The x86 timer interrupt handler is the only handler not traced in the
[linux-2.6/next.git] / arch / powerpc / kernel / time.c
blob522bb1dfc3538ddc7b08ec3986393577edc5e9e8
1 /*
2 * Common time routines among all ppc machines.
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
35 #include <linux/errno.h>
36 #include <linux/export.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/param.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/interrupt.h>
43 #include <linux/timex.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/time.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
54 #include <linux/irq.h>
55 #include <linux/delay.h>
56 #include <linux/irq_work.h>
57 #include <asm/trace.h>
59 #include <asm/io.h>
60 #include <asm/processor.h>
61 #include <asm/nvram.h>
62 #include <asm/cache.h>
63 #include <asm/machdep.h>
64 #include <asm/uaccess.h>
65 #include <asm/time.h>
66 #include <asm/prom.h>
67 #include <asm/irq.h>
68 #include <asm/div64.h>
69 #include <asm/smp.h>
70 #include <asm/vdso_datapage.h>
71 #include <asm/firmware.h>
72 #include <asm/cputime.h>
73 #ifdef CONFIG_PPC_ISERIES
74 #include <asm/iseries/it_lp_queue.h>
75 #include <asm/iseries/hv_call_xm.h>
76 #endif
78 /* powerpc clocksource/clockevent code */
80 #include <linux/clockchips.h>
81 #include <linux/clocksource.h>
83 static cycle_t rtc_read(struct clocksource *);
84 static struct clocksource clocksource_rtc = {
85 .name = "rtc",
86 .rating = 400,
87 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
88 .mask = CLOCKSOURCE_MASK(64),
89 .shift = 22,
90 .mult = 0, /* To be filled in */
91 .read = rtc_read,
94 static cycle_t timebase_read(struct clocksource *);
95 static struct clocksource clocksource_timebase = {
96 .name = "timebase",
97 .rating = 400,
98 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
99 .mask = CLOCKSOURCE_MASK(64),
100 .shift = 22,
101 .mult = 0, /* To be filled in */
102 .read = timebase_read,
105 #define DECREMENTER_MAX 0x7fffffff
107 static int decrementer_set_next_event(unsigned long evt,
108 struct clock_event_device *dev);
109 static void decrementer_set_mode(enum clock_event_mode mode,
110 struct clock_event_device *dev);
112 static struct clock_event_device decrementer_clockevent = {
113 .name = "decrementer",
114 .rating = 200,
115 .shift = 0, /* To be filled in */
116 .mult = 0, /* To be filled in */
117 .irq = 0,
118 .set_next_event = decrementer_set_next_event,
119 .set_mode = decrementer_set_mode,
120 .features = CLOCK_EVT_FEAT_ONESHOT,
123 struct decrementer_clock {
124 struct clock_event_device event;
125 u64 next_tb;
128 static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
130 #ifdef CONFIG_PPC_ISERIES
131 static unsigned long __initdata iSeries_recal_titan;
132 static signed long __initdata iSeries_recal_tb;
134 /* Forward declaration is only needed for iSereis compiles */
135 static void __init clocksource_init(void);
136 #endif
138 #define XSEC_PER_SEC (1024*1024)
140 #ifdef CONFIG_PPC64
141 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
142 #else
143 /* compute ((xsec << 12) * max) >> 32 */
144 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
145 #endif
147 unsigned long tb_ticks_per_jiffy;
148 unsigned long tb_ticks_per_usec = 100; /* sane default */
149 EXPORT_SYMBOL(tb_ticks_per_usec);
150 unsigned long tb_ticks_per_sec;
151 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
153 DEFINE_SPINLOCK(rtc_lock);
154 EXPORT_SYMBOL_GPL(rtc_lock);
156 static u64 tb_to_ns_scale __read_mostly;
157 static unsigned tb_to_ns_shift __read_mostly;
158 static u64 boot_tb __read_mostly;
160 extern struct timezone sys_tz;
161 static long timezone_offset;
163 unsigned long ppc_proc_freq;
164 EXPORT_SYMBOL_GPL(ppc_proc_freq);
165 unsigned long ppc_tb_freq;
166 EXPORT_SYMBOL_GPL(ppc_tb_freq);
168 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
170 * Factors for converting from cputime_t (timebase ticks) to
171 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
172 * These are all stored as 0.64 fixed-point binary fractions.
