The x86 timer interrupt handler is the only handler not traced in the
[linux-2.6/next.git] / net / mac80211 / mesh.c
blob28ab510e621a58a040d9f14a5c9384f09296ebb5
1 /*
2 * Copyright (c) 2008, 2009 open80211s Ltd.
3 * Authors: Luis Carlos Cobo <luisca@cozybit.com>
4 * Javier Cardona <javier@cozybit.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
11 #include <linux/slab.h>
12 #include <asm/unaligned.h>
13 #include "ieee80211_i.h"
14 #include "mesh.h"
16 #define MESHCONF_CAPAB_ACCEPT_PLINKS 0x01
17 #define MESHCONF_CAPAB_FORWARDING 0x08
19 #define TMR_RUNNING_HK 0
20 #define TMR_RUNNING_MP 1
21 #define TMR_RUNNING_MPR 2
23 int mesh_allocated;
24 static struct kmem_cache *rm_cache;
26 #ifdef CONFIG_MAC80211_MESH
27 bool mesh_action_is_path_sel(struct ieee80211_mgmt *mgmt)
29 return (mgmt->u.action.u.mesh_action.action_code ==
30 WLAN_MESH_ACTION_HWMP_PATH_SELECTION);
32 #else
33 bool mesh_action_is_path_sel(struct ieee80211_mgmt *mgmt)
34 { return false; }
35 #endif
37 void ieee80211s_init(void)
39 mesh_pathtbl_init();
40 mesh_allocated = 1;
41 rm_cache = kmem_cache_create("mesh_rmc", sizeof(struct rmc_entry),
42 0, 0, NULL);
45 void ieee80211s_stop(void)
47 mesh_pathtbl_unregister();
48 kmem_cache_destroy(rm_cache);
51 static void ieee80211_mesh_housekeeping_timer(unsigned long data)
53 struct ieee80211_sub_if_data *sdata = (void *) data;
54 struct ieee80211_local *local = sdata->local;
55 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
57 set_bit(MESH_WORK_HOUSEKEEPING, &ifmsh->wrkq_flags);
59 if (local->quiescing) {
60 set_bit(TMR_RUNNING_HK, &ifmsh->timers_running);
61 return;
64 ieee80211_queue_work(&local->hw, &sdata->work);
67 /**
68 * mesh_matches_local - check if the config of a mesh point matches ours
70 * @ie: information elements of a management frame from the mesh peer
71 * @sdata: local mesh subif
73 * This function checks if the mesh configuration of a mesh point matches the
74 * local mesh configuration, i.e. if both nodes belong to the same mesh network.
76 bool mesh_matches_local(struct ieee802_11_elems *ie, struct ieee80211_sub_if_data *sdata)
78 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
81 * As support for each feature is added, check for matching
82 * - On mesh config capabilities
83 * - Power Save Support En
84 * - Sync support enabled
85 * - Sync support active
86 * - Sync support required from peer
87 * - MDA enabled
88 * - Power management control on fc
90 if (ifmsh->mesh_id_len == ie->mesh_id_len &&
91 memcmp(ifmsh->mesh_id, ie->mesh_id, ie->mesh_id_len) == 0 &&
92 (ifmsh->mesh_pp_id == ie->mesh_config->meshconf_psel) &&
93 (ifmsh->mesh_pm_id == ie->mesh_config->meshconf_pmetric) &&
94 (ifmsh->mesh_cc_id == ie->mesh_config->meshconf_congest) &&
95 (ifmsh->mesh_sp_id == ie->mesh_config->meshconf_synch) &&
96 (ifmsh->mesh_auth_id == ie->mesh_config->meshconf_auth))
97 return true;
99 return false;
103 * mesh_peer_accepts_plinks - check if an mp is willing to establish peer links
105 * @ie: information elements of a management frame from the mesh peer
107 bool mesh_peer_accepts_plinks(struct ieee802_11_elems *ie)
109 return (ie->mesh_config->meshconf_cap &
110 MESHCONF_CAPAB_ACCEPT_PLINKS) != 0;
114 * mesh_accept_plinks_update: update accepting_plink in local mesh beacons
116 * @sdata: mesh interface in which mesh beacons are going to be updated
118 void mesh_accept_plinks_update(struct ieee80211_sub_if_data *sdata)
120 bool free_plinks;
122 /* In case mesh_plink_free_count > 0 and mesh_plinktbl_capacity == 0,
123 * the mesh interface might be able to establish plinks with peers that
124 * are already on the table but are not on PLINK_ESTAB state. However,
