Initial EXPERIMENTAL implementation of device-mapper thin provisioning
[linux-2.6/next.git] / arch / x86 / kernel / tsc.c
blobdb483369f10be5c07bfe8564a1a073c34ffb22fb
1 #include <linux/kernel.h>
2 #include <linux/sched.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/timer.h>
6 #include <linux/acpi_pmtmr.h>
7 #include <linux/cpufreq.h>
8 #include <linux/delay.h>
9 #include <linux/clocksource.h>
10 #include <linux/percpu.h>
11 #include <linux/timex.h>
13 #include <asm/hpet.h>
14 #include <asm/timer.h>
15 #include <asm/vgtod.h>
16 #include <asm/time.h>
17 #include <asm/delay.h>
18 #include <asm/hypervisor.h>
19 #include <asm/nmi.h>
20 #include <asm/x86_init.h>
22 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
23 EXPORT_SYMBOL(cpu_khz);
25 unsigned int __read_mostly tsc_khz;
26 EXPORT_SYMBOL(tsc_khz);
29 * TSC can be unstable due to cpufreq or due to unsynced TSCs
31 static int __read_mostly tsc_unstable;
33 /* native_sched_clock() is called before tsc_init(), so
34 we must start with the TSC soft disabled to prevent
35 erroneous rdtsc usage on !cpu_has_tsc processors */
36 static int __read_mostly tsc_disabled = -1;
38 static int tsc_clocksource_reliable;
40 * Scheduler clock - returns current time in nanosec units.
42 u64 native_sched_clock(void)
44 u64 this_offset;
47 * Fall back to jiffies if there's no TSC available:
48 * ( But note that we still use it if the TSC is marked
49 * unstable. We do this because unlike Time Of Day,
50 * the scheduler clock tolerates small errors and it's
51 * very important for it to be as fast as the platform
52 * can achieve it. )
54 if (unlikely(tsc_disabled)) {
55 /* No locking but a rare wrong value is not a big deal: */
56 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
59 /* read the Time Stamp Counter: */
60 rdtscll(this_offset);
62 /* return the value in ns */
63 return __cycles_2_ns(this_offset);
66 /* We need to define a real function for sched_clock, to override the
67 weak default version */
68 #ifdef CONFIG_PARAVIRT
69 unsigned long long sched_clock(void)
71 return paravirt_sched_clock();
73 #else
74 unsigned long long
75 sched_clock(void) __attribute__((alias("native_sched_clock")));
76 #endif
78 int check_tsc_unstable(void)
80 return tsc_unstable;
82 EXPORT_SYMBOL_GPL(check_tsc_unstable);
84 #ifdef CONFIG_X86_TSC
85 int __init notsc_setup(char *str)
87 printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
88 "cannot disable TSC completely.\n");
89 tsc_disabled = 1;
90 return 1;
92 #else
94 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
95 * in cpu/common.c
97 int __init notsc_setup(char *str)
99 setup_clear_cpu_cap(X86_FEATURE_TSC);
100 return 1;
102 #endif
104 __setup("notsc", notsc_setup);
106 static int no_sched_irq_time;
108 static int __init tsc_setup(char *str)
110 if (!strcmp(str, "reliable"))
111 tsc_clocksource_reliable = 1;
112 if (!strncmp(str, "noirqtime", 9))
113 no_sched_irq_time = 1;
114 return 1;
117 __setup("tsc=", tsc_setup);
119 #define MAX_RETRIES 5
120 #define SMI_TRESHOLD 50000
123 * Read TSC and the reference counters. Take care of SMI disturbance
125 static u64 tsc_read_refs(u64 *p, int hpet)
127 u64 t1, t2;
128 int i;
130 for (i = 0; i < MAX_RETRIES; i++) {
131 t1 = get_cycles();
132 if (hpet)
133 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
134 else
135 *p = acpi_pm_read_early();
136 t2 = get_cycles();
137 if ((t2 - t1) < SMI_TRESHOLD)
138 return t2;
140 return ULLONG_MAX;
