The x86 timer interrupt handler is the only handler not traced in the
[linux-2.6/next.git] / include / linux / mmzone.h
blobbe1ac8d7789be37b21dd5fdf72832aea621926bd
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <generated/bounds.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
22 /* Free memory management - zoned buddy allocator. */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coelesce naturally under reasonable reclaim pressure and those which
34 * will not.
36 #define PAGE_ALLOC_COSTLY_ORDER 3
38 #define MIGRATE_UNMOVABLE 0
39 #define MIGRATE_RECLAIMABLE 1
40 #define MIGRATE_MOVABLE 2
41 #define MIGRATE_PCPTYPES 3 /* the number of types on the pcp lists */
42 #define MIGRATE_RESERVE 3
43 #define MIGRATE_ISOLATE 4 /* can't allocate from here */
44 #define MIGRATE_TYPES 5
46 #define for_each_migratetype_order(order, type) \
47 for (order = 0; order < MAX_ORDER; order++) \
48 for (type = 0; type < MIGRATE_TYPES; type++)
50 extern int page_group_by_mobility_disabled;
52 static inline int get_pageblock_migratetype(struct page *page)
54 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
57 struct free_area {
58 struct list_head free_list[MIGRATE_TYPES];
59 unsigned long nr_free;
62 struct pglist_data;
65 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
66 * So add a wild amount of padding here to ensure that they fall into separate
67 * cachelines. There are very few zone structures in the machine, so space
68 * consumption is not a concern here.
70 #if defined(CONFIG_SMP)
71 struct zone_padding {
72 char x[0];
73 } ____cacheline_internodealigned_in_smp;
74 #define ZONE_PADDING(name) struct zone_padding name;
75 #else
76 #define ZONE_PADDING(name)
77 #endif
79 enum zone_stat_item {
80 /* First 128 byte cacheline (assuming 64 bit words) */
81 NR_FREE_PAGES,
82 NR_LRU_BASE,
83 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
84 NR_ACTIVE_ANON, /* " " " " " */
85 NR_INACTIVE_FILE, /* " " " " " */
86 NR_ACTIVE_FILE, /* " " " " " */
87 NR_UNEVICTABLE, /* " " " " " */
88 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
89 NR_ANON_PAGES, /* Mapped anonymous pages */
90 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
91 only modified from process context */
92 NR_FILE_PAGES,
93 NR_FILE_DIRTY,
94 NR_WRITEBACK,
95 NR_SLAB_RECLAIMABLE,
96 NR_SLAB_UNRECLAIMABLE,
97 NR_PAGETABLE, /* used for pagetables */
98 NR_KERNEL_STACK,
99 /* Second 128 byte cacheline */
100 NR_UNSTABLE_NFS, /* NFS unstable pages */
101 NR_BOUNCE,
102 NR_VMSCAN_WRITE,
103 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
104 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
105 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
106 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
107 NR_DIRTIED, /* page dirtyings since bootup */
108 NR_WRITTEN, /* page writings since bootup */
109 #ifdef CONFIG_NUMA
110 NUMA_HIT, /* allocated in intended node */
111 NUMA_MISS, /* allocated in non intended node */
112 NUMA_FOREIGN, /* was intended here, hit elsewhere */
113 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
114 NUMA_LOCAL, /* allocation from local node */
115 NUMA_OTHER, /* allocation from other node */
116 #endif
117 NR_ANON_TRANSPARENT_HUGEPAGES,
118 NR_VM_ZONE_STAT_ITEMS };
121 * We do arithmetic on the LRU lists in various places in the code,
122 * so it is important to keep the active lists LRU_ACTIVE higher in
123 * the array than the corresponding inactive lists, and to keep
124 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
126 * This has to be kept in sync with the statistics in zone_stat_item
127 * above and the descriptions in vmstat_text in mm/vmstat.c
129 #define LRU_BASE 0
130 #define LRU_ACTIVE 1
131 #define LRU_FILE 2
133 enum lru_list {
134 LRU_INACTIVE_ANON = LRU_BASE,
135 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
136 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
137 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
