The x86 timer interrupt handler is the only handler not traced in the
[linux-2.6/next.git] / kernel / rcutiny_plugin.h
blob48f20beb378a60ffe16e5f87d47f9b01f0e0c601
1 /*
2 * Read-Copy Update mechanism for mutual exclusion, the Bloatwatch edition
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 * Copyright (c) 2010 Linaro
22 * Author: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 #include <linux/kthread.h>
26 #include <linux/debugfs.h>
27 #include <linux/seq_file.h>
29 /* Global control variables for rcupdate callback mechanism. */
30 struct rcu_ctrlblk {
31 struct rcu_head *rcucblist; /* List of pending callbacks (CBs). */
32 struct rcu_head **donetail; /* ->next pointer of last "done" CB. */
33 struct rcu_head **curtail; /* ->next pointer of last CB. */
34 RCU_TRACE(long qlen); /* Number of pending CBs. */
35 RCU_TRACE(char *name); /* Name of RCU type. */
38 /* Definition for rcupdate control block. */
39 static struct rcu_ctrlblk rcu_sched_ctrlblk = {
40 .donetail = &rcu_sched_ctrlblk.rcucblist,
41 .curtail = &rcu_sched_ctrlblk.rcucblist,
42 RCU_TRACE(.name = "rcu_sched")
45 static struct rcu_ctrlblk rcu_bh_ctrlblk = {
46 .donetail = &rcu_bh_ctrlblk.rcucblist,
47 .curtail = &rcu_bh_ctrlblk.rcucblist,
48 RCU_TRACE(.name = "rcu_bh")
51 #ifdef CONFIG_DEBUG_LOCK_ALLOC
52 int rcu_scheduler_active __read_mostly;
53 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
54 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
56 #ifdef CONFIG_TINY_PREEMPT_RCU
58 #include <linux/delay.h>
60 /* Global control variables for preemptible RCU. */
61 struct rcu_preempt_ctrlblk {
62 struct rcu_ctrlblk rcb; /* curtail: ->next ptr of last CB for GP. */
63 struct rcu_head **nexttail;
64 /* Tasks blocked in a preemptible RCU */
65 /* read-side critical section while an */
66 /* preemptible-RCU grace period is in */
67 /* progress must wait for a later grace */
68 /* period. This pointer points to the */
69 /* ->next pointer of the last task that */
70 /* must wait for a later grace period, or */
71 /* to &->rcb.rcucblist if there is no */
72 /* such task. */
73 struct list_head blkd_tasks;
74 /* Tasks blocked in RCU read-side critical */
75 /* section. Tasks are placed at the head */
76 /* of this list and age towards the tail. */
77 struct list_head *gp_tasks;
78 /* Pointer to the first task blocking the */
79 /* current grace period, or NULL if there */
80 /* is no such task. */
81 struct list_head *exp_tasks;
82 /* Pointer to first task blocking the */
83 /* current expedited grace period, or NULL */
84 /* if there is no such task. If there */
85 /* is no current expedited grace period, */
86 /* then there cannot be any such task. */
87 #ifdef CONFIG_RCU_BOOST
88 struct list_head *boost_tasks;
89 /* Pointer to first task that needs to be */
90 /* priority-boosted, or NULL if no priority */
91 /* boosting is needed. If there is no */
92 /* current or expedited grace period, there */
93 /* can be no such task. */
94 #endif /* #ifdef CONFIG_RCU_BOOST */
95 u8 gpnum; /* Current grace period. */
96 u8 gpcpu; /* Last grace period blocked by the CPU. */
97 u8 completed; /* Last grace period completed. */
98 /* If all three are equal, RCU is idle. */
99 #ifdef CONFIG_RCU_BOOST
100 unsigned long boost_time; /* When to start boosting (jiffies) */
101 #endif /* #ifdef CONFIG_RCU_BOOST */
102 #ifdef CONFIG_RCU_TRACE
103 unsigned long n_grace_periods;
104 #ifdef CONFIG_RCU_BOOST
105 unsigned long n_tasks_boosted;
106 /* Total number of tasks boosted. */
107 unsigned long n_exp_boosts;
108 /* Number of tasks boosted for expedited GP. */
109 unsigned long n_normal_boosts;
110 /* Number of tasks boosted for normal GP. */
111 unsigned long n_balk_blkd_tasks;
112 /* Refused to boost: no blocked tasks. */
113 unsigned long n_balk_exp_gp_tasks;
114 /* Refused to boost: nothing blocking GP. */
115 unsigned long n_balk_boost_tasks;
116 /* Refused to boost: already boosting. */
117 unsigned long n_balk_notyet;
118 /* Refused to boost: not yet time. */
119 unsigned long n_balk_nos;
120 /* Refused to boost: not sure why, though. */
121 /* This can happen due to race conditions. */
122 #endif /* #ifdef CONFIG_RCU_BOOST */
123 #endif /* #ifdef CONFIG_RCU_TRACE */
126 static struct rcu_preempt_ctrlblk rcu_preempt_ctrlblk = {
127 .rcb.donetail = &rcu_preempt_ctrlblk.rcb.rcucblist,
128 .rcb.curtail = &rcu_preempt_ctrlblk.rcb.rcucblist,
129 .nexttail = &rcu_preempt_ctrlblk.rcb.rcucblist,
130 .blkd_tasks = LIST_HEAD_INIT(rcu_preempt_ctrlblk.blkd_tasks),
131 RCU_TRACE(.rcb.name = "rcu_preempt")
134 static int rcu_preempted_readers_exp(void);
135 static void rcu_report_exp_done(void);
138 * Return true if the CPU has not yet responded to the current grace period.
