The x86 timer interrupt handler is the only handler not traced in the
[linux-2.6/next.git] / kernel / ptrace.c
bloba6097ad07d5161a2c62a4e7faabe71e61ba4bbf5
1 /*
2 * linux/kernel/ptrace.c
4 * (C) Copyright 1999 Linus Torvalds
6 * Common interfaces for "ptrace()" which we do not want
7 * to continually duplicate across every architecture.
8 */
10 #include <linux/capability.h>
11 #include <linux/export.h>
12 #include <linux/sched.h>
13 #include <linux/errno.h>
14 #include <linux/mm.h>
15 #include <linux/highmem.h>
16 #include <linux/pagemap.h>
17 #include <linux/ptrace.h>
18 #include <linux/security.h>
19 #include <linux/signal.h>
20 #include <linux/audit.h>
21 #include <linux/pid_namespace.h>
22 #include <linux/syscalls.h>
23 #include <linux/uaccess.h>
24 #include <linux/regset.h>
25 #include <linux/hw_breakpoint.h>
26 #include <linux/cn_proc.h>
29 static int ptrace_trapping_sleep_fn(void *flags)
31 schedule();
32 return 0;
36 * ptrace a task: make the debugger its new parent and
37 * move it to the ptrace list.
39 * Must be called with the tasklist lock write-held.
41 void __ptrace_link(struct task_struct *child, struct task_struct *new_parent)
43 BUG_ON(!list_empty(&child->ptrace_entry));
44 list_add(&child->ptrace_entry, &new_parent->ptraced);
45 child->parent = new_parent;
48 /**
49 * __ptrace_unlink - unlink ptracee and restore its execution state
50 * @child: ptracee to be unlinked
52 * Remove @child from the ptrace list, move it back to the original parent,
53 * and restore the execution state so that it conforms to the group stop
54 * state.
56 * Unlinking can happen via two paths - explicit PTRACE_DETACH or ptracer
57 * exiting. For PTRACE_DETACH, unless the ptracee has been killed between
58 * ptrace_check_attach() and here, it's guaranteed to be in TASK_TRACED.
59 * If the ptracer is exiting, the ptracee can be in any state.
61 * After detach, the ptracee should be in a state which conforms to the
62 * group stop. If the group is stopped or in the process of stopping, the
63 * ptracee should be put into TASK_STOPPED; otherwise, it should be woken
64 * up from TASK_TRACED.
66 * If the ptracee is in TASK_TRACED and needs to be moved to TASK_STOPPED,
67 * it goes through TRACED -> RUNNING -> STOPPED transition which is similar
68 * to but in the opposite direction of what happens while attaching to a
69 * stopped task. However, in this direction, the intermediate RUNNING
70 * state is not hidden even from the current ptracer and if it immediately
71 * re-attaches and performs a WNOHANG wait(2), it may fail.
73 * CONTEXT:
74 * write_lock_irq(tasklist_lock)
76 void __ptrace_unlink(struct task_struct *child)
78 BUG_ON(!child->ptrace);
80 child->ptrace = 0;
81 child->parent = child->real_parent;
82 list_del_init(&child->ptrace_entry);
84 spin_lock(&child->sighand->siglock);
87 * Clear all pending traps and TRAPPING. TRAPPING should be
88 * cleared regardless of JOBCTL_STOP_PENDING. Do it explicitly.
90 task_clear_jobctl_pending(child, JOBCTL_TRAP_MASK);
91 task_clear_jobctl_trapping(child);
94 * Reinstate JOBCTL_STOP_PENDING if group stop is in effect and
95 * @child isn't dead.
97 if (!(child->flags & PF_EXITING) &&
98 (child->signal->flags & SIGNAL_STOP_STOPPED ||
99 child->signal->group_stop_count))
100 child->jobctl |= JOBCTL_STOP_PENDING;
103 * If transition to TASK_STOPPED is pending or in TASK_TRACED, kick
104 * @child in the butt. Note that @resume should be used iff @child
105 * is in TASK_TRACED; otherwise, we might unduly disrupt
106 * TASK_KILLABLE sleeps.
