Initial EXPERIMENTAL implementation of device-mapper thin provisioning
[linux-2.6/next.git] / net / rds / ib_rdma.c
blob819c35a0d9cbf9fa8527ba3668e2f80ca304676e
1 /*
2 * Copyright (c) 2006 Oracle. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/rculist.h>
37 #include "rds.h"
38 #include "ib.h"
39 #include "xlist.h"
41 static DEFINE_PER_CPU(unsigned long, clean_list_grace);
42 #define CLEAN_LIST_BUSY_BIT 0
45 * This is stored as mr->r_trans_private.
47 struct rds_ib_mr {
48 struct rds_ib_device *device;
49 struct rds_ib_mr_pool *pool;
50 struct ib_fmr *fmr;
52 struct xlist_head xlist;
54 /* unmap_list is for freeing */
55 struct list_head unmap_list;
56 unsigned int remap_count;
58 struct scatterlist *sg;
59 unsigned int sg_len;
60 u64 *dma;
61 int sg_dma_len;
65 * Our own little FMR pool
67 struct rds_ib_mr_pool {
68 struct mutex flush_lock; /* serialize fmr invalidate */
69 struct delayed_work flush_worker; /* flush worker */
71 atomic_t item_count; /* total # of MRs */
72 atomic_t dirty_count; /* # dirty of MRs */
74 struct xlist_head drop_list; /* MRs that have reached their max_maps limit */
75 struct xlist_head free_list; /* unused MRs */
76 struct xlist_head clean_list; /* global unused & unamapped MRs */
77 wait_queue_head_t flush_wait;
79 atomic_t free_pinned; /* memory pinned by free MRs */
80 unsigned long max_items;
81 unsigned long max_items_soft;
82 unsigned long max_free_pinned;
83 struct ib_fmr_attr fmr_attr;
86 static int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool, int free_all, struct rds_ib_mr **);
87 static void rds_ib_teardown_mr(struct rds_ib_mr *ibmr);
88 static void rds_ib_mr_pool_flush_worker(struct work_struct *work);
90 static struct rds_ib_device *rds_ib_get_device(__be32 ipaddr)
92 struct rds_ib_device *rds_ibdev;
93 struct rds_ib_ipaddr *i_ipaddr;
95 rcu_read_lock();
96 list_for_each_entry_rcu(rds_ibdev, &rds_ib_devices, list) {
97 list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) {
98 if (i_ipaddr->ipaddr == ipaddr) {
99 atomic_inc(&rds_ibdev->refcount);
100 rcu_read_unlock();
101 return rds_ibdev;
105 rcu_read_unlock();
107 return NULL;
110 static int rds_ib_add_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
112 struct rds_ib_ipaddr *i_ipaddr;
114 i_ipaddr = kmalloc(sizeof *i_ipaddr, GFP_KERNEL);
115 if (!i_ipaddr)
116 return -ENOMEM;
118 i_ipaddr->ipaddr = ipaddr;
120 spin_lock_irq(&rds_ibdev->spinlock);
121 list_add_tail_rcu(&i_ipaddr->list, &rds_ibdev->ipaddr_list);
122 spin_unlock_irq(&rds_ibdev->spinlock);
124 return 0;
127 static void rds_ib_remove_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
129 struct rds_ib_ipaddr *i_ipaddr;
130 struct rds_ib_ipaddr *to_free = NULL;
133 spin_lock_irq(&rds_ibdev->spinlock);
134 list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) {
135 if (i_ipaddr->ipaddr == ipaddr) {