140 static int rcu_cpu_blocking_cur_gp(void)
142 return rcu_preempt_ctrlblk.gpcpu != rcu_preempt_ctrlblk.gpnum;
146 * Check for a running RCU reader. Because there is only one CPU,
147 * there can be but one running RCU reader at a time. ;-)
149 static int rcu_preempt_running_reader(void)
151 return current->rcu_read_lock_nesting;
155 * Check for preempted RCU readers blocking any grace period.
156 * If the caller needs a reliable answer, it must disable hard irqs.
158 static int rcu_preempt_blocked_readers_any(void)
160 return !list_empty(&rcu_preempt_ctrlblk.blkd_tasks);
164 * Check for preempted RCU readers blocking the current grace period.
165 * If the caller needs a reliable answer, it must disable hard irqs.
167 static int rcu_preempt_blocked_readers_cgp(void)
169 return rcu_preempt_ctrlblk.gp_tasks != NULL;
173 * Return true if another preemptible-RCU grace period is needed.
175 static int rcu_preempt_needs_another_gp(void)
177 return *rcu_preempt_ctrlblk.rcb.curtail != NULL;
181 * Return true if a preemptible-RCU grace period is in progress.
182 * The caller must disable hardirqs.
184 static int rcu_preempt_gp_in_progress(void)
186 return rcu_preempt_ctrlblk.completed != rcu_preempt_ctrlblk.gpnum;
190 * Advance a ->blkd_tasks-list pointer to the next entry, instead
191 * returning NULL if at the end of the list.
193 static struct list_head *rcu_next_node_entry(struct task_struct *t)
195 struct list_head *np;
197 np = t->rcu_node_entry.next;
198 if (np == &rcu_preempt_ctrlblk.blkd_tasks)
199 np = NULL;
200 return np;
203 #ifdef CONFIG_RCU_TRACE
205 #ifdef CONFIG_RCU_BOOST
206 static void rcu_initiate_boost_trace(void);
207 #endif /* #ifdef CONFIG_RCU_BOOST */
210 * Dump additional statistice for TINY_PREEMPT_RCU.
212 static void show_tiny_preempt_stats(struct seq_file *m)
214 seq_printf(m, "rcu_preempt: qlen=%ld gp=%lu g%u/p%u/c%u tasks=%c%c%c\n",
215 rcu_preempt_ctrlblk.rcb.qlen,
216 rcu_preempt_ctrlblk.n_grace_periods,
217 rcu_preempt_ctrlblk.gpnum,
218 rcu_preempt_ctrlblk.gpcpu,
219 rcu_preempt_ctrlblk.completed,
220 "T."[list_empty(&rcu_preempt_ctrlblk.blkd_tasks)],
221 "N."[!rcu_preempt_ctrlblk.gp_tasks],
222 "E."[!rcu_preempt_ctrlblk.exp_tasks]);
223 #ifdef CONFIG_RCU_BOOST
224 seq_printf(m, "%sttb=%c ntb=%lu neb=%lu nnb=%lu j=%04x bt=%04x\n",
225 " ",
226 "B."[!rcu_preempt_ctrlblk.boost_tasks],
227 rcu_preempt_ctrlblk.n_tasks_boosted,
228 rcu_preempt_ctrlblk.n_exp_boosts,
229 rcu_preempt_ctrlblk.n_normal_boosts,
230 (int)(jiffies & 0xffff),
231 (int)(rcu_preempt_ctrlblk.boost_time & 0xffff));
232 seq_printf(m, "%s: nt=%lu egt=%lu bt=%lu ny=%lu nos=%lu\n",
233 " balk",
234 rcu_preempt_ctrlblk.n_balk_blkd_tasks,
235 rcu_preempt_ctrlblk.n_balk_exp_gp_tasks,
236 rcu_preempt_ctrlblk.n_balk_boost_tasks,
237 rcu_preempt_ctrlblk.n_balk_notyet,
238 rcu_preempt_ctrlblk.n_balk_nos);
239 #endif /* #ifdef CONFIG_RCU_BOOST */
242 #endif /* #ifdef CONFIG_RCU_TRACE */
244 #ifdef CONFIG_RCU_BOOST
246 #include "rtmutex_common.h"
248 #define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
250 /* Controls for rcu_kthread() kthread. */
251 static struct task_struct *rcu_kthread_task;
252 static DECLARE_WAIT_QUEUE_HEAD(rcu_kthread_wq);
253 static unsigned long have_rcu_kthread_work;
256 * Carry out RCU priority boosting on the task indicated by ->boost_tasks,
257 * and advance ->boost_tasks to the next task in the ->blkd_tasks list.