108 if (child->jobctl & JOBCTL_STOP_PENDING || task_is_traced(child))
109 signal_wake_up(child, task_is_traced(child));
111 spin_unlock(&child->sighand->siglock);
115 * ptrace_check_attach - check whether ptracee is ready for ptrace operation
116 * @child: ptracee to check for
117 * @ignore_state: don't check whether @child is currently %TASK_TRACED
119 * Check whether @child is being ptraced by %current and ready for further
120 * ptrace operations. If @ignore_state is %false, @child also should be in
121 * %TASK_TRACED state and on return the child is guaranteed to be traced
122 * and not executing. If @ignore_state is %true, @child can be in any
123 * state.
125 * CONTEXT:
126 * Grabs and releases tasklist_lock and @child->sighand->siglock.
128 * RETURNS:
129 * 0 on success, -ESRCH if %child is not ready.
131 int ptrace_check_attach(struct task_struct *child, bool ignore_state)
133 int ret = -ESRCH;
136 * We take the read lock around doing both checks to close a
137 * possible race where someone else was tracing our child and
138 * detached between these two checks. After this locked check,
139 * we are sure that this is our traced child and that can only
140 * be changed by us so it's not changing right after this.
142 read_lock(&tasklist_lock);
143 if ((child->ptrace & PT_PTRACED) && child->parent == current) {
145 * child->sighand can't be NULL, release_task()
146 * does ptrace_unlink() before __exit_signal().
148 spin_lock_irq(&child->sighand->siglock);
149 WARN_ON_ONCE(task_is_stopped(child));
150 if (ignore_state || (task_is_traced(child) &&
151 !(child->jobctl & JOBCTL_LISTENING)))
152 ret = 0;
153 spin_unlock_irq(&child->sighand->siglock);
155 read_unlock(&tasklist_lock);
157 if (!ret && !ignore_state)
158 ret = wait_task_inactive(child, TASK_TRACED) ? 0 : -ESRCH;
160 /* All systems go.. */
161 return ret;
164 int __ptrace_may_access(struct task_struct *task, unsigned int mode)
166 const struct cred *cred = current_cred(), *tcred;
168 /* May we inspect the given task?
169 * This check is used both for attaching with ptrace
170 * and for allowing access to sensitive information in /proc.
172 * ptrace_attach denies several cases that /proc allows
173 * because setting up the necessary parent/child relationship
174 * or halting the specified task is impossible.
176 int dumpable = 0;
177 /* Don't let security modules deny introspection */
178 if (task == current)
179 return 0;
180 rcu_read_lock();
181 tcred = __task_cred(task);
182 if (cred->user->user_ns == tcred->user->user_ns &&
183 (cred->uid == tcred->euid &&
184 cred->uid == tcred->suid &&
185 cred->uid == tcred->uid &&
186 cred->gid == tcred->egid &&
187 cred->gid == tcred->sgid &&
188 cred->gid == tcred->gid))
189 goto ok;
190 if (ns_capable(tcred->user->user_ns, CAP_SYS_PTRACE))
191 goto ok;
192 rcu_read_unlock();
193 return -EPERM;
195 rcu_read_unlock();
196 smp_rmb();
197 if (task->mm)
198 dumpable = get_dumpable(task->mm);
199 if (!dumpable && !task_ns_capable(task, CAP_SYS_PTRACE))
200 return -EPERM;
202 return security_ptrace_access_check(task, mode);
205 bool ptrace_may_access(struct task_struct *task, unsigned int mode)
207 int err;
208 task_lock(task);
209 err = __ptrace_may_access(task, mode);
210 task_unlock(task);
211 return !err;
214 static int ptrace_attach(struct task_struct *task, long request,
215 unsigned long flags)
217 bool seize = (request == PTRACE_SEIZE);
218 int retval;
221 * SEIZE will enable new ptrace behaviors which will be implemented
222 * gradually. SEIZE_DEVEL is used to prevent applications
223 * expecting full SEIZE behaviors trapping on kernel commits which
224 * are still in the process of implementing them.
226 * Only test programs for new ptrace behaviors being implemented
227 * should set SEIZE_DEVEL. If unset, SEIZE will fail with -EIO.
229 * Once SEIZE behaviors are completely implemented, this flag and
230 * the following test will be removed.