144 * Calculate the TSC frequency from HPET reference
146 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
148 u64 tmp;
150 if (hpet2 < hpet1)
151 hpet2 += 0x100000000ULL;
152 hpet2 -= hpet1;
153 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
154 do_div(tmp, 1000000);
155 do_div(deltatsc, tmp);
157 return (unsigned long) deltatsc;
161 * Calculate the TSC frequency from PMTimer reference
163 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
165 u64 tmp;
167 if (!pm1 && !pm2)
168 return ULONG_MAX;
170 if (pm2 < pm1)
171 pm2 += (u64)ACPI_PM_OVRRUN;
172 pm2 -= pm1;
173 tmp = pm2 * 1000000000LL;
174 do_div(tmp, PMTMR_TICKS_PER_SEC);
175 do_div(deltatsc, tmp);
177 return (unsigned long) deltatsc;
180 #define CAL_MS 10
181 #define CAL_LATCH (CLOCK_TICK_RATE / (1000 / CAL_MS))
182 #define CAL_PIT_LOOPS 1000
184 #define CAL2_MS 50
185 #define CAL2_LATCH (CLOCK_TICK_RATE / (1000 / CAL2_MS))
186 #define CAL2_PIT_LOOPS 5000
190 * Try to calibrate the TSC against the Programmable
191 * Interrupt Timer and return the frequency of the TSC
192 * in kHz.
194 * Return ULONG_MAX on failure to calibrate.
196 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
198 u64 tsc, t1, t2, delta;
199 unsigned long tscmin, tscmax;
200 int pitcnt;
202 /* Set the Gate high, disable speaker */
203 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
206 * Setup CTC channel 2* for mode 0, (interrupt on terminal
207 * count mode), binary count. Set the latch register to 50ms
208 * (LSB then MSB) to begin countdown.
210 outb(0xb0, 0x43);
211 outb(latch & 0xff, 0x42);
212 outb(latch >> 8, 0x42);
214 tsc = t1 = t2 = get_cycles();
216 pitcnt = 0;
217 tscmax = 0;
218 tscmin = ULONG_MAX;
219 while ((inb(0x61) & 0x20) == 0) {
220 t2 = get_cycles();
221 delta = t2 - tsc;
222 tsc = t2;
223 if ((unsigned long) delta < tscmin)
224 tscmin = (unsigned int) delta;
225 if ((unsigned long) delta > tscmax)
226 tscmax = (unsigned int) delta;
227 pitcnt++;
231 * Sanity checks:
233 * If we were not able to read the PIT more than loopmin
234 * times, then we have been hit by a massive SMI
236 * If the maximum is 10 times larger than the minimum,
237 * then we got hit by an SMI as well.
239 if (pitcnt < loopmin || tscmax > 10 * tscmin)
240 return ULONG_MAX;
242 /* Calculate the PIT value */
243 delta = t2 - t1;
244 do_div(delta, ms);
245 return delta;
249 * This reads the current MSB of the PIT counter, and
250 * checks if we are running on sufficiently fast and
251 * non-virtualized hardware.
253 * Our expectations are:
255 * - the PIT is running at roughly 1.19MHz
257 * - each IO is going to take about 1us on real hardware,
258 * but we allow it to be much faster (by a factor of 10) or
259 * _slightly_ slower (ie we allow up to a 2us read+counter
260 * update - anything else implies a unacceptably slow CPU
261 * or PIT for the fast calibration to work.
263 * - with 256 PIT ticks to read the value, we have 214us to
264 * see the same MSB (and overhead like doing a single TSC
265 * read per MSB value etc).
267 * - We're doing 2 reads per loop (LSB, MSB), and we expect
268 * them each to take about a microsecond on real hardware.
269 * So we expect a count value of around 100. But we'll be
270 * generous, and accept anything over 50.
272 * - if the PIT is stuck, and we see *many* more reads, we
273 * return early (and the next caller of pit_expect_msb()
274 * then consider it a failure when they don't see the
275 * next expected value).