174 u64 __cputime_jiffies_factor;
175 EXPORT_SYMBOL(__cputime_jiffies_factor);
176 u64 __cputime_msec_factor;
177 EXPORT_SYMBOL(__cputime_msec_factor);
178 u64 __cputime_sec_factor;
179 EXPORT_SYMBOL(__cputime_sec_factor);
180 u64 __cputime_clockt_factor;
181 EXPORT_SYMBOL(__cputime_clockt_factor);
182 DEFINE_PER_CPU(unsigned long, cputime_last_delta);
183 DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
185 cputime_t cputime_one_jiffy;
187 void (*dtl_consumer)(struct dtl_entry *, u64);
189 static void calc_cputime_factors(void)
191 struct div_result res;
193 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
194 __cputime_jiffies_factor = res.result_low;
195 div128_by_32(1000, 0, tb_ticks_per_sec, &res);
196 __cputime_msec_factor = res.result_low;
197 div128_by_32(1, 0, tb_ticks_per_sec, &res);
198 __cputime_sec_factor = res.result_low;
199 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
200 __cputime_clockt_factor = res.result_low;
204 * Read the SPURR on systems that have it, otherwise the PURR,
205 * or if that doesn't exist return the timebase value passed in.
207 static u64 read_spurr(u64 tb)
209 if (cpu_has_feature(CPU_FTR_SPURR))
210 return mfspr(SPRN_SPURR);
211 if (cpu_has_feature(CPU_FTR_PURR))
212 return mfspr(SPRN_PURR);
213 return tb;
216 #ifdef CONFIG_PPC_SPLPAR
219 * Scan the dispatch trace log and count up the stolen time.
220 * Should be called with interrupts disabled.
222 static u64 scan_dispatch_log(u64 stop_tb)
224 u64 i = local_paca->dtl_ridx;
225 struct dtl_entry *dtl = local_paca->dtl_curr;
226 struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
227 struct lppaca *vpa = local_paca->lppaca_ptr;
228 u64 tb_delta;
229 u64 stolen = 0;
230 u64 dtb;
232 if (!dtl)
233 return 0;
235 if (i == vpa->dtl_idx)
236 return 0;
237 while (i < vpa->dtl_idx) {
238 if (dtl_consumer)
239 dtl_consumer(dtl, i);
240 dtb = dtl->timebase;
241 tb_delta = dtl->enqueue_to_dispatch_time +
242 dtl->ready_to_enqueue_time;
243 barrier();
244 if (i + N_DISPATCH_LOG < vpa->dtl_idx) {
245 /* buffer has overflowed */
246 i = vpa->dtl_idx - N_DISPATCH_LOG;
247 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
248 continue;
250 if (dtb > stop_tb)
251 break;
252 stolen += tb_delta;
253 ++i;
254 ++dtl;
255 if (dtl == dtl_end)
256 dtl = local_paca->dispatch_log;
258 local_paca->dtl_ridx = i;
259 local_paca->dtl_curr = dtl;
260 return stolen;
264 * Accumulate stolen time by scanning the dispatch trace log.
265 * Called on entry from user mode.
