The x86 timer interrupt handler is the only handler not traced in the
[linux-2.6/next.git] / arch / mips / alchemy / common / irq.c
blob8b60ba0675e2f0f47c78b0908c53f93565f68fbb
1 /*
2 * Copyright 2001, 2007-2008 MontaVista Software Inc.
3 * Author: MontaVista Software, Inc. <source@mvista.com>
5 * Copyright (C) 2007 Ralf Baechle (ralf@linux-mips.org)
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License as published by the
9 * Free Software Foundation; either version 2 of the License, or (at your
10 * option) any later version.
12 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
13 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
15 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
16 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
17 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
18 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
19 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
20 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
21 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23 * You should have received a copy of the GNU General Public License along
24 * with this program; if not, write to the Free Software Foundation, Inc.,
25 * 675 Mass Ave, Cambridge, MA 02139, USA.
28 #include <linux/bitops.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/irq.h>
32 #include <linux/slab.h>
33 #include <linux/syscore_ops.h>
35 #include <asm/irq_cpu.h>
36 #include <asm/mipsregs.h>
37 #include <asm/mach-au1x00/au1000.h>
38 #ifdef CONFIG_MIPS_PB1000
39 #include <asm/mach-pb1x00/pb1000.h>
40 #endif
42 /* Interrupt Controller register offsets */
43 #define IC_CFG0RD 0x40
44 #define IC_CFG0SET 0x40
45 #define IC_CFG0CLR 0x44
46 #define IC_CFG1RD 0x48
47 #define IC_CFG1SET 0x48
48 #define IC_CFG1CLR 0x4C
49 #define IC_CFG2RD 0x50
50 #define IC_CFG2SET 0x50
51 #define IC_CFG2CLR 0x54
52 #define IC_REQ0INT 0x54
53 #define IC_SRCRD 0x58
54 #define IC_SRCSET 0x58
55 #define IC_SRCCLR 0x5C
56 #define IC_REQ1INT 0x5C
57 #define IC_ASSIGNRD 0x60
58 #define IC_ASSIGNSET 0x60
59 #define IC_ASSIGNCLR 0x64
60 #define IC_WAKERD 0x68
61 #define IC_WAKESET 0x68
62 #define IC_WAKECLR 0x6C
63 #define IC_MASKRD 0x70
64 #define IC_MASKSET 0x70
65 #define IC_MASKCLR 0x74
66 #define IC_RISINGRD 0x78
67 #define IC_RISINGCLR 0x78
68 #define IC_FALLINGRD 0x7C
69 #define IC_FALLINGCLR 0x7C
70 #define IC_TESTBIT 0x80
72 static int au1x_ic_settype(struct irq_data *d, unsigned int flow_type);
74 /* NOTE on interrupt priorities: The original writers of this code said:
76 * Because of the tight timing of SETUP token to reply transactions,
77 * the USB devices-side packet complete interrupt (USB_DEV_REQ_INT)
78 * needs the highest priority.