136 list_del_rcu(&i_ipaddr->list);
137 to_free = i_ipaddr;
138 break;
141 spin_unlock_irq(&rds_ibdev->spinlock);
143 if (to_free) {
144 synchronize_rcu();
145 kfree(to_free);
149 int rds_ib_update_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
151 struct rds_ib_device *rds_ibdev_old;
153 rds_ibdev_old = rds_ib_get_device(ipaddr);
154 if (rds_ibdev_old) {
155 rds_ib_remove_ipaddr(rds_ibdev_old, ipaddr);
156 rds_ib_dev_put(rds_ibdev_old);
159 return rds_ib_add_ipaddr(rds_ibdev, ipaddr);
162 void rds_ib_add_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
164 struct rds_ib_connection *ic = conn->c_transport_data;
166 /* conn was previously on the nodev_conns_list */
167 spin_lock_irq(&ib_nodev_conns_lock);
168 BUG_ON(list_empty(&ib_nodev_conns));
169 BUG_ON(list_empty(&ic->ib_node));
170 list_del(&ic->ib_node);
172 spin_lock(&rds_ibdev->spinlock);
173 list_add_tail(&ic->ib_node, &rds_ibdev->conn_list);
174 spin_unlock(&rds_ibdev->spinlock);
175 spin_unlock_irq(&ib_nodev_conns_lock);
177 ic->rds_ibdev = rds_ibdev;
178 atomic_inc(&rds_ibdev->refcount);
181 void rds_ib_remove_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
183 struct rds_ib_connection *ic = conn->c_transport_data;
185 /* place conn on nodev_conns_list */
186 spin_lock(&ib_nodev_conns_lock);
188 spin_lock_irq(&rds_ibdev->spinlock);
189 BUG_ON(list_empty(&ic->ib_node));
190 list_del(&ic->ib_node);
191 spin_unlock_irq(&rds_ibdev->spinlock);
193 list_add_tail(&ic->ib_node, &ib_nodev_conns);
195 spin_unlock(&ib_nodev_conns_lock);
197 ic->rds_ibdev = NULL;
198 rds_ib_dev_put(rds_ibdev);
201 void rds_ib_destroy_nodev_conns(void)
203 struct rds_ib_connection *ic, *_ic;
204 LIST_HEAD(tmp_list);
206 /* avoid calling conn_destroy with irqs off */
207 spin_lock_irq(&ib_nodev_conns_lock);
208 list_splice(&ib_nodev_conns, &tmp_list);
209 spin_unlock_irq(&ib_nodev_conns_lock);
211 list_for_each_entry_safe(ic, _ic, &tmp_list, ib_node)
212 rds_conn_destroy(ic->conn);
215 struct rds_ib_mr_pool *rds_ib_create_mr_pool(struct rds_ib_device *rds_ibdev)
217 struct rds_ib_mr_pool *pool;
219 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
220 if (!pool)
221 return ERR_PTR(-ENOMEM);
223 INIT_XLIST_HEAD(&pool->free_list);
224 INIT_XLIST_HEAD(&pool->drop_list);
225 INIT_XLIST_HEAD(&pool->clean_list);
226 mutex_init(&pool->flush_lock);
227 init_waitqueue_head(&pool->flush_wait);
228 INIT_DELAYED_WORK(&pool->flush_worker, rds_ib_mr_pool_flush_worker);
230 pool->fmr_attr.max_pages = fmr_message_size;
231 pool->fmr_attr.max_maps = rds_ibdev->fmr_max_remaps;
232 pool->fmr_attr.page_shift = PAGE_SHIFT;
233 pool->max_free_pinned = rds_ibdev->max_fmrs * fmr_message_size / 4;
235 /* We never allow more than max_items MRs to be allocated.
236 * When we exceed more than max_items_soft, we start freeing
237 * items more aggressively.