259 static int rcu_boost(void)
261 unsigned long flags;
262 struct rt_mutex mtx;
263 struct task_struct *t;
264 struct list_head *tb;
266 if (rcu_preempt_ctrlblk.boost_tasks == NULL &&
267 rcu_preempt_ctrlblk.exp_tasks == NULL)
268 return 0; /* Nothing to boost. */
270 raw_local_irq_save(flags);
273 * Recheck with irqs disabled: all tasks in need of boosting
274 * might exit their RCU read-side critical sections on their own
275 * if we are preempted just before disabling irqs.
277 if (rcu_preempt_ctrlblk.boost_tasks == NULL &&
278 rcu_preempt_ctrlblk.exp_tasks == NULL) {
279 raw_local_irq_restore(flags);
280 return 0;
284 * Preferentially boost tasks blocking expedited grace periods.
285 * This cannot starve the normal grace periods because a second
286 * expedited grace period must boost all blocked tasks, including
287 * those blocking the pre-existing normal grace period.
289 if (rcu_preempt_ctrlblk.exp_tasks != NULL) {
290 tb = rcu_preempt_ctrlblk.exp_tasks;
291 RCU_TRACE(rcu_preempt_ctrlblk.n_exp_boosts++);
292 } else {
293 tb = rcu_preempt_ctrlblk.boost_tasks;
294 RCU_TRACE(rcu_preempt_ctrlblk.n_normal_boosts++);
296 RCU_TRACE(rcu_preempt_ctrlblk.n_tasks_boosted++);
299 * We boost task t by manufacturing an rt_mutex that appears to
300 * be held by task t. We leave a pointer to that rt_mutex where
301 * task t can find it, and task t will release the mutex when it
302 * exits its outermost RCU read-side critical section. Then
303 * simply acquiring this artificial rt_mutex will boost task
304 * t's priority. (Thanks to tglx for suggesting this approach!)
306 t = container_of(tb, struct task_struct, rcu_node_entry);
307 rt_mutex_init_proxy_locked(&mtx, t);
308 t->rcu_boost_mutex = &mtx;
309 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BOOSTED;
310 raw_local_irq_restore(flags);
311 rt_mutex_lock(&mtx);
312 rt_mutex_unlock(&mtx); /* Keep lockdep happy. */
314 return rcu_preempt_ctrlblk.boost_tasks != NULL ||
315 rcu_preempt_ctrlblk.exp_tasks != NULL;
319 * Check to see if it is now time to start boosting RCU readers blocking
320 * the current grace period, and, if so, tell the rcu_kthread_task to
321 * start boosting them. If there is an expedited boost in progress,
322 * we wait for it to complete.
324 * If there are no blocked readers blocking the current grace period,
325 * return 0 to let the caller know, otherwise return 1. Note that this
326 * return value is independent of whether or not boosting was done.
328 static int rcu_initiate_boost(void)
330 if (!rcu_preempt_blocked_readers_cgp() &&
331 rcu_preempt_ctrlblk.exp_tasks == NULL) {
332 RCU_TRACE(rcu_preempt_ctrlblk.n_balk_exp_gp_tasks++);
333 return 0;
335 if (rcu_preempt_ctrlblk.exp_tasks != NULL ||
336 (rcu_preempt_ctrlblk.gp_tasks != NULL &&
337 rcu_preempt_ctrlblk.boost_tasks == NULL &&
338 ULONG_CMP_GE(jiffies, rcu_preempt_ctrlblk.boost_time))) {
339 if (rcu_preempt_ctrlblk.exp_tasks == NULL)
340 rcu_preempt_ctrlblk.boost_tasks =
341 rcu_preempt_ctrlblk.gp_tasks;
342 invoke_rcu_callbacks();
343 } else
344 RCU_TRACE(rcu_initiate_boost_trace());
345 return 1;
348 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
351 * Do priority-boost accounting for the start of a new grace period.