81 /* per-processor fixed function irqs */
82 struct au1xxx_irqmap {
83 int im_irq;
84 int im_type;
85 int im_request; /* set 1 to get higher priority */
88 struct au1xxx_irqmap au1000_irqmap[] __initdata = {
89 { AU1000_UART0_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
90 { AU1000_UART1_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
91 { AU1000_UART2_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
92 { AU1000_UART3_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
93 { AU1000_SSI0_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
94 { AU1000_SSI1_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
95 { AU1000_DMA_INT_BASE, IRQ_TYPE_LEVEL_HIGH, 0 },
96 { AU1000_DMA_INT_BASE+1, IRQ_TYPE_LEVEL_HIGH, 0 },
97 { AU1000_DMA_INT_BASE+2, IRQ_TYPE_LEVEL_HIGH, 0 },
98 { AU1000_DMA_INT_BASE+3, IRQ_TYPE_LEVEL_HIGH, 0 },
99 { AU1000_DMA_INT_BASE+4, IRQ_TYPE_LEVEL_HIGH, 0 },
100 { AU1000_DMA_INT_BASE+5, IRQ_TYPE_LEVEL_HIGH, 0 },
101 { AU1000_DMA_INT_BASE+6, IRQ_TYPE_LEVEL_HIGH, 0 },
102 { AU1000_DMA_INT_BASE+7, IRQ_TYPE_LEVEL_HIGH, 0 },
103 { AU1000_TOY_INT, IRQ_TYPE_EDGE_RISING, 0 },
104 { AU1000_TOY_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
105 { AU1000_TOY_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
106 { AU1000_TOY_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 0 },
107 { AU1000_RTC_INT, IRQ_TYPE_EDGE_RISING, 0 },
108 { AU1000_RTC_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
109 { AU1000_RTC_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
110 { AU1000_RTC_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 1 },
111 { AU1000_IRDA_TX_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
112 { AU1000_IRDA_RX_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
113 { AU1000_USB_DEV_REQ_INT, IRQ_TYPE_LEVEL_HIGH, 1 },
114 { AU1000_USB_DEV_SUS_INT, IRQ_TYPE_EDGE_RISING, 0 },
115 { AU1000_USB_HOST_INT, IRQ_TYPE_LEVEL_LOW, 0 },
116 { AU1000_ACSYNC_INT, IRQ_TYPE_EDGE_RISING, 0 },
117 { AU1000_MAC0_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
118 { AU1000_MAC1_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
119 { AU1000_AC97C_INT, IRQ_TYPE_EDGE_RISING, 0 },
120 { -1, },
123 struct au1xxx_irqmap au1500_irqmap[] __initdata = {
124 { AU1500_UART0_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
125 { AU1500_PCI_INTA, IRQ_TYPE_LEVEL_LOW, 0 },
126 { AU1500_PCI_INTB, IRQ_TYPE_LEVEL_LOW, 0 },
127 { AU1500_UART3_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
128 { AU1500_PCI_INTC, IRQ_TYPE_LEVEL_LOW, 0 },
129 { AU1500_PCI_INTD, IRQ_TYPE_LEVEL_LOW, 0 },
130 { AU1500_DMA_INT_BASE, IRQ_TYPE_LEVEL_HIGH, 0 },
131 { AU1500_DMA_INT_BASE+1, IRQ_TYPE_LEVEL_HIGH, 0 },
132 { AU1500_DMA_INT_BASE+2, IRQ_TYPE_LEVEL_HIGH, 0 },
133 { AU1500_DMA_INT_BASE+3, IRQ_TYPE_LEVEL_HIGH, 0 },
134 { AU1500_DMA_INT_BASE+4, IRQ_TYPE_LEVEL_HIGH, 0 },
135 { AU1500_DMA_INT_BASE+5, IRQ_TYPE_LEVEL_HIGH, 0 },
136 { AU1500_DMA_INT_BASE+6, IRQ_TYPE_LEVEL_HIGH, 0 },
137 { AU1500_DMA_INT_BASE+7, IRQ_TYPE_LEVEL_HIGH, 0 },
138 { AU1500_TOY_INT, IRQ_TYPE_EDGE_RISING, 0 },
139 { AU1500_TOY_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
140 { AU1500_TOY_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
141 { AU1500_TOY_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 0 },
142 { AU1500_RTC_INT, IRQ_TYPE_EDGE_RISING, 0 },
143 { AU1500_RTC_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
144 { AU1500_RTC_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
145 { AU1500_RTC_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 1 },
146 { AU1500_USB_DEV_REQ_INT, IRQ_TYPE_LEVEL_HIGH, 1 },
147 { AU1500_USB_DEV_SUS_INT, IRQ_TYPE_EDGE_RISING, 0 },
148 { AU1500_USB_HOST_INT, IRQ_TYPE_LEVEL_LOW, 0 },
149 { AU1500_ACSYNC_INT, IRQ_TYPE_EDGE_RISING, 0 },
150 { AU1500_MAC0_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
