zfcp: Report scatter gather limit for DIX protection information
[linux-2.6/next.git] / mm / vmstat.c
blobf389168f9a837b9c6be4e1f9bb3d0892396315de
1 /*
2 * linux/mm/vmstat.c
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/cpu.h>
17 #include <linux/vmstat.h>
18 #include <linux/sched.h>
19 #include <linux/math64.h>
21 #ifdef CONFIG_VM_EVENT_COUNTERS
22 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
23 EXPORT_PER_CPU_SYMBOL(vm_event_states);
25 static void sum_vm_events(unsigned long *ret)
27 int cpu;
28 int i;
30 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
32 for_each_online_cpu(cpu) {
33 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
35 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
36 ret[i] += this->event[i];
41 * Accumulate the vm event counters across all CPUs.
42 * The result is unavoidably approximate - it can change
43 * during and after execution of this function.
45 void all_vm_events(unsigned long *ret)
47 get_online_cpus();
48 sum_vm_events(ret);
49 put_online_cpus();
51 EXPORT_SYMBOL_GPL(all_vm_events);
53 #ifdef CONFIG_HOTPLUG
55 * Fold the foreign cpu events into our own.
57 * This is adding to the events on one processor
58 * but keeps the global counts constant.
60 void vm_events_fold_cpu(int cpu)
62 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
63 int i;
65 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
66 count_vm_events(i, fold_state->event[i]);
67 fold_state->event[i] = 0;
70 #endif /* CONFIG_HOTPLUG */
72 #endif /* CONFIG_VM_EVENT_COUNTERS */
75 * Manage combined zone based / global counters
77 * vm_stat contains the global counters
79 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
80 EXPORT_SYMBOL(vm_stat);
82 #ifdef CONFIG_SMP
84 static int calculate_threshold(struct zone *zone)
86 int threshold;
87 int mem; /* memory in 128 MB units */
90 * The threshold scales with the number of processors and the amount
91 * of memory per zone. More memory means that we can defer updates for
92 * longer, more processors could lead to more contention.
93 * fls() is used to have a cheap way of logarithmic scaling.
95 * Some sample thresholds:
97 * Threshold Processors (fls) Zonesize fls(mem+1)
98 * ------------------------------------------------------------------
99 * 8 1 1 0.9-1 GB 4
100 * 16 2 2 0.9-1 GB 4
101 * 20 2 2 1-2 GB 5
102 * 24 2 2 2-4 GB 6
103 * 28 2 2 4-8 GB 7
104 * 32 2 2 8-16 GB 8
105 * 4 2 2 <128M 1
106 * 30 4 3 2-4 GB 5
107 * 48 4 3 8-16 GB 8
108 * 32 8 4 1-2 GB 4
109 * 32 8 4 0.9-1GB 4
110 * 10 16 5 <128M 1
111 * 40 16 5 900M 4
112 * 70 64 7 2-4 GB 5
113 * 84 64 7 4-8 GB 6
114 * 108 512 9 4-8 GB 6
115 * 125 1024 10 8-16 GB 8
116 * 125 1024 10 16-32 GB 9
119 mem = zone->present_pages >> (27 - PAGE_SHIFT);
121 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
124 * Maximum threshold is 125
126 threshold = min(125, threshold);
128 return threshold;
132 * Refresh the thresholds for each zone.
134 static void refresh_zone_stat_thresholds(void)
136 struct zone *zone;
137 int cpu;
138 int threshold;
140 for_each_populated_zone(zone) {
141 threshold = calculate_threshold(zone);
143 for_each_online_cpu(cpu)
144 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
145 = threshold;
150 * For use when we know that interrupts are disabled.
