The x86 timer interrupt handler is the only handler not traced in the
[linux-2.6/next.git] / arch / xtensa / include / asm / pgtable.h
blobb03c043ce75b1243f18f080bbb06750913853a03
1 /*
2 * include/asm-xtensa/pgtable.h
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 * Copyright (C) 2001 - 2007 Tensilica Inc.
9 */
11 #ifndef _XTENSA_PGTABLE_H
12 #define _XTENSA_PGTABLE_H
14 #include <asm-generic/pgtable-nopmd.h>
15 #include <asm/page.h>
18 * We only use two ring levels, user and kernel space.
21 #define USER_RING 1 /* user ring level */
22 #define KERNEL_RING 0 /* kernel ring level */
25 * The Xtensa architecture port of Linux has a two-level page table system,
26 * i.e. the logical three-level Linux page table layout is folded.
27 * Each task has the following memory page tables:
29 * PGD table (page directory), ie. 3rd-level page table:
30 * One page (4 kB) of 1024 (PTRS_PER_PGD) pointers to PTE tables
31 * (Architectures that don't have the PMD folded point to the PMD tables)
33 * The pointer to the PGD table for a given task can be retrieved from
34 * the task structure (struct task_struct*) t, e.g. current():
35 * (t->mm ? t->mm : t->active_mm)->pgd
37 * PMD tables (page middle-directory), ie. 2nd-level page tables:
38 * Absent for the Xtensa architecture (folded, PTRS_PER_PMD == 1).
40 * PTE tables (page table entry), ie. 1st-level page tables:
41 * One page (4 kB) of 1024 (PTRS_PER_PTE) PTEs with a special PTE
42 * invalid_pte_table for absent mappings.
44 * The individual pages are 4 kB big with special pages for the empty_zero_page.
47 #define PGDIR_SHIFT 22
48 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
49 #define PGDIR_MASK (~(PGDIR_SIZE-1))
52 * Entries per page directory level: we use two-level, so
53 * we don't really have any PMD directory physically.
55 #define PTRS_PER_PTE 1024
56 #define PTRS_PER_PTE_SHIFT 10
57 #define PTRS_PER_PGD 1024
58 #define PGD_ORDER 0
59 #define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
60 #define FIRST_USER_ADDRESS 0
61 #define FIRST_USER_PGD_NR (FIRST_USER_ADDRESS >> PGDIR_SHIFT)
64 * Virtual memory area. We keep a distance to other memory regions to be
65 * on the safe side. We also use this area for cache aliasing.
68 #define VMALLOC_START 0xC0000000
69 #define VMALLOC_END 0xC7FEFFFF
70 #define TLBTEMP_BASE_1 0xC7FF0000
71 #define TLBTEMP_BASE_2 0xC7FF8000
74 * Xtensa Linux config PTE layout (when present):
75 * 31-12: PPN
76 * 11-6: Software
77 * 5-4: RING
78 * 3-0: CA
80 * Similar to the Alpha and MIPS ports, we need to keep track of the ref
81 * and mod bits in software. We have a software "you can read
82 * from this page" bit, and a hardware one which actually lets the
83 * process read from the page. On the same token we have a software
84 * writable bit and the real hardware one which actually lets the
85 * process write to the page.
87 * See further below for PTE layout for swapped-out pages.