125 * in general the mesh interface is not accepting peer link requests
126 * from new peers, and that must be reflected in the beacon
128 free_plinks = mesh_plink_availables(sdata);
130 if (free_plinks != sdata->u.mesh.accepting_plinks)
131 ieee80211_mesh_housekeeping_timer((unsigned long) sdata);
134 int mesh_rmc_init(struct ieee80211_sub_if_data *sdata)
136 int i;
138 sdata->u.mesh.rmc = kmalloc(sizeof(struct mesh_rmc), GFP_KERNEL);
139 if (!sdata->u.mesh.rmc)
140 return -ENOMEM;
141 sdata->u.mesh.rmc->idx_mask = RMC_BUCKETS - 1;
142 for (i = 0; i < RMC_BUCKETS; i++)
143 INIT_LIST_HEAD(&sdata->u.mesh.rmc->bucket[i].list);
144 return 0;
147 void mesh_rmc_free(struct ieee80211_sub_if_data *sdata)
149 struct mesh_rmc *rmc = sdata->u.mesh.rmc;
150 struct rmc_entry *p, *n;
151 int i;
153 if (!sdata->u.mesh.rmc)
154 return;
156 for (i = 0; i < RMC_BUCKETS; i++)
157 list_for_each_entry_safe(p, n, &rmc->bucket[i].list, list) {
158 list_del(&p->list);
159 kmem_cache_free(rm_cache, p);
162 kfree(rmc);
163 sdata->u.mesh.rmc = NULL;
167 * mesh_rmc_check - Check frame in recent multicast cache and add if absent.
169 * @sa: source address
170 * @mesh_hdr: mesh_header
172 * Returns: 0 if the frame is not in the cache, nonzero otherwise.
174 * Checks using the source address and the mesh sequence number if we have
175 * received this frame lately. If the frame is not in the cache, it is added to
176 * it.
178 int mesh_rmc_check(u8 *sa, struct ieee80211s_hdr *mesh_hdr,
179 struct ieee80211_sub_if_data *sdata)
181 struct mesh_rmc *rmc = sdata->u.mesh.rmc;
182 u32 seqnum = 0;
183 int entries = 0;
184 u8 idx;
185 struct rmc_entry *p, *n;
187 /* Don't care about endianness since only match matters */
188 memcpy(&seqnum, &mesh_hdr->seqnum, sizeof(mesh_hdr->seqnum));
189 idx = le32_to_cpu(mesh_hdr->seqnum) & rmc->idx_mask;
190 list_for_each_entry_safe(p, n, &rmc->bucket[idx].list, list) {
191 ++entries;
192 if (time_after(jiffies, p->exp_time) ||
193 (entries == RMC_QUEUE_MAX_LEN)) {
194 list_del(&p->list);
195 kmem_cache_free(rm_cache, p);
196 --entries;
197 } else if ((seqnum == p->seqnum) &&
198 (memcmp(sa, p->sa, ETH_ALEN) == 0))
199 return -1;
202 p = kmem_cache_alloc(rm_cache, GFP_ATOMIC);
203 if (!p) {
204 printk(KERN_DEBUG "o11s: could not allocate RMC entry\n");
205 return 0;
207 p->seqnum = seqnum;
208 p->exp_time = jiffies + RMC_TIMEOUT;
209 memcpy(p->sa, sa, ETH_ALEN);
210 list_add(&p->list, &rmc->bucket[idx].list);
211 return 0;
215 mesh_add_meshconf_ie(struct sk_buff *skb, struct ieee80211_sub_if_data *sdata)
217 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
218 u8 *pos, neighbors;
219 u8 meshconf_len = sizeof(struct ieee80211_meshconf_ie);
221 if (skb_tailroom(skb) < 2 + meshconf_len)
222 return -ENOMEM;
224 pos = skb_put(skb, 2 + meshconf_len);
225 *pos++ = WLAN_EID_MESH_CONFIG;
226 *pos++ = meshconf_len;
228 /* Active path selection protocol ID */
229 *pos++ = ifmsh->mesh_pp_id;
230 /* Active path selection metric ID */
231 *pos++ = ifmsh->mesh_pm_id;
232 /* Congestion control mode identifier */
233 *pos++ = ifmsh->mesh_cc_id;
234 /* Synchronization protocol identifier */
235 *pos++ = ifmsh->mesh_sp_id;
236 /* Authentication Protocol identifier */
237 *pos++ = ifmsh->mesh_auth_id;
238 /* Mesh Formation Info - number of neighbors */
239 neighbors = atomic_read(&ifmsh->mshstats.estab_plinks);
240 /* Number of neighbor mesh STAs or 15 whichever is smaller */
241 neighbors = (neighbors > 15) ? 15 : neighbors;
242 *pos++ = neighbors << 1;
243 /* Mesh capability */
244 ifmsh->accepting_plinks = mesh_plink_availables(sdata);
245 *pos = MESHCONF_CAPAB_FORWARDING;
246 *pos++ |= ifmsh->accepting_plinks ?