151 { AU1500_MAC1_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
152 { AU1500_AC97C_INT, IRQ_TYPE_EDGE_RISING, 0 },
153 { -1, },
156 struct au1xxx_irqmap au1100_irqmap[] __initdata = {
157 { AU1100_UART0_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
158 { AU1100_UART1_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
159 { AU1100_SD_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
160 { AU1100_UART3_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
161 { AU1100_SSI0_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
162 { AU1100_SSI1_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
163 { AU1100_DMA_INT_BASE, IRQ_TYPE_LEVEL_HIGH, 0 },
164 { AU1100_DMA_INT_BASE+1, IRQ_TYPE_LEVEL_HIGH, 0 },
165 { AU1100_DMA_INT_BASE+2, IRQ_TYPE_LEVEL_HIGH, 0 },
166 { AU1100_DMA_INT_BASE+3, IRQ_TYPE_LEVEL_HIGH, 0 },
167 { AU1100_DMA_INT_BASE+4, IRQ_TYPE_LEVEL_HIGH, 0 },
168 { AU1100_DMA_INT_BASE+5, IRQ_TYPE_LEVEL_HIGH, 0 },
169 { AU1100_DMA_INT_BASE+6, IRQ_TYPE_LEVEL_HIGH, 0 },
170 { AU1100_DMA_INT_BASE+7, IRQ_TYPE_LEVEL_HIGH, 0 },
171 { AU1100_TOY_INT, IRQ_TYPE_EDGE_RISING, 0 },
172 { AU1100_TOY_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
173 { AU1100_TOY_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
174 { AU1100_TOY_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 0 },
175 { AU1100_RTC_INT, IRQ_TYPE_EDGE_RISING, 0 },
176 { AU1100_RTC_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
177 { AU1100_RTC_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
178 { AU1100_RTC_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 1 },
179 { AU1100_IRDA_TX_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
180 { AU1100_IRDA_RX_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
181 { AU1100_USB_DEV_REQ_INT, IRQ_TYPE_LEVEL_HIGH, 1 },
182 { AU1100_USB_DEV_SUS_INT, IRQ_TYPE_EDGE_RISING, 0 },
183 { AU1100_USB_HOST_INT, IRQ_TYPE_LEVEL_LOW, 0 },
184 { AU1100_ACSYNC_INT, IRQ_TYPE_EDGE_RISING, 0 },
185 { AU1100_MAC0_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
186 { AU1100_LCD_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
187 { AU1100_AC97C_INT, IRQ_TYPE_EDGE_RISING, 0 },
188 { -1, },
191 struct au1xxx_irqmap au1550_irqmap[] __initdata = {
192 { AU1550_UART0_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
193 { AU1550_PCI_INTA, IRQ_TYPE_LEVEL_LOW, 0 },
194 { AU1550_PCI_INTB, IRQ_TYPE_LEVEL_LOW, 0 },
195 { AU1550_DDMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
196 { AU1550_CRYPTO_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
197 { AU1550_PCI_INTC, IRQ_TYPE_LEVEL_LOW, 0 },
198 { AU1550_PCI_INTD, IRQ_TYPE_LEVEL_LOW, 0 },
199 { AU1550_PCI_RST_INT, IRQ_TYPE_LEVEL_LOW, 0 },
200 { AU1550_UART1_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
201 { AU1550_UART3_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
202 { AU1550_PSC0_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
203 { AU1550_PSC1_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
204 { AU1550_PSC2_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
205 { AU1550_PSC3_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
206 { AU1550_TOY_INT, IRQ_TYPE_EDGE_RISING, 0 },
207 { AU1550_TOY_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
208 { AU1550_TOY_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
209 { AU1550_TOY_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 0 },
210 { AU1550_RTC_INT, IRQ_TYPE_EDGE_RISING, 0 },
211 { AU1550_RTC_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
212 { AU1550_RTC_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
213 { AU1550_RTC_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 1 },
214 { AU1550_NAND_INT, IRQ_TYPE_EDGE_RISING, 0 },
215 { AU1550_USB_DEV_REQ_INT, IRQ_TYPE_LEVEL_HIGH, 1 },
216 { AU1550_USB_DEV_SUS_INT, IRQ_TYPE_EDGE_RISING, 0 },
217 { AU1550_USB_HOST_INT, IRQ_TYPE_LEVEL_LOW, 0 },