232 retval = -EIO;
233 if (seize && !(flags & PTRACE_SEIZE_DEVEL))
234 goto out;
236 audit_ptrace(task);
238 retval = -EPERM;
239 if (unlikely(task->flags & PF_KTHREAD))
240 goto out;
241 if (same_thread_group(task, current))
242 goto out;
245 * Protect exec's credential calculations against our interference;
246 * interference; SUID, SGID and LSM creds get determined differently
247 * under ptrace.
249 retval = -ERESTARTNOINTR;
250 if (mutex_lock_interruptible(&task->signal->cred_guard_mutex))
251 goto out;
253 task_lock(task);
254 retval = __ptrace_may_access(task, PTRACE_MODE_ATTACH);
255 task_unlock(task);
256 if (retval)
257 goto unlock_creds;
259 write_lock_irq(&tasklist_lock);
260 retval = -EPERM;
261 if (unlikely(task->exit_state))
262 goto unlock_tasklist;
263 if (task->ptrace)
264 goto unlock_tasklist;
266 task->ptrace = PT_PTRACED;
267 if (seize)
268 task->ptrace |= PT_SEIZED;
269 if (task_ns_capable(task, CAP_SYS_PTRACE))
270 task->ptrace |= PT_PTRACE_CAP;
272 __ptrace_link(task, current);
274 /* SEIZE doesn't trap tracee on attach */
275 if (!seize)
276 send_sig_info(SIGSTOP, SEND_SIG_FORCED, task);
278 spin_lock(&task->sighand->siglock);
281 * If the task is already STOPPED, set JOBCTL_TRAP_STOP and
282 * TRAPPING, and kick it so that it transits to TRACED. TRAPPING
283 * will be cleared if the child completes the transition or any
284 * event which clears the group stop states happens. We'll wait
285 * for the transition to complete before returning from this
286 * function.
288 * This hides STOPPED -> RUNNING -> TRACED transition from the
289 * attaching thread but a different thread in the same group can
290 * still observe the transient RUNNING state. IOW, if another
291 * thread's WNOHANG wait(2) on the stopped tracee races against
292 * ATTACH, the wait(2) may fail due to the transient RUNNING.
294 * The following task_is_stopped() test is safe as both transitions
295 * in and out of STOPPED are protected by siglock.
297 if (task_is_stopped(task) &&
298 task_set_jobctl_pending(task, JOBCTL_TRAP_STOP | JOBCTL_TRAPPING))
299 signal_wake_up(task, 1);
301 spin_unlock(&task->sighand->siglock);
303 retval = 0;
304 unlock_tasklist:
305 write_unlock_irq(&tasklist_lock);
306 unlock_creds:
307 mutex_unlock(&task->signal->cred_guard_mutex);
308 out:
309 if (!retval) {
310 wait_on_bit(&task->jobctl, JOBCTL_TRAPPING_BIT,
311 ptrace_trapping_sleep_fn, TASK_UNINTERRUPTIBLE);
312 proc_ptrace_connector(task, PTRACE_ATTACH);
315 return retval;
319 * ptrace_traceme -- helper for PTRACE_TRACEME
321 * Performs checks and sets PT_PTRACED.
322 * Should be used by all ptrace implementations for PTRACE_TRACEME.
324 static int ptrace_traceme(void)
326 int ret = -EPERM;
328 write_lock_irq(&tasklist_lock);
329 /* Are we already being traced? */
330 if (!current->ptrace) {
331 ret = security_ptrace_traceme(current->parent);
333 * Check PF_EXITING to ensure ->real_parent has not passed
334 * exit_ptrace(). Otherwise we don't report the error but
335 * pretend ->real_parent untraces us right after return.
337 if (!ret && !(current->real_parent->flags & PF_EXITING)) {
338 current->ptrace = PT_PTRACED;
339 __ptrace_link(current, current->real_parent);
342 write_unlock_irq(&tasklist_lock);
344 return ret;
348 * Called with irqs disabled, returns true if childs should reap themselves.
350 static int ignoring_children(struct sighand_struct *sigh)
352 int ret;
353 spin_lock(&sigh->siglock);
354 ret = (sigh->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) ||
355 (sigh->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT);
356 spin_unlock(&sigh->siglock);
357 return ret;
361 * Called with tasklist_lock held for writing.