267 void accumulate_stolen_time(void)
269 u64 sst, ust;
271 u8 save_soft_enabled = local_paca->soft_enabled;
272 u8 save_hard_enabled = local_paca->hard_enabled;
274 /* We are called early in the exception entry, before
275 * soft/hard_enabled are sync'ed to the expected state
276 * for the exception. We are hard disabled but the PACA
277 * needs to reflect that so various debug stuff doesn't
278 * complain
280 local_paca->soft_enabled = 0;
281 local_paca->hard_enabled = 0;
283 sst = scan_dispatch_log(local_paca->starttime_user);
284 ust = scan_dispatch_log(local_paca->starttime);
285 local_paca->system_time -= sst;
286 local_paca->user_time -= ust;
287 local_paca->stolen_time += ust + sst;
289 local_paca->soft_enabled = save_soft_enabled;
290 local_paca->hard_enabled = save_hard_enabled;
293 static inline u64 calculate_stolen_time(u64 stop_tb)
295 u64 stolen = 0;
297 if (get_paca()->dtl_ridx != get_paca()->lppaca_ptr->dtl_idx) {
298 stolen = scan_dispatch_log(stop_tb);
299 get_paca()->system_time -= stolen;
302 stolen += get_paca()->stolen_time;
303 get_paca()->stolen_time = 0;
304 return stolen;
307 #else /* CONFIG_PPC_SPLPAR */
308 static inline u64 calculate_stolen_time(u64 stop_tb)
310 return 0;
313 #endif /* CONFIG_PPC_SPLPAR */
316 * Account time for a transition between system, hard irq
317 * or soft irq state.
319 void account_system_vtime(struct task_struct *tsk)
321 u64 now, nowscaled, delta, deltascaled;
322 unsigned long flags;
323 u64 stolen, udelta, sys_scaled, user_scaled;
325 local_irq_save(flags);
326 now = mftb();
327 nowscaled = read_spurr(now);
328 get_paca()->system_time += now - get_paca()->starttime;
329 get_paca()->starttime = now;
330 deltascaled = nowscaled - get_paca()->startspurr;
331 get_paca()->startspurr = nowscaled;
333 stolen = calculate_stolen_time(now);
335 delta = get_paca()->system_time;
336 get_paca()->system_time = 0;
337 udelta = get_paca()->user_time - get_paca()->utime_sspurr;
338 get_paca()->utime_sspurr = get_paca()->user_time;
341 * Because we don't read the SPURR on every kernel entry/exit,
342 * deltascaled includes both user and system SPURR ticks.
343 * Apportion these ticks to system SPURR ticks and user
344 * SPURR ticks in the same ratio as the system time (delta)
345 * and user time (udelta) values obtained from the timebase
346 * over the same interval. The system ticks get accounted here;
347 * the user ticks get saved up in paca->user_time_scaled to be
348 * used by account_process_tick.
350 sys_scaled = delta;
351 user_scaled = udelta;
352 if (deltascaled != delta + udelta) {
353 if (udelta) {
354 sys_scaled = deltascaled * delta / (delta + udelta);
355 user_scaled = deltascaled - sys_scaled;
356 } else {
357 sys_scaled = deltascaled;
360 get_paca()->user_time_scaled += user_scaled;
362 if (in_interrupt() || idle_task(smp_processor_id()) != tsk) {
363 account_system_time(tsk, 0, delta, sys_scaled);
364 if (stolen)
365 account_steal_time(stolen);
366 } else {
367 account_idle_time(delta + stolen);
369 local_irq_restore(flags);
371 EXPORT_SYMBOL_GPL(account_system_vtime);
374 * Transfer the user and system times accumulated in the paca
375 * by the exception entry and exit code to the generic process
376 * user and system time records.
377 * Must be called with interrupts disabled.
378 * Assumes that account_system_vtime() has been called recently
379 * (i.e. since the last entry from usermode) so that
380 * get_paca()->user_time_scaled is up to date.
382 void account_process_tick(struct task_struct *tsk, int user_tick)
384 cputime_t utime, utimescaled;
386 utime = get_paca()->user_time;
387 utimescaled = get_paca()->user_time_scaled;
388 get_paca()->user_time = 0;
389 get_paca()->user_time_scaled = 0;
390 get_paca()->utime_sspurr = 0;
391 account_user_time(tsk, utime, utimescaled);
394 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
395 #define calc_cputime_factors()
396 #endif
398 void __delay(unsigned long loops)
400 unsigned long start;
401 int diff;
403 if (__USE_RTC()) {
404 start = get_rtcl();
405 do {
406 /* the RTCL register wraps at 1000000000 */
407 diff = get_rtcl() - start;
408 if (diff < 0)
409 diff += 1000000000;
410 } while (diff < loops);
411 } else {
412 start = get_tbl();
413 while (get_tbl() - start < loops)
414 HMT_low();
415 HMT_medium();
418 EXPORT_SYMBOL(__delay);
420 void udelay(unsigned long usecs)
422 __delay(tb_ticks_per_usec * usecs);
424 EXPORT_SYMBOL(udelay);
426 #ifdef CONFIG_SMP
427 unsigned long profile_pc(struct pt_regs *regs)
429 unsigned long pc = instruction_pointer(regs);
431 if (in_lock_functions(pc))
432 return regs->link;
434 return pc;
436 EXPORT_SYMBOL(profile_pc);
437 #endif
439 #ifdef CONFIG_PPC_ISERIES
442 * This function recalibrates the timebase based on the 49-bit time-of-day
443 * value in the Titan chip. The Titan is much more accurate than the value
444 * returned by the service processor for the timebase frequency.