353 static void rcu_preempt_boost_start_gp(void)
355 rcu_preempt_ctrlblk.boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
358 #else /* #ifdef CONFIG_RCU_BOOST */
361 * If there is no RCU priority boosting, we don't initiate boosting,
362 * but we do indicate whether there are blocked readers blocking the
363 * current grace period.
365 static int rcu_initiate_boost(void)
367 return rcu_preempt_blocked_readers_cgp();
371 * If there is no RCU priority boosting, nothing to do at grace-period start.
373 static void rcu_preempt_boost_start_gp(void)
377 #endif /* else #ifdef CONFIG_RCU_BOOST */
380 * Record a preemptible-RCU quiescent state for the specified CPU. Note
381 * that this just means that the task currently running on the CPU is
382 * in a quiescent state. There might be any number of tasks blocked
383 * while in an RCU read-side critical section.
385 * Unlike the other rcu_*_qs() functions, callers to this function
386 * must disable irqs in order to protect the assignment to
387 * ->rcu_read_unlock_special.
389 * Because this is a single-CPU implementation, the only way a grace
390 * period can end is if the CPU is in a quiescent state. The reason is
391 * that a blocked preemptible-RCU reader can exit its critical section
392 * only if the CPU is running it at the time. Therefore, when the
393 * last task blocking the current grace period exits its RCU read-side
394 * critical section, neither the CPU nor blocked tasks will be stopping
395 * the current grace period. (In contrast, SMP implementations
396 * might have CPUs running in RCU read-side critical sections that
397 * block later grace periods -- but this is not possible given only
398 * one CPU.)
400 static void rcu_preempt_cpu_qs(void)
402 /* Record both CPU and task as having responded to current GP. */
403 rcu_preempt_ctrlblk.gpcpu = rcu_preempt_ctrlblk.gpnum;
404 current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
406 /* If there is no GP then there is nothing more to do. */
407 if (!rcu_preempt_gp_in_progress())
408 return;
410 * Check up on boosting. If there are readers blocking the
411 * current grace period, leave.
413 if (rcu_initiate_boost())
414 return;
416 /* Advance callbacks. */
417 rcu_preempt_ctrlblk.completed = rcu_preempt_ctrlblk.gpnum;
418 rcu_preempt_ctrlblk.rcb.donetail = rcu_preempt_ctrlblk.rcb.curtail;
419 rcu_preempt_ctrlblk.rcb.curtail = rcu_preempt_ctrlblk.nexttail;
421 /* If there are no blocked readers, next GP is done instantly. */
422 if (!rcu_preempt_blocked_readers_any())
423 rcu_preempt_ctrlblk.rcb.donetail = rcu_preempt_ctrlblk.nexttail;
425 /* If there are done callbacks, cause them to be invoked. */
426 if (*rcu_preempt_ctrlblk.rcb.donetail != NULL)
427 invoke_rcu_callbacks();
431 * Start a new RCU grace period if warranted. Hard irqs must be disabled.
433 static void rcu_preempt_start_gp(void)
435 if (!rcu_preempt_gp_in_progress() && rcu_preempt_needs_another_gp()) {
437 /* Official start of GP. */
438 rcu_preempt_ctrlblk.gpnum++;
439 RCU_TRACE(rcu_preempt_ctrlblk.n_grace_periods++);
441 /* Any blocked RCU readers block new GP. */
442 if (rcu_preempt_blocked_readers_any())
443 rcu_preempt_ctrlblk.gp_tasks =
444 rcu_preempt_ctrlblk.blkd_tasks.next;
446 /* Set up for RCU priority boosting. */
447 rcu_preempt_boost_start_gp();
449 /* If there is no running reader, CPU is done with GP. */
450 if (!rcu_preempt_running_reader())
451 rcu_preempt_cpu_qs();
456 * We have entered the scheduler, and the current task might soon be
457 * context-switched away from. If this task is in an RCU read-side
458 * critical section, we will no longer be able to rely on the CPU to
459 * record that fact, so we enqueue the task on the blkd_tasks list.
460 * If the task started after the current grace period began, as recorded
461 * by ->gpcpu, we enqueue at the beginning of the list. Otherwise
462 * before the element referenced by ->gp_tasks (or at the tail if
463 * ->gp_tasks is NULL) and point ->gp_tasks at the newly added element.
464 * The task will dequeue itself when it exits the outermost enclosing
465 * RCU read-side critical section. Therefore, the current grace period
466 * cannot be permitted to complete until the ->gp_tasks pointer becomes
467 * NULL.
469 * Caller must disable preemption.
471 void rcu_preempt_note_context_switch(void)
473 struct task_struct *t = current;
474 unsigned long flags;
476 local_irq_save(flags); /* must exclude scheduler_tick(). */
477 if (rcu_preempt_running_reader() &&
478 (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
480 /* Possibly blocking in an RCU read-side critical section. */
481 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
484 * If this CPU has already checked in, then this task
485 * will hold up the next grace period rather than the
486 * current grace period. Queue the task accordingly.