362 * Unlink a traced task, and clean it up if it was a traced zombie.
363 * Return true if it needs to be reaped with release_task().
364 * (We can't call release_task() here because we already hold tasklist_lock.)
366 * If it's a zombie, our attachedness prevented normal parent notification
367 * or self-reaping. Do notification now if it would have happened earlier.
368 * If it should reap itself, return true.
370 * If it's our own child, there is no notification to do. But if our normal
371 * children self-reap, then this child was prevented by ptrace and we must
372 * reap it now, in that case we must also wake up sub-threads sleeping in
373 * do_wait().
375 static bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p)
377 bool dead;
379 __ptrace_unlink(p);
381 if (p->exit_state != EXIT_ZOMBIE)
382 return false;
384 dead = !thread_group_leader(p);
386 if (!dead && thread_group_empty(p)) {
387 if (!same_thread_group(p->real_parent, tracer))
388 dead = do_notify_parent(p, p->exit_signal);
389 else if (ignoring_children(tracer->sighand)) {
390 __wake_up_parent(p, tracer);
391 dead = true;
394 /* Mark it as in the process of being reaped. */
395 if (dead)
396 p->exit_state = EXIT_DEAD;
397 return dead;
400 static int ptrace_detach(struct task_struct *child, unsigned int data)
402 bool dead = false;
404 if (!valid_signal(data))
405 return -EIO;
407 /* Architecture-specific hardware disable .. */
408 ptrace_disable(child);
409 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
411 write_lock_irq(&tasklist_lock);
413 * This child can be already killed. Make sure de_thread() or
414 * our sub-thread doing do_wait() didn't do release_task() yet.
416 if (child->ptrace) {
417 child->exit_code = data;
418 dead = __ptrace_detach(current, child);
420 write_unlock_irq(&tasklist_lock);
422 proc_ptrace_connector(child, PTRACE_DETACH);
423 if (unlikely(dead))
424 release_task(child);
426 return 0;
430 * Detach all tasks we were using ptrace on. Called with tasklist held
431 * for writing, and returns with it held too. But note it can release
432 * and reacquire the lock.
434 void exit_ptrace(struct task_struct *tracer)
435 __releases(&tasklist_lock)
436 __acquires(&tasklist_lock)
438 struct task_struct *p, *n;
439 LIST_HEAD(ptrace_dead);
441 if (likely(list_empty(&tracer->ptraced)))
442 return;
444 list_for_each_entry_safe(p, n, &tracer->ptraced, ptrace_entry) {
445 if (__ptrace_detach(tracer, p))
446 list_add(&p->ptrace_entry, &ptrace_dead);
449 write_unlock_irq(&tasklist_lock);
450 BUG_ON(!list_empty(&tracer->ptraced));
452 list_for_each_entry_safe(p, n, &ptrace_dead, ptrace_entry) {
453 list_del_init(&p->ptrace_entry);
454 release_task(p);
457 write_lock_irq(&tasklist_lock);
460 int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len)
462 int copied = 0;
464 while (len > 0) {
465 char buf[128];
466 int this_len, retval;
468 this_len = (len > sizeof(buf)) ? sizeof(buf) : len;
469 retval = access_process_vm(tsk, src, buf, this_len, 0);
470 if (!retval) {
471 if (copied)
472 break;
473 return -EIO;
475 if (copy_to_user(dst, buf, retval))
476 return -EFAULT;
477 copied += retval;
478 src += retval;
479 dst += retval;
480 len -= retval;
482 return copied;
485 int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len)
487 int copied = 0;
489 while (len > 0) {
490 char buf[128];
491 int this_len, retval;
493 this_len = (len > sizeof(buf)) ? sizeof(buf) : len;
494 if (copy_from_user(buf, src, this_len))