447 static int __init iSeries_tb_recal(void)
449 unsigned long titan, tb;
451 /* Make sure we only run on iSeries */
452 if (!firmware_has_feature(FW_FEATURE_ISERIES))
453 return -ENODEV;
455 tb = get_tb();
456 titan = HvCallXm_loadTod();
457 if ( iSeries_recal_titan ) {
458 unsigned long tb_ticks = tb - iSeries_recal_tb;
459 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
460 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
461 unsigned long new_tb_ticks_per_jiffy =
462 DIV_ROUND_CLOSEST(new_tb_ticks_per_sec, HZ);
463 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
464 char sign = '+';
465 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
466 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
468 if ( tick_diff < 0 ) {
469 tick_diff = -tick_diff;
470 sign = '-';
472 if ( tick_diff ) {
473 if ( tick_diff < tb_ticks_per_jiffy/25 ) {
474 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
475 new_tb_ticks_per_jiffy, sign, tick_diff );
476 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
477 tb_ticks_per_sec = new_tb_ticks_per_sec;
478 calc_cputime_factors();
479 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
480 setup_cputime_one_jiffy();
482 else {
483 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
484 " new tb_ticks_per_jiffy = %lu\n"
485 " old tb_ticks_per_jiffy = %lu\n",
486 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
490 iSeries_recal_titan = titan;
491 iSeries_recal_tb = tb;
493 /* Called here as now we know accurate values for the timebase */
494 clocksource_init();
495 return 0;
497 late_initcall(iSeries_tb_recal);
499 /* Called from platform early init */
500 void __init iSeries_time_init_early(void)
502 iSeries_recal_tb = get_tb();
503 iSeries_recal_titan = HvCallXm_loadTod();
505 #endif /* CONFIG_PPC_ISERIES */
507 #ifdef CONFIG_IRQ_WORK
510 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
512 #ifdef CONFIG_PPC64
513 static inline unsigned long test_irq_work_pending(void)
515 unsigned long x;
517 asm volatile("lbz %0,%1(13)"
518 : "=r" (x)
519 : "i" (offsetof(struct paca_struct, irq_work_pending)));
520 return x;
523 static inline void set_irq_work_pending_flag(void)
525 asm volatile("stb %0,%1(13)" : :
526 "r" (1),
527 "i" (offsetof(struct paca_struct, irq_work_pending)));
530 static inline void clear_irq_work_pending(void)
532 asm volatile("stb %0,%1(13)" : :
533 "r" (0),
534 "i" (offsetof(struct paca_struct, irq_work_pending)));
537 #else /* 32-bit */
539 DEFINE_PER_CPU(u8, irq_work_pending);
541 #define set_irq_work_pending_flag() __get_cpu_var(irq_work_pending) = 1
542 #define test_irq_work_pending() __get_cpu_var(irq_work_pending)
543 #define clear_irq_work_pending() __get_cpu_var(irq_work_pending) = 0
545 #endif /* 32 vs 64 bit */
547 void arch_irq_work_raise(void)
549 preempt_disable();
550 set_irq_work_pending_flag();
551 set_dec(1);
552 preempt_enable();
555 #else /* CONFIG_IRQ_WORK */
557 #define test_irq_work_pending() 0
558 #define clear_irq_work_pending()
560 #endif /* CONFIG_IRQ_WORK */
563 * For iSeries shared processors, we have to let the hypervisor
564 * set the hardware decrementer. We set a virtual decrementer
565 * in the lppaca and call the hypervisor if the virtual
566 * decrementer is less than the current value in the hardware
567 * decrementer. (almost always the new decrementer value will
568 * be greater than the current hardware decementer so the hypervisor
569 * call will not be needed)
573 * timer_interrupt - gets called when the decrementer overflows,
574 * with interrupts disabled.