138 LRU_UNEVICTABLE,
139 NR_LRU_LISTS
142 #define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
144 #define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)
146 static inline int is_file_lru(enum lru_list l)
148 return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE);
151 static inline int is_active_lru(enum lru_list l)
153 return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE);
156 static inline int is_unevictable_lru(enum lru_list l)
158 return (l == LRU_UNEVICTABLE);
161 /* Mask used at gathering information at once (see memcontrol.c) */
162 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
163 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
164 #define LRU_ALL_EVICTABLE (LRU_ALL_FILE | LRU_ALL_ANON)
165 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
167 enum zone_watermarks {
168 WMARK_MIN,
169 WMARK_LOW,
170 WMARK_HIGH,
171 NR_WMARK
174 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
175 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
176 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
178 struct per_cpu_pages {
179 int count; /* number of pages in the list */
180 int high; /* high watermark, emptying needed */
181 int batch; /* chunk size for buddy add/remove */
183 /* Lists of pages, one per migrate type stored on the pcp-lists */
184 struct list_head lists[MIGRATE_PCPTYPES];
187 struct per_cpu_pageset {
188 struct per_cpu_pages pcp;
189 #ifdef CONFIG_NUMA
190 s8 expire;
191 #endif
192 #ifdef CONFIG_SMP
193 s8 stat_threshold;
194 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
195 #endif
198 #endif /* !__GENERATING_BOUNDS.H */
200 enum zone_type {
201 #ifdef CONFIG_ZONE_DMA
203 * ZONE_DMA is used when there are devices that are not able
204 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
205 * carve out the portion of memory that is needed for these devices.
206 * The range is arch specific.
208 * Some examples
210 * Architecture Limit
211 * ---------------------------
212 * parisc, ia64, sparc <4G
213 * s390 <2G
214 * arm Various
215 * alpha Unlimited or 0-16MB.
217 * i386, x86_64 and multiple other arches
218 * <16M.
220 ZONE_DMA,
221 #endif
222 #ifdef CONFIG_ZONE_DMA32
224 * x86_64 needs two ZONE_DMAs because it supports devices that are
225 * only able to do DMA to the lower 16M but also 32 bit devices that
226 * can only do DMA areas below 4G.
228 ZONE_DMA32,
229 #endif
231 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
232 * performed on pages in ZONE_NORMAL if the DMA devices support
233 * transfers to all addressable memory.
235 ZONE_NORMAL,
236 #ifdef CONFIG_HIGHMEM
238 * A memory area that is only addressable by the kernel through
239 * mapping portions into its own address space. This is for example
240 * used by i386 to allow the kernel to address the memory beyond
241 * 900MB. The kernel will set up special mappings (page
242 * table entries on i386) for each page that the kernel needs to
243 * access.
245 ZONE_HIGHMEM,
246 #endif
247 ZONE_MOVABLE,
248 __MAX_NR_ZONES
251 #ifndef __GENERATING_BOUNDS_H
254 * When a memory allocation must conform to specific limitations (such
255 * as being suitable for DMA) the caller will pass in hints to the
256 * allocator in the gfp_mask, in the zone modifier bits. These bits
257 * are used to select a priority ordered list of memory zones which
258 * match the requested limits. See gfp_zone() in include/linux/gfp.h
261 #if MAX_NR_ZONES < 2
262 #define ZONES_SHIFT 0
263 #elif MAX_NR_ZONES <= 2
264 #define ZONES_SHIFT 1
265 #elif MAX_NR_ZONES <= 4
266 #define ZONES_SHIFT 2
267 #else
268 #error ZONES_SHIFT -- too many zones configured adjust calculation
269 #endif
271 struct zone_reclaim_stat {
273 * The pageout code in vmscan.c keeps track of how many of the
274 * mem/swap backed and file backed pages are refeferenced.
275 * The higher the rotated/scanned ratio, the more valuable
276 * that cache is.