238 * Make sure that max_items > max_items_soft > max_items / 2
240 pool->max_items_soft = rds_ibdev->max_fmrs * 3 / 4;
241 pool->max_items = rds_ibdev->max_fmrs;
243 return pool;
246 void rds_ib_get_mr_info(struct rds_ib_device *rds_ibdev, struct rds_info_rdma_connection *iinfo)
248 struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
250 iinfo->rdma_mr_max = pool->max_items;
251 iinfo->rdma_mr_size = pool->fmr_attr.max_pages;
254 void rds_ib_destroy_mr_pool(struct rds_ib_mr_pool *pool)
256 cancel_delayed_work_sync(&pool->flush_worker);
257 rds_ib_flush_mr_pool(pool, 1, NULL);
258 WARN_ON(atomic_read(&pool->item_count));
259 WARN_ON(atomic_read(&pool->free_pinned));
260 kfree(pool);
263 static void refill_local(struct rds_ib_mr_pool *pool, struct xlist_head *xl,
264 struct rds_ib_mr **ibmr_ret)
266 struct xlist_head *ibmr_xl;
267 ibmr_xl = xlist_del_head_fast(xl);
268 *ibmr_ret = list_entry(ibmr_xl, struct rds_ib_mr, xlist);
271 static inline struct rds_ib_mr *rds_ib_reuse_fmr(struct rds_ib_mr_pool *pool)
273 struct rds_ib_mr *ibmr = NULL;
274 struct xlist_head *ret;
275 unsigned long *flag;
277 preempt_disable();
278 flag = &__get_cpu_var(clean_list_grace);
279 set_bit(CLEAN_LIST_BUSY_BIT, flag);
280 ret = xlist_del_head(&pool->clean_list);
281 if (ret)
282 ibmr = list_entry(ret, struct rds_ib_mr, xlist);
284 clear_bit(CLEAN_LIST_BUSY_BIT, flag);
285 preempt_enable();
286 return ibmr;
289 static inline void wait_clean_list_grace(void)
291 int cpu;
292 unsigned long *flag;
294 for_each_online_cpu(cpu) {
295 flag = &per_cpu(clean_list_grace, cpu);
296 while (test_bit(CLEAN_LIST_BUSY_BIT, flag))
297 cpu_relax();
301 static struct rds_ib_mr *rds_ib_alloc_fmr(struct rds_ib_device *rds_ibdev)
303 struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
304 struct rds_ib_mr *ibmr = NULL;
305 int err = 0, iter = 0;
307 if (atomic_read(&pool->dirty_count) >= pool->max_items / 10)
308 schedule_delayed_work(&pool->flush_worker, 10);
310 while (1) {
311 ibmr = rds_ib_reuse_fmr(pool);
312 if (ibmr)
313 return ibmr;
315 /* No clean MRs - now we have the choice of either
316 * allocating a fresh MR up to the limit imposed by the
317 * driver, or flush any dirty unused MRs.
318 * We try to avoid stalling in the send path if possible,
319 * so we allocate as long as we're allowed to.
321 * We're fussy with enforcing the FMR limit, though. If the driver
322 * tells us we can't use more than N fmrs, we shouldn't start
323 * arguing with it */
324 if (atomic_inc_return(&pool->item_count) <= pool->max_items)
325 break;
327 atomic_dec(&pool->item_count);
329 if (++iter > 2) {
330 rds_ib_stats_inc(s_ib_rdma_mr_pool_depleted);
331 return ERR_PTR(-EAGAIN);
334 /* We do have some empty MRs. Flush them out. */
335 rds_ib_stats_inc(s_ib_rdma_mr_pool_wait);
336 rds_ib_flush_mr_pool(pool, 0, &ibmr);
337 if (ibmr)
338 return ibmr;
341 ibmr = kzalloc_node(sizeof(*ibmr), GFP_KERNEL, rdsibdev_to_node(rds_ibdev));
342 if (!ibmr) {
343 err = -ENOMEM;
344 goto out_no_cigar;
347 memset(ibmr, 0, sizeof(*ibmr));
349 ibmr->fmr = ib_alloc_fmr(rds_ibdev->pd,
350 (IB_ACCESS_LOCAL_WRITE |
351 IB_ACCESS_REMOTE_READ |
352 IB_ACCESS_REMOTE_WRITE|
353 IB_ACCESS_REMOTE_ATOMIC),
354 &pool->fmr_attr);
355 if (IS_ERR(ibmr->fmr)) {
356 err = PTR_ERR(ibmr->fmr);
357 ibmr->fmr = NULL;
358 printk(KERN_WARNING "RDS/IB: ib_alloc_fmr failed (err=%d)\n", err);
359 goto out_no_cigar;
362 rds_ib_stats_inc(s_ib_rdma_mr_alloc);
363 return ibmr;
365 out_no_cigar:
366 if (ibmr) {
367 if (ibmr->fmr)
368 ib_dealloc_fmr(ibmr->fmr);
369 kfree(ibmr);
371 atomic_dec(&pool->item_count);
372 return ERR_PTR(err);
375 static int rds_ib_map_fmr(struct rds_ib_device *rds_ibdev, struct rds_ib_mr *ibmr,
376 struct scatterlist *sg, unsigned int nents)
378 struct ib_device *dev = rds_ibdev->dev;
379 struct scatterlist *scat = sg;
380 u64 io_addr = 0;
381 u64 *dma_pages;