495 return -EFAULT;
496 retval = access_process_vm(tsk, dst, buf, this_len, 1);
497 if (!retval) {
498 if (copied)
499 break;
500 return -EIO;
502 copied += retval;
503 src += retval;
504 dst += retval;
505 len -= retval;
507 return copied;
510 static int ptrace_setoptions(struct task_struct *child, unsigned long data)
512 child->ptrace &= ~PT_TRACE_MASK;
514 if (data & PTRACE_O_TRACESYSGOOD)
515 child->ptrace |= PT_TRACESYSGOOD;
517 if (data & PTRACE_O_TRACEFORK)
518 child->ptrace |= PT_TRACE_FORK;
520 if (data & PTRACE_O_TRACEVFORK)
521 child->ptrace |= PT_TRACE_VFORK;
523 if (data & PTRACE_O_TRACECLONE)
524 child->ptrace |= PT_TRACE_CLONE;
526 if (data & PTRACE_O_TRACEEXEC)
527 child->ptrace |= PT_TRACE_EXEC;
529 if (data & PTRACE_O_TRACEVFORKDONE)
530 child->ptrace |= PT_TRACE_VFORK_DONE;
532 if (data & PTRACE_O_TRACEEXIT)
533 child->ptrace |= PT_TRACE_EXIT;
535 return (data & ~PTRACE_O_MASK) ? -EINVAL : 0;
538 static int ptrace_getsiginfo(struct task_struct *child, siginfo_t *info)
540 unsigned long flags;
541 int error = -ESRCH;
543 if (lock_task_sighand(child, &flags)) {
544 error = -EINVAL;
545 if (likely(child->last_siginfo != NULL)) {
546 *info = *child->last_siginfo;
547 error = 0;
549 unlock_task_sighand(child, &flags);
551 return error;
554 static int ptrace_setsiginfo(struct task_struct *child, const siginfo_t *info)
556 unsigned long flags;
557 int error = -ESRCH;
559 if (lock_task_sighand(child, &flags)) {
560 error = -EINVAL;
561 if (likely(child->last_siginfo != NULL)) {
562 *child->last_siginfo = *info;
563 error = 0;
565 unlock_task_sighand(child, &flags);
567 return error;
571 #ifdef PTRACE_SINGLESTEP
572 #define is_singlestep(request) ((request) == PTRACE_SINGLESTEP)
573 #else
574 #define is_singlestep(request) 0
575 #endif
577 #ifdef PTRACE_SINGLEBLOCK
578 #define is_singleblock(request) ((request) == PTRACE_SINGLEBLOCK)
579 #else
580 #define is_singleblock(request) 0
581 #endif
583 #ifdef PTRACE_SYSEMU
584 #define is_sysemu_singlestep(request) ((request) == PTRACE_SYSEMU_SINGLESTEP)
585 #else
586 #define is_sysemu_singlestep(request) 0
587 #endif
589 static int ptrace_resume(struct task_struct *child, long request,
590 unsigned long data)
592 if (!valid_signal(data))
593 return -EIO;
595 if (request == PTRACE_SYSCALL)
596 set_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
597 else
598 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
600 #ifdef TIF_SYSCALL_EMU
601 if (request == PTRACE_SYSEMU || request == PTRACE_SYSEMU_SINGLESTEP)
602 set_tsk_thread_flag(child, TIF_SYSCALL_EMU);
603 else
604 clear_tsk_thread_flag(child, TIF_SYSCALL_EMU);
605 #endif
607 if (is_singleblock(request)) {
608 if (unlikely(!arch_has_block_step()))
609 return -EIO;
610 user_enable_block_step(child);
611 } else if (is_singlestep(request) || is_sysemu_singlestep(request)) {
612 if (unlikely(!arch_has_single_step()))
613 return -EIO;
614 user_enable_single_step(child);
615 } else {
616 user_disable_single_step(child);
619 child->exit_code = data;
620 wake_up_state(child, __TASK_TRACED);
622 return 0;
625 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
627 static const struct user_regset *
628 find_regset(const struct user_regset_view *view, unsigned int type)
630 const struct user_regset *regset;
631 int n;
633 for (n = 0; n < view->n; ++n) {
634 regset = view->regsets + n;
635 if (regset->core_note_type == type)
636 return regset;
639 return NULL;