576 void timer_interrupt(struct pt_regs * regs)
578 struct pt_regs *old_regs;
579 struct decrementer_clock *decrementer = &__get_cpu_var(decrementers);
580 struct clock_event_device *evt = &decrementer->event;
581 u64 now;
583 /* Ensure a positive value is written to the decrementer, or else
584 * some CPUs will continue to take decrementer exceptions.
586 set_dec(DECREMENTER_MAX);
588 /* Some implementations of hotplug will get timer interrupts while
589 * offline, just ignore these
591 if (!cpu_online(smp_processor_id()))
592 return;
594 trace_timer_interrupt_entry(regs);
596 __get_cpu_var(irq_stat).timer_irqs++;
598 #if defined(CONFIG_PPC32) && defined(CONFIG_PMAC)
599 if (atomic_read(&ppc_n_lost_interrupts) != 0)
600 do_IRQ(regs);
601 #endif
603 old_regs = set_irq_regs(regs);
604 irq_enter();
606 if (test_irq_work_pending()) {
607 clear_irq_work_pending();
608 irq_work_run();
611 #ifdef CONFIG_PPC_ISERIES
612 if (firmware_has_feature(FW_FEATURE_ISERIES))
613 get_lppaca()->int_dword.fields.decr_int = 0;
614 #endif
616 now = get_tb_or_rtc();
617 if (now >= decrementer->next_tb) {
618 decrementer->next_tb = ~(u64)0;
619 if (evt->event_handler)
620 evt->event_handler(evt);
621 } else {
622 now = decrementer->next_tb - now;
623 if (now <= DECREMENTER_MAX)
624 set_dec((int)now);
627 #ifdef CONFIG_PPC_ISERIES
628 if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
629 process_hvlpevents();
630 #endif
632 #ifdef CONFIG_PPC64
633 /* collect purr register values often, for accurate calculations */
634 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
635 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
636 cu->current_tb = mfspr(SPRN_PURR);
638 #endif
640 irq_exit();
641 set_irq_regs(old_regs);
643 trace_timer_interrupt_exit(regs);
646 #ifdef CONFIG_SUSPEND
647 static void generic_suspend_disable_irqs(void)
649 /* Disable the decrementer, so that it doesn't interfere
650 * with suspending.
653 set_dec(0x7fffffff);
654 local_irq_disable();
655 set_dec(0x7fffffff);
658 static void generic_suspend_enable_irqs(void)
660 local_irq_enable();
663 /* Overrides the weak version in kernel/power/main.c */
664 void arch_suspend_disable_irqs(void)
666 if (ppc_md.suspend_disable_irqs)
667 ppc_md.suspend_disable_irqs();
668 generic_suspend_disable_irqs();
671 /* Overrides the weak version in kernel/power/main.c */
672 void arch_suspend_enable_irqs(void)
674 generic_suspend_enable_irqs();
675 if (ppc_md.suspend_enable_irqs)
676 ppc_md.suspend_enable_irqs();
678 #endif
681 * Scheduler clock - returns current time in nanosec units.
683 * Note: mulhdu(a, b) (multiply high double unsigned) returns
684 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
685 * are 64-bit unsigned numbers.