247 MESHCONF_CAPAB_ACCEPT_PLINKS : 0x00;
248 *pos++ = 0x00;
250 return 0;
254 mesh_add_meshid_ie(struct sk_buff *skb, struct ieee80211_sub_if_data *sdata)
256 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
257 u8 *pos;
259 if (skb_tailroom(skb) < 2 + ifmsh->mesh_id_len)
260 return -ENOMEM;
262 pos = skb_put(skb, 2 + ifmsh->mesh_id_len);
263 *pos++ = WLAN_EID_MESH_ID;
264 *pos++ = ifmsh->mesh_id_len;
265 if (ifmsh->mesh_id_len)
266 memcpy(pos, ifmsh->mesh_id, ifmsh->mesh_id_len);
268 return 0;
272 mesh_add_vendor_ies(struct sk_buff *skb, struct ieee80211_sub_if_data *sdata)
274 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
275 u8 offset, len;
276 const u8 *data;
278 if (!ifmsh->ie || !ifmsh->ie_len)
279 return 0;
281 /* fast-forward to vendor IEs */
282 offset = ieee80211_ie_split_vendor(ifmsh->ie, ifmsh->ie_len, 0);
284 if (offset) {
285 len = ifmsh->ie_len - offset;
286 data = ifmsh->ie + offset;
287 if (skb_tailroom(skb) < len)
288 return -ENOMEM;
289 memcpy(skb_put(skb, len), data, len);
292 return 0;
296 mesh_add_rsn_ie(struct sk_buff *skb, struct ieee80211_sub_if_data *sdata)
298 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
299 u8 len = 0;
300 const u8 *data;
302 if (!ifmsh->ie || !ifmsh->ie_len)
303 return 0;
305 /* find RSN IE */
306 data = ifmsh->ie;
307 while (data < ifmsh->ie + ifmsh->ie_len) {
308 if (*data == WLAN_EID_RSN) {
309 len = data[1] + 2;
310 break;
312 data++;
315 if (len) {
316 if (skb_tailroom(skb) < len)
317 return -ENOMEM;
318 memcpy(skb_put(skb, len), data, len);
321 return 0;
325 mesh_add_srates_ie(struct sk_buff *skb, struct ieee80211_sub_if_data *sdata)
327 struct ieee80211_local *local = sdata->local;
328 struct ieee80211_supported_band *sband;
329 int rate;
330 u8 i, rates, *pos;
332 sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
333 rates = sband->n_bitrates;
334 if (rates > 8)
335 rates = 8;
337 if (skb_tailroom(skb) < rates + 2)
338 return -ENOMEM;
340 pos = skb_put(skb, rates + 2);
341 *pos++ = WLAN_EID_SUPP_RATES;
342 *pos++ = rates;
343 for (i = 0; i < rates; i++) {
344 rate = sband->bitrates[i].bitrate;
345 *pos++ = (u8) (rate / 5);
348 return 0;
352 mesh_add_ext_srates_ie(struct sk_buff *skb,
353 struct ieee80211_sub_if_data *sdata)
355 struct ieee80211_local *local = sdata->local;
356 struct ieee80211_supported_band *sband;
357 int rate;
358 u8 i, exrates, *pos;
360 sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
361 exrates = sband->n_bitrates;
362 if (exrates > 8)
363 exrates -= 8;
364 else
365 exrates = 0;
367 if (skb_tailroom(skb) < exrates + 2)
368 return -ENOMEM;
370 if (exrates) {
371 pos = skb_put(skb, exrates + 2);
372 *pos++ = WLAN_EID_EXT_SUPP_RATES;
373 *pos++ = exrates;
374 for (i = 8; i < sband->n_bitrates; i++) {
375 rate = sband->bitrates[i].bitrate;
376 *pos++ = (u8) (rate / 5);
379 return 0;
382 int mesh_add_ds_params_ie(struct sk_buff *skb,
383 struct ieee80211_sub_if_data *sdata)
385 struct ieee80211_local *local = sdata->local;