278 * The anon LRU stats live in [0], file LRU stats in [1]
280 unsigned long recent_rotated[2];
281 unsigned long recent_scanned[2];
284 struct zone {
285 /* Fields commonly accessed by the page allocator */
287 /* zone watermarks, access with *_wmark_pages(zone) macros */
288 unsigned long watermark[NR_WMARK];
291 * When free pages are below this point, additional steps are taken
292 * when reading the number of free pages to avoid per-cpu counter
293 * drift allowing watermarks to be breached
295 unsigned long percpu_drift_mark;
298 * We don't know if the memory that we're going to allocate will be freeable
299 * or/and it will be released eventually, so to avoid totally wasting several
300 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
301 * to run OOM on the lower zones despite there's tons of freeable ram
302 * on the higher zones). This array is recalculated at runtime if the
303 * sysctl_lowmem_reserve_ratio sysctl changes.
305 unsigned long lowmem_reserve[MAX_NR_ZONES];
307 #ifdef CONFIG_NUMA
308 int node;
310 * zone reclaim becomes active if more unmapped pages exist.
312 unsigned long min_unmapped_pages;
313 unsigned long min_slab_pages;
314 #endif
315 struct per_cpu_pageset __percpu *pageset;
317 * free areas of different sizes
319 spinlock_t lock;
320 int all_unreclaimable; /* All pages pinned */
321 #ifdef CONFIG_MEMORY_HOTPLUG
322 /* see spanned/present_pages for more description */
323 seqlock_t span_seqlock;
324 #endif
325 struct free_area free_area[MAX_ORDER];
327 #ifndef CONFIG_SPARSEMEM
329 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
330 * In SPARSEMEM, this map is stored in struct mem_section
332 unsigned long *pageblock_flags;
333 #endif /* CONFIG_SPARSEMEM */
335 #ifdef CONFIG_COMPACTION
337 * On compaction failure, 1<<compact_defer_shift compactions
338 * are skipped before trying again. The number attempted since
339 * last failure is tracked with compact_considered.
341 unsigned int compact_considered;
342 unsigned int compact_defer_shift;
343 #endif
345 ZONE_PADDING(_pad1_)
347 /* Fields commonly accessed by the page reclaim scanner */
348 spinlock_t lru_lock;
349 struct zone_lru {
350 struct list_head list;
351 } lru[NR_LRU_LISTS];
353 struct zone_reclaim_stat reclaim_stat;
355 unsigned long pages_scanned; /* since last reclaim */
356 unsigned long flags; /* zone flags, see below */
358 /* Zone statistics */
359 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
362 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
363 * this zone's LRU. Maintained by the pageout code.
365 unsigned int inactive_ratio;
368 ZONE_PADDING(_pad2_)
369 /* Rarely used or read-mostly fields */
372 * wait_table -- the array holding the hash table
373 * wait_table_hash_nr_entries -- the size of the hash table array
374 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
376 * The purpose of all these is to keep track of the people
377 * waiting for a page to become available and make them
378 * runnable again when possible. The trouble is that this
379 * consumes a lot of space, especially when so few things
380 * wait on pages at a given time. So instead of using
381 * per-page waitqueues, we use a waitqueue hash table.
383 * The bucket discipline is to sleep on the same queue when
384 * colliding and wake all in that wait queue when removing.
385 * When something wakes, it must check to be sure its page is
386 * truly available, a la thundering herd. The cost of a
387 * collision is great, but given the expected load of the
388 * table, they should be so rare as to be outweighed by the
389 * benefits from the saved space.
391 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
392 * primary users of these fields, and in mm/page_alloc.c
393 * free_area_init_core() performs the initialization of them.
395 wait_queue_head_t * wait_table;
396 unsigned long wait_table_hash_nr_entries;
397 unsigned long wait_table_bits;
400 * Discontig memory support fields.
402 struct pglist_data *zone_pgdat;
403 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
404 unsigned long zone_start_pfn;
407 * zone_start_pfn, spanned_pages and present_pages are all
408 * protected by span_seqlock. It is a seqlock because it has
409 * to be read outside of zone->lock, and it is done in the main
410 * allocator path. But, it is written quite infrequently.