642 static int ptrace_regset(struct task_struct *task, int req, unsigned int type,
643 struct iovec *kiov)
645 const struct user_regset_view *view = task_user_regset_view(task);
646 const struct user_regset *regset = find_regset(view, type);
647 int regset_no;
649 if (!regset || (kiov->iov_len % regset->size) != 0)
650 return -EINVAL;
652 regset_no = regset - view->regsets;
653 kiov->iov_len = min(kiov->iov_len,
654 (__kernel_size_t) (regset->n * regset->size));
656 if (req == PTRACE_GETREGSET)
657 return copy_regset_to_user(task, view, regset_no, 0,
658 kiov->iov_len, kiov->iov_base);
659 else
660 return copy_regset_from_user(task, view, regset_no, 0,
661 kiov->iov_len, kiov->iov_base);
664 #endif
666 int ptrace_request(struct task_struct *child, long request,
667 unsigned long addr, unsigned long data)
669 bool seized = child->ptrace & PT_SEIZED;
670 int ret = -EIO;
671 siginfo_t siginfo, *si;
672 void __user *datavp = (void __user *) data;
673 unsigned long __user *datalp = datavp;
674 unsigned long flags;
676 switch (request) {
677 case PTRACE_PEEKTEXT:
678 case PTRACE_PEEKDATA:
679 return generic_ptrace_peekdata(child, addr, data);
680 case PTRACE_POKETEXT:
681 case PTRACE_POKEDATA:
682 return generic_ptrace_pokedata(child, addr, data);
684 #ifdef PTRACE_OLDSETOPTIONS
685 case PTRACE_OLDSETOPTIONS:
686 #endif
687 case PTRACE_SETOPTIONS:
688 ret = ptrace_setoptions(child, data);
689 break;
690 case PTRACE_GETEVENTMSG:
691 ret = put_user(child->ptrace_message, datalp);
692 break;
694 case PTRACE_GETSIGINFO:
695 ret = ptrace_getsiginfo(child, &siginfo);
696 if (!ret)
697 ret = copy_siginfo_to_user(datavp, &siginfo);
698 break;
700 case PTRACE_SETSIGINFO:
701 if (copy_from_user(&siginfo, datavp, sizeof siginfo))
702 ret = -EFAULT;
703 else
704 ret = ptrace_setsiginfo(child, &siginfo);
705 break;
707 case PTRACE_INTERRUPT:
709 * Stop tracee without any side-effect on signal or job
710 * control. At least one trap is guaranteed to happen
711 * after this request. If @child is already trapped, the
712 * current trap is not disturbed and another trap will
713 * happen after the current trap is ended with PTRACE_CONT.
715 * The actual trap might not be PTRACE_EVENT_STOP trap but
716 * the pending condition is cleared regardless.
718 if (unlikely(!seized || !lock_task_sighand(child, &flags)))
719 break;
722 * INTERRUPT doesn't disturb existing trap sans one
723 * exception. If ptracer issued LISTEN for the current
724 * STOP, this INTERRUPT should clear LISTEN and re-trap
725 * tracee into STOP.
727 if (likely(task_set_jobctl_pending(child, JOBCTL_TRAP_STOP)))
728 signal_wake_up(child, child->jobctl & JOBCTL_LISTENING);
730 unlock_task_sighand(child, &flags);
731 ret = 0;
732 break;
734 case PTRACE_LISTEN:
736 * Listen for events. Tracee must be in STOP. It's not
737 * resumed per-se but is not considered to be in TRACED by
738 * wait(2) or ptrace(2). If an async event (e.g. group
739 * stop state change) happens, tracee will enter STOP trap
740 * again. Alternatively, ptracer can issue INTERRUPT to
741 * finish listening and re-trap tracee into STOP.
743 if (unlikely(!seized || !lock_task_sighand(child, &flags)))
744 break;
746 si = child->last_siginfo;
747 if (unlikely(!si || si->si_code >> 8 != PTRACE_EVENT_STOP))
748 break;
750 child->jobctl |= JOBCTL_LISTENING;
753 * If NOTIFY is set, it means event happened between start
754 * of this trap and now. Trigger re-trap immediately.
