The x86 timer interrupt handler is the only handler not traced in the
[linux-2.6/next.git] / arch / blackfin / kernel / cplb-mpu / cplbmgr.c
blob8de92299b3ee1d58df6871822e3a8ff65c0c52f0
1 /*
2 * Blackfin CPLB exception handling for when MPU in on
4 * Copyright 2008-2009 Analog Devices Inc.
6 * Licensed under the GPL-2 or later.
7 */
9 #include <linux/module.h>
10 #include <linux/mm.h>
12 #include <asm/blackfin.h>
13 #include <asm/cacheflush.h>
14 #include <asm/cplb.h>
15 #include <asm/cplbinit.h>
16 #include <asm/mmu_context.h>
19 * WARNING
21 * This file is compiled with certain -ffixed-reg options. We have to
22 * make sure not to call any functions here that could clobber these
23 * registers.
26 int page_mask_nelts;
27 int page_mask_order;
28 unsigned long *current_rwx_mask[NR_CPUS];
30 int nr_dcplb_miss[NR_CPUS], nr_icplb_miss[NR_CPUS];
31 int nr_icplb_supv_miss[NR_CPUS], nr_dcplb_prot[NR_CPUS];
32 int nr_cplb_flush[NR_CPUS];
34 #ifdef CONFIG_EXCPT_IRQ_SYSC_L1
35 #define MGR_ATTR __attribute__((l1_text))
36 #else
37 #define MGR_ATTR
38 #endif
41 * Given the contents of the status register, return the index of the
42 * CPLB that caused the fault.
44 static inline int faulting_cplb_index(int status)
46 int signbits = __builtin_bfin_norm_fr1x32(status & 0xFFFF);
47 return 30 - signbits;
51 * Given the contents of the status register and the DCPLB_DATA contents,
52 * return true if a write access should be permitted.
54 static inline int write_permitted(int status, unsigned long data)
56 if (status & FAULT_USERSUPV)
57 return !!(data & CPLB_SUPV_WR);
58 else
59 return !!(data & CPLB_USER_WR);
62 /* Counters to implement round-robin replacement. */
63 static int icplb_rr_index[NR_CPUS], dcplb_rr_index[NR_CPUS];
66 * Find an ICPLB entry to be evicted and return its index.
68 MGR_ATTR static int evict_one_icplb(unsigned int cpu)
70 int i;
71 for (i = first_switched_icplb; i < MAX_CPLBS; i++)
72 if ((icplb_tbl[cpu][i].data & CPLB_VALID) == 0)
73 return i;
74 i = first_switched_icplb + icplb_rr_index[cpu];
75 if (i >= MAX_CPLBS) {
76 i -= MAX_CPLBS - first_switched_icplb;
77 icplb_rr_index[cpu] -= MAX_CPLBS - first_switched_icplb;
79 icplb_rr_index[cpu]++;
80 return i;
83 MGR_ATTR static int evict_one_dcplb(unsigned int cpu)
85 int i;
86 for (i = first_switched_dcplb; i < MAX_CPLBS; i++)
87 if ((dcplb_tbl[cpu][i].data & CPLB_VALID) == 0)
88 return i;
89 i = first_switched_dcplb + dcplb_rr_index[cpu];
90 if (i >= MAX_CPLBS) {
91 i -= MAX_CPLBS - first_switched_dcplb;
92 dcplb_rr_index[cpu] -= MAX_CPLBS - first_switched_dcplb;
94 dcplb_rr_index[cpu]++;
95 return i;
98 MGR_ATTR static noinline int dcplb_miss(unsigned int cpu)
100 unsigned long addr = bfin_read_DCPLB_FAULT_ADDR();
101 int status = bfin_read_DCPLB_STATUS();
102 unsigned long *mask;
103 int idx;
104 unsigned long d_data;
106 nr_dcplb_miss[cpu]++;
108 d_data = CPLB_SUPV_WR | CPLB_VALID | CPLB_DIRTY | PAGE_SIZE_4KB;
109 #ifdef CONFIG_BFIN_EXTMEM_DCACHEABLE
110 if (bfin_addr_dcacheable(addr)) {
111 d_data |= CPLB_L1_CHBL | ANOMALY_05000158_WORKAROUND;
112 # ifdef CONFIG_BFIN_EXTMEM_WRITETHROUGH
113 d_data |= CPLB_L1_AOW | CPLB_WT;
114 # endif
116 #endif
118 if (L2_LENGTH && addr >= L2_START && addr < L2_START + L2_LENGTH) {
119 addr = L2_START;
120 d_data = L2_DMEMORY;
121 } else if (addr >= physical_mem_end) {
122 if (addr >= ASYNC_BANK0_BASE && addr < ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE) {
123 mask = current_rwx_mask[cpu];
124 if (mask) {
