqueues
3652 * Thaw workqueues. Normal queueing is restored and all collected
3653 * frozen works are transferred to their respective gcwq worklists.
3655 * CONTEXT:
3656 * Grabs and releases workqueue_lock and gcwq->lock's.
3658 void thaw_workqueues(void)
3660 unsigned int cpu;
3662 spin_lock(&workqueue_lock);
3664 if (!workqueue_freezing)
3665 goto out_unlock;
3667 for_each_gcwq_cpu(cpu) {
3668 struct global_cwq *gcwq = get_gcwq(cpu);
3669 struct workqueue_struct *wq;
3671 spin_lock_irq(&gcwq->lock);
3673 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3674 gcwq->flags &= ~GCWQ_FREEZING;
3676 list_for_each_entry(wq, &workqueues, list) {
3677 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3679 if (!cwq || !(wq->flags & WQ_FREEZEABLE))
3680 continue;
3682 /* restore max_active and repopulate worklist */
3683 cwq->max_active = wq->saved_max_active;
3685 while (!list_empty(&cwq->delayed_works) &&
3686 cwq->nr_active < cwq->max_active)
3687 cwq_activate_first_delayed(cwq);
3690 wake_up_worker(gcwq);
3692 spin_unlock_irq(&gcwq->lock);
3695 workqueue_freezing = false;
3696 out_unlock:
3697 spin_unlock(&workqueue_lock);
3699 #endif /* CONFIG_FREEZER */
3701 static int __init init_workqueues(void)
3703 unsigned int cpu;
3704 int i;
3706 cpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE);
3708 /* initialize gcwqs */
3709 for_each_gcwq_cpu(cpu) {
3710 struct global_cwq *gcwq = get_gcwq(cpu);
3712 spin_lock_init(&gcwq->lock);
3713 INIT_LIST_HEAD(&gcwq->worklist);
3714 gcwq->cpu = cpu;
3715 gcwq->flags |= GCWQ_DISASSOCIATED;
3717 INIT_LIST_HEAD(&gcwq->idle_list);
3718 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3719 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3721 init_timer_deferrable(&gcwq->idle_timer);
3722 gcwq->idle_timer.function = idle_worker_timeout;
3723 gcwq->idle_timer.data = (unsigned long)gcwq;
3725 setup_timer(&gcwq->mayday_timer, gcwq_mayday_timeout,
3726 (unsigned long)gcwq);
3728 ida_init(&gcwq->worker_ida);
3730 gcwq->trustee_state = TRUSTEE_DONE;
3731 init_waitqueue_head(&gcwq->trustee_wait);
3734 /* create the initial worker */
3735 for_each_online_gcwq_cpu(cpu) {
3736 struct global_cwq *gcwq = get_gcwq(cpu);
3737 struct worker *worker;
3739 if (cpu != WORK_CPU_UNBOUND)
3740 gcwq->flags &= ~GCWQ_DISASSOCIATED;
3741 worker = create_worker(gcwq, true);
3742 BUG_ON(!worker);
3743 spin_lock_irq(&gcwq->lock);
3744 start_worker(worker);
3745 spin_unlock_irq(&gcwq->lock);
3748 system_wq = alloc_workqueue("events", 0, 0);
3749 system_long_wq = alloc_workqueue("events_long", 0, 0);
3750 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
3751 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3752 WQ_UNBOUND_MAX_ACTIVE);
3753 BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq ||
3754 !system_unbound_wq);
3755 return 0;
3757 early_initcall(init_workqueues);