152 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
153 int delta)
155 struct per_cpu_pageset *pcp = this_cpu_ptr(zone->pageset);
157 s8 *p = pcp->vm_stat_diff + item;
158 long x;
160 x = delta + *p;
162 if (unlikely(x > pcp->stat_threshold || x < -pcp->stat_threshold)) {
163 zone_page_state_add(x, zone, item);
164 x = 0;
166 *p = x;
168 EXPORT_SYMBOL(__mod_zone_page_state);
171 * For an unknown interrupt state
173 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
174 int delta)
176 unsigned long flags;
178 local_irq_save(flags);
179 __mod_zone_page_state(zone, item, delta);
180 local_irq_restore(flags);
182 EXPORT_SYMBOL(mod_zone_page_state);
185 * Optimized increment and decrement functions.
187 * These are only for a single page and therefore can take a struct page *
188 * argument instead of struct zone *. This allows the inclusion of the code
189 * generated for page_zone(page) into the optimized functions.
191 * No overflow check is necessary and therefore the differential can be
192 * incremented or decremented in place which may allow the compilers to
193 * generate better code.
194 * The increment or decrement is known and therefore one boundary check can
195 * be omitted.
197 * NOTE: These functions are very performance sensitive. Change only
198 * with care.
200 * Some processors have inc/dec instructions that are atomic vs an interrupt.
201 * However, the code must first determine the differential location in a zone
202 * based on the processor number and then inc/dec the counter. There is no
203 * guarantee without disabling preemption that the processor will not change
204 * in between and therefore the atomicity vs. interrupt cannot be exploited
205 * in a useful way here.
207 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
209 struct per_cpu_pageset *pcp = this_cpu_ptr(zone->pageset);
210 s8 *p = pcp->vm_stat_diff + item;
212 (*p)++;
214 if (unlikely(*p > pcp->stat_threshold)) {
215 int overstep = pcp->stat_threshold / 2;
217 zone_page_state_add(*p + overstep, zone, item);
218 *p = -overstep;
222 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
224 __inc_zone_state(page_zone(page), item);
226 EXPORT_SYMBOL(__inc_zone_page_state);
228 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
230 struct per_cpu_pageset *pcp = this_cpu_ptr(zone->pageset);
231 s8 *p = pcp->vm_stat_diff + item;
233 (*p)--;
235 if (unlikely(*p < - pcp->stat_threshold)) {
236 int overstep = pcp->stat_threshold / 2;
238 zone_page_state_add(*p - overstep, zone, item);
239 *p = overstep;
243 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
245 __dec_zone_state(page_zone(page), item);
247 EXPORT_SYMBOL(__dec_zone_page_state);
249 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
251 unsigned long flags;
253 local_irq_save(flags);
254 __inc_zone_state(zone, item);
255 local_irq_restore(flags);
258 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
260 unsigned long flags;
261 struct zone *zone;
263 zone = page_zone(page);
264 local_irq_save(flags);
265 __inc_zone_state(zone, item);
266 local_irq_restore(flags);
268 EXPORT_SYMBOL(inc_zone_page_state);
270 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
272 unsigned long flags;
274 local_irq_save(flags);
275 __dec_zone_page_state(page, item);
276 local_irq_restore(flags);
278 EXPORT_SYMBOL(dec_zone_page_state);
281 * Update the zone counters for one cpu.
283 * The cpu specified must be either the current cpu or a processor that
284 * is not online. If it is the current cpu then the execution thread must
285 * be pinned to the current cpu.
287 * Note that refresh_cpu_vm_stats strives to only access
288 * node local memory. The per cpu pagesets on remote zones are placed
289 * in the memory local to the processor using that pageset. So the
290 * loop over all zones will access a series of cachelines local to
291 * the processor.
293 * The call to zone_page_state_add updates the cachelines with the
294 * statistics in the remote zone struct as well as the global cachelines
295 * with the global counters. These could cause remote node cache line
296 * bouncing and will have to be only done when necessary.