277 * These expectations mean that we know that we have seen the
278 * transition from one expected value to another with a fairly
279 * high accuracy, and we didn't miss any events. We can thus
280 * use the TSC value at the transitions to calculate a pretty
281 * good value for the TSC frequencty.
283 static inline int pit_verify_msb(unsigned char val)
285 /* Ignore LSB */
286 inb(0x42);
287 return inb(0x42) == val;
290 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
292 int count;
293 u64 tsc = 0;
295 for (count = 0; count < 50000; count++) {
296 if (!pit_verify_msb(val))
297 break;
298 tsc = get_cycles();
300 *deltap = get_cycles() - tsc;
301 *tscp = tsc;
304 * We require _some_ success, but the quality control
305 * will be based on the error terms on the TSC values.
307 return count > 5;
311 * How many MSB values do we want to see? We aim for
312 * a maximum error rate of 500ppm (in practice the
313 * real error is much smaller), but refuse to spend
314 * more than 25ms on it.
316 #define MAX_QUICK_PIT_MS 25
317 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
319 static unsigned long quick_pit_calibrate(void)
321 int i;
322 u64 tsc, delta;
323 unsigned long d1, d2;
325 /* Set the Gate high, disable speaker */
326 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
329 * Counter 2, mode 0 (one-shot), binary count
331 * NOTE! Mode 2 decrements by two (and then the
332 * output is flipped each time, giving the same
333 * final output frequency as a decrement-by-one),
334 * so mode 0 is much better when looking at the
335 * individual counts.
337 outb(0xb0, 0x43);
339 /* Start at 0xffff */
340 outb(0xff, 0x42);
341 outb(0xff, 0x42);
344 * The PIT starts counting at the next edge, so we
345 * need to delay for a microsecond. The easiest way
346 * to do that is to just read back the 16-bit counter
347 * once from the PIT.
349 pit_verify_msb(0);
351 if (pit_expect_msb(0xff, &tsc, &d1)) {
352 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
353 if (!pit_expect_msb(0xff-i, &delta, &d2))
354 break;
357 * Iterate until the error is less than 500 ppm
359 delta -= tsc;
360 if (d1+d2 >= delta >> 11)
361 continue;
364 * Check the PIT one more time to verify that
365 * all TSC reads were stable wrt the PIT.
367 * This also guarantees serialization of the
368 * last cycle read ('d2') in pit_expect_msb.
370 if (!pit_verify_msb(0xfe - i))
371 break;
372 goto success;
375 printk("Fast TSC calibration failed\n");
376 return 0;
378 success:
380 * Ok, if we get here, then we've seen the
381 * MSB of the PIT decrement 'i' times, and the
382 * error has shrunk to less than 500 ppm.
384 * As a result, we can depend on there not being
385 * any odd delays anywhere, and the TSC reads are
386 * reliable (within the error). We also adjust the
387 * delta to the middle of the error bars, just
388 * because it looks nicer.
390 * kHz = ticks / time-in-seconds / 1000;
391 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
392 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
394 delta += (long)(d2 - d1)/2;
395 delta *= PIT_TICK_RATE;
396 do_div(delta, i*256*1000);
397 printk("Fast TSC calibration using PIT\n");
398 return delta;
402 * native_calibrate_tsc - calibrate the tsc on boot
404 unsigned long native_calibrate_tsc(void)
406 u64 tsc1, tsc2, delta, ref1, ref2;
407 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
408 unsigned long flags, latch, ms, fast_calibrate;
409 int hpet = is_hpet_enabled(), i, loopmin;
411 local_irq_save(flags);
412 fast_calibrate = quick_pit_calibrate();
413 local_irq_restore(flags);
414 if (fast_calibrate)
415 return fast_calibrate;
418 * Run 5 calibration loops to get the lowest frequency value
419 * (the best estimate). We use two different calibration modes
420 * here:
422 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
423 * load a timeout of 50ms. We read the time right after we
424 * started the timer and wait until the PIT count down reaches
425 * zero. In each wait loop iteration we read the TSC and check
426 * the delta to the previous read. We keep track of the min
427 * and max values of that delta. The delta is mostly defined
428 * by the IO time of the PIT access, so we can detect when a
429 * SMI/SMM disturbance happened between the two reads. If the
430 * maximum time is significantly larger than the minimum time,
431 * then we discard the result and have another try.