412 * The lock is declared along with zone->lock because it is
413 * frequently read in proximity to zone->lock. It's good to
414 * give them a chance of being in the same cacheline.
416 unsigned long spanned_pages; /* total size, including holes */
417 unsigned long present_pages; /* amount of memory (excluding holes) */
420 * rarely used fields:
422 const char *name;
423 } ____cacheline_internodealigned_in_smp;
425 typedef enum {
426 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
427 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
428 ZONE_CONGESTED, /* zone has many dirty pages backed by
429 * a congested BDI
431 } zone_flags_t;
433 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
435 set_bit(flag, &zone->flags);
438 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
440 return test_and_set_bit(flag, &zone->flags);
443 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
445 clear_bit(flag, &zone->flags);
448 static inline int zone_is_reclaim_congested(const struct zone *zone)
450 return test_bit(ZONE_CONGESTED, &zone->flags);
453 static inline int zone_is_reclaim_locked(const struct zone *zone)
455 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
458 static inline int zone_is_oom_locked(const struct zone *zone)
460 return test_bit(ZONE_OOM_LOCKED, &zone->flags);
464 * The "priority" of VM scanning is how much of the queues we will scan in one
465 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
466 * queues ("queue_length >> 12") during an aging round.
468 #define DEF_PRIORITY 12
470 /* Maximum number of zones on a zonelist */
471 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
473 #ifdef CONFIG_NUMA
476 * The NUMA zonelists are doubled because we need zonelists that restrict the
477 * allocations to a single node for GFP_THISNODE.
479 * [0] : Zonelist with fallback
480 * [1] : No fallback (GFP_THISNODE)
482 #define MAX_ZONELISTS 2
486 * We cache key information from each zonelist for smaller cache
487 * footprint when scanning for free pages in get_page_from_freelist().
489 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
490 * up short of free memory since the last time (last_fullzone_zap)
491 * we zero'd fullzones.
492 * 2) The array z_to_n[] maps each zone in the zonelist to its node
493 * id, so that we can efficiently evaluate whether that node is
494 * set in the current tasks mems_allowed.
496 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
497 * indexed by a zones offset in the zonelist zones[] array.
499 * The get_page_from_freelist() routine does two scans. During the
500 * first scan, we skip zones whose corresponding bit in 'fullzones'
501 * is set or whose corresponding node in current->mems_allowed (which
502 * comes from cpusets) is not set. During the second scan, we bypass
503 * this zonelist_cache, to ensure we look methodically at each zone.
505 * Once per second, we zero out (zap) fullzones, forcing us to
506 * reconsider nodes that might have regained more free memory.
507 * The field last_full_zap is the time we last zapped fullzones.
509 * This mechanism reduces the amount of time we waste repeatedly
510 * reexaming zones for free memory when they just came up low on
511 * memory momentarilly ago.
513 * The zonelist_cache struct members logically belong in struct
514 * zonelist. However, the mempolicy zonelists constructed for
515 * MPOL_BIND are intentionally variable length (and usually much
516 * shorter). A general purpose mechanism for handling structs with
517 * multiple variable length members is more mechanism than we want
518 * here. We resort to some special case hackery instead.
520 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
521 * part because they are shorter), so we put the fixed length stuff
522 * at the front of the zonelist struct, ending in a variable length
523 * zones[], as is needed by MPOL_BIND.
525 * Then we put the optional zonelist cache on the end of the zonelist
526 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
527 * the fixed length portion at the front of the struct. This pointer
528 * both enables us to find the zonelist cache, and in the case of
529 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
530 * to know that the zonelist cache is not there.
532 * The end result is that struct zonelists come in two flavors:
533 * 1) The full, fixed length version, shown below, and
534 * 2) The custom zonelists for MPOL_BIND.
535 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
537 * Even though there may be multiple CPU cores on a node modifying
538 * fullzones or last_full_zap in the same zonelist_cache at the same
539 * time, we don't lock it. This is just hint data - if it is wrong now
540 * and then, the allocator will still function, perhaps a bit slower.