298 void refresh_cpu_vm_stats(int cpu)
300 struct zone *zone;
301 int i;
302 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
304 for_each_populated_zone(zone) {
305 struct per_cpu_pageset *p;
307 p = per_cpu_ptr(zone->pageset, cpu);
309 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
310 if (p->vm_stat_diff[i]) {
311 unsigned long flags;
312 int v;
314 local_irq_save(flags);
315 v = p->vm_stat_diff[i];
316 p->vm_stat_diff[i] = 0;
317 local_irq_restore(flags);
318 atomic_long_add(v, &zone->vm_stat[i]);
319 global_diff[i] += v;
320 #ifdef CONFIG_NUMA
321 /* 3 seconds idle till flush */
322 p->expire = 3;
323 #endif
325 cond_resched();
326 #ifdef CONFIG_NUMA
328 * Deal with draining the remote pageset of this
329 * processor
331 * Check if there are pages remaining in this pageset
332 * if not then there is nothing to expire.
334 if (!p->expire || !p->pcp.count)
335 continue;
338 * We never drain zones local to this processor.
340 if (zone_to_nid(zone) == numa_node_id()) {
341 p->expire = 0;
342 continue;
345 p->expire--;
346 if (p->expire)
347 continue;
349 if (p->pcp.count)
350 drain_zone_pages(zone, &p->pcp);
351 #endif
354 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
355 if (global_diff[i])
356 atomic_long_add(global_diff[i], &vm_stat[i]);
359 #endif
361 #ifdef CONFIG_NUMA
363 * zonelist = the list of zones passed to the allocator
364 * z = the zone from which the allocation occurred.
366 * Must be called with interrupts disabled.
368 void zone_statistics(struct zone *preferred_zone, struct zone *z)
370 if (z->zone_pgdat == preferred_zone->zone_pgdat) {
371 __inc_zone_state(z, NUMA_HIT);
372 } else {
373 __inc_zone_state(z, NUMA_MISS);
374 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
376 if (z->node == numa_node_id())
377 __inc_zone_state(z, NUMA_LOCAL);
378 else
379 __inc_zone_state(z, NUMA_OTHER);
381 #endif
383 #ifdef CONFIG_COMPACTION
384 struct contig_page_info {
385 unsigned long free_pages;
386 unsigned long free_blocks_total;
387 unsigned long free_blocks_suitable;
391 * Calculate the number of free pages in a zone, how many contiguous
392 * pages are free and how many are large enough to satisfy an allocation of
393 * the target size. Note that this function makes no attempt to estimate
394 * how many suitable free blocks there *might* be if MOVABLE pages were
395 * migrated. Calculating that is possible, but expensive and can be
396 * figured out from userspace
398 static void fill_contig_page_info(struct zone *zone,
399 unsigned int suitable_order,
400 struct contig_page_info *info)
402 unsigned int order;
404 info->free_pages = 0;
405 info->free_blocks_total = 0;
406 info->free_blocks_suitable = 0;
408 for (order = 0; order < MAX_ORDER; order++) {
409 unsigned long blocks;
411 /* Count number of free blocks */
412 blocks = zone->free_area[order].nr_free;
413 info->free_blocks_total += blocks;
415 /* Count free base pages */
416 info->free_pages += blocks << order;
418 /* Count the suitable free blocks */
419 if (order >= suitable_order)
420 info->free_blocks_suitable += blocks <<
421 (order - suitable_order);
426 * A fragmentation index only makes sense if an allocation of a requested
427 * size would fail. If that is true, the fragmentation index indicates
428 * whether external fragmentation or a lack of memory was the problem.