433 * 2) Reference counter. If available we use the HPET or the
434 * PMTIMER as a reference to check the sanity of that value.
435 * We use separate TSC readouts and check inside of the
436 * reference read for a SMI/SMM disturbance. We dicard
437 * disturbed values here as well. We do that around the PIT
438 * calibration delay loop as we have to wait for a certain
439 * amount of time anyway.
442 /* Preset PIT loop values */
443 latch = CAL_LATCH;
444 ms = CAL_MS;
445 loopmin = CAL_PIT_LOOPS;
447 for (i = 0; i < 3; i++) {
448 unsigned long tsc_pit_khz;
451 * Read the start value and the reference count of
452 * hpet/pmtimer when available. Then do the PIT
453 * calibration, which will take at least 50ms, and
454 * read the end value.
456 local_irq_save(flags);
457 tsc1 = tsc_read_refs(&ref1, hpet);
458 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
459 tsc2 = tsc_read_refs(&ref2, hpet);
460 local_irq_restore(flags);
462 /* Pick the lowest PIT TSC calibration so far */
463 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
465 /* hpet or pmtimer available ? */
466 if (ref1 == ref2)
467 continue;
469 /* Check, whether the sampling was disturbed by an SMI */
470 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
471 continue;
473 tsc2 = (tsc2 - tsc1) * 1000000LL;
474 if (hpet)
475 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
476 else
477 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
479 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
481 /* Check the reference deviation */
482 delta = ((u64) tsc_pit_min) * 100;
483 do_div(delta, tsc_ref_min);
486 * If both calibration results are inside a 10% window
487 * then we can be sure, that the calibration
488 * succeeded. We break out of the loop right away. We
489 * use the reference value, as it is more precise.
491 if (delta >= 90 && delta <= 110) {
492 printk(KERN_INFO
493 "TSC: PIT calibration matches %s. %d loops\n",
494 hpet ? "HPET" : "PMTIMER", i + 1);
495 return tsc_ref_min;
499 * Check whether PIT failed more than once. This
500 * happens in virtualized environments. We need to
501 * give the virtual PC a slightly longer timeframe for
502 * the HPET/PMTIMER to make the result precise.
504 if (i == 1 && tsc_pit_min == ULONG_MAX) {
505 latch = CAL2_LATCH;
506 ms = CAL2_MS;
507 loopmin = CAL2_PIT_LOOPS;
512 * Now check the results.
514 if (tsc_pit_min == ULONG_MAX) {
515 /* PIT gave no useful value */
516 printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n");
518 /* We don't have an alternative source, disable TSC */
519 if (!hpet && !ref1 && !ref2) {
520 printk("TSC: No reference (HPET/PMTIMER) available\n");
521 return 0;
524 /* The alternative source failed as well, disable TSC */
525 if (tsc_ref_min == ULONG_MAX) {
526 printk(KERN_WARNING "TSC: HPET/PMTIMER calibration "
527 "failed.\n");
528 return 0;
531 /* Use the alternative source */
532 printk(KERN_INFO "TSC: using %s reference calibration\n",
533 hpet ? "HPET" : "PMTIMER");
535 return tsc_ref_min;
538 /* We don't have an alternative source, use the PIT calibration value */
539 if (!hpet && !ref1 && !ref2) {
540 printk(KERN_INFO "TSC: Using PIT calibration value\n");
541 return tsc_pit_min;
544 /* The alternative source failed, use the PIT calibration value */
545 if (tsc_ref_min == ULONG_MAX) {
546 printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. "
547 "Using PIT calibration\n");
548 return tsc_pit_min;
552 * The calibration values differ too much. In doubt, we use