386 struct ieee80211_supported_band *sband;
387 u8 *pos;
389 if (skb_tailroom(skb) < 3)
390 return -ENOMEM;
392 sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
393 if (sband->band == IEEE80211_BAND_2GHZ) {
394 pos = skb_put(skb, 2 + 1);
395 *pos++ = WLAN_EID_DS_PARAMS;
396 *pos++ = 1;
397 *pos++ = ieee80211_frequency_to_channel(local->hw.conf.channel->center_freq);
400 return 0;
403 static void ieee80211_mesh_path_timer(unsigned long data)
405 struct ieee80211_sub_if_data *sdata =
406 (struct ieee80211_sub_if_data *) data;
407 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
408 struct ieee80211_local *local = sdata->local;
410 if (local->quiescing) {
411 set_bit(TMR_RUNNING_MP, &ifmsh->timers_running);
412 return;
415 ieee80211_queue_work(&local->hw, &sdata->work);
418 static void ieee80211_mesh_path_root_timer(unsigned long data)
420 struct ieee80211_sub_if_data *sdata =
421 (struct ieee80211_sub_if_data *) data;
422 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
423 struct ieee80211_local *local = sdata->local;
425 set_bit(MESH_WORK_ROOT, &ifmsh->wrkq_flags);
427 if (local->quiescing) {
428 set_bit(TMR_RUNNING_MPR, &ifmsh->timers_running);
429 return;
432 ieee80211_queue_work(&local->hw, &sdata->work);
435 void ieee80211_mesh_root_setup(struct ieee80211_if_mesh *ifmsh)
437 if (ifmsh->mshcfg.dot11MeshHWMPRootMode)
438 set_bit(MESH_WORK_ROOT, &ifmsh->wrkq_flags);
439 else {
440 clear_bit(MESH_WORK_ROOT, &ifmsh->wrkq_flags);
441 /* stop running timer */
442 del_timer_sync(&ifmsh->mesh_path_root_timer);
447 * ieee80211_fill_mesh_addresses - fill addresses of a locally originated mesh frame
448 * @hdr: 802.11 frame header
449 * @fc: frame control field
450 * @meshda: destination address in the mesh
451 * @meshsa: source address address in the mesh. Same as TA, as frame is
452 * locally originated.
454 * Return the length of the 802.11 (does not include a mesh control header)
456 int ieee80211_fill_mesh_addresses(struct ieee80211_hdr *hdr, __le16 *fc,
457 const u8 *meshda, const u8 *meshsa)
459 if (is_multicast_ether_addr(meshda)) {
460 *fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
461 /* DA TA SA */
462 memcpy(hdr->addr1, meshda, ETH_ALEN);
463 memcpy(hdr->addr2, meshsa, ETH_ALEN);
464 memcpy(hdr->addr3, meshsa, ETH_ALEN);
465 return 24;
466 } else {
467 *fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS |
468 IEEE80211_FCTL_TODS);
469 /* RA TA DA SA */
470 memset(hdr->addr1, 0, ETH_ALEN); /* RA is resolved later */
471 memcpy(hdr->addr2, meshsa, ETH_ALEN);
472 memcpy(hdr->addr3, meshda, ETH_ALEN);
473 memcpy(hdr->addr4, meshsa, ETH_ALEN);
474 return 30;
479 * ieee80211_new_mesh_header - create a new mesh header
480 * @meshhdr: uninitialized mesh header
481 * @sdata: mesh interface to be used
482 * @addr4or5: 1st address in the ae header, which may correspond to address 4
483 * (if addr6 is NULL) or address 5 (if addr6 is present). It may
484 * be NULL.