429 * The value can be used to determine if page reclaim or compaction
430 * should be used
432 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
434 unsigned long requested = 1UL << order;
436 if (!info->free_blocks_total)
437 return 0;
439 /* Fragmentation index only makes sense when a request would fail */
440 if (info->free_blocks_suitable)
441 return -1000;
444 * Index is between 0 and 1 so return within 3 decimal places
446 * 0 => allocation would fail due to lack of memory
447 * 1 => allocation would fail due to fragmentation
449 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
452 /* Same as __fragmentation index but allocs contig_page_info on stack */
453 int fragmentation_index(struct zone *zone, unsigned int order)
455 struct contig_page_info info;
457 fill_contig_page_info(zone, order, &info);
458 return __fragmentation_index(order, &info);
460 #endif
462 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
463 #include <linux/proc_fs.h>
464 #include <linux/seq_file.h>
466 static char * const migratetype_names[MIGRATE_TYPES] = {
467 "Unmovable",
468 "Reclaimable",
469 "Movable",
470 "Reserve",
471 "Isolate",
474 static void *frag_start(struct seq_file *m, loff_t *pos)
476 pg_data_t *pgdat;
477 loff_t node = *pos;
478 for (pgdat = first_online_pgdat();
479 pgdat && node;
480 pgdat = next_online_pgdat(pgdat))
481 --node;
483 return pgdat;
486 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
488 pg_data_t *pgdat = (pg_data_t *)arg;
490 (*pos)++;
491 return next_online_pgdat(pgdat);
494 static void frag_stop(struct seq_file *m, void *arg)
498 /* Walk all the zones in a node and print using a callback */
499 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
500 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
502 struct zone *zone;
503 struct zone *node_zones = pgdat->node_zones;
504 unsigned long flags;
506 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
507 if (!populated_zone(zone))
508 continue;
510 spin_lock_irqsave(&zone->lock, flags);
511 print(m, pgdat, zone);
512 spin_unlock_irqrestore(&zone->lock, flags);
515 #endif
517 #ifdef CONFIG_PROC_FS
518 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
519 struct zone *zone)
521 int order;
523 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
524 for (order = 0; order < MAX_ORDER; ++order)
525 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
526 seq_putc(m, '\n');
530 * This walks the free areas for each zone.
532 static int frag_show(struct seq_file *m, void *arg)
534 pg_data_t *pgdat = (pg_data_t *)arg;
535 walk_zones_in_node(m, pgdat, frag_show_print);
536 return 0;
539 static void pagetypeinfo_showfree_print(struct seq_file *m,
540 pg_data_t *pgdat, struct zone *zone)
542 int order, mtype;
544 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
545 seq_printf(m, "Node %4d, zone %8s, type %12s ",
546 pgdat->node_id,
547 zone->name,
548 migratetype_names[mtype]);
549 for (order = 0; order < MAX_ORDER; ++order) {
550 unsigned long freecount = 0;
551 struct free_area *area;
552 struct list_head *curr;
554 area = &(zone->free_area[order]);
556 list_for_each(curr, &area->free_list[mtype])
557 freecount++;
558 seq_printf(m, "%6lu ", freecount);
560 seq_putc(m, '\n');
564 /* Print out the free pages at each order for each migatetype */
565 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
567 int order;
568 pg_data_t *pgdat = (pg_data_t *)arg;
570 /* Print header */
571 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
572 for (order = 0; order < MAX_ORDER; ++order)
573 seq_printf(m, "%6d ", order);
574 seq_putc(m, '\n');
576 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
578 return 0;
581 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
582 pg_data_t *pgdat, struct zone *zone)
584 int mtype;
585 unsigned long pfn;
586 unsigned long start_pfn = zone->zone_start_pfn;
587 unsigned long end_pfn = start_pfn + zone->spanned_pages;
588 unsigned long count[MIGRATE_TYPES] = { 0, };
590 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
591 struct page *page;
593 if (!pfn_valid(pfn))
594 continue;
596 page = pfn_to_page(pfn);
598 /* Watch for unexpected holes punched in the memmap */
599 if (!memmap_valid_within(pfn, page, zone))
600 continue;
602 mtype = get_pageblock_migratetype(page);
604 if (mtype < MIGRATE_TYPES)
605 count[mtype]++;
608 /* Print counts */
609 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
610 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
611 seq_printf(m, "%12lu ", count[mtype]);
612 seq_putc(m, '\n');
615 /* Print out the free pages at each order for each migratetype */
616 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
618 int mtype;
619 pg_data_t *pgdat = (pg_data_t *)arg;
621 seq_printf(m, "\n%-23s", "Number of blocks type ");
622 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
623 seq_printf(m, "%12s ", migratetype_names[mtype]);
624 seq_putc(m, '\n');
625 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
627 return 0;
631 * This prints out statistics in relation to grouping pages by mobility.
632 * It is expensive to collect so do not constantly read the file.