382 u32 len;
383 int page_cnt, sg_dma_len;
384 int i, j;
385 int ret;
387 sg_dma_len = ib_dma_map_sg(dev, sg, nents,
388 DMA_BIDIRECTIONAL);
389 if (unlikely(!sg_dma_len)) {
390 printk(KERN_WARNING "RDS/IB: dma_map_sg failed!\n");
391 return -EBUSY;
394 len = 0;
395 page_cnt = 0;
397 for (i = 0; i < sg_dma_len; ++i) {
398 unsigned int dma_len = ib_sg_dma_len(dev, &scat[i]);
399 u64 dma_addr = ib_sg_dma_address(dev, &scat[i]);
401 if (dma_addr & ~PAGE_MASK) {
402 if (i > 0)
403 return -EINVAL;
404 else
405 ++page_cnt;
407 if ((dma_addr + dma_len) & ~PAGE_MASK) {
408 if (i < sg_dma_len - 1)
409 return -EINVAL;
410 else
411 ++page_cnt;
414 len += dma_len;
417 page_cnt += len >> PAGE_SHIFT;
418 if (page_cnt > fmr_message_size)
419 return -EINVAL;
421 dma_pages = kmalloc_node(sizeof(u64) * page_cnt, GFP_ATOMIC,
422 rdsibdev_to_node(rds_ibdev));
423 if (!dma_pages)
424 return -ENOMEM;
426 page_cnt = 0;
427 for (i = 0; i < sg_dma_len; ++i) {
428 unsigned int dma_len = ib_sg_dma_len(dev, &scat[i]);
429 u64 dma_addr = ib_sg_dma_address(dev, &scat[i]);
431 for (j = 0; j < dma_len; j += PAGE_SIZE)
432 dma_pages[page_cnt++] =
433 (dma_addr & PAGE_MASK) + j;
436 ret = ib_map_phys_fmr(ibmr->fmr,
437 dma_pages, page_cnt, io_addr);
438 if (ret)
439 goto out;
441 /* Success - we successfully remapped the MR, so we can
442 * safely tear down the old mapping. */
443 rds_ib_teardown_mr(ibmr);
445 ibmr->sg = scat;
446 ibmr->sg_len = nents;
447 ibmr->sg_dma_len = sg_dma_len;
448 ibmr->remap_count++;
450 rds_ib_stats_inc(s_ib_rdma_mr_used);
451 ret = 0;
453 out:
454 kfree(dma_pages);
456 return ret;
459 void rds_ib_sync_mr(void *trans_private, int direction)
461 struct rds_ib_mr *ibmr = trans_private;
462 struct rds_ib_device *rds_ibdev = ibmr->device;
464 switch (direction) {
465 case DMA_FROM_DEVICE:
466 ib_dma_sync_sg_for_cpu(rds_ibdev->dev, ibmr->sg,
467 ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
468 break;
469 case DMA_TO_DEVICE:
470 ib_dma_sync_sg_for_device(rds_ibdev->dev, ibmr->sg,
471 ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
472 break;
476 static void __rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
478 struct rds_ib_device *rds_ibdev = ibmr->device;
480 if (ibmr->sg_dma_len) {
481 ib_dma_unmap_sg(rds_ibdev->dev,
482 ibmr->sg, ibmr->sg_len,
483 DMA_BIDIRECTIONAL);
484 ibmr->sg_dma_len = 0;
487 /* Release the s/g list */
488 if (ibmr->sg_len) {
489 unsigned int i;
491 for (i = 0; i < ibmr->sg_len; ++i) {
492 struct page *page = sg_page(&ibmr->sg[i]);
494 /* FIXME we need a way to tell a r/w MR
495 * from a r/o MR */
496 BUG_ON(irqs_disabled());
497 set_page_dirty(page);
498 put_page(page);
500 kfree(ibmr->sg);
502 ibmr->sg = NULL;
503 ibmr->sg_len = 0;
507 static void rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
509 unsigned int pinned = ibmr->sg_len;
511 __rds_ib_teardown_mr(ibmr);
512 if (pinned) {
513 struct rds_ib_device *rds_ibdev = ibmr->device;
514 struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
516 atomic_sub(pinned, &pool->free_pinned);
520 static inline unsigned int rds_ib_flush_goal(struct rds_ib_mr_pool *pool, int free_all)
522 unsigned int item_count;
524 item_count = atomic_read(&pool->item_count);
525 if (free_all)
526 return item_count;
528 return 0;
532 * given an xlist of mrs, put them all into the list_head for more processing
534 static void xlist_append_to_list(struct xlist_head *xlist, struct list_head *list)
536 struct rds_ib_mr *ibmr;
537 struct xlist_head splice;
538 struct xlist_head *cur;
539 struct xlist_head *next;
541 splice.next = NULL;
542 xlist_splice(xlist, &splice);
543 cur = splice.next;
544 while (cur) {
545 next = cur->next;
546 ibmr = list_entry(cur, struct rds_ib_mr, xlist);
547 list_add_tail(&ibmr->unmap_list, list);
548 cur = next;
553 * this takes a list head of mrs and turns it into an xlist of clusters.