544 struct zonelist_cache {
545 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
546 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
547 unsigned long last_full_zap; /* when last zap'd (jiffies) */
549 #else
550 #define MAX_ZONELISTS 1
551 struct zonelist_cache;
552 #endif
555 * This struct contains information about a zone in a zonelist. It is stored
556 * here to avoid dereferences into large structures and lookups of tables
558 struct zoneref {
559 struct zone *zone; /* Pointer to actual zone */
560 int zone_idx; /* zone_idx(zoneref->zone) */
564 * One allocation request operates on a zonelist. A zonelist
565 * is a list of zones, the first one is the 'goal' of the
566 * allocation, the other zones are fallback zones, in decreasing
567 * priority.
569 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
570 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
572 * To speed the reading of the zonelist, the zonerefs contain the zone index
573 * of the entry being read. Helper functions to access information given
574 * a struct zoneref are
576 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
577 * zonelist_zone_idx() - Return the index of the zone for an entry
578 * zonelist_node_idx() - Return the index of the node for an entry
580 struct zonelist {
581 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
582 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
583 #ifdef CONFIG_NUMA
584 struct zonelist_cache zlcache; // optional ...
585 #endif
588 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
589 struct node_active_region {
590 unsigned long start_pfn;
591 unsigned long end_pfn;
592 int nid;
594 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
596 #ifndef CONFIG_DISCONTIGMEM
597 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
598 extern struct page *mem_map;
599 #endif
602 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
603 * (mostly NUMA machines?) to denote a higher-level memory zone than the
604 * zone denotes.
606 * On NUMA machines, each NUMA node would have a pg_data_t to describe
607 * it's memory layout.
609 * Memory statistics and page replacement data structures are maintained on a
610 * per-zone basis.
612 struct bootmem_data;
613 typedef struct pglist_data {
614 struct zone node_zones[MAX_NR_ZONES];
615 struct zonelist node_zonelists[MAX_ZONELISTS];
616 int nr_zones;
617 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
618 struct page *node_mem_map;
619 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
620 struct page_cgroup *node_page_cgroup;
621 #endif
622 #endif
623 #ifndef CONFIG_NO_BOOTMEM
624 struct bootmem_data *bdata;
625 #endif
626 #ifdef CONFIG_MEMORY_HOTPLUG
628 * Must be held any time you expect node_start_pfn, node_present_pages
629 * or node_spanned_pages stay constant. Holding this will also
630 * guarantee that any pfn_valid() stays that way.
632 * Nests above zone->lock and zone->size_seqlock.
634 spinlock_t node_size_lock;
635 #endif
636 unsigned long node_start_pfn;
637 unsigned long node_present_pages; /* total number of physical pages */
638 unsigned long node_spanned_pages; /* total size of physical page
639 range, including holes */
640 int node_id;
641 wait_queue_head_t kswapd_wait;
642 struct task_struct *kswapd;
643 int kswapd_max_order;
644 enum zone_type classzone_idx;
645 } pg_data_t;
647 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
648 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
649 #ifdef CONFIG_FLAT_NODE_MEM_MAP
650 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
651 #else
652 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
653 #endif
654 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
656 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
658 #define node_end_pfn(nid) ({\
659 pg_data_t *__pgdat = NODE_DATA(nid);\
660 __pgdat->node_start_pfn + __pgdat->node_spanned_pages;\
663 #include <linux/memory_hotplug.h>
665 extern struct mutex zonelists_mutex;
666 void build_all_zonelists(void *data);
667 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
668 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
669 int classzone_idx, int alloc_flags);
670 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
671 int classzone_idx, int alloc_flags);
672 enum memmap_context {
673 MEMMAP_EARLY,
674 MEMMAP_HOTPLUG,
676 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
677 unsigned long size,
678 enum memmap_context context);
680 #ifdef CONFIG_HAVE_MEMORY_PRESENT
681 void memory_present(int nid, unsigned long start, unsigned long end);
682 #else
683 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
684 #endif
686 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
687 int local_memory_node(int node_id);
688 #else
689 static inline int local_memory_node(int node_id) { return node_id; };
690 #endif
692 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
693 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