634 static int pagetypeinfo_show(struct seq_file *m, void *arg)
636 pg_data_t *pgdat = (pg_data_t *)arg;
638 /* check memoryless node */
639 if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
640 return 0;
642 seq_printf(m, "Page block order: %d\n", pageblock_order);
643 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
644 seq_putc(m, '\n');
645 pagetypeinfo_showfree(m, pgdat);
646 pagetypeinfo_showblockcount(m, pgdat);
648 return 0;
651 static const struct seq_operations fragmentation_op = {
652 .start = frag_start,
653 .next = frag_next,
654 .stop = frag_stop,
655 .show = frag_show,
658 static int fragmentation_open(struct inode *inode, struct file *file)
660 return seq_open(file, &fragmentation_op);
663 static const struct file_operations fragmentation_file_operations = {
664 .open = fragmentation_open,
665 .read = seq_read,
666 .llseek = seq_lseek,
667 .release = seq_release,
670 static const struct seq_operations pagetypeinfo_op = {
671 .start = frag_start,
672 .next = frag_next,
673 .stop = frag_stop,
674 .show = pagetypeinfo_show,
677 static int pagetypeinfo_open(struct inode *inode, struct file *file)
679 return seq_open(file, &pagetypeinfo_op);
682 static const struct file_operations pagetypeinfo_file_ops = {
683 .open = pagetypeinfo_open,
684 .read = seq_read,
685 .llseek = seq_lseek,
686 .release = seq_release,
689 #ifdef CONFIG_ZONE_DMA
690 #define TEXT_FOR_DMA(xx) xx "_dma",
691 #else
692 #define TEXT_FOR_DMA(xx)
693 #endif
695 #ifdef CONFIG_ZONE_DMA32
696 #define TEXT_FOR_DMA32(xx) xx "_dma32",
697 #else
698 #define TEXT_FOR_DMA32(xx)
699 #endif
701 #ifdef CONFIG_HIGHMEM
702 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
703 #else
704 #define TEXT_FOR_HIGHMEM(xx)
705 #endif
707 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
708 TEXT_FOR_HIGHMEM(xx) xx "_movable",
710 static const char * const vmstat_text[] = {
711 /* Zoned VM counters */
712 "nr_free_pages",
713 "nr_inactive_anon",
714 "nr_active_anon",
715 "nr_inactive_file",
716 "nr_active_file",
717 "nr_unevictable",
718 "nr_mlock",
719 "nr_anon_pages",
720 "nr_mapped",
721 "nr_file_pages",
722 "nr_dirty",
723 "nr_writeback",
724 "nr_slab_reclaimable",
725 "nr_slab_unreclaimable",
726 "nr_page_table_pages",
727 "nr_kernel_stack",
728 "nr_unstable",
729 "nr_bounce",
730 "nr_vmscan_write",
731 "nr_writeback_temp",
732 "nr_isolated_anon",
733 "nr_isolated_file",
734 "nr_shmem",
735 #ifdef CONFIG_NUMA
736 "numa_hit",
737 "numa_miss",
738 "numa_foreign",
739 "numa_interleave",
740 "numa_local",
741 "numa_other",
742 #endif
744 #ifdef CONFIG_VM_EVENT_COUNTERS
745 "pgpgin",
746 "pgpgout",
747 "pswpin",
748 "pswpout",
750 TEXTS_FOR_ZONES("pgalloc")
752 "pgfree",
753 "pgactivate",
754 "pgdeactivate",
756 "pgfault",
757 "pgmajfault",
759 TEXTS_FOR_ZONES("pgrefill")
760 TEXTS_FOR_ZONES("pgsteal")
761 TEXTS_FOR_ZONES("pgscan_kswapd")
762 TEXTS_FOR_ZONES("pgscan_direct")
764 #ifdef CONFIG_NUMA
765 "zone_reclaim_failed",
766 #endif
767 "pginodesteal",
768 "slabs_scanned",
769 "kswapd_steal",
770 "kswapd_inodesteal",
771 "kswapd_low_wmark_hit_quickly",
772 "kswapd_high_wmark_hit_quickly",
773 "kswapd_skip_congestion_wait",
774 "pageoutrun",
775 "allocstall",
777 "pgrotated",
779 #ifdef CONFIG_COMPACTION
780 "compact_blocks_moved",
781 "compact_pages_moved",
782 "compact_pagemigrate_failed",
783 "compact_stall",