554 * each cluster has an xlist of MR_CLUSTER_SIZE mrs that are ready for
555 * reuse.
557 static void list_append_to_xlist(struct rds_ib_mr_pool *pool,
558 struct list_head *list, struct xlist_head *xlist,
559 struct xlist_head **tail_ret)
561 struct rds_ib_mr *ibmr;
562 struct xlist_head *cur_mr = xlist;
563 struct xlist_head *tail_mr = NULL;
565 list_for_each_entry(ibmr, list, unmap_list) {
566 tail_mr = &ibmr->xlist;
567 tail_mr->next = NULL;
568 cur_mr->next = tail_mr;
569 cur_mr = tail_mr;
571 *tail_ret = tail_mr;
575 * Flush our pool of MRs.
576 * At a minimum, all currently unused MRs are unmapped.
577 * If the number of MRs allocated exceeds the limit, we also try
578 * to free as many MRs as needed to get back to this limit.
580 static int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool,
581 int free_all, struct rds_ib_mr **ibmr_ret)
583 struct rds_ib_mr *ibmr, *next;
584 struct xlist_head clean_xlist;
585 struct xlist_head *clean_tail;
586 LIST_HEAD(unmap_list);
587 LIST_HEAD(fmr_list);
588 unsigned long unpinned = 0;
589 unsigned int nfreed = 0, ncleaned = 0, free_goal;
590 int ret = 0;
592 rds_ib_stats_inc(s_ib_rdma_mr_pool_flush);
594 if (ibmr_ret) {
595 DEFINE_WAIT(wait);
596 while(!mutex_trylock(&pool->flush_lock)) {
597 ibmr = rds_ib_reuse_fmr(pool);
598 if (ibmr) {
599 *ibmr_ret = ibmr;
600 finish_wait(&pool->flush_wait, &wait);
601 goto out_nolock;
604 prepare_to_wait(&pool->flush_wait, &wait,
605 TASK_UNINTERRUPTIBLE);
606 if (xlist_empty(&pool->clean_list))
607 schedule();
609 ibmr = rds_ib_reuse_fmr(pool);
610 if (ibmr) {
611 *ibmr_ret = ibmr;
612 finish_wait(&pool->flush_wait, &wait);
613 goto out_nolock;
616 finish_wait(&pool->flush_wait, &wait);
617 } else
618 mutex_lock(&pool->flush_lock);
620 if (ibmr_ret) {
621 ibmr = rds_ib_reuse_fmr(pool);
622 if (ibmr) {
623 *ibmr_ret = ibmr;
624 goto out;
628 /* Get the list of all MRs to be dropped. Ordering matters -
629 * we want to put drop_list ahead of free_list.
631 xlist_append_to_list(&pool->drop_list, &unmap_list);
632 xlist_append_to_list(&pool->free_list, &unmap_list);
633 if (free_all)
634 xlist_append_to_list(&pool->clean_list, &unmap_list);
636 free_goal = rds_ib_flush_goal(pool, free_all);
638 if (list_empty(&unmap_list))
639 goto out;
641 /* String all ib_mr's onto one list and hand them to ib_unmap_fmr */
642 list_for_each_entry(ibmr, &unmap_list, unmap_list)
643 list_add(&ibmr->fmr->list, &fmr_list);
645 ret = ib_unmap_fmr(&fmr_list);
646 if (ret)
647 printk(KERN_WARNING "RDS/IB: ib_unmap_fmr failed (err=%d)\n", ret);
649 /* Now we can destroy the DMA mapping and unpin any pages */
650 list_for_each_entry_safe(ibmr, next, &unmap_list, unmap_list) {
651 unpinned += ibmr->sg_len;
652 __rds_ib_teardown_mr(ibmr);
653 if (nfreed < free_goal || ibmr->remap_count >= pool->fmr_attr.max_maps) {
654 rds_ib_stats_inc(s_ib_rdma_mr_free);
655 list_del(&ibmr->unmap_list);
656 ib_dealloc_fmr(ibmr->fmr);
657 kfree(ibmr);
658 nfreed++;
660 ncleaned++;
663 if (!list_empty(&unmap_list)) {
664 /* we have to make sure that none of the things we're about
665 * to put on the clean list would race with other cpus trying
666 * to pull items off. The xlist would explode if we managed to
667 * remove something from the clean list and then add it back again
668 * while another CPU was spinning on that same item in xlist_del_head.