485 * @addr6: 2nd address in the ae header, which corresponds to addr6 of the
486 * mesh frame
488 * Return the header length.
490 int ieee80211_new_mesh_header(struct ieee80211s_hdr *meshhdr,
491 struct ieee80211_sub_if_data *sdata, char *addr4or5,
492 char *addr6)
494 int aelen = 0;
495 BUG_ON(!addr4or5 && addr6);
496 memset(meshhdr, 0, sizeof(*meshhdr));
497 meshhdr->ttl = sdata->u.mesh.mshcfg.dot11MeshTTL;
498 put_unaligned(cpu_to_le32(sdata->u.mesh.mesh_seqnum), &meshhdr->seqnum);
499 sdata->u.mesh.mesh_seqnum++;
500 if (addr4or5 && !addr6) {
501 meshhdr->flags |= MESH_FLAGS_AE_A4;
502 aelen += ETH_ALEN;
503 memcpy(meshhdr->eaddr1, addr4or5, ETH_ALEN);
504 } else if (addr4or5 && addr6) {
505 meshhdr->flags |= MESH_FLAGS_AE_A5_A6;
506 aelen += 2 * ETH_ALEN;
507 memcpy(meshhdr->eaddr1, addr4or5, ETH_ALEN);
508 memcpy(meshhdr->eaddr2, addr6, ETH_ALEN);
510 return 6 + aelen;
513 static void ieee80211_mesh_housekeeping(struct ieee80211_sub_if_data *sdata,
514 struct ieee80211_if_mesh *ifmsh)
516 bool free_plinks;
518 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
519 printk(KERN_DEBUG "%s: running mesh housekeeping\n",
520 sdata->name);
521 #endif
523 ieee80211_sta_expire(sdata, IEEE80211_MESH_PEER_INACTIVITY_LIMIT);
524 mesh_path_expire(sdata);
526 free_plinks = mesh_plink_availables(sdata);
527 if (free_plinks != sdata->u.mesh.accepting_plinks)
528 ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_BEACON);
530 mod_timer(&ifmsh->housekeeping_timer,
531 round_jiffies(jiffies + IEEE80211_MESH_HOUSEKEEPING_INTERVAL));
534 static void ieee80211_mesh_rootpath(struct ieee80211_sub_if_data *sdata)
536 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
538 mesh_path_tx_root_frame(sdata);
539 mod_timer(&ifmsh->mesh_path_root_timer,
540 round_jiffies(TU_TO_EXP_TIME(
541 ifmsh->mshcfg.dot11MeshHWMPRannInterval)));
544 #ifdef CONFIG_PM
545 void ieee80211_mesh_quiesce(struct ieee80211_sub_if_data *sdata)
547 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
549 /* use atomic bitops in case all timers fire at the same time */
551 if (del_timer_sync(&ifmsh->housekeeping_timer))
552 set_bit(TMR_RUNNING_HK, &ifmsh->timers_running);
553 if (del_timer_sync(&ifmsh->mesh_path_timer))
554 set_bit(TMR_RUNNING_MP, &ifmsh->timers_running);
555 if (del_timer_sync(&ifmsh->mesh_path_root_timer))
556 set_bit(TMR_RUNNING_MPR, &ifmsh->timers_running);
559 void ieee80211_mesh_restart(struct ieee80211_sub_if_data *sdata)
561 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
563 if (test_and_clear_bit(TMR_RUNNING_HK, &ifmsh->timers_running))
564 add_timer(&ifmsh->housekeeping_timer);
565 if (test_and_clear_bit(TMR_RUNNING_MP, &ifmsh->timers_running))
566 add_timer(&ifmsh->mesh_path_timer);
567 if (test_and_clear_bit(TMR_RUNNING_MPR, &ifmsh->timers_running))
568 add_timer(&ifmsh->mesh_path_root_timer);
569 ieee80211_mesh_root_setup(ifmsh);
571 #endif
573 void ieee80211_start_mesh(struct ieee80211_sub_if_data *sdata)
575 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
576 struct ieee80211_local *local = sdata->local;