218 { AU1550_MAC0_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
219 { AU1550_MAC1_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
220 { -1, },
223 struct au1xxx_irqmap au1200_irqmap[] __initdata = {
224 { AU1200_UART0_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
225 { AU1200_SWT_INT, IRQ_TYPE_EDGE_RISING, 0 },
226 { AU1200_SD_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
227 { AU1200_DDMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
228 { AU1200_MAE_BE_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
229 { AU1200_UART1_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
230 { AU1200_MAE_FE_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
231 { AU1200_PSC0_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
232 { AU1200_PSC1_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
233 { AU1200_AES_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
234 { AU1200_CAMERA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
235 { AU1200_TOY_INT, IRQ_TYPE_EDGE_RISING, 0 },
236 { AU1200_TOY_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
237 { AU1200_TOY_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
238 { AU1200_TOY_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 0 },
239 { AU1200_RTC_INT, IRQ_TYPE_EDGE_RISING, 0 },
240 { AU1200_RTC_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
241 { AU1200_RTC_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
242 { AU1200_RTC_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 1 },
243 { AU1200_NAND_INT, IRQ_TYPE_EDGE_RISING, 0 },
244 { AU1200_USB_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
245 { AU1200_LCD_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
246 { AU1200_MAE_BOTH_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
247 { -1, },
251 static void au1x_ic0_unmask(struct irq_data *d)
253 unsigned int bit = d->irq - AU1000_INTC0_INT_BASE;
254 void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR);
256 __raw_writel(1 << bit, base + IC_MASKSET);
257 __raw_writel(1 << bit, base + IC_WAKESET);
258 wmb();
261 static void au1x_ic1_unmask(struct irq_data *d)
263 unsigned int bit = d->irq - AU1000_INTC1_INT_BASE;
264 void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR);
266 __raw_writel(1 << bit, base + IC_MASKSET);
267 __raw_writel(1 << bit, base + IC_WAKESET);
269 /* very hacky. does the pb1000 cpld auto-disable this int?
270 * nowhere in the current kernel sources is it disabled. --mlau
272 #if defined(CONFIG_MIPS_PB1000)
273 if (d->irq == AU1000_GPIO15_INT)
274 __raw_writel(0x4000, (void __iomem *)PB1000_MDR); /* enable int */
275 #endif
276 wmb();
279 static void au1x_ic0_mask(struct irq_data *d)
281 unsigned int bit = d->irq - AU1000_INTC0_INT_BASE;
282 void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR);
284 __raw_writel(1 << bit, base + IC_MASKCLR);
285 __raw_writel(1 << bit, base + IC_WAKECLR);
286 wmb();
289 static void au1x_ic1_mask(struct irq_data *d)
291 unsigned int bit = d->irq - AU1000_INTC1_INT_BASE;
292 void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR);
294 __raw_writel(1 << bit, base + IC_MASKCLR);
295 __raw_writel(1 << bit, base + IC_WAKECLR);
296 wmb();
299 static void au1x_ic0_ack(struct irq_data *d)
301 unsigned int bit = d->irq - AU1000_INTC0_INT_BASE;
302 void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR);
305 * This may assume that we don't get interrupts from
306 * both edges at once, or if we do, that we don't care.
308 __raw_writel(1 << bit, base + IC_FALLINGCLR);
309 __raw_writel(1 << bit, base + IC_RISINGCLR);
310 wmb();
313 static void au1x_ic1_ack(struct irq_data *d)
315 unsigned int bit = d->irq - AU1000_INTC1_INT_BASE;
316 void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR);
319 * This may assume that we don't get interrupts from
320 * both edges at once, or if we do, that we don't care.