694 #endif
697 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
699 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
701 static inline int populated_zone(struct zone *zone)
703 return (!!zone->present_pages);
706 extern int movable_zone;
708 static inline int zone_movable_is_highmem(void)
710 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
711 return movable_zone == ZONE_HIGHMEM;
712 #else
713 return 0;
714 #endif
717 static inline int is_highmem_idx(enum zone_type idx)
719 #ifdef CONFIG_HIGHMEM
720 return (idx == ZONE_HIGHMEM ||
721 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
722 #else
723 return 0;
724 #endif
727 static inline int is_normal_idx(enum zone_type idx)
729 return (idx == ZONE_NORMAL);
733 * is_highmem - helper function to quickly check if a struct zone is a
734 * highmem zone or not. This is an attempt to keep references
735 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
736 * @zone - pointer to struct zone variable
738 static inline int is_highmem(struct zone *zone)
740 #ifdef CONFIG_HIGHMEM
741 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
742 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
743 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
744 zone_movable_is_highmem());
745 #else
746 return 0;
747 #endif
750 static inline int is_normal(struct zone *zone)
752 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
755 static inline int is_dma32(struct zone *zone)
757 #ifdef CONFIG_ZONE_DMA32
758 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
759 #else
760 return 0;
761 #endif
764 static inline int is_dma(struct zone *zone)
766 #ifdef CONFIG_ZONE_DMA
767 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
768 #else
769 return 0;
770 #endif
773 /* These two functions are used to setup the per zone pages min values */
774 struct ctl_table;
775 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
776 void __user *, size_t *, loff_t *);
777 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
778 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
779 void __user *, size_t *, loff_t *);
780 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
781 void __user *, size_t *, loff_t *);
782 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
783 void __user *, size_t *, loff_t *);
784 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
785 void __user *, size_t *, loff_t *);
787 extern int numa_zonelist_order_handler(struct ctl_table *, int,
788 void __user *, size_t *, loff_t *);
789 extern char numa_zonelist_order[];
790 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
792 #ifndef CONFIG_NEED_MULTIPLE_NODES
794 extern struct pglist_data contig_page_data;
795 #define NODE_DATA(nid) (&contig_page_data)
796 #define NODE_MEM_MAP(nid) mem_map
798 #else /* CONFIG_NEED_MULTIPLE_NODES */
800 #include <asm/mmzone.h>
802 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
804 extern struct pglist_data *first_online_pgdat(void);
805 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
806 extern struct zone *next_zone(struct zone *zone);
809 * for_each_online_pgdat - helper macro to iterate over all online nodes
810 * @pgdat - pointer to a pg_data_t variable
812 #define for_each_online_pgdat(pgdat) \
813 for (pgdat = first_online_pgdat(); \
814 pgdat; \
815 pgdat = next_online_pgdat(pgdat))
817 * for_each_zone - helper macro to iterate over all memory zones
818 * @zone - pointer to struct zone variable
820 * The user only needs to declare the zone variable, for_each_zone
821 * fills it in.
823 #define for_each_zone(zone) \
824 for (zone = (first_online_pgdat())->node_zones; \
825 zone; \
826 zone = next_zone(zone))
828 #define for_each_populated_zone(zone) \
829 for (zone = (first_online_pgdat())->node_zones; \
830 zone; \
831 zone = next_zone(zone)) \
832 if (!populated_zone(zone)) \
833 ; /* do nothing */ \
834 else
836 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
838 return zoneref->zone;
841 static inline int zonelist_zone_idx(struct zoneref *zoneref)
843 return zoneref->zone_idx;
846 static inline int zonelist_node_idx(struct zoneref *zoneref)
848 #ifdef CONFIG_NUMA
849 /* zone_to_nid not available in this context */
850 return zoneref->zone->node;
851 #else
852 return 0;
853 #endif /* CONFIG_NUMA */
857 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
858 * @z - The cursor used as a starting point for the search
859 * @highest_zoneidx - The zone index of the highest zone to return
860 * @nodes - An optional nodemask to filter the zonelist with
861 * @zone - The first suitable zone found is returned via this parameter
863 * This function returns the next zone at or below a given zone index that is
864 * within the allowed nodemask using a cursor as the starting point for the
865 * search. The zoneref returned is a cursor that represents the current zone
866 * being examined. It should be advanced by one before calling
867 * next_zones_zonelist again.