578 local->fif_other_bss++;
579 /* mesh ifaces must set allmulti to forward mcast traffic */
580 atomic_inc(&local->iff_allmultis);
581 ieee80211_configure_filter(local);
583 ifmsh->mesh_cc_id = 0; /* Disabled */
584 ifmsh->mesh_sp_id = 0; /* Neighbor Offset */
585 ifmsh->mesh_auth_id = 0; /* Disabled */
586 set_bit(MESH_WORK_HOUSEKEEPING, &ifmsh->wrkq_flags);
587 ieee80211_mesh_root_setup(ifmsh);
588 ieee80211_queue_work(&local->hw, &sdata->work);
589 sdata->vif.bss_conf.beacon_int = MESH_DEFAULT_BEACON_INTERVAL;
590 ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_BEACON |
591 BSS_CHANGED_BEACON_ENABLED |
592 BSS_CHANGED_BEACON_INT);
595 void ieee80211_stop_mesh(struct ieee80211_sub_if_data *sdata)
597 struct ieee80211_local *local = sdata->local;
598 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
600 ifmsh->mesh_id_len = 0;
601 ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_BEACON_ENABLED);
602 sta_info_flush(local, NULL);
604 del_timer_sync(&sdata->u.mesh.housekeeping_timer);
605 del_timer_sync(&sdata->u.mesh.mesh_path_root_timer);
607 * If the timer fired while we waited for it, it will have
608 * requeued the work. Now the work will be running again
609 * but will not rearm the timer again because it checks
610 * whether the interface is running, which, at this point,
611 * it no longer is.
613 cancel_work_sync(&sdata->work);
615 local->fif_other_bss--;
616 atomic_dec(&local->iff_allmultis);
617 ieee80211_configure_filter(local);
620 static void ieee80211_mesh_rx_bcn_presp(struct ieee80211_sub_if_data *sdata,
621 u16 stype,
622 struct ieee80211_mgmt *mgmt,
623 size_t len,
624 struct ieee80211_rx_status *rx_status)
626 struct ieee80211_local *local = sdata->local;
627 struct ieee802_11_elems elems;
628 struct ieee80211_channel *channel;
629 u32 supp_rates = 0;
630 size_t baselen;
631 int freq;
632 enum ieee80211_band band = rx_status->band;
634 /* ignore ProbeResp to foreign address */
635 if (stype == IEEE80211_STYPE_PROBE_RESP &&
636 compare_ether_addr(mgmt->da, sdata->vif.addr))
637 return;
639 baselen = (u8 *) mgmt->u.probe_resp.variable - (u8 *) mgmt;
640 if (baselen > len)
641 return;
643 ieee802_11_parse_elems(mgmt->u.probe_resp.variable, len - baselen,
644 &elems);
646 /* ignore beacons from secure mesh peers if our security is off */
647 if (elems.rsn_len && sdata->u.mesh.security == IEEE80211_MESH_SEC_NONE)
648 return;
650 if (elems.ds_params && elems.ds_params_len == 1)
651 freq = ieee80211_channel_to_frequency(elems.ds_params[0], band);
652 else
653 freq = rx_status->freq;
655 channel = ieee80211_get_channel(local->hw.wiphy, freq);
657 if (!channel || channel->flags & IEEE80211_CHAN_DISABLED)
658 return;
660 if (elems.mesh_id && elems.mesh_config &&
661 mesh_matches_local(&elems, sdata)) {
662 supp_rates = ieee80211_sta_get_rates(local, &elems, band);
663 mesh_neighbour_update(mgmt->sa, supp_rates, sdata, &elems);
667 static void ieee80211_mesh_rx_mgmt_action(struct ieee80211_sub_if_data *sdata,
668 struct ieee80211_mgmt *mgmt,
669 size_t len,