756 if (child->jobctl & JOBCTL_TRAP_NOTIFY)
757 signal_wake_up(child, true);
759 unlock_task_sighand(child, &flags);
760 ret = 0;
761 break;
763 case PTRACE_DETACH: /* detach a process that was attached. */
764 ret = ptrace_detach(child, data);
765 break;
767 #ifdef CONFIG_BINFMT_ELF_FDPIC
768 case PTRACE_GETFDPIC: {
769 struct mm_struct *mm = get_task_mm(child);
770 unsigned long tmp = 0;
772 ret = -ESRCH;
773 if (!mm)
774 break;
776 switch (addr) {
777 case PTRACE_GETFDPIC_EXEC:
778 tmp = mm->context.exec_fdpic_loadmap;
779 break;
780 case PTRACE_GETFDPIC_INTERP:
781 tmp = mm->context.interp_fdpic_loadmap;
782 break;
783 default:
784 break;
786 mmput(mm);
788 ret = put_user(tmp, datalp);
789 break;
791 #endif
793 #ifdef PTRACE_SINGLESTEP
794 case PTRACE_SINGLESTEP:
795 #endif
796 #ifdef PTRACE_SINGLEBLOCK
797 case PTRACE_SINGLEBLOCK:
798 #endif
799 #ifdef PTRACE_SYSEMU
800 case PTRACE_SYSEMU:
801 case PTRACE_SYSEMU_SINGLESTEP:
802 #endif
803 case PTRACE_SYSCALL:
804 case PTRACE_CONT:
805 return ptrace_resume(child, request, data);
807 case PTRACE_KILL:
808 if (child->exit_state) /* already dead */
809 return 0;
810 return ptrace_resume(child, request, SIGKILL);
812 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
813 case PTRACE_GETREGSET:
814 case PTRACE_SETREGSET:
816 struct iovec kiov;
817 struct iovec __user *uiov = datavp;
819 if (!access_ok(VERIFY_WRITE, uiov, sizeof(*uiov)))
820 return -EFAULT;
822 if (__get_user(kiov.iov_base, &uiov->iov_base) ||
823 __get_user(kiov.iov_len, &uiov->iov_len))
824 return -EFAULT;
826 ret = ptrace_regset(child, request, addr, &kiov);
827 if (!ret)
828 ret = __put_user(kiov.iov_len, &uiov->iov_len);
829 break;
831 #endif
832 default:
833 break;
836 return ret;
839 static struct task_struct *ptrace_get_task_struct(pid_t pid)
841 struct task_struct *child;
843 rcu_read_lock();
844 child = find_task_by_vpid(pid);
845 if (child)
846 get_task_struct(child);
847 rcu_read_unlock();
849 if (!child)
850 return ERR_PTR(-ESRCH);
851 return child;
854 #ifndef arch_ptrace_attach
855 #define arch_ptrace_attach(child) do { } while (0)
856 #endif
858 SYSCALL_DEFINE4(ptrace, long, request, long, pid, unsigned long, addr,
859 unsigned long, data)
861 struct task_struct *child;
862 long ret;
864 if (request == PTRACE_TRACEME) {
865 ret = ptrace_traceme();
866 if (!ret)
867 arch_ptrace_attach(current);
868 goto out;
871 child = ptrace_get_task_struct(pid);
872 if (IS_ERR(child)) {
873 ret = PTR_ERR(child);
874 goto out;
877 if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) {
878 ret = ptrace_attach(child, request, data);
880 * Some architectures need to do book-keeping after
881 * a ptrace attach.