487 * If the task is queued for the current grace period
488 * (i.e., this CPU has not yet passed through a quiescent
489 * state for the current grace period), then as long
490 * as that task remains queued, the current grace period
491 * cannot end.
493 list_add(&t->rcu_node_entry, &rcu_preempt_ctrlblk.blkd_tasks);
494 if (rcu_cpu_blocking_cur_gp())
495 rcu_preempt_ctrlblk.gp_tasks = &t->rcu_node_entry;
499 * Either we were not in an RCU read-side critical section to
500 * begin with, or we have now recorded that critical section
501 * globally. Either way, we can now note a quiescent state
502 * for this CPU. Again, if we were in an RCU read-side critical
503 * section, and if that critical section was blocking the current
504 * grace period, then the fact that the task has been enqueued
505 * means that current grace period continues to be blocked.
507 rcu_preempt_cpu_qs();
508 local_irq_restore(flags);
512 * Tiny-preemptible RCU implementation for rcu_read_lock().
513 * Just increment ->rcu_read_lock_nesting, shared state will be updated
514 * if we block.
516 void __rcu_read_lock(void)
518 current->rcu_read_lock_nesting++;
519 barrier(); /* needed if we ever invoke rcu_read_lock in rcutiny.c */
521 EXPORT_SYMBOL_GPL(__rcu_read_lock);
524 * Handle special cases during rcu_read_unlock(), such as needing to
525 * notify RCU core processing or task having blocked during the RCU
526 * read-side critical section.
528 static void rcu_read_unlock_special(struct task_struct *t)
530 int empty;
531 int empty_exp;
532 unsigned long flags;
533 struct list_head *np;
534 int special;
537 * NMI handlers cannot block and cannot safely manipulate state.
538 * They therefore cannot possibly be special, so just leave.
540 if (in_nmi())
541 return;
543 local_irq_save(flags);
546 * If RCU core is waiting for this CPU to exit critical section,
547 * let it know that we have done so.
549 special = t->rcu_read_unlock_special;
550 if (special & RCU_READ_UNLOCK_NEED_QS)
551 rcu_preempt_cpu_qs();
553 /* Hardware IRQ handlers cannot block. */
554 if (in_irq()) {
555 local_irq_restore(flags);
556 return;
559 /* Clean up if blocked during RCU read-side critical section. */
560 if (special & RCU_READ_UNLOCK_BLOCKED) {
561 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
564 * Remove this task from the ->blkd_tasks list and adjust
565 * any pointers that might have been referencing it.
567 empty = !rcu_preempt_blocked_readers_cgp();
568 empty_exp = rcu_preempt_ctrlblk.exp_tasks == NULL;
569 np = rcu_next_node_entry(t);
570 list_del_init(&t->rcu_node_entry);
571 if (&t->rcu_node_entry == rcu_preempt_ctrlblk.gp_tasks)
572 rcu_preempt_ctrlblk.gp_tasks = np;
573 if (&t->rcu_node_entry == rcu_preempt_ctrlblk.exp_tasks)
574 rcu_preempt_ctrlblk.exp_tasks = np;
575 #ifdef CONFIG_RCU_BOOST
576 if (&t->rcu_node_entry == rcu_preempt_ctrlblk.boost_tasks)
577 rcu_preempt_ctrlblk.boost_tasks = np;
578 #endif /* #ifdef CONFIG_RCU_BOOST */
581 * If this was the last task on the current list, and if
582 * we aren't waiting on the CPU, report the quiescent state
583 * and start a new grace period if needed.
585 if (!empty && !rcu_preempt_blocked_readers_cgp()) {
586 rcu_preempt_cpu_qs();
587 rcu_preempt_start_gp();
591 * If this was the last task on the expedited lists,
592 * then we need wake up the waiting task.
594 if (!empty_exp && rcu_preempt_ctrlblk.exp_tasks == NULL)
595 rcu_report_exp_done();
597 #ifdef CONFIG_RCU_BOOST
598 /* Unboost self if was boosted. */
599 if (special & RCU_READ_UNLOCK_BOOSTED) {
600 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BOOSTED;
601 rt_mutex_unlock(t->rcu_boost_mutex);
602 t->rcu_boost_mutex = NULL;
604 #endif /* #ifdef CONFIG_RCU_BOOST */
605 local_irq_restore(flags);
609 * Tiny-preemptible RCU implementation for rcu_read_unlock().
610 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
611 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
612 * invoke rcu_read_unlock_special() to clean up after a context switch
613 * in an RCU read-side critical section and other special cases.