687 unsigned long long sched_clock(void)
689 if (__USE_RTC())
690 return get_rtc();
691 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
694 static int __init get_freq(char *name, int cells, unsigned long *val)
696 struct device_node *cpu;
697 const unsigned int *fp;
698 int found = 0;
700 /* The cpu node should have timebase and clock frequency properties */
701 cpu = of_find_node_by_type(NULL, "cpu");
703 if (cpu) {
704 fp = of_get_property(cpu, name, NULL);
705 if (fp) {
706 found = 1;
707 *val = of_read_ulong(fp, cells);
710 of_node_put(cpu);
713 return found;
716 /* should become __cpuinit when secondary_cpu_time_init also is */
717 void start_cpu_decrementer(void)
719 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
720 /* Clear any pending timer interrupts */
721 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
723 /* Enable decrementer interrupt */
724 mtspr(SPRN_TCR, TCR_DIE);
725 #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
728 void __init generic_calibrate_decr(void)
730 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
732 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
733 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
735 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
736 "(not found)\n");
739 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
741 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
742 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
744 printk(KERN_ERR "WARNING: Estimating processor frequency "
745 "(not found)\n");
749 int update_persistent_clock(struct timespec now)
751 struct rtc_time tm;
753 if (!ppc_md.set_rtc_time)
754 return 0;
756 to_tm(now.tv_sec + 1 + timezone_offset, &tm);
757 tm.tm_year -= 1900;
758 tm.tm_mon -= 1;
760 return ppc_md.set_rtc_time(&tm);
763 static void __read_persistent_clock(struct timespec *ts)
765 struct rtc_time tm;
766 static int first = 1;
768 ts->tv_nsec = 0;
769 /* XXX this is a litle fragile but will work okay in the short term */
770 if (first) {
771 first = 0;
772 if (ppc_md.time_init)
773 timezone_offset = ppc_md.time_init();
775 /* get_boot_time() isn't guaranteed to be safe to call late */
776 if (ppc_md.get_boot_time) {
777 ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
778 return;
781 if (!ppc_md.get_rtc_time) {
782 ts->tv_sec = 0;
783 return;
785 ppc_md.get_rtc_time(&tm);
787 ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
788 tm.tm_hour, tm.tm_min, tm.tm_sec);
791 void read_persistent_clock(struct timespec *ts)
793 __read_persistent_clock(ts);
795 /* Sanitize it in case real time clock is set below EPOCH */
796 if (ts->tv_sec < 0) {
797 ts->tv_sec = 0;
798 ts->tv_nsec = 0;
803 /* clocksource code */
804 static cycle_t rtc_read(struct clocksource *cs)
806 return (cycle_t)get_rtc();
809 static cycle_t timebase_read(struct clocksource *cs)
811 return (cycle_t)get_tb();
814 void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
815 struct clocksource *clock, u32 mult)
817 u64 new_tb_to_xs, new_stamp_xsec;
818 u32 frac_sec;
820 if (clock != &clocksource_timebase)
821 return;
823 /* Make userspace gettimeofday spin until we're done. */
824 ++vdso_data->tb_update_count;
825 smp_mb();
827 /* XXX this assumes clock->shift == 22 */
828 /* 4611686018 ~= 2^(20+64-22) / 1e9 */
829 new_tb_to_xs = (u64) mult * 4611686018ULL;
830 new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
831 do_div(new_stamp_xsec, 1000000000);
832 new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
834 BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
835 /* this is tv_nsec / 1e9 as a 0.32 fraction */
836 frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
839 * tb_update_count is used to allow the userspace gettimeofday code
840 * to assure itself that it sees a consistent view of the tb_to_xs and
841 * stamp_xsec variables. It reads the tb_update_count, then reads
842 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
843 * the two values of tb_update_count match and are even then the
844 * tb_to_xs and stamp_xsec values are consistent. If not, then it
845 * loops back and reads them again until this criteria is met.
846 * We expect the caller to have done the first increment of
847 * vdso_data->tb_update_count already.