883 if (!ret)
884 arch_ptrace_attach(child);
885 goto out_put_task_struct;
888 ret = ptrace_check_attach(child, request == PTRACE_KILL ||
889 request == PTRACE_INTERRUPT);
890 if (ret < 0)
891 goto out_put_task_struct;
893 ret = arch_ptrace(child, request, addr, data);
895 out_put_task_struct:
896 put_task_struct(child);
897 out:
898 return ret;
901 int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
902 unsigned long data)
904 unsigned long tmp;
905 int copied;
907 copied = access_process_vm(tsk, addr, &tmp, sizeof(tmp), 0);
908 if (copied != sizeof(tmp))
909 return -EIO;
910 return put_user(tmp, (unsigned long __user *)data);
913 int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
914 unsigned long data)
916 int copied;
918 copied = access_process_vm(tsk, addr, &data, sizeof(data), 1);
919 return (copied == sizeof(data)) ? 0 : -EIO;
922 #if defined CONFIG_COMPAT
923 #include <linux/compat.h>
925 int compat_ptrace_request(struct task_struct *child, compat_long_t request,
926 compat_ulong_t addr, compat_ulong_t data)
928 compat_ulong_t __user *datap = compat_ptr(data);
929 compat_ulong_t word;
930 siginfo_t siginfo;
931 int ret;
933 switch (request) {
934 case PTRACE_PEEKTEXT:
935 case PTRACE_PEEKDATA:
936 ret = access_process_vm(child, addr, &word, sizeof(word), 0);
937 if (ret != sizeof(word))
938 ret = -EIO;
939 else
940 ret = put_user(word, datap);
941 break;
943 case PTRACE_POKETEXT:
944 case PTRACE_POKEDATA:
945 ret = access_process_vm(child, addr, &data, sizeof(data), 1);
946 ret = (ret != sizeof(data) ? -EIO : 0);
947 break;
949 case PTRACE_GETEVENTMSG:
950 ret = put_user((compat_ulong_t) child->ptrace_message, datap);
951 break;
953 case PTRACE_GETSIGINFO:
954 ret = ptrace_getsiginfo(child, &siginfo);
955 if (!ret)
956 ret = copy_siginfo_to_user32(
957 (struct compat_siginfo __user *) datap,
958 &siginfo);
959 break;
961 case PTRACE_SETSIGINFO:
962 memset(&siginfo, 0, sizeof siginfo);
963 if (copy_siginfo_from_user32(
964 &siginfo, (struct compat_siginfo __user *) datap))
965 ret = -EFAULT;
966 else
967 ret = ptrace_setsiginfo(child, &siginfo);
968 break;
969 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
970 case PTRACE_GETREGSET:
971 case PTRACE_SETREGSET:
973 struct iovec kiov;
974 struct compat_iovec __user *uiov =
975 (struct compat_iovec __user *) datap;
976 compat_uptr_t ptr;
977 compat_size_t len;
979 if (!access_ok(VERIFY_WRITE, uiov, sizeof(*uiov)))
980 return -EFAULT;
982 if (__get_user(ptr, &uiov->iov_base) ||
983 __get_user(len, &uiov->iov_len))
984 return -EFAULT;
986 kiov.iov_base = compat_ptr(ptr);
987 kiov.iov_len = len;
989 ret = ptrace_regset(child, request, addr, &kiov);
990 if (!ret)
991 ret = __put_user(kiov.iov_len, &uiov->iov_len);
992 break;
994 #endif
996 default:
997 ret = ptrace_request(child, request, addr, data);
1000 return ret;
1003 asmlinkage long compat_sys_ptrace(compat_long_t request, compat_long_t pid,
1004 compat_long_t addr, compat_long_t data)
1006 struct task_struct *child;
1007 long ret;
1009 if (request == PTRACE_TRACEME) {
1010 ret = ptrace_traceme();
1011 goto out;
1014 child = ptrace_get_task_struct(pid);
1015 if (IS_ERR(child)) {
1016 ret = PTR_ERR(child);
1017 goto out;
1020 if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) {
1021 ret = ptrace_attach(child, request, data);
1023 * Some architectures need to do book-keeping after
1024 * a ptrace attach.
1026 if (!ret)
1027 arch_ptrace_attach(child);
1028 goto out_put_task_struct;
1031 ret = ptrace_check_attach(child, request == PTRACE_KILL ||
1032 request == PTRACE_INTERRUPT);
1033 if (!ret)
1034 ret = compat_arch_ptrace(child, request, addr, data);
1036 out_put_task_struct:
1037 put_task_struct(child);
1038 out:
1039 return ret;
1041 #endif /* CONFIG_COMPAT */
1043 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1044 int ptrace_get_breakpoints(struct task_struct *tsk)
1046 if (atomic_inc_not_zero(&tsk->ptrace_bp_refcnt))
1047 return 0;
1049 return -1;
1052 void ptrace_put_breakpoints(struct task_struct *tsk)
1054 if (atomic_dec_and_test(&tsk->ptrace_bp_refcnt))
1055 flush_ptrace_hw_breakpoint(tsk);
1057 #endif /* CONFIG_HAVE_HW_BREAKPOINT */