553 * the PIT value as we know that there are PMTIMERs around
554 * running at double speed. At least we let the user know:
556 printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n",
557 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
558 printk(KERN_INFO "TSC: Using PIT calibration value\n");
559 return tsc_pit_min;
562 int recalibrate_cpu_khz(void)
564 #ifndef CONFIG_SMP
565 unsigned long cpu_khz_old = cpu_khz;
567 if (cpu_has_tsc) {
568 tsc_khz = x86_platform.calibrate_tsc();
569 cpu_khz = tsc_khz;
570 cpu_data(0).loops_per_jiffy =
571 cpufreq_scale(cpu_data(0).loops_per_jiffy,
572 cpu_khz_old, cpu_khz);
573 return 0;
574 } else
575 return -ENODEV;
576 #else
577 return -ENODEV;
578 #endif
581 EXPORT_SYMBOL(recalibrate_cpu_khz);
584 /* Accelerators for sched_clock()
585 * convert from cycles(64bits) => nanoseconds (64bits)
586 * basic equation:
587 * ns = cycles / (freq / ns_per_sec)
588 * ns = cycles * (ns_per_sec / freq)
589 * ns = cycles * (10^9 / (cpu_khz * 10^3))
590 * ns = cycles * (10^6 / cpu_khz)
592 * Then we use scaling math (suggested by george@mvista.com) to get:
593 * ns = cycles * (10^6 * SC / cpu_khz) / SC
594 * ns = cycles * cyc2ns_scale / SC
596 * And since SC is a constant power of two, we can convert the div
597 * into a shift.
599 * We can use khz divisor instead of mhz to keep a better precision, since
600 * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
601 * (mathieu.desnoyers@polymtl.ca)
603 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
606 DEFINE_PER_CPU(unsigned long, cyc2ns);
607 DEFINE_PER_CPU(unsigned long long, cyc2ns_offset);
609 static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
611 unsigned long long tsc_now, ns_now, *offset;
612 unsigned long flags, *scale;
614 local_irq_save(flags);
615 sched_clock_idle_sleep_event();
617 scale = &per_cpu(cyc2ns, cpu);
618 offset = &per_cpu(cyc2ns_offset, cpu);
620 rdtscll(tsc_now);
621 ns_now = __cycles_2_ns(tsc_now);
623 if (cpu_khz) {
624 *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
625 *offset = ns_now - (tsc_now * *scale >> CYC2NS_SCALE_FACTOR);
628 sched_clock_idle_wakeup_event(0);
629 local_irq_restore(flags);
632 static unsigned long long cyc2ns_suspend;
634 void save_sched_clock_state(void)
636 if (!sched_clock_stable)
637 return;
639 cyc2ns_suspend = sched_clock();
643 * Even on processors with invariant TSC, TSC gets reset in some the
644 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
645 * arbitrary value (still sync'd across cpu's) during resume from such sleep
646 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
647 * that sched_clock() continues from the point where it was left off during
648 * suspend.
650 void restore_sched_clock_state(void)
652 unsigned long long offset;
653 unsigned long flags;
654 int cpu;
656 if (!sched_clock_stable)
657 return;
659 local_irq_save(flags);
661 __this_cpu_write(cyc2ns_offset, 0);
662 offset = cyc2ns_suspend - sched_clock();
664 for_each_possible_cpu(cpu)
665 per_cpu(cyc2ns_offset, cpu) = offset;
667 local_irq_restore(flags);
670 #ifdef CONFIG_CPU_FREQ
672 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
673 * changes.
675 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
676 * not that important because current Opteron setups do not support
677 * scaling on SMP anyroads.
679 * Should fix up last_tsc too. Currently gettimeofday in the
680 * first tick after the change will be slightly wrong.