322 __raw_writel(1 << bit, base + IC_FALLINGCLR);
323 __raw_writel(1 << bit, base + IC_RISINGCLR);
324 wmb();
327 static void au1x_ic0_maskack(struct irq_data *d)
329 unsigned int bit = d->irq - AU1000_INTC0_INT_BASE;
330 void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR);
332 __raw_writel(1 << bit, base + IC_WAKECLR);
333 __raw_writel(1 << bit, base + IC_MASKCLR);
334 __raw_writel(1 << bit, base + IC_RISINGCLR);
335 __raw_writel(1 << bit, base + IC_FALLINGCLR);
336 wmb();
339 static void au1x_ic1_maskack(struct irq_data *d)
341 unsigned int bit = d->irq - AU1000_INTC1_INT_BASE;
342 void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR);
344 __raw_writel(1 << bit, base + IC_WAKECLR);
345 __raw_writel(1 << bit, base + IC_MASKCLR);
346 __raw_writel(1 << bit, base + IC_RISINGCLR);
347 __raw_writel(1 << bit, base + IC_FALLINGCLR);
348 wmb();
351 static int au1x_ic1_setwake(struct irq_data *d, unsigned int on)
353 int bit = d->irq - AU1000_INTC1_INT_BASE;
354 unsigned long wakemsk, flags;
356 /* only GPIO 0-7 can act as wakeup source. Fortunately these
357 * are wired up identically on all supported variants.
359 if ((bit < 0) || (bit > 7))
360 return -EINVAL;
362 local_irq_save(flags);
363 wakemsk = __raw_readl((void __iomem *)SYS_WAKEMSK);
364 if (on)
365 wakemsk |= 1 << bit;
366 else
367 wakemsk &= ~(1 << bit);
368 __raw_writel(wakemsk, (void __iomem *)SYS_WAKEMSK);
369 wmb();
370 local_irq_restore(flags);
372 return 0;
376 * irq_chips for both ICs; this way the mask handlers can be
377 * as short as possible.
379 static struct irq_chip au1x_ic0_chip = {
380 .name = "Alchemy-IC0",
381 .irq_ack = au1x_ic0_ack,
382 .irq_mask = au1x_ic0_mask,
383 .irq_mask_ack = au1x_ic0_maskack,
384 .irq_unmask = au1x_ic0_unmask,
385 .irq_set_type = au1x_ic_settype,
388 static struct irq_chip au1x_ic1_chip = {
389 .name = "Alchemy-IC1",
390 .irq_ack = au1x_ic1_ack,
391 .irq_mask = au1x_ic1_mask,
392 .irq_mask_ack = au1x_ic1_maskack,
393 .irq_unmask = au1x_ic1_unmask,
394 .irq_set_type = au1x_ic_settype,
395 .irq_set_wake = au1x_ic1_setwake,
398 static int au1x_ic_settype(struct irq_data *d, unsigned int flow_type)
400 struct irq_chip *chip;
401 unsigned int bit, irq = d->irq;
402 irq_flow_handler_t handler = NULL;
403 unsigned char *name = NULL;
404 void __iomem *base;
405 int ret;
407 if (irq >= AU1000_INTC1_INT_BASE) {
408 bit = irq - AU1000_INTC1_INT_BASE;
409 chip = &au1x_ic1_chip;
410 base = (void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR);
411 } else {
412 bit = irq - AU1000_INTC0_INT_BASE;
413 chip = &au1x_ic0_chip;
414 base = (void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR);
417 if (bit > 31)
418 return -EINVAL;
420 ret = 0;
422 switch (flow_type) { /* cfgregs 2:1:0 */
423 case IRQ_TYPE_EDGE_RISING: /* 0:0:1 */
424 __raw_writel(1 << bit, base + IC_CFG2CLR);
425 __raw_writel(1 << bit, base + IC_CFG1CLR);
426 __raw_writel(1 << bit, base + IC_CFG0SET);
427 handler = handle_edge_irq;
428 name = "riseedge";
429 break;
430 case IRQ_TYPE_EDGE_FALLING: /* 0:1:0 */
431 __raw_writel(1 << bit, base + IC_CFG2CLR);
432 __raw_writel(1 << bit, base + IC_CFG1SET);