90 #define _PAGE_HW_EXEC (1<<0) /* hardware: page is executable */
91 #define _PAGE_HW_WRITE (1<<1) /* hardware: page is writable */
93 #define _PAGE_FILE (1<<1) /* non-linear mapping, if !present */
94 #define _PAGE_PROTNONE (3<<0) /* special case for VM_PROT_NONE */
96 /* None of these cache modes include MP coherency: */
97 #define _PAGE_CA_BYPASS (0<<2) /* bypass, non-speculative */
98 #define _PAGE_CA_WB (1<<2) /* write-back */
99 #define _PAGE_CA_WT (2<<2) /* write-through */
100 #define _PAGE_CA_MASK (3<<2)
101 #define _PAGE_INVALID (3<<2)
103 #define _PAGE_USER (1<<4) /* user access (ring=1) */
105 /* Software */
106 #define _PAGE_WRITABLE_BIT 6
107 #define _PAGE_WRITABLE (1<<6) /* software: page writable */
108 #define _PAGE_DIRTY (1<<7) /* software: page dirty */
109 #define _PAGE_ACCESSED (1<<8) /* software: page accessed (read) */
111 /* On older HW revisions, we always have to set bit 0 */
112 #if XCHAL_HW_VERSION_MAJOR < 2000
113 # define _PAGE_VALID (1<<0)
114 #else
115 # define _PAGE_VALID 0
116 #endif
118 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
119 #define _PAGE_PRESENT (_PAGE_VALID | _PAGE_CA_WB | _PAGE_ACCESSED)
121 #ifdef CONFIG_MMU
123 #define PAGE_NONE __pgprot(_PAGE_INVALID | _PAGE_USER | _PAGE_PROTNONE)
124 #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER)
125 #define PAGE_COPY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_HW_EXEC)
126 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER)
127 #define PAGE_READONLY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_HW_EXEC)
128 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITABLE)
129 #define PAGE_SHARED_EXEC \
130 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITABLE | _PAGE_HW_EXEC)
131 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_HW_WRITE)
132 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT|_PAGE_HW_WRITE|_PAGE_HW_EXEC)
134 #if (DCACHE_WAY_SIZE > PAGE_SIZE)
135 # define _PAGE_DIRECTORY (_PAGE_VALID | _PAGE_ACCESSED)
136 #else
137 # define _PAGE_DIRECTORY (_PAGE_VALID | _PAGE_ACCESSED | _PAGE_CA_WB)
138 #endif
140 #else /* no mmu */
142 # define PAGE_NONE __pgprot(0)
143 # define PAGE_SHARED __pgprot(0)
144 # define PAGE_COPY __pgprot(0)
145 # define PAGE_READONLY __pgprot(0)
146 # define PAGE_KERNEL __pgprot(0)
148 #endif
151 * On certain configurations of Xtensa MMUs (eg. the initial Linux config),
152 * the MMU can't do page protection for execute, and considers that the same as
153 * read. Also, write permissions may imply read permissions.
154 * What follows is the closest we can get by reasonable means..
155 * See linux/mm/mmap.c for protection_map[] array that uses these definitions.
157 #define __P000 PAGE_NONE /* private --- */
158 #define __P001 PAGE_READONLY /* private --r */
159 #define __P010 PAGE_COPY /* private -w- */
160 #define __P011 PAGE_COPY /* private -wr */
161 #define __P100 PAGE_READONLY_EXEC /* private x-- */
162 #define __P101 PAGE_READONLY_EXEC /* private x-r */
163 #define __P110 PAGE_COPY_EXEC /* private xw- */
164 #define __P111 PAGE_COPY_EXEC /* private xwr */
166 #define __S000 PAGE_NONE /* shared --- */
167 #define __S001 PAGE_READONLY /* shared --r */
168 #define __S010 PAGE_SHARED /* shared -w- */
169 #define __S011 PAGE_SHARED /* shared -wr */
170 #define __S100 PAGE_READONLY_EXEC /* shared x-- */
171 #define __S101 PAGE_READONLY_EXEC /* shared x-r */
172 #define __S110 PAGE_SHARED_EXEC /* shared xw- */
173 #define __S111 PAGE_SHARED_EXEC /* shared xwr */
175 #ifndef __ASSEMBLY__
177 #define pte_ERROR(e) \
178 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
179 #define pgd_ERROR(e) \
180 printk("%s:%d: bad pgd entry %08lx.\n", __FILE__, __LINE__, pgd_val(e))
182 extern unsigned long empty_zero_page[1024];
184 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
186 #ifdef CONFIG_MMU
187 extern pgd_t swapper_pg_dir[PAGE_SIZE/sizeof(pgd_t)];
188 extern void paging_init(void);
189 extern void pgtable_cache_init(void);
190 #else
191 # define swapper_pg_dir NULL
192 static inline void paging_init(void) { }
193 static inline void pgtable_cache_init(void) { }
194 #endif
197 * The pmd contains the kernel virtual address of the pte page.