683 static unsigned int ref_freq;
684 static unsigned long loops_per_jiffy_ref;
685 static unsigned long tsc_khz_ref;
687 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
688 void *data)
690 struct cpufreq_freqs *freq = data;
691 unsigned long *lpj;
693 if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
694 return 0;
696 lpj = &boot_cpu_data.loops_per_jiffy;
697 #ifdef CONFIG_SMP
698 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
699 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
700 #endif
702 if (!ref_freq) {
703 ref_freq = freq->old;
704 loops_per_jiffy_ref = *lpj;
705 tsc_khz_ref = tsc_khz;
707 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
708 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
709 (val == CPUFREQ_RESUMECHANGE)) {
710 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
712 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
713 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
714 mark_tsc_unstable("cpufreq changes");
717 set_cyc2ns_scale(tsc_khz, freq->cpu);
719 return 0;
722 static struct notifier_block time_cpufreq_notifier_block = {
723 .notifier_call = time_cpufreq_notifier
726 static int __init cpufreq_tsc(void)
728 if (!cpu_has_tsc)
729 return 0;
730 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
731 return 0;
732 cpufreq_register_notifier(&time_cpufreq_notifier_block,
733 CPUFREQ_TRANSITION_NOTIFIER);
734 return 0;
737 core_initcall(cpufreq_tsc);
739 #endif /* CONFIG_CPU_FREQ */
741 /* clocksource code */
743 static struct clocksource clocksource_tsc;
746 * We compare the TSC to the cycle_last value in the clocksource
747 * structure to avoid a nasty time-warp. This can be observed in a
748 * very small window right after one CPU updated cycle_last under
749 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
750 * is smaller than the cycle_last reference value due to a TSC which
751 * is slighty behind. This delta is nowhere else observable, but in
752 * that case it results in a forward time jump in the range of hours
753 * due to the unsigned delta calculation of the time keeping core
754 * code, which is necessary to support wrapping clocksources like pm
755 * timer.
757 static cycle_t read_tsc(struct clocksource *cs)
759 cycle_t ret = (cycle_t)get_cycles();
761 return ret >= clocksource_tsc.cycle_last ?
762 ret : clocksource_tsc.cycle_last;
765 static void resume_tsc(struct clocksource *cs)
767 clocksource_tsc.cycle_last = 0;
770 static struct clocksource clocksource_tsc = {
771 .name = "tsc",
772 .rating = 300,
773 .read = read_tsc,
774 .resume = resume_tsc,
775 .mask = CLOCKSOURCE_MASK(64),
776 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
777 CLOCK_SOURCE_MUST_VERIFY,
778 #ifdef CONFIG_X86_64
779 .archdata = { .vclock_mode = VCLOCK_TSC },
780 #endif
783 void mark_tsc_unstable(char *reason)
785 if (!tsc_unstable) {
786 tsc_unstable = 1;
787 sched_clock_stable = 0;
788 disable_sched_clock_irqtime();
789 printk(KERN_INFO "Marking TSC unstable due to %s\n", reason);
790 /* Change only the rating, when not registered */
791 if (clocksource_tsc.mult)
792 clocksource_mark_unstable(&clocksource_tsc);
793 else {
794 clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
795 clocksource_tsc.rating = 0;
800 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
802 static void __init check_system_tsc_reliable(void)
804 #ifdef CONFIG_MGEODE_LX
805 /* RTSC counts during suspend */
806 #define RTSC_SUSP 0x100
807 unsigned long res_low, res_high;
809 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
810 /* Geode_LX - the OLPC CPU has a very reliable TSC */
811 if (res_low & RTSC_SUSP)
812 tsc_clocksource_reliable = 1;
813 #endif
814 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
815 tsc_clocksource_reliable = 1;
819 * Make an educated guess if the TSC is trustworthy and synchronized
820 * over all CPUs.
822 __cpuinit int unsynchronized_tsc(void)
824 if (!cpu_has_tsc || tsc_unstable)
825 return 1;
827 #ifdef CONFIG_SMP
828 if (apic_is_clustered_box())
829 return 1;
830 #endif
832 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
833 return 0;
835 if (tsc_clocksource_reliable)
836 return 0;
838 * Intel systems are normally all synchronized.
839 * Exceptions must mark TSC as unstable:
841 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
842 /* assume multi socket systems are not synchronized: */
843 if (num_possible_cpus() > 1)
844 return 1;
847 return 0;
851 static void tsc_refine_calibration_work(struct work_struct *work);
852 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
854 * tsc_refine_calibration_work - Further refine tsc freq calibration
855 * @work - ignored.
