The x86 timer interrupt handler is the only handler not traced in the
[linux-2.6/next.git] / kernel / power / main.c
blob71f49fe4377e907c85c6d5712335aa56b579a79a
1 /*
2 * kernel/power/main.c - PM subsystem core functionality.
4 * Copyright (c) 2003 Patrick Mochel
5 * Copyright (c) 2003 Open Source Development Lab
6 *
7 * This file is released under the GPLv2
9 */
11 #include <linux/export.h>
12 #include <linux/kobject.h>
13 #include <linux/string.h>
14 #include <linux/resume-trace.h>
15 #include <linux/workqueue.h>
16 #include <linux/debugfs.h>
17 #include <linux/seq_file.h>
19 #include "power.h"
21 DEFINE_MUTEX(pm_mutex);
23 #ifdef CONFIG_PM_SLEEP
25 /* Routines for PM-transition notifications */
27 static BLOCKING_NOTIFIER_HEAD(pm_chain_head);
29 int register_pm_notifier(struct notifier_block *nb)
31 return blocking_notifier_chain_register(&pm_chain_head, nb);
33 EXPORT_SYMBOL_GPL(register_pm_notifier);
35 int unregister_pm_notifier(struct notifier_block *nb)
37 return blocking_notifier_chain_unregister(&pm_chain_head, nb);
39 EXPORT_SYMBOL_GPL(unregister_pm_notifier);
41 int pm_notifier_call_chain(unsigned long val)
43 int ret = blocking_notifier_call_chain(&pm_chain_head, val, NULL);
45 return notifier_to_errno(ret);
48 /* If set, devices may be suspended and resumed asynchronously. */
49 int pm_async_enabled = 1;
51 static ssize_t pm_async_show(struct kobject *kobj, struct kobj_attribute *attr,
52 char *buf)
54 return sprintf(buf, "%d\n", pm_async_enabled);
57 static ssize_t pm_async_store(struct kobject *kobj, struct kobj_attribute *attr,
58 const char *buf, size_t n)
60 unsigned long val;
62 if (strict_strtoul(buf, 10, &val))
63 return -EINVAL;
65 if (val > 1)
66 return -EINVAL;
68 pm_async_enabled = val;
69 return n;
72 power_attr(pm_async);
74 #ifdef CONFIG_PM_DEBUG
75 int pm_test_level = TEST_NONE;
77 static const char * const pm_tests[__TEST_AFTER_LAST] = {
78 [TEST_NONE] = "none",
79 [TEST_CORE] = "core",
80 [TEST_CPUS] = "processors",
81 [TEST_PLATFORM] = "platform",
82 [TEST_DEVICES] = "devices",
83 [TEST_FREEZER] = "freezer",
86 static ssize_t pm_test_show(struct kobject *kobj, struct kobj_attribute *attr,
87 char *buf)
89 char *s = buf;
90 int level;
92 for (level = TEST_FIRST; level <= TEST_MAX; level++)
93 if (pm_tests[level]) {
94 if (level == pm_test_level)
95 s += sprintf(s, "[%s] ", pm_tests[level]);
96 else
97 s += sprintf(s, "%s ", pm_tests[level]);
100 if (s != buf)
101 /* convert the last space to a newline */
102 *(s-1) = '\n';
104 return (s - buf);
107 static ssize_t pm_test_store(struct kobject *kobj, struct kobj_attribute *attr,
108 const char *buf, size_t n)
110 const char * const *s;
111 int level;
112 char *p;
113 int len;
114 int error = -EINVAL;
116 p = memchr(buf, '\n', n);
117 len = p ? p - buf : n;
119 mutex_lock(&pm_mutex);
121 level = TEST_FIRST;
122 for (s = &pm_tests[level]; level <= TEST_MAX; s++, level++)
123 if (*s && len == strlen(*s) && !strncmp(buf, *s, len)) {
124 pm_test_level = level;
125 error = 0;
126 break;
129 mutex_unlock(&pm_mutex);
131 return error ? error : n;
134 power_attr(pm_test);
135 #endif /* CONFIG_PM_DEBUG */
137 #ifdef CONFIG_DEBUG_FS
138 static char *suspend_step_name(enum suspend_stat_step step)
140 switch (step) {
141 case SUSPEND_FREEZE:
142 return "freeze";
143 case SUSPEND_PREPARE:
144 return "prepare";
145 case SUSPEND_SUSPEND:
146 return "suspend";
147 case SUSPEND_SUSPEND_NOIRQ:
148 return "suspend_noirq";
149 case SUSPEND_RESUME_NOIRQ:
150 return "resume_noirq";
151 case SUSPEND_RESUME:
152 return "resume";
153 default:
154 return "";
158 static int suspend_stats_show(struct seq_file *s, void *unused)
160 int i, index, last_dev, last_errno, last_step;
162 last_dev = suspend_stats.last_failed_dev + REC_FAILED_NUM - 1;
163 last_dev %= REC_FAILED_NUM;
164 last_errno = suspend_stats.last_failed_errno + REC_FAILED_NUM - 1;
165 last_errno %= REC_FAILED_NUM;
166 last_step = suspend_stats.last_failed_step + REC_FAILED_NUM - 1;