849 vdso_data->tb_orig_stamp = clock->cycle_last;
850 vdso_data->stamp_xsec = new_stamp_xsec;
851 vdso_data->tb_to_xs = new_tb_to_xs;
852 vdso_data->wtom_clock_sec = wtm->tv_sec;
853 vdso_data->wtom_clock_nsec = wtm->tv_nsec;
854 vdso_data->stamp_xtime = *wall_time;
855 vdso_data->stamp_sec_fraction = frac_sec;
856 smp_wmb();
857 ++(vdso_data->tb_update_count);
860 void update_vsyscall_tz(void)
862 /* Make userspace gettimeofday spin until we're done. */
863 ++vdso_data->tb_update_count;
864 smp_mb();
865 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
866 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
867 smp_mb();
868 ++vdso_data->tb_update_count;
871 static void __init clocksource_init(void)
873 struct clocksource *clock;
875 if (__USE_RTC())
876 clock = &clocksource_rtc;
877 else
878 clock = &clocksource_timebase;
880 clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
882 if (clocksource_register(clock)) {
883 printk(KERN_ERR "clocksource: %s is already registered\n",
884 clock->name);
885 return;
888 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
889 clock->name, clock->mult, clock->shift);
892 static int decrementer_set_next_event(unsigned long evt,
893 struct clock_event_device *dev)
895 __get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
896 set_dec(evt);
897 return 0;
900 static void decrementer_set_mode(enum clock_event_mode mode,
901 struct clock_event_device *dev)
903 if (mode != CLOCK_EVT_MODE_ONESHOT)
904 decrementer_set_next_event(DECREMENTER_MAX, dev);
907 static inline uint64_t div_sc64(unsigned long ticks, unsigned long nsec,
908 int shift)
910 uint64_t tmp = ((uint64_t)ticks) << shift;
912 do_div(tmp, nsec);
913 return tmp;
916 static void __init setup_clockevent_multiplier(unsigned long hz)
918 u64 mult, shift = 32;
920 while (1) {
921 mult = div_sc64(hz, NSEC_PER_SEC, shift);
922 if (mult && (mult >> 32UL) == 0UL)
923 break;
925 shift--;
928 decrementer_clockevent.shift = shift;
929 decrementer_clockevent.mult = mult;
932 static void register_decrementer_clockevent(int cpu)
934 struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
936 *dec = decrementer_clockevent;
937 dec->cpumask = cpumask_of(cpu);
939 printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
940 dec->name, dec->mult, dec->shift, cpu);
942 clockevents_register_device(dec);
945 static void __init init_decrementer_clockevent(void)
947 int cpu = smp_processor_id();
949 setup_clockevent_multiplier(ppc_tb_freq);
950 decrementer_clockevent.max_delta_ns =
951 clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
952 decrementer_clockevent.min_delta_ns =
953 clockevent_delta2ns(2, &decrementer_clockevent);
955 register_decrementer_clockevent(cpu);
958 void secondary_cpu_time_init(void)
960 /* Start the decrementer on CPUs that have manual control
961 * such as BookE
963 start_cpu_decrementer();
965 /* FIME: Should make unrelatred change to move snapshot_timebase
966 * call here ! */
967 register_decrementer_clockevent(smp_processor_id());
970 /* This function is only called on the boot processor */
971 void __init time_init(void)
973 struct div_result res;
974 u64 scale;
975 unsigned shift;
977 if (__USE_RTC()) {
978 /* 601 processor: dec counts down by 128 every 128ns */
979 ppc_tb_freq = 1000000000;
980 } else {
981 /* Normal PowerPC with timebase register */
982 ppc_md.calibrate_decr();
983 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
984 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
985 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
986 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
989 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
990 tb_ticks_per_sec = ppc_tb_freq;
991 tb_ticks_per_usec = ppc_tb_freq / 1000000;
992 calc_cputime_factors();
993 setup_cputime_one_jiffy();
996 * Compute scale factor for sched_clock.
997 * The calibrate_decr() function has set tb_ticks_per_sec,
998 * which is the timebase frequency.
999 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
1000 * the 128-bit result as a 64.64 fixed-point number.
1001 * We then shift that number right until it is less than 1.0,
1002 * giving us the scale factor and shift count to use in
1003 * sched_clock().