857 * This functions uses delayed work over a period of a
858 * second to further refine the TSC freq value. Since this is
859 * timer based, instead of loop based, we don't block the boot
860 * process while this longer calibration is done.
862 * If there are any calibration anomalies (too many SMIs, etc),
863 * or the refined calibration is off by 1% of the fast early
864 * calibration, we throw out the new calibration and use the
865 * early calibration.
867 static void tsc_refine_calibration_work(struct work_struct *work)
869 static u64 tsc_start = -1, ref_start;
870 static int hpet;
871 u64 tsc_stop, ref_stop, delta;
872 unsigned long freq;
874 /* Don't bother refining TSC on unstable systems */
875 if (check_tsc_unstable())
876 goto out;
879 * Since the work is started early in boot, we may be
880 * delayed the first time we expire. So set the workqueue
881 * again once we know timers are working.
883 if (tsc_start == -1) {
885 * Only set hpet once, to avoid mixing hardware
886 * if the hpet becomes enabled later.
888 hpet = is_hpet_enabled();
889 schedule_delayed_work(&tsc_irqwork, HZ);
890 tsc_start = tsc_read_refs(&ref_start, hpet);
891 return;
894 tsc_stop = tsc_read_refs(&ref_stop, hpet);
896 /* hpet or pmtimer available ? */
897 if (ref_start == ref_stop)
898 goto out;
900 /* Check, whether the sampling was disturbed by an SMI */
901 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
902 goto out;
904 delta = tsc_stop - tsc_start;
905 delta *= 1000000LL;
906 if (hpet)
907 freq = calc_hpet_ref(delta, ref_start, ref_stop);
908 else
909 freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
911 /* Make sure we're within 1% */
912 if (abs(tsc_khz - freq) > tsc_khz/100)
913 goto out;
915 tsc_khz = freq;
916 printk(KERN_INFO "Refined TSC clocksource calibration: "
917 "%lu.%03lu MHz.\n", (unsigned long)tsc_khz / 1000,
918 (unsigned long)tsc_khz % 1000);
920 out:
921 clocksource_register_khz(&clocksource_tsc, tsc_khz);
925 static int __init init_tsc_clocksource(void)
927 if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
928 return 0;
930 if (tsc_clocksource_reliable)
931 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
932 /* lower the rating if we already know its unstable: */
933 if (check_tsc_unstable()) {
934 clocksource_tsc.rating = 0;
935 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
937 schedule_delayed_work(&tsc_irqwork, 0);
938 return 0;
941 * We use device_initcall here, to ensure we run after the hpet
942 * is fully initialized, which may occur at fs_initcall time.
944 device_initcall(init_tsc_clocksource);
946 void __init tsc_init(void)
948 u64 lpj;
949 int cpu;
951 x86_init.timers.tsc_pre_init();
953 if (!cpu_has_tsc)
954 return;
956 tsc_khz = x86_platform.calibrate_tsc();
957 cpu_khz = tsc_khz;
959 if (!tsc_khz) {
960 mark_tsc_unstable("could not calculate TSC khz");
961 return;
964 printk("Detected %lu.%03lu MHz processor.\n",
965 (unsigned long)cpu_khz / 1000,
966 (unsigned long)cpu_khz % 1000);
969 * Secondary CPUs do not run through tsc_init(), so set up
970 * all the scale factors for all CPUs, assuming the same
971 * speed as the bootup CPU. (cpufreq notifiers will fix this
972 * up if their speed diverges)
974 for_each_possible_cpu(cpu)
975 set_cyc2ns_scale(cpu_khz, cpu);
977 if (tsc_disabled > 0)
978 return;
980 /* now allow native_sched_clock() to use rdtsc */
981 tsc_disabled = 0;
983 if (!no_sched_irq_time)
984 enable_sched_clock_irqtime();
986 lpj = ((u64)tsc_khz * 1000);
987 do_div(lpj, HZ);
988 lpj_fine = lpj;
990 use_tsc_delay();
992 if (unsynchronized_tsc())
993 mark_tsc_unstable("TSCs unsynchronized");
995 check_system_tsc_reliable();