433 __raw_writel(1 << bit, base + IC_CFG0CLR);
434 handler = handle_edge_irq;
435 name = "falledge";
436 break;
437 case IRQ_TYPE_EDGE_BOTH: /* 0:1:1 */
438 __raw_writel(1 << bit, base + IC_CFG2CLR);
439 __raw_writel(1 << bit, base + IC_CFG1SET);
440 __raw_writel(1 << bit, base + IC_CFG0SET);
441 handler = handle_edge_irq;
442 name = "bothedge";
443 break;
444 case IRQ_TYPE_LEVEL_HIGH: /* 1:0:1 */
445 __raw_writel(1 << bit, base + IC_CFG2SET);
446 __raw_writel(1 << bit, base + IC_CFG1CLR);
447 __raw_writel(1 << bit, base + IC_CFG0SET);
448 handler = handle_level_irq;
449 name = "hilevel";
450 break;
451 case IRQ_TYPE_LEVEL_LOW: /* 1:1:0 */
452 __raw_writel(1 << bit, base + IC_CFG2SET);
453 __raw_writel(1 << bit, base + IC_CFG1SET);
454 __raw_writel(1 << bit, base + IC_CFG0CLR);
455 handler = handle_level_irq;
456 name = "lowlevel";
457 break;
458 case IRQ_TYPE_NONE: /* 0:0:0 */
459 __raw_writel(1 << bit, base + IC_CFG2CLR);
460 __raw_writel(1 << bit, base + IC_CFG1CLR);
461 __raw_writel(1 << bit, base + IC_CFG0CLR);
462 break;
463 default:
464 ret = -EINVAL;
466 __irq_set_chip_handler_name_locked(d->irq, chip, handler, name);
468 wmb();
470 return ret;
473 asmlinkage void plat_irq_dispatch(void)
475 unsigned int pending = read_c0_status() & read_c0_cause();
476 unsigned long s, off;
478 if (pending & CAUSEF_IP7) {
479 off = MIPS_CPU_IRQ_BASE + 7;
480 goto handle;
481 } else if (pending & CAUSEF_IP2) {
482 s = KSEG1ADDR(AU1000_IC0_PHYS_ADDR) + IC_REQ0INT;
483 off = AU1000_INTC0_INT_BASE;
484 } else if (pending & CAUSEF_IP3) {
485 s = KSEG1ADDR(AU1000_IC0_PHYS_ADDR) + IC_REQ1INT;
486 off = AU1000_INTC0_INT_BASE;
487 } else if (pending & CAUSEF_IP4) {
488 s = KSEG1ADDR(AU1000_IC1_PHYS_ADDR) + IC_REQ0INT;
489 off = AU1000_INTC1_INT_BASE;
490 } else if (pending & CAUSEF_IP5) {
491 s = KSEG1ADDR(AU1000_IC1_PHYS_ADDR) + IC_REQ1INT;
492 off = AU1000_INTC1_INT_BASE;
493 } else
494 goto spurious;
496 s = __raw_readl((void __iomem *)s);
497 if (unlikely(!s)) {
498 spurious:
499 spurious_interrupt();
500 return;
502 off += __ffs(s);
503 handle:
504 do_IRQ(off);
508 static inline void ic_init(void __iomem *base)
510 /* initialize interrupt controller to a safe state */
511 __raw_writel(0xffffffff, base + IC_CFG0CLR);
512 __raw_writel(0xffffffff, base + IC_CFG1CLR);
513 __raw_writel(0xffffffff, base + IC_CFG2CLR);
514 __raw_writel(0xffffffff, base + IC_MASKCLR);
515 __raw_writel(0xffffffff, base + IC_ASSIGNCLR);
516 __raw_writel(0xffffffff, base + IC_WAKECLR);
517 __raw_writel(0xffffffff, base + IC_SRCSET);
518 __raw_writel(0xffffffff, base + IC_FALLINGCLR);
519 __raw_writel(0xffffffff, base + IC_RISINGCLR);
520 __raw_writel(0x00000000, base + IC_TESTBIT);
521 wmb();
524 static void __init au1000_init_irq(struct au1xxx_irqmap *map)
526 unsigned int bit, irq_nr;
527 void __iomem *base;
529 ic_init((void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR));
530 ic_init((void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR));
531 mips_cpu_irq_init();
533 /* register all 64 possible IC0+IC1 irq sources as type "none".
534 * Use set_irq_type() to set edge/level behaviour at runtime.