869 struct zoneref *next_zones_zonelist(struct zoneref *z,
870 enum zone_type highest_zoneidx,
871 nodemask_t *nodes,
872 struct zone **zone);
875 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
876 * @zonelist - The zonelist to search for a suitable zone
877 * @highest_zoneidx - The zone index of the highest zone to return
878 * @nodes - An optional nodemask to filter the zonelist with
879 * @zone - The first suitable zone found is returned via this parameter
881 * This function returns the first zone at or below a given zone index that is
882 * within the allowed nodemask. The zoneref returned is a cursor that can be
883 * used to iterate the zonelist with next_zones_zonelist by advancing it by
884 * one before calling.
886 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
887 enum zone_type highest_zoneidx,
888 nodemask_t *nodes,
889 struct zone **zone)
891 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
892 zone);
896 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
897 * @zone - The current zone in the iterator
898 * @z - The current pointer within zonelist->zones being iterated
899 * @zlist - The zonelist being iterated
900 * @highidx - The zone index of the highest zone to return
901 * @nodemask - Nodemask allowed by the allocator
903 * This iterator iterates though all zones at or below a given zone index and
904 * within a given nodemask
906 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
907 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
908 zone; \
909 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
912 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
913 * @zone - The current zone in the iterator
914 * @z - The current pointer within zonelist->zones being iterated
915 * @zlist - The zonelist being iterated
916 * @highidx - The zone index of the highest zone to return
918 * This iterator iterates though all zones at or below a given zone index.
920 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
921 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
923 #ifdef CONFIG_SPARSEMEM
924 #include <asm/sparsemem.h>
925 #endif
927 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
928 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
929 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
931 return 0;
933 #endif
935 #ifdef CONFIG_FLATMEM
936 #define pfn_to_nid(pfn) (0)
937 #endif
939 #ifdef CONFIG_SPARSEMEM
942 * SECTION_SHIFT #bits space required to store a section #
944 * PA_SECTION_SHIFT physical address to/from section number
945 * PFN_SECTION_SHIFT pfn to/from section number
947 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
949 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
950 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
952 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
954 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
955 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
957 #define SECTION_BLOCKFLAGS_BITS \
958 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
960 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
961 #error Allocator MAX_ORDER exceeds SECTION_SIZE
962 #endif
964 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
965 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
967 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
968 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
970 struct page;
971 struct page_cgroup;
972 struct mem_section {
974 * This is, logically, a pointer to an array of struct
975 * pages. However, it is stored with some other magic.
976 * (see sparse.c::sparse_init_one_section())
978 * Additionally during early boot we encode node id of
979 * the location of the section here to guide allocation.
980 * (see sparse.c::memory_present())
982 * Making it a UL at least makes someone do a cast
983 * before using it wrong.
985 unsigned long section_mem_map;
987 /* See declaration of similar field in struct zone */
988 unsigned long *pageblock_flags;
989 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
991 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
992 * section. (see memcontrol.h/page_cgroup.h about this.)
994 struct page_cgroup *page_cgroup;
995 unsigned long pad;
996 #endif
999 #ifdef CONFIG_SPARSEMEM_EXTREME
1000 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1001 #else
1002 #define SECTIONS_PER_ROOT 1
1003 #endif
1005 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1006 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1007 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1009 #ifdef CONFIG_SPARSEMEM_EXTREME
1010 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1011 #else
1012 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1013 #endif
1015 static inline struct mem_section *__nr_to_section(unsigned long nr)
1017 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1018 return NULL;
1019 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1021 extern int __section_nr(struct mem_section* ms);
1022 extern unsigned long usemap_size(void);
1025 * We use the lower bits of the mem_map pointer to store
1026 * a little bit of information. There should be at least
1027 * 3 bits here due to 32-bit alignment.