1005 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1006 scale = res.result_low;
1007 for (shift = 0; res.result_high != 0; ++shift) {
1008 scale = (scale >> 1) | (res.result_high << 63);
1009 res.result_high >>= 1;
1011 tb_to_ns_scale = scale;
1012 tb_to_ns_shift = shift;
1013 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1014 boot_tb = get_tb_or_rtc();
1016 /* If platform provided a timezone (pmac), we correct the time */
1017 if (timezone_offset) {
1018 sys_tz.tz_minuteswest = -timezone_offset / 60;
1019 sys_tz.tz_dsttime = 0;
1022 vdso_data->tb_update_count = 0;
1023 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1025 /* Start the decrementer on CPUs that have manual control
1026 * such as BookE
1028 start_cpu_decrementer();
1030 /* Register the clocksource, if we're not running on iSeries */
1031 if (!firmware_has_feature(FW_FEATURE_ISERIES))
1032 clocksource_init();
1034 init_decrementer_clockevent();
1038 #define FEBRUARY 2
1039 #define STARTOFTIME 1970
1040 #define SECDAY 86400L
1041 #define SECYR (SECDAY * 365)
1042 #define leapyear(year) ((year) % 4 == 0 && \
1043 ((year) % 100 != 0 || (year) % 400 == 0))
1044 #define days_in_year(a) (leapyear(a) ? 366 : 365)
1045 #define days_in_month(a) (month_days[(a) - 1])
1047 static int month_days[12] = {
1048 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1052 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1054 void GregorianDay(struct rtc_time * tm)
1056 int leapsToDate;
1057 int lastYear;
1058 int day;
1059 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1061 lastYear = tm->tm_year - 1;
1064 * Number of leap corrections to apply up to end of last year
1066 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1069 * This year is a leap year if it is divisible by 4 except when it is
1070 * divisible by 100 unless it is divisible by 400
1072 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1074 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1076 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1077 tm->tm_mday;
1079 tm->tm_wday = day % 7;
1082 void to_tm(int tim, struct rtc_time * tm)
1084 register int i;
1085 register long hms, day;
1087 day = tim / SECDAY;
1088 hms = tim % SECDAY;
1090 /* Hours, minutes, seconds are easy */
1091 tm->tm_hour = hms / 3600;
1092 tm->tm_min = (hms % 3600) / 60;
1093 tm->tm_sec = (hms % 3600) % 60;
1095 /* Number of years in days */
1096 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1097 day -= days_in_year(i);
1098 tm->tm_year = i;
1100 /* Number of months in days left */
1101 if (leapyear(tm->tm_year))
1102 days_in_month(FEBRUARY) = 29;
1103 for (i = 1; day >= days_in_month(i); i++)
1104 day -= days_in_month(i);
1105 days_in_month(FEBRUARY) = 28;
1106 tm->tm_mon = i;
1108 /* Days are what is left over (+1) from all that. */
1109 tm->tm_mday = day + 1;
1112 * Determine the day of week
1114 GregorianDay(tm);
1118 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1119 * result.
1121 void div128_by_32(u64 dividend_high, u64 dividend_low,
1122 unsigned divisor, struct div_result *dr)
1124 unsigned long a, b, c, d;
1125 unsigned long w, x, y, z;
1126 u64 ra, rb, rc;
1128 a = dividend_high >> 32;
1129 b = dividend_high & 0xffffffff;
1130 c = dividend_low >> 32;
1131 d = dividend_low & 0xffffffff;
1133 w = a / divisor;
1134 ra = ((u64)(a - (w * divisor)) << 32) + b;
1136 rb = ((u64) do_div(ra, divisor) << 32) + c;
1137 x = ra;
1139 rc = ((u64) do_div(rb, divisor) << 32) + d;
1140 y = rb;
1142 do_div(rc, divisor);
1143 z = rc;
1145 dr->result_high = ((u64)w << 32) + x;
1146 dr->result_low = ((u64)y << 32) + z;
1150 /* We don't need to calibrate delay, we use the CPU timebase for that */
1151 void calibrate_delay(void)
1153 /* Some generic code (such as spinlock debug) use loops_per_jiffy
1154 * as the number of __delay(1) in a jiffy, so make it so
1156 loops_per_jiffy = tb_ticks_per_jiffy;
1159 static int __init rtc_init(void)
1161 struct platform_device *pdev;
1163 if (!ppc_md.get_rtc_time)
1164 return -ENODEV;
1166 pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
1167 if (IS_ERR(pdev))
1168 return PTR_ERR(pdev);
1170 return 0;
1173 module_init(rtc_init);