536 for (irq_nr = AU1000_INTC0_INT_BASE;
537 (irq_nr < AU1000_INTC0_INT_BASE + 32); irq_nr++)
538 au1x_ic_settype(irq_get_irq_data(irq_nr), IRQ_TYPE_NONE);
540 for (irq_nr = AU1000_INTC1_INT_BASE;
541 (irq_nr < AU1000_INTC1_INT_BASE + 32); irq_nr++)
542 au1x_ic_settype(irq_get_irq_data(irq_nr), IRQ_TYPE_NONE);
545 * Initialize IC0, which is fixed per processor.
547 while (map->im_irq != -1) {
548 irq_nr = map->im_irq;
550 if (irq_nr >= AU1000_INTC1_INT_BASE) {
551 bit = irq_nr - AU1000_INTC1_INT_BASE;
552 base = (void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR);
553 } else {
554 bit = irq_nr - AU1000_INTC0_INT_BASE;
555 base = (void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR);
557 if (map->im_request)
558 __raw_writel(1 << bit, base + IC_ASSIGNSET);
560 au1x_ic_settype(irq_get_irq_data(irq_nr), map->im_type);
561 ++map;
564 set_c0_status(IE_IRQ0 | IE_IRQ1 | IE_IRQ2 | IE_IRQ3);
567 void __init arch_init_irq(void)
569 switch (alchemy_get_cputype()) {
570 case ALCHEMY_CPU_AU1000:
571 au1000_init_irq(au1000_irqmap);
572 break;
573 case ALCHEMY_CPU_AU1500:
574 au1000_init_irq(au1500_irqmap);
575 break;
576 case ALCHEMY_CPU_AU1100:
577 au1000_init_irq(au1100_irqmap);
578 break;
579 case ALCHEMY_CPU_AU1550:
580 au1000_init_irq(au1550_irqmap);
581 break;
582 case ALCHEMY_CPU_AU1200:
583 au1000_init_irq(au1200_irqmap);
584 break;
589 static unsigned long alchemy_ic_pmdata[7 * 2];
591 static inline void alchemy_ic_suspend_one(void __iomem *base, unsigned long *d)
593 d[0] = __raw_readl(base + IC_CFG0RD);
594 d[1] = __raw_readl(base + IC_CFG1RD);
595 d[2] = __raw_readl(base + IC_CFG2RD);
596 d[3] = __raw_readl(base + IC_SRCRD);
597 d[4] = __raw_readl(base + IC_ASSIGNRD);
598 d[5] = __raw_readl(base + IC_WAKERD);
599 d[6] = __raw_readl(base + IC_MASKRD);
600 ic_init(base); /* shut it up too while at it */
603 static inline void alchemy_ic_resume_one(void __iomem *base, unsigned long *d)
605 ic_init(base);
607 __raw_writel(d[0], base + IC_CFG0SET);
608 __raw_writel(d[1], base + IC_CFG1SET);
609 __raw_writel(d[2], base + IC_CFG2SET);
610 __raw_writel(d[3], base + IC_SRCSET);
611 __raw_writel(d[4], base + IC_ASSIGNSET);
612 __raw_writel(d[5], base + IC_WAKESET);
613 wmb();
615 __raw_writel(d[6], base + IC_MASKSET);
616 wmb();
619 static int alchemy_ic_suspend(void)
621 alchemy_ic_suspend_one((void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR),
622 alchemy_ic_pmdata);
623 alchemy_ic_suspend_one((void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR),
624 &alchemy_ic_pmdata[7]);
625 return 0;
628 static void alchemy_ic_resume(void)
630 alchemy_ic_resume_one((void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR),
631 &alchemy_ic_pmdata[7]);
632 alchemy_ic_resume_one((void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR),
633 alchemy_ic_pmdata);
636 static struct syscore_ops alchemy_ic_syscore_ops = {
637 .suspend = alchemy_ic_suspend,
638 .resume = alchemy_ic_resume,
641 static int __init alchemy_ic_pm_init(void)
643 register_syscore_ops(&alchemy_ic_syscore_ops);
644 return 0;
646 device_initcall(alchemy_ic_pm_init);