615 void __rcu_read_unlock(void)
617 struct task_struct *t = current;
619 barrier(); /* needed if we ever invoke rcu_read_unlock in rcutiny.c */
620 --t->rcu_read_lock_nesting;
621 barrier(); /* decrement before load of ->rcu_read_unlock_special */
622 if (t->rcu_read_lock_nesting == 0 &&
623 unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
624 rcu_read_unlock_special(t);
625 #ifdef CONFIG_PROVE_LOCKING
626 WARN_ON_ONCE(t->rcu_read_lock_nesting < 0);
627 #endif /* #ifdef CONFIG_PROVE_LOCKING */
629 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
632 * Check for a quiescent state from the current CPU. When a task blocks,
633 * the task is recorded in the rcu_preempt_ctrlblk structure, which is
634 * checked elsewhere. This is called from the scheduling-clock interrupt.
636 * Caller must disable hard irqs.
638 static void rcu_preempt_check_callbacks(void)
640 struct task_struct *t = current;
642 if (rcu_preempt_gp_in_progress() &&
643 (!rcu_preempt_running_reader() ||
644 !rcu_cpu_blocking_cur_gp()))
645 rcu_preempt_cpu_qs();
646 if (&rcu_preempt_ctrlblk.rcb.rcucblist !=
647 rcu_preempt_ctrlblk.rcb.donetail)
648 invoke_rcu_callbacks();
649 if (rcu_preempt_gp_in_progress() &&
650 rcu_cpu_blocking_cur_gp() &&
651 rcu_preempt_running_reader())
652 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
656 * TINY_PREEMPT_RCU has an extra callback-list tail pointer to
657 * update, so this is invoked from rcu_process_callbacks() to
658 * handle that case. Of course, it is invoked for all flavors of
659 * RCU, but RCU callbacks can appear only on one of the lists, and
660 * neither ->nexttail nor ->donetail can possibly be NULL, so there
661 * is no need for an explicit check.
663 static void rcu_preempt_remove_callbacks(struct rcu_ctrlblk *rcp)
665 if (rcu_preempt_ctrlblk.nexttail == rcp->donetail)
666 rcu_preempt_ctrlblk.nexttail = &rcp->rcucblist;
670 * Process callbacks for preemptible RCU.
672 static void rcu_preempt_process_callbacks(void)
674 __rcu_process_callbacks(&rcu_preempt_ctrlblk.rcb);
678 * Queue a preemptible -RCU callback for invocation after a grace period.
680 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
682 unsigned long flags;
684 debug_rcu_head_queue(head);
685 head->func = func;
686 head->next = NULL;
688 local_irq_save(flags);
689 *rcu_preempt_ctrlblk.nexttail = head;
690 rcu_preempt_ctrlblk.nexttail = &head->next;
691 RCU_TRACE(rcu_preempt_ctrlblk.rcb.qlen++);
692 rcu_preempt_start_gp(); /* checks to see if GP needed. */
693 local_irq_restore(flags);
695 EXPORT_SYMBOL_GPL(call_rcu);
698 * synchronize_rcu - wait until a grace period has elapsed.
700 * Control will return to the caller some time after a full grace
701 * period has elapsed, in other words after all currently executing RCU
702 * read-side critical sections have completed. RCU read-side critical
703 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
704 * and may be nested.
706 void synchronize_rcu(void)
708 #ifdef CONFIG_DEBUG_LOCK_ALLOC
709 if (!rcu_scheduler_active)
710 return;
711 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
713 WARN_ON_ONCE(rcu_preempt_running_reader());
714 if (!rcu_preempt_blocked_readers_any())
715 return;
717 /* Once we get past the fastpath checks, same code as rcu_barrier(). */
718 rcu_barrier();
720 EXPORT_SYMBOL_GPL(synchronize_rcu);
722 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
723 static unsigned long sync_rcu_preempt_exp_count;
724 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
727 * Return non-zero if there are any tasks in RCU read-side critical
728 * sections blocking the current preemptible-RCU expedited grace period.
729 * If there is no preemptible-RCU expedited grace period currently in
730 * progress, returns zero unconditionally.
732 static int rcu_preempted_readers_exp(void)
734 return rcu_preempt_ctrlblk.exp_tasks != NULL;
738 * Report the exit from RCU read-side critical section for the last task
739 * that queued itself during or before the current expedited preemptible-RCU
740 * grace period.
742 static void rcu_report_exp_done(void)
744 wake_up(&sync_rcu_preempt_exp_wq);
748 * Wait for an rcu-preempt grace period, but expedite it. The basic idea
749 * is to rely in the fact that there is but one CPU, and that it is
750 * illegal for a task to invoke synchronize_rcu_expedited() while in a
751 * preemptible-RCU read-side critical section. Therefore, any such
752 * critical sections must correspond to blocked tasks, which must therefore
753 * be on the ->blkd_tasks list. So just record the current head of the
754 * list in the ->exp_tasks pointer, and wait for all tasks including and
755 * after the task pointed to by ->exp_tasks to drain.