125 int page = (addr - (ASYNC_BANK0_BASE - _ramend)) >> PAGE_SHIFT;
126 int idx = page >> 5;
127 int bit = 1 << (page & 31);
129 if (mask[idx] & bit)
130 d_data |= CPLB_USER_RD;
132 } else if (addr >= BOOT_ROM_START && addr < BOOT_ROM_START + BOOT_ROM_LENGTH
133 && (status & (FAULT_RW | FAULT_USERSUPV)) == FAULT_USERSUPV) {
134 addr &= ~(1 * 1024 * 1024 - 1);
135 d_data &= ~PAGE_SIZE_4KB;
136 d_data |= PAGE_SIZE_1MB;
137 } else
138 return CPLB_PROT_VIOL;
139 } else if (addr >= _ramend) {
140 d_data |= CPLB_USER_RD | CPLB_USER_WR;
141 if (reserved_mem_dcache_on)
142 d_data |= CPLB_L1_CHBL;
143 } else {
144 mask = current_rwx_mask[cpu];
145 if (mask) {
146 int page = addr >> PAGE_SHIFT;
147 int idx = page >> 5;
148 int bit = 1 << (page & 31);
150 if (mask[idx] & bit)
151 d_data |= CPLB_USER_RD;
153 mask += page_mask_nelts;
154 if (mask[idx] & bit)
155 d_data |= CPLB_USER_WR;
158 idx = evict_one_dcplb(cpu);
160 addr &= PAGE_MASK;
161 dcplb_tbl[cpu][idx].addr = addr;
162 dcplb_tbl[cpu][idx].data = d_data;
164 _disable_dcplb();
165 bfin_write32(DCPLB_DATA0 + idx * 4, d_data);
166 bfin_write32(DCPLB_ADDR0 + idx * 4, addr);
167 _enable_dcplb();
169 return 0;
172 MGR_ATTR static noinline int icplb_miss(unsigned int cpu)
174 unsigned long addr = bfin_read_ICPLB_FAULT_ADDR();
175 int status = bfin_read_ICPLB_STATUS();
176 int idx;
177 unsigned long i_data;
179 nr_icplb_miss[cpu]++;
181 /* If inside the uncached DMA region, fault. */
182 if (addr >= _ramend - DMA_UNCACHED_REGION && addr < _ramend)
183 return CPLB_PROT_VIOL;
185 if (status & FAULT_USERSUPV)
186 nr_icplb_supv_miss[cpu]++;
189 * First, try to find a CPLB that matches this address. If we
190 * find one, then the fact that we're in the miss handler means
191 * that the instruction crosses a page boundary.
193 for (idx = first_switched_icplb; idx < MAX_CPLBS; idx++) {
194 if (icplb_tbl[cpu][idx].data & CPLB_VALID) {
195 unsigned long this_addr = icplb_tbl[cpu][idx].addr;
196 if (this_addr <= addr && this_addr + PAGE_SIZE > addr) {
197 addr += PAGE_SIZE;
198 break;
203 i_data = CPLB_VALID | CPLB_PORTPRIO | PAGE_SIZE_4KB;
205 #ifdef CONFIG_BFIN_EXTMEM_ICACHEABLE
207 * Normal RAM, and possibly the reserved memory area, are
208 * cacheable.
210 if (addr < _ramend ||
211 (addr < physical_mem_end && reserved_mem_icache_on))
212 i_data |= CPLB_L1_CHBL | ANOMALY_05000158_WORKAROUND;
213 #endif
215 if (L2_LENGTH && addr >= L2_START && addr < L2_START + L2_LENGTH) {
216 addr = L2_START;
217 i_data = L2_IMEMORY;
218 } else if (addr >= physical_mem_end) {
219 if (addr >= ASYNC_BANK0_BASE && addr < ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE) {
220 if (!(status & FAULT_USERSUPV)) {
221 unsigned long *mask = current_rwx_mask[cpu];
223 if (mask) {
224 int page = (addr - (ASYNC_BANK0_BASE - _ramend)) >> PAGE_SHIFT;
225 int idx = page >> 5;
226 int bit = 1 << (page & 31);
228 mask += 2 * page_mask_nelts;
229 if (mask[idx] & bit)
230 i_data |= CPLB_USER_RD;
233 } else if (addr >= BOOT_ROM_START && addr < BOOT_ROM_START + BOOT_ROM_LENGTH
234 && (status & FAULT_USERSUPV)) {
235 addr &= ~(1 * 1024 * 1024 - 1);
236 i_data &= ~PAGE_SIZE_4KB;
237 i_data |= PAGE_SIZE_1MB;
238 } else
239 return CPLB_PROT_VIOL;
240 } else if (addr >= _ramend) {
241 i_data |= CPLB_USER_RD;
242 if (reserved_mem_icache_on)
243 i_data |= CPLB_L1_CHBL;
244 } else {
246 * Two cases to distinguish - a supervisor access must
247 * necessarily be for a module page; we grant it
248 * unconditionally (could do better here in the future).