199 #define pmd_page_vaddr(pmd) ((unsigned long)(pmd_val(pmd) & PAGE_MASK))
200 #define pmd_page(pmd) virt_to_page(pmd_val(pmd))
203 * pte status.
205 #define pte_none(pte) (pte_val(pte) == _PAGE_INVALID)
206 #define pte_present(pte) \
207 (((pte_val(pte) & _PAGE_CA_MASK) != _PAGE_INVALID) \
208 || ((pte_val(pte) & _PAGE_PROTNONE) == _PAGE_PROTNONE))
209 #define pte_clear(mm,addr,ptep) \
210 do { update_pte(ptep, __pte(_PAGE_INVALID)); } while(0)
212 #define pmd_none(pmd) (!pmd_val(pmd))
213 #define pmd_present(pmd) (pmd_val(pmd) & PAGE_MASK)
214 #define pmd_bad(pmd) (pmd_val(pmd) & ~PAGE_MASK)
215 #define pmd_clear(pmdp) do { set_pmd(pmdp, __pmd(0)); } while (0)
217 static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITABLE; }
218 static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
219 static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
220 static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; }
221 static inline int pte_special(pte_t pte) { return 0; }
223 static inline pte_t pte_wrprotect(pte_t pte)
224 { pte_val(pte) &= ~(_PAGE_WRITABLE | _PAGE_HW_WRITE); return pte; }
225 static inline pte_t pte_mkclean(pte_t pte)
226 { pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HW_WRITE); return pte; }
227 static inline pte_t pte_mkold(pte_t pte)
228 { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
229 static inline pte_t pte_mkdirty(pte_t pte)
230 { pte_val(pte) |= _PAGE_DIRTY; return pte; }
231 static inline pte_t pte_mkyoung(pte_t pte)
232 { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
233 static inline pte_t pte_mkwrite(pte_t pte)
234 { pte_val(pte) |= _PAGE_WRITABLE; return pte; }
235 static inline pte_t pte_mkspecial(pte_t pte)
236 { return pte; }
239 * Conversion functions: convert a page and protection to a page entry,
240 * and a page entry and page directory to the page they refer to.
243 #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
244 #define pte_same(a,b) (pte_val(a) == pte_val(b))
245 #define pte_page(x) pfn_to_page(pte_pfn(x))
246 #define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
247 #define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot)
249 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
251 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
255 * Certain architectures need to do special things when pte's
256 * within a page table are directly modified. Thus, the following
257 * hook is made available.
259 static inline void update_pte(pte_t *ptep, pte_t pteval)
261 *ptep = pteval;
262 #if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK
263 __asm__ __volatile__ ("dhwb %0, 0" :: "a" (ptep));
264 #endif
268 struct mm_struct;
270 static inline void
271 set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pteval)
273 update_pte(ptep, pteval);
277 static inline void
278 set_pmd(pmd_t *pmdp, pmd_t pmdval)
280 *pmdp = pmdval;
283 struct vm_area_struct;
285 static inline int
286 ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr,
287 pte_t *ptep)
289 pte_t pte = *ptep;
290 if (!pte_young(pte))
291 return 0;
292 update_pte(ptep, pte_mkold(pte));
293 return 1;
296 static inline pte_t
297 ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
299 pte_t pte = *ptep;
300 pte_clear(mm, addr, ptep);
301 return pte;
304 static inline void
305 ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
307 pte_t pte = *ptep;
308 update_pte(ptep, pte_wrprotect(pte));
311 /* to find an entry in a kernel page-table-directory */
312 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
314 /* to find an entry in a page-table-directory */
315 #define pgd_offset(mm,address) ((mm)->pgd + pgd_index(address))
317 #define pgd_index(address) ((address) >> PGDIR_SHIFT)
319 /* Find an entry in the second-level page table.. */
320 #define pmd_offset(dir,address) ((pmd_t*)(dir))
322 /* Find an entry in the third-level page table.. */
323 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
324 #define pte_offset_kernel(dir,addr) \
325 ((pte_t*) pmd_page_vaddr(*(dir)) + pte_index(addr))
326 #define pte_offset_map(dir,addr) pte_offset_kernel((dir),(addr))
327 #define pte_unmap(pte) do { } while (0)
331 * Encode and decode a swap entry.