757 void synchronize_rcu_expedited(void)
759 unsigned long flags;
760 struct rcu_preempt_ctrlblk *rpcp = &rcu_preempt_ctrlblk;
761 unsigned long snap;
763 barrier(); /* ensure prior action seen before grace period. */
765 WARN_ON_ONCE(rcu_preempt_running_reader());
768 * Acquire lock so that there is only one preemptible RCU grace
769 * period in flight. Of course, if someone does the expedited
770 * grace period for us while we are acquiring the lock, just leave.
772 snap = sync_rcu_preempt_exp_count + 1;
773 mutex_lock(&sync_rcu_preempt_exp_mutex);
774 if (ULONG_CMP_LT(snap, sync_rcu_preempt_exp_count))
775 goto unlock_mb_ret; /* Others did our work for us. */
777 local_irq_save(flags);
780 * All RCU readers have to already be on blkd_tasks because
781 * we cannot legally be executing in an RCU read-side critical
782 * section.
785 /* Snapshot current head of ->blkd_tasks list. */
786 rpcp->exp_tasks = rpcp->blkd_tasks.next;
787 if (rpcp->exp_tasks == &rpcp->blkd_tasks)
788 rpcp->exp_tasks = NULL;
790 /* Wait for tail of ->blkd_tasks list to drain. */
791 if (!rcu_preempted_readers_exp())
792 local_irq_restore(flags);
793 else {
794 rcu_initiate_boost();
795 local_irq_restore(flags);
796 wait_event(sync_rcu_preempt_exp_wq,
797 !rcu_preempted_readers_exp());
800 /* Clean up and exit. */
801 barrier(); /* ensure expedited GP seen before counter increment. */
802 sync_rcu_preempt_exp_count++;
803 unlock_mb_ret:
804 mutex_unlock(&sync_rcu_preempt_exp_mutex);
805 barrier(); /* ensure subsequent action seen after grace period. */
807 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
810 * Does preemptible RCU need the CPU to stay out of dynticks mode?
812 int rcu_preempt_needs_cpu(void)
814 if (!rcu_preempt_running_reader())
815 rcu_preempt_cpu_qs();
816 return rcu_preempt_ctrlblk.rcb.rcucblist != NULL;
820 * Check for a task exiting while in a preemptible -RCU read-side
821 * critical section, clean up if so. No need to issue warnings,
822 * as debug_check_no_locks_held() already does this if lockdep
823 * is enabled.
825 void exit_rcu(void)
827 struct task_struct *t = current;
829 if (t->rcu_read_lock_nesting == 0)
830 return;
831 t->rcu_read_lock_nesting = 1;
832 __rcu_read_unlock();
835 #else /* #ifdef CONFIG_TINY_PREEMPT_RCU */
837 #ifdef CONFIG_RCU_TRACE
840 * Because preemptible RCU does not exist, it is not necessary to
841 * dump out its statistics.
843 static void show_tiny_preempt_stats(struct seq_file *m)
847 #endif /* #ifdef CONFIG_RCU_TRACE */
850 * Because preemptible RCU does not exist, it never has any callbacks
851 * to check.
853 static void rcu_preempt_check_callbacks(void)
858 * Because preemptible RCU does not exist, it never has any callbacks
859 * to remove.
861 static void rcu_preempt_remove_callbacks(struct rcu_ctrlblk *rcp)
866 * Because preemptible RCU does not exist, it never has any callbacks
867 * to process.
869 static void rcu_preempt_process_callbacks(void)
873 #endif /* #else #ifdef CONFIG_TINY_PREEMPT_RCU */
875 #ifdef CONFIG_RCU_BOOST
878 * Wake up rcu_kthread() to process callbacks now eligible for invocation
879 * or to boost readers.
881 static void invoke_rcu_callbacks(void)
883 have_rcu_kthread_work = 1;
884 wake_up(&rcu_kthread_wq);
888 * This kthread invokes RCU callbacks whose grace periods have
889 * elapsed. It is awakened as needed, and takes the place of the
890 * RCU_SOFTIRQ that is used for this purpose when boosting is disabled.
891 * This is a kthread, but it is never stopped, at least not until
892 * the system goes down.