167 last_step %= REC_FAILED_NUM;
168 seq_printf(s, "%s: %d\n%s: %d\n%s: %d\n%s: %d\n"
169 "%s: %d\n%s: %d\n%s: %d\n%s: %d\n",
170 "success", suspend_stats.success,
171 "fail", suspend_stats.fail,
172 "failed_freeze", suspend_stats.failed_freeze,
173 "failed_prepare", suspend_stats.failed_prepare,
174 "failed_suspend", suspend_stats.failed_suspend,
175 "failed_suspend_noirq",
176 suspend_stats.failed_suspend_noirq,
177 "failed_resume", suspend_stats.failed_resume,
178 "failed_resume_noirq",
179 suspend_stats.failed_resume_noirq);
180 seq_printf(s, "failures:\n last_failed_dev:\t%-s\n",
181 suspend_stats.failed_devs[last_dev]);
182 for (i = 1; i < REC_FAILED_NUM; i++) {
183 index = last_dev + REC_FAILED_NUM - i;
184 index %= REC_FAILED_NUM;
185 seq_printf(s, "\t\t\t%-s\n",
186 suspend_stats.failed_devs[index]);
188 seq_printf(s, " last_failed_errno:\t%-d\n",
189 suspend_stats.errno[last_errno]);
190 for (i = 1; i < REC_FAILED_NUM; i++) {
191 index = last_errno + REC_FAILED_NUM - i;
192 index %= REC_FAILED_NUM;
193 seq_printf(s, "\t\t\t%-d\n",
194 suspend_stats.errno[index]);
196 seq_printf(s, " last_failed_step:\t%-s\n",
197 suspend_step_name(
198 suspend_stats.failed_steps[last_step]));
199 for (i = 1; i < REC_FAILED_NUM; i++) {
200 index = last_step + REC_FAILED_NUM - i;
201 index %= REC_FAILED_NUM;
202 seq_printf(s, "\t\t\t%-s\n",
203 suspend_step_name(
204 suspend_stats.failed_steps[index]));
207 return 0;
210 static int suspend_stats_open(struct inode *inode, struct file *file)
212 return single_open(file, suspend_stats_show, NULL);
215 static const struct file_operations suspend_stats_operations = {
216 .open = suspend_stats_open,
217 .read = seq_read,
218 .llseek = seq_lseek,
219 .release = single_release,
222 static int __init pm_debugfs_init(void)
224 debugfs_create_file("suspend_stats", S_IFREG | S_IRUGO,
225 NULL, NULL, &suspend_stats_operations);
226 return 0;
229 late_initcall(pm_debugfs_init);
230 #endif /* CONFIG_DEBUG_FS */
232 #endif /* CONFIG_PM_SLEEP */
234 struct kobject *power_kobj;
237 * state - control system power state.
239 * show() returns what states are supported, which is hard-coded to
240 * 'standby' (Power-On Suspend), 'mem' (Suspend-to-RAM), and
241 * 'disk' (Suspend-to-Disk).
243 * store() accepts one of those strings, translates it into the
244 * proper enumerated value, and initiates a suspend transition.
246 static ssize_t state_show(struct kobject *kobj, struct kobj_attribute *attr,
247 char *buf)
249 char *s = buf;
250 #ifdef CONFIG_SUSPEND
251 int i;
253 for (i = 0; i < PM_SUSPEND_MAX; i++) {
254 if (pm_states[i] && valid_state(i))
255 s += sprintf(s,"%s ", pm_states[i]);
257 #endif
258 #ifdef CONFIG_HIBERNATION
259 s += sprintf(s, "%s\n", "disk");
260 #else
261 if (s != buf)
262 /* convert the last space to a newline */
263 *(s-1) = '\n';
264 #endif
265 return (s - buf);
268 static ssize_t state_store(struct kobject *kobj, struct kobj_attribute *attr,
269 const char *buf, size_t n)
271 #ifdef CONFIG_SUSPEND
272 suspend_state_t state = PM_SUSPEND_STANDBY;
273 const char * const *s;
274 #endif
275 char *p;
276 int len;
277 int error = -EINVAL;
279 p = memchr(buf, '\n', n);
280 len = p ? p - buf : n;
282 /* First, check if we are requested to hibernate */
283 if (len == 4 && !strncmp(buf, "disk", len)) {
284 error = hibernate();
285 goto Exit;
288 #ifdef CONFIG_SUSPEND
289 for (s = &pm_states[state]; state < PM_SUSPEND_MAX; s++, state++) {
290 if (*s && len == strlen(*s) && !strncmp(buf, *s, len))
291 break;
293 if (state < PM_SUSPEND_MAX && *s)
294 error = enter_state(state);
295 if (error) {
296 suspend_stats.fail++;
297 dpm_save_failed_errno(error);
298 } else
299 suspend_stats.success++;
300 #endif
302 Exit:
303 return error ? error : n;
306 power_attr(state);
308 #ifdef CONFIG_PM_SLEEP
310 * The 'wakeup_count' attribute, along with the functions defined in
311 * drivers/base/power/wakeup.c, provides a means by which wakeup events can be
312 * handled in a non-racy way.