784 "compact_fail",
785 "compact_success",
786 #endif
788 #ifdef CONFIG_HUGETLB_PAGE
789 "htlb_buddy_alloc_success",
790 "htlb_buddy_alloc_fail",
791 #endif
792 "unevictable_pgs_culled",
793 "unevictable_pgs_scanned",
794 "unevictable_pgs_rescued",
795 "unevictable_pgs_mlocked",
796 "unevictable_pgs_munlocked",
797 "unevictable_pgs_cleared",
798 "unevictable_pgs_stranded",
799 "unevictable_pgs_mlockfreed",
800 #endif
803 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
804 struct zone *zone)
806 int i;
807 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
808 seq_printf(m,
809 "\n pages free %lu"
810 "\n min %lu"
811 "\n low %lu"
812 "\n high %lu"
813 "\n scanned %lu"
814 "\n spanned %lu"
815 "\n present %lu",
816 zone_page_state(zone, NR_FREE_PAGES),
817 min_wmark_pages(zone),
818 low_wmark_pages(zone),
819 high_wmark_pages(zone),
820 zone->pages_scanned,
821 zone->spanned_pages,
822 zone->present_pages);
824 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
825 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
826 zone_page_state(zone, i));
828 seq_printf(m,
829 "\n protection: (%lu",
830 zone->lowmem_reserve[0]);
831 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
832 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
833 seq_printf(m,
835 "\n pagesets");
836 for_each_online_cpu(i) {
837 struct per_cpu_pageset *pageset;
839 pageset = per_cpu_ptr(zone->pageset, i);
840 seq_printf(m,
841 "\n cpu: %i"
842 "\n count: %i"
843 "\n high: %i"
844 "\n batch: %i",
846 pageset->pcp.count,
847 pageset->pcp.high,
848 pageset->pcp.batch);
849 #ifdef CONFIG_SMP
850 seq_printf(m, "\n vm stats threshold: %d",
851 pageset->stat_threshold);
852 #endif
854 seq_printf(m,
855 "\n all_unreclaimable: %u"
856 "\n start_pfn: %lu"
857 "\n inactive_ratio: %u",
858 zone->all_unreclaimable,
859 zone->zone_start_pfn,
860 zone->inactive_ratio);
861 seq_putc(m, '\n');
865 * Output information about zones in @pgdat.
867 static int zoneinfo_show(struct seq_file *m, void *arg)
869 pg_data_t *pgdat = (pg_data_t *)arg;
870 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
871 return 0;
874 static const struct seq_operations zoneinfo_op = {
875 .start = frag_start, /* iterate over all zones. The same as in
876 * fragmentation. */
877 .next = frag_next,
878 .stop = frag_stop,
879 .show = zoneinfo_show,
882 static int zoneinfo_open(struct inode *inode, struct file *file)
884 return seq_open(file, &zoneinfo_op);
887 static const struct file_operations proc_zoneinfo_file_operations = {
888 .open = zoneinfo_open,
889 .read = seq_read,
890 .llseek = seq_lseek,
891 .release = seq_release,
894 static void *vmstat_start(struct seq_file *m, loff_t *pos)
896 unsigned long *v;
897 #ifdef CONFIG_VM_EVENT_COUNTERS
898 unsigned long *e;
899 #endif
900 int i;
902 if (*pos >= ARRAY_SIZE(vmstat_text))
903 return NULL;
905 #ifdef CONFIG_VM_EVENT_COUNTERS
906 v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long)
907 + sizeof(struct vm_event_state), GFP_KERNEL);
908 #else
909 v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long),
910 GFP_KERNEL);
911 #endif
912 m->private = v;
913 if (!v)
914 return ERR_PTR(-ENOMEM);
915 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
916 v[i] = global_page_state(i);
917 #ifdef CONFIG_VM_EVENT_COUNTERS
918 e = v + NR_VM_ZONE_STAT_ITEMS;
919 all_vm_events(e);