894 static int rcu_kthread(void *arg)
896 unsigned long work;
897 unsigned long morework;
898 unsigned long flags;
900 for (;;) {
901 wait_event_interruptible(rcu_kthread_wq,
902 have_rcu_kthread_work != 0);
903 morework = rcu_boost();
904 local_irq_save(flags);
905 work = have_rcu_kthread_work;
906 have_rcu_kthread_work = morework;
907 local_irq_restore(flags);
908 if (work) {
909 rcu_process_callbacks(NULL);
911 schedule_timeout_interruptible(1); /* Leave CPU for others. */
914 return 0; /* Not reached, but needed to shut gcc up. */
918 * Spawn the kthread that invokes RCU callbacks.
920 static int __init rcu_spawn_kthreads(void)
922 struct sched_param sp;
924 rcu_kthread_task = kthread_run(rcu_kthread, NULL, "rcu_kthread");
925 sp.sched_priority = RCU_BOOST_PRIO;
926 sched_setscheduler_nocheck(rcu_kthread_task, SCHED_FIFO, &sp);
927 return 0;
929 early_initcall(rcu_spawn_kthreads);
931 #else /* #ifdef CONFIG_RCU_BOOST */
934 * Start up softirq processing of callbacks.
936 void invoke_rcu_callbacks(void)
938 raise_softirq(RCU_SOFTIRQ);
941 void rcu_init(void)
943 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
946 #endif /* #else #ifdef CONFIG_RCU_BOOST */
948 #ifdef CONFIG_DEBUG_LOCK_ALLOC
949 #include <linux/kernel_stat.h>
952 * During boot, we forgive RCU lockdep issues. After this function is
953 * invoked, we start taking RCU lockdep issues seriously.
955 void __init rcu_scheduler_starting(void)
957 WARN_ON(nr_context_switches() > 0);
958 rcu_scheduler_active = 1;
961 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
963 #ifdef CONFIG_RCU_TRACE
965 #ifdef CONFIG_RCU_BOOST
967 static void rcu_initiate_boost_trace(void)
969 if (list_empty(&rcu_preempt_ctrlblk.blkd_tasks))
970 rcu_preempt_ctrlblk.n_balk_blkd_tasks++;
971 else if (rcu_preempt_ctrlblk.gp_tasks == NULL &&
972 rcu_preempt_ctrlblk.exp_tasks == NULL)
973 rcu_preempt_ctrlblk.n_balk_exp_gp_tasks++;
974 else if (rcu_preempt_ctrlblk.boost_tasks != NULL)
975 rcu_preempt_ctrlblk.n_balk_boost_tasks++;
976 else if (!ULONG_CMP_GE(jiffies, rcu_preempt_ctrlblk.boost_time))
977 rcu_preempt_ctrlblk.n_balk_notyet++;
978 else
979 rcu_preempt_ctrlblk.n_balk_nos++;
982 #endif /* #ifdef CONFIG_RCU_BOOST */
984 static void rcu_trace_sub_qlen(struct rcu_ctrlblk *rcp, int n)
986 unsigned long flags;
988 raw_local_irq_save(flags);
989 rcp->qlen -= n;
990 raw_local_irq_restore(flags);
994 * Dump statistics for TINY_RCU, such as they are.
996 static int show_tiny_stats(struct seq_file *m, void *unused)
998 show_tiny_preempt_stats(m);
999 seq_printf(m, "rcu_sched: qlen: %ld\n", rcu_sched_ctrlblk.qlen);
1000 seq_printf(m, "rcu_bh: qlen: %ld\n", rcu_bh_ctrlblk.qlen);
1001 return 0;
1004 static int show_tiny_stats_open(struct inode *inode, struct file *file)
1006 return single_open(file, show_tiny_stats, NULL);
1009 static const struct file_operations show_tiny_stats_fops = {
1010 .owner = THIS_MODULE,
1011 .open = show_tiny_stats_open,
1012 .read = seq_read,
1013 .llseek = seq_lseek,
1014 .release = single_release,
1017 static struct dentry *rcudir;
1019 static int __init rcutiny_trace_init(void)
1021 struct dentry *retval;
1023 rcudir = debugfs_create_dir("rcu", NULL);
1024 if (!rcudir)
1025 goto free_out;
1026 retval = debugfs_create_file("rcudata", 0444, rcudir,
1027 NULL, &show_tiny_stats_fops);
1028 if (!retval)
1029 goto free_out;
1030 return 0;
1031 free_out:
1032 debugfs_remove_recursive(rcudir);
1033 return 1;
1036 static void __exit rcutiny_trace_cleanup(void)
1038 debugfs_remove_recursive(rcudir);
1041 module_init(rcutiny_trace_init);
1042 module_exit(rcutiny_trace_cleanup);
1044 MODULE_AUTHOR("Paul E. McKenney");
1045 MODULE_DESCRIPTION("Read-Copy Update tracing for tiny implementation");
1046 MODULE_LICENSE("GPL");
1048 #endif /* #ifdef CONFIG_RCU_TRACE */