670 struct ieee80211_rx_status *rx_status)
672 switch (mgmt->u.action.category) {
673 case WLAN_CATEGORY_SELF_PROTECTED:
674 switch (mgmt->u.action.u.self_prot.action_code) {
675 case WLAN_SP_MESH_PEERING_OPEN:
676 case WLAN_SP_MESH_PEERING_CLOSE:
677 case WLAN_SP_MESH_PEERING_CONFIRM:
678 mesh_rx_plink_frame(sdata, mgmt, len, rx_status);
679 break;
681 break;
682 case WLAN_CATEGORY_MESH_ACTION:
683 if (mesh_action_is_path_sel(mgmt))
684 mesh_rx_path_sel_frame(sdata, mgmt, len);
685 break;
689 void ieee80211_mesh_rx_queued_mgmt(struct ieee80211_sub_if_data *sdata,
690 struct sk_buff *skb)
692 struct ieee80211_rx_status *rx_status;
693 struct ieee80211_mgmt *mgmt;
694 u16 stype;
696 rx_status = IEEE80211_SKB_RXCB(skb);
697 mgmt = (struct ieee80211_mgmt *) skb->data;
698 stype = le16_to_cpu(mgmt->frame_control) & IEEE80211_FCTL_STYPE;
700 switch (stype) {
701 case IEEE80211_STYPE_PROBE_RESP:
702 case IEEE80211_STYPE_BEACON:
703 ieee80211_mesh_rx_bcn_presp(sdata, stype, mgmt, skb->len,
704 rx_status);
705 break;
706 case IEEE80211_STYPE_ACTION:
707 ieee80211_mesh_rx_mgmt_action(sdata, mgmt, skb->len, rx_status);
708 break;
712 void ieee80211_mesh_work(struct ieee80211_sub_if_data *sdata)
714 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
716 if (ifmsh->preq_queue_len &&
717 time_after(jiffies,
718 ifmsh->last_preq + msecs_to_jiffies(ifmsh->mshcfg.dot11MeshHWMPpreqMinInterval)))
719 mesh_path_start_discovery(sdata);
721 if (test_and_clear_bit(MESH_WORK_GROW_MPATH_TABLE, &ifmsh->wrkq_flags))
722 mesh_mpath_table_grow();
724 if (test_and_clear_bit(MESH_WORK_GROW_MPP_TABLE, &ifmsh->wrkq_flags))
725 mesh_mpp_table_grow();
727 if (test_and_clear_bit(MESH_WORK_HOUSEKEEPING, &ifmsh->wrkq_flags))
728 ieee80211_mesh_housekeeping(sdata, ifmsh);
730 if (test_and_clear_bit(MESH_WORK_ROOT, &ifmsh->wrkq_flags))
731 ieee80211_mesh_rootpath(sdata);
734 void ieee80211_mesh_notify_scan_completed(struct ieee80211_local *local)
736 struct ieee80211_sub_if_data *sdata;
738 rcu_read_lock();
739 list_for_each_entry_rcu(sdata, &local->interfaces, list)
740 if (ieee80211_vif_is_mesh(&sdata->vif))
741 ieee80211_queue_work(&local->hw, &sdata->work);
742 rcu_read_unlock();
745 void ieee80211_mesh_init_sdata(struct ieee80211_sub_if_data *sdata)
747 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
749 setup_timer(&ifmsh->housekeeping_timer,
750 ieee80211_mesh_housekeeping_timer,
751 (unsigned long) sdata);
753 ifmsh->accepting_plinks = true;
754 ifmsh->preq_id = 0;
755 ifmsh->sn = 0;
756 ifmsh->num_gates = 0;
757 atomic_set(&ifmsh->mpaths, 0);
758 mesh_rmc_init(sdata);
759 ifmsh->last_preq = jiffies;
760 /* Allocate all mesh structures when creating the first mesh interface. */
761 if (!mesh_allocated)
762 ieee80211s_init();
763 setup_timer(&ifmsh->mesh_path_timer,
764 ieee80211_mesh_path_timer,
765 (unsigned long) sdata);
766 setup_timer(&ifmsh->mesh_path_root_timer,
767 ieee80211_mesh_path_root_timer,
768 (unsigned long) sdata);
769 INIT_LIST_HEAD(&ifmsh->preq_queue.list);
770 spin_lock_init(&ifmsh->mesh_preq_queue_lock);