920 e[PGPGIN] /= 2; /* sectors -> kbytes */
921 e[PGPGOUT] /= 2;
922 #endif
923 return v + *pos;
926 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
928 (*pos)++;
929 if (*pos >= ARRAY_SIZE(vmstat_text))
930 return NULL;
931 return (unsigned long *)m->private + *pos;
934 static int vmstat_show(struct seq_file *m, void *arg)
936 unsigned long *l = arg;
937 unsigned long off = l - (unsigned long *)m->private;
939 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
940 return 0;
943 static void vmstat_stop(struct seq_file *m, void *arg)
945 kfree(m->private);
946 m->private = NULL;
949 static const struct seq_operations vmstat_op = {
950 .start = vmstat_start,
951 .next = vmstat_next,
952 .stop = vmstat_stop,
953 .show = vmstat_show,
956 static int vmstat_open(struct inode *inode, struct file *file)
958 return seq_open(file, &vmstat_op);
961 static const struct file_operations proc_vmstat_file_operations = {
962 .open = vmstat_open,
963 .read = seq_read,
964 .llseek = seq_lseek,
965 .release = seq_release,
967 #endif /* CONFIG_PROC_FS */
969 #ifdef CONFIG_SMP
970 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
971 int sysctl_stat_interval __read_mostly = HZ;
973 static void vmstat_update(struct work_struct *w)
975 refresh_cpu_vm_stats(smp_processor_id());
976 schedule_delayed_work(&__get_cpu_var(vmstat_work),
977 round_jiffies_relative(sysctl_stat_interval));
980 static void __cpuinit start_cpu_timer(int cpu)
982 struct delayed_work *work = &per_cpu(vmstat_work, cpu);
984 INIT_DELAYED_WORK_DEFERRABLE(work, vmstat_update);
985 schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
989 * Use the cpu notifier to insure that the thresholds are recalculated
990 * when necessary.
992 static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
993 unsigned long action,
994 void *hcpu)
996 long cpu = (long)hcpu;
998 switch (action) {
999 case CPU_ONLINE:
1000 case CPU_ONLINE_FROZEN:
1001 start_cpu_timer(cpu);
1002 node_set_state(cpu_to_node(cpu), N_CPU);
1003 break;
1004 case CPU_DOWN_PREPARE:
1005 case CPU_DOWN_PREPARE_FROZEN:
1006 cancel_rearming_delayed_work(&per_cpu(vmstat_work, cpu));
1007 per_cpu(vmstat_work, cpu).work.func = NULL;
1008 break;
1009 case CPU_DOWN_FAILED:
1010 case CPU_DOWN_FAILED_FROZEN:
1011 start_cpu_timer(cpu);
1012 break;
1013 case CPU_DEAD:
1014 case CPU_DEAD_FROZEN:
1015 refresh_zone_stat_thresholds();
1016 break;
1017 default:
1018 break;
1020 return NOTIFY_OK;
1023 static struct notifier_block __cpuinitdata vmstat_notifier =
1024 { &vmstat_cpuup_callback, NULL, 0 };
1025 #endif
1027 static int __init setup_vmstat(void)
1029 #ifdef CONFIG_SMP
1030 int cpu;
1032 refresh_zone_stat_thresholds();
1033 register_cpu_notifier(&vmstat_notifier);
1035 for_each_online_cpu(cpu)
1036 start_cpu_timer(cpu);
1037 #endif
1038 #ifdef CONFIG_PROC_FS
1039 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1040 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1041 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1042 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1043 #endif
1044 return 0;
1046 module_init(setup_vmstat)
1048 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1049 #include <linux/debugfs.h>
1051 static struct dentry *extfrag_debug_root;
1054 * Return an index indicating how much of the available free memory is
1055 * unusable for an allocation of the requested size.