314 * If a wakeup event occurs when the system is in a sleep state, it simply is
315 * woken up. In turn, if an event that would wake the system up from a sleep
316 * state occurs when it is undergoing a transition to that sleep state, the
317 * transition should be aborted. Moreover, if such an event occurs when the
318 * system is in the working state, an attempt to start a transition to the
319 * given sleep state should fail during certain period after the detection of
320 * the event. Using the 'state' attribute alone is not sufficient to satisfy
321 * these requirements, because a wakeup event may occur exactly when 'state'
322 * is being written to and may be delivered to user space right before it is
323 * frozen, so the event will remain only partially processed until the system is
324 * woken up by another event. In particular, it won't cause the transition to
325 * a sleep state to be aborted.
327 * This difficulty may be overcome if user space uses 'wakeup_count' before
328 * writing to 'state'. It first should read from 'wakeup_count' and store
329 * the read value. Then, after carrying out its own preparations for the system
330 * transition to a sleep state, it should write the stored value to
331 * 'wakeup_count'. If that fails, at least one wakeup event has occurred since
332 * 'wakeup_count' was read and 'state' should not be written to. Otherwise, it
333 * is allowed to write to 'state', but the transition will be aborted if there
334 * are any wakeup events detected after 'wakeup_count' was written to.
337 static ssize_t wakeup_count_show(struct kobject *kobj,
338 struct kobj_attribute *attr,
339 char *buf)
341 unsigned int val;
343 return pm_get_wakeup_count(&val) ? sprintf(buf, "%u\n", val) : -EINTR;
346 static ssize_t wakeup_count_store(struct kobject *kobj,
347 struct kobj_attribute *attr,
348 const char *buf, size_t n)
350 unsigned int val;
352 if (sscanf(buf, "%u", &val) == 1) {
353 if (pm_save_wakeup_count(val))
354 return n;
356 return -EINVAL;
359 power_attr(wakeup_count);
360 #endif /* CONFIG_PM_SLEEP */
362 #ifdef CONFIG_PM_TRACE
363 int pm_trace_enabled;
365 static ssize_t pm_trace_show(struct kobject *kobj, struct kobj_attribute *attr,
366 char *buf)
368 return sprintf(buf, "%d\n", pm_trace_enabled);
371 static ssize_t
372 pm_trace_store(struct kobject *kobj, struct kobj_attribute *attr,
373 const char *buf, size_t n)
375 int val;
377 if (sscanf(buf, "%d", &val) == 1) {
378 pm_trace_enabled = !!val;
379 return n;
381 return -EINVAL;
384 power_attr(pm_trace);
386 static ssize_t pm_trace_dev_match_show(struct kobject *kobj,
387 struct kobj_attribute *attr,
388 char *buf)
390 return show_trace_dev_match(buf, PAGE_SIZE);
393 static ssize_t
394 pm_trace_dev_match_store(struct kobject *kobj, struct kobj_attribute *attr,
395 const char *buf, size_t n)
397 return -EINVAL;
400 power_attr(pm_trace_dev_match);
402 #endif /* CONFIG_PM_TRACE */
404 static struct attribute * g[] = {
405 &state_attr.attr,
406 #ifdef CONFIG_PM_TRACE
407 &pm_trace_attr.attr,
408 &pm_trace_dev_match_attr.attr,
409 #endif
410 #ifdef CONFIG_PM_SLEEP
411 &pm_async_attr.attr,
412 &wakeup_count_attr.attr,
413 #ifdef CONFIG_PM_DEBUG
414 &pm_test_attr.attr,
415 #endif
416 #endif
417 NULL,
420 static struct attribute_group attr_group = {
421 .attrs = g,
424 #ifdef CONFIG_PM_RUNTIME
425 struct workqueue_struct *pm_wq;
426 EXPORT_SYMBOL_GPL(pm_wq);
428 static int __init pm_start_workqueue(void)
430 pm_wq = alloc_workqueue("pm", WQ_FREEZABLE, 0);
432 return pm_wq ? 0 : -ENOMEM;
434 #else
435 static inline int pm_start_workqueue(void) { return 0; }
436 #endif
438 static int __init pm_init(void)
440 int error = pm_start_workqueue();
441 if (error)
442 return error;
443 hibernate_image_size_init();
444 hibernate_reserved_size_init();
445 power_kobj = kobject_create_and_add("power", NULL);
446 if (!power_kobj)
447 return -ENOMEM;
448 return sysfs_create_group(power_kobj, &attr_group);
451 core_initcall(pm_init);