333 * Format of swap pte:
334 * bit 0 MBZ
335 * bit 1 page-file (must be zero)
336 * bits 2 - 3 page hw access mode (must be 11: _PAGE_INVALID)
337 * bits 4 - 5 ring protection (must be 01: _PAGE_USER)
338 * bits 6 - 10 swap type (5 bits -> 32 types)
339 * bits 11 - 31 swap offset / PAGE_SIZE (21 bits -> 8GB)
341 * Format of file pte:
342 * bit 0 MBZ
343 * bit 1 page-file (must be one: _PAGE_FILE)
344 * bits 2 - 3 page hw access mode (must be 11: _PAGE_INVALID)
345 * bits 4 - 5 ring protection (must be 01: _PAGE_USER)
346 * bits 6 - 31 file offset / PAGE_SIZE
349 #define __swp_type(entry) (((entry).val >> 6) & 0x1f)
350 #define __swp_offset(entry) ((entry).val >> 11)
351 #define __swp_entry(type,offs) \
352 ((swp_entry_t) {((type) << 6) | ((offs) << 11) | _PAGE_INVALID})
353 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
354 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
356 #define PTE_FILE_MAX_BITS 28
357 #define pte_to_pgoff(pte) (pte_val(pte) >> 4)
358 #define pgoff_to_pte(off) \
359 ((pte_t) { ((off) << 4) | _PAGE_INVALID | _PAGE_FILE })
361 #endif /* !defined (__ASSEMBLY__) */
364 #ifdef __ASSEMBLY__
366 /* Assembly macro _PGD_INDEX is the same as C pgd_index(unsigned long),
367 * _PGD_OFFSET as C pgd_offset(struct mm_struct*, unsigned long),
368 * _PMD_OFFSET as C pmd_offset(pgd_t*, unsigned long)
369 * _PTE_OFFSET as C pte_offset(pmd_t*, unsigned long)
371 * Note: We require an additional temporary register which can be the same as
372 * the register that holds the address.
374 * ((pte_t*) ((unsigned long)(pmd_val(*pmd) & PAGE_MASK)) + pte_index(addr))
377 #define _PGD_INDEX(rt,rs) extui rt, rs, PGDIR_SHIFT, 32-PGDIR_SHIFT
378 #define _PTE_INDEX(rt,rs) extui rt, rs, PAGE_SHIFT, PTRS_PER_PTE_SHIFT
380 #define _PGD_OFFSET(mm,adr,tmp) l32i mm, mm, MM_PGD; \
381 _PGD_INDEX(tmp, adr); \
382 addx4 mm, tmp, mm
384 #define _PTE_OFFSET(pmd,adr,tmp) _PTE_INDEX(tmp, adr); \
385 srli pmd, pmd, PAGE_SHIFT; \
386 slli pmd, pmd, PAGE_SHIFT; \
387 addx4 pmd, tmp, pmd
389 #else
391 #define kern_addr_valid(addr) (1)
393 extern void update_mmu_cache(struct vm_area_struct * vma,
394 unsigned long address, pte_t *ptep);
397 * remap a physical page `pfn' of size `size' with page protection `prot'
398 * into virtual address `from'
401 #define io_remap_pfn_range(vma,from,pfn,size,prot) \
402 remap_pfn_range(vma, from, pfn, size, prot)
404 typedef pte_t *pte_addr_t;
406 #endif /* !defined (__ASSEMBLY__) */
408 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
409 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
410 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
411 #define __HAVE_ARCH_PTEP_MKDIRTY
412 #define __HAVE_ARCH_PTE_SAME
414 #include <asm-generic/pgtable.h>
416 #endif /* _XTENSA_PGTABLE_H */