1057 static int unusable_free_index(unsigned int order,
1058 struct contig_page_info *info)
1060 /* No free memory is interpreted as all free memory is unusable */
1061 if (info->free_pages == 0)
1062 return 1000;
1065 * Index should be a value between 0 and 1. Return a value to 3
1066 * decimal places.
1068 * 0 => no fragmentation
1069 * 1 => high fragmentation
1071 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1075 static void unusable_show_print(struct seq_file *m,
1076 pg_data_t *pgdat, struct zone *zone)
1078 unsigned int order;
1079 int index;
1080 struct contig_page_info info;
1082 seq_printf(m, "Node %d, zone %8s ",
1083 pgdat->node_id,
1084 zone->name);
1085 for (order = 0; order < MAX_ORDER; ++order) {
1086 fill_contig_page_info(zone, order, &info);
1087 index = unusable_free_index(order, &info);
1088 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1091 seq_putc(m, '\n');
1095 * Display unusable free space index
1097 * The unusable free space index measures how much of the available free
1098 * memory cannot be used to satisfy an allocation of a given size and is a
1099 * value between 0 and 1. The higher the value, the more of free memory is
1100 * unusable and by implication, the worse the external fragmentation is. This
1101 * can be expressed as a percentage by multiplying by 100.
1103 static int unusable_show(struct seq_file *m, void *arg)
1105 pg_data_t *pgdat = (pg_data_t *)arg;
1107 /* check memoryless node */
1108 if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
1109 return 0;
1111 walk_zones_in_node(m, pgdat, unusable_show_print);
1113 return 0;
1116 static const struct seq_operations unusable_op = {
1117 .start = frag_start,
1118 .next = frag_next,
1119 .stop = frag_stop,
1120 .show = unusable_show,
1123 static int unusable_open(struct inode *inode, struct file *file)
1125 return seq_open(file, &unusable_op);
1128 static const struct file_operations unusable_file_ops = {
1129 .open = unusable_open,
1130 .read = seq_read,
1131 .llseek = seq_lseek,
1132 .release = seq_release,
1135 static void extfrag_show_print(struct seq_file *m,
1136 pg_data_t *pgdat, struct zone *zone)
1138 unsigned int order;
1139 int index;
1141 /* Alloc on stack as interrupts are disabled for zone walk */
1142 struct contig_page_info info;
1144 seq_printf(m, "Node %d, zone %8s ",
1145 pgdat->node_id,
1146 zone->name);
1147 for (order = 0; order < MAX_ORDER; ++order) {
1148 fill_contig_page_info(zone, order, &info);
1149 index = __fragmentation_index(order, &info);
1150 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1153 seq_putc(m, '\n');
1157 * Display fragmentation index for orders that allocations would fail for
1159 static int extfrag_show(struct seq_file *m, void *arg)
1161 pg_data_t *pgdat = (pg_data_t *)arg;
1163 walk_zones_in_node(m, pgdat, extfrag_show_print);
1165 return 0;
1168 static const struct seq_operations extfrag_op = {
1169 .start = frag_start,
1170 .next = frag_next,
1171 .stop = frag_stop,
1172 .show = extfrag_show,
1175 static int extfrag_open(struct inode *inode, struct file *file)
1177 return seq_open(file, &extfrag_op);
1180 static const struct file_operations extfrag_file_ops = {
1181 .open = extfrag_open,
1182 .read = seq_read,
1183 .llseek = seq_lseek,
1184 .release = seq_release,
1187 static int __init extfrag_debug_init(void)
1189 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1190 if (!extfrag_debug_root)
1191 return -ENOMEM;
1193 if (!debugfs_create_file("unusable_index", 0444,
1194 extfrag_debug_root, NULL, &unusable_file_ops))
1195 return -ENOMEM;
1197 if (!debugfs_create_file("extfrag_index", 0444,
1198 extfrag_debug_root, NULL, &extfrag_file_ops))
1199 return -ENOMEM;
1201 return 0;
1204 module_init(extfrag_debug_init);
1205 #endif