1029 #define SECTION_MARKED_PRESENT (1UL<<0)
1030 #define SECTION_HAS_MEM_MAP (1UL<<1)
1031 #define SECTION_MAP_LAST_BIT (1UL<<2)
1032 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1033 #define SECTION_NID_SHIFT 2
1035 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1037 unsigned long map = section->section_mem_map;
1038 map &= SECTION_MAP_MASK;
1039 return (struct page *)map;
1042 static inline int present_section(struct mem_section *section)
1044 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1047 static inline int present_section_nr(unsigned long nr)
1049 return present_section(__nr_to_section(nr));
1052 static inline int valid_section(struct mem_section *section)
1054 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1057 static inline int valid_section_nr(unsigned long nr)
1059 return valid_section(__nr_to_section(nr));
1062 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1064 return __nr_to_section(pfn_to_section_nr(pfn));
1067 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1068 static inline int pfn_valid(unsigned long pfn)
1070 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1071 return 0;
1072 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1074 #endif
1076 static inline int pfn_present(unsigned long pfn)
1078 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1079 return 0;
1080 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1084 * These are _only_ used during initialisation, therefore they
1085 * can use __initdata ... They could have names to indicate
1086 * this restriction.
1088 #ifdef CONFIG_NUMA
1089 #define pfn_to_nid(pfn) \
1090 ({ \
1091 unsigned long __pfn_to_nid_pfn = (pfn); \
1092 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1094 #else
1095 #define pfn_to_nid(pfn) (0)
1096 #endif
1098 #define early_pfn_valid(pfn) pfn_valid(pfn)
1099 void sparse_init(void);
1100 #else
1101 #define sparse_init() do {} while (0)
1102 #define sparse_index_init(_sec, _nid) do {} while (0)
1103 #endif /* CONFIG_SPARSEMEM */
1105 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1106 bool early_pfn_in_nid(unsigned long pfn, int nid);
1107 #else
1108 #define early_pfn_in_nid(pfn, nid) (1)
1109 #endif
1111 #ifndef early_pfn_valid
1112 #define early_pfn_valid(pfn) (1)
1113 #endif
1115 void memory_present(int nid, unsigned long start, unsigned long end);
1116 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1119 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1120 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1121 * pfn_valid_within() should be used in this case; we optimise this away
1122 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1124 #ifdef CONFIG_HOLES_IN_ZONE
1125 #define pfn_valid_within(pfn) pfn_valid(pfn)
1126 #else
1127 #define pfn_valid_within(pfn) (1)
1128 #endif
1130 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1132 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1133 * associated with it or not. In FLATMEM, it is expected that holes always
1134 * have valid memmap as long as there is valid PFNs either side of the hole.
1135 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1136 * entire section.
1138 * However, an ARM, and maybe other embedded architectures in the future
1139 * free memmap backing holes to save memory on the assumption the memmap is
1140 * never used. The page_zone linkages are then broken even though pfn_valid()
1141 * returns true. A walker of the full memmap must then do this additional
1142 * check to ensure the memmap they are looking at is sane by making sure
1143 * the zone and PFN linkages are still valid. This is expensive, but walkers
1144 * of the full memmap are extremely rare.
1146 int memmap_valid_within(unsigned long pfn,
1147 struct page *page, struct zone *zone);
1148 #else
1149 static inline int memmap_valid_within(unsigned long pfn,
1150 struct page *page, struct zone *zone)
1152 return 1;
1154 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1156 #endif /* !__GENERATING_BOUNDS.H */
1157 #endif /* !__ASSEMBLY__ */
1158 #endif /* _LINUX_MMZONE_H */