249 * Otherwise, check the x bitmap of the current process.
251 if (!(status & FAULT_USERSUPV)) {
252 unsigned long *mask = current_rwx_mask[cpu];
254 if (mask) {
255 int page = addr >> PAGE_SHIFT;
256 int idx = page >> 5;
257 int bit = 1 << (page & 31);
259 mask += 2 * page_mask_nelts;
260 if (mask[idx] & bit)
261 i_data |= CPLB_USER_RD;
265 idx = evict_one_icplb(cpu);
266 addr &= PAGE_MASK;
267 icplb_tbl[cpu][idx].addr = addr;
268 icplb_tbl[cpu][idx].data = i_data;
270 _disable_icplb();
271 bfin_write32(ICPLB_DATA0 + idx * 4, i_data);
272 bfin_write32(ICPLB_ADDR0 + idx * 4, addr);
273 _enable_icplb();
275 return 0;
278 MGR_ATTR static noinline int dcplb_protection_fault(unsigned int cpu)
280 int status = bfin_read_DCPLB_STATUS();
282 nr_dcplb_prot[cpu]++;
284 if (status & FAULT_RW) {
285 int idx = faulting_cplb_index(status);
286 unsigned long data = dcplb_tbl[cpu][idx].data;
287 if (!(data & CPLB_WT) && !(data & CPLB_DIRTY) &&
288 write_permitted(status, data)) {
289 data |= CPLB_DIRTY;
290 dcplb_tbl[cpu][idx].data = data;
291 bfin_write32(DCPLB_DATA0 + idx * 4, data);
292 return 0;
295 return CPLB_PROT_VIOL;
298 MGR_ATTR int cplb_hdr(int seqstat, struct pt_regs *regs)
300 int cause = seqstat & 0x3f;
301 unsigned int cpu = raw_smp_processor_id();
302 switch (cause) {
303 case 0x23:
304 return dcplb_protection_fault(cpu);
305 case 0x2C:
306 return icplb_miss(cpu);
307 case 0x26:
308 return dcplb_miss(cpu);
309 default:
310 return 1;
314 void flush_switched_cplbs(unsigned int cpu)
316 int i;
317 unsigned long flags;
319 nr_cplb_flush[cpu]++;
321 flags = hard_local_irq_save();
322 _disable_icplb();
323 for (i = first_switched_icplb; i < MAX_CPLBS; i++) {
324 icplb_tbl[cpu][i].data = 0;
325 bfin_write32(ICPLB_DATA0 + i * 4, 0);
327 _enable_icplb();
329 _disable_dcplb();
330 for (i = first_switched_dcplb; i < MAX_CPLBS; i++) {
331 dcplb_tbl[cpu][i].data = 0;
332 bfin_write32(DCPLB_DATA0 + i * 4, 0);
334 _enable_dcplb();
335 hard_local_irq_restore(flags);
339 void set_mask_dcplbs(unsigned long *masks, unsigned int cpu)
341 int i;
342 unsigned long addr = (unsigned long)masks;
343 unsigned long d_data;
344 unsigned long flags;
346 if (!masks) {
347 current_rwx_mask[cpu] = masks;
348 return;
351 flags = hard_local_irq_save();
352 current_rwx_mask[cpu] = masks;
354 if (L2_LENGTH && addr >= L2_START && addr < L2_START + L2_LENGTH) {
355 addr = L2_START;
356 d_data = L2_DMEMORY;
357 } else {
358 d_data = CPLB_SUPV_WR | CPLB_VALID | CPLB_DIRTY | PAGE_SIZE_4KB;
359 #ifdef CONFIG_BFIN_EXTMEM_DCACHEABLE
360 d_data |= CPLB_L1_CHBL;
361 # ifdef CONFIG_BFIN_EXTMEM_WRITETHROUGH
362 d_data |= CPLB_L1_AOW | CPLB_WT;
363 # endif
364 #endif
367 _disable_dcplb();
368 for (i = first_mask_dcplb; i < first_switched_dcplb; i++) {
369 dcplb_tbl[cpu][i].addr = addr;
370 dcplb_tbl[cpu][i].data = d_data;
371 bfin_write32(DCPLB_DATA0 + i * 4, d_data);
372 bfin_write32(DCPLB_ADDR0 + i * 4, addr);
373 addr += PAGE_SIZE;
375 _enable_dcplb();
376 hard_local_irq_restore(flags);