670 * This is pretty unlikely, but just in case wait for an xlist grace period
671 * here before adding anything back into the clean list.
673 wait_clean_list_grace();
675 list_append_to_xlist(pool, &unmap_list, &clean_xlist, &clean_tail);
676 if (ibmr_ret)
677 refill_local(pool, &clean_xlist, ibmr_ret);
679 /* refill_local may have emptied our list */
680 if (!xlist_empty(&clean_xlist))
681 xlist_add(clean_xlist.next, clean_tail, &pool->clean_list);
685 atomic_sub(unpinned, &pool->free_pinned);
686 atomic_sub(ncleaned, &pool->dirty_count);
687 atomic_sub(nfreed, &pool->item_count);
689 out:
690 mutex_unlock(&pool->flush_lock);
691 if (waitqueue_active(&pool->flush_wait))
692 wake_up(&pool->flush_wait);
693 out_nolock:
694 return ret;
697 static void rds_ib_mr_pool_flush_worker(struct work_struct *work)
699 struct rds_ib_mr_pool *pool = container_of(work, struct rds_ib_mr_pool, flush_worker.work);
701 rds_ib_flush_mr_pool(pool, 0, NULL);
704 void rds_ib_free_mr(void *trans_private, int invalidate)
706 struct rds_ib_mr *ibmr = trans_private;
707 struct rds_ib_device *rds_ibdev = ibmr->device;
708 struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
710 rdsdebug("RDS/IB: free_mr nents %u\n", ibmr->sg_len);
712 /* Return it to the pool's free list */
713 if (ibmr->remap_count >= pool->fmr_attr.max_maps)
714 xlist_add(&ibmr->xlist, &ibmr->xlist, &pool->drop_list);
715 else
716 xlist_add(&ibmr->xlist, &ibmr->xlist, &pool->free_list);
718 atomic_add(ibmr->sg_len, &pool->free_pinned);
719 atomic_inc(&pool->dirty_count);
721 /* If we've pinned too many pages, request a flush */
722 if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned ||
723 atomic_read(&pool->dirty_count) >= pool->max_items / 10)
724 schedule_delayed_work(&pool->flush_worker, 10);
726 if (invalidate) {
727 if (likely(!in_interrupt())) {
728 rds_ib_flush_mr_pool(pool, 0, NULL);
729 } else {
730 /* We get here if the user created a MR marked
731 * as use_once and invalidate at the same time. */
732 schedule_delayed_work(&pool->flush_worker, 10);
736 rds_ib_dev_put(rds_ibdev);
739 void rds_ib_flush_mrs(void)
741 struct rds_ib_device *rds_ibdev;
743 down_read(&rds_ib_devices_lock);
744 list_for_each_entry(rds_ibdev, &rds_ib_devices, list) {
745 struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
747 if (pool)
748 rds_ib_flush_mr_pool(pool, 0, NULL);
750 up_read(&rds_ib_devices_lock);
753 void *rds_ib_get_mr(struct scatterlist *sg, unsigned long nents,
754 struct rds_sock *rs, u32 *key_ret)
756 struct rds_ib_device *rds_ibdev;
757 struct rds_ib_mr *ibmr = NULL;
758 int ret;
760 rds_ibdev = rds_ib_get_device(rs->rs_bound_addr);
761 if (!rds_ibdev) {
762 ret = -ENODEV;
763 goto out;
766 if (!rds_ibdev->mr_pool) {
767 ret = -ENODEV;
768 goto out;
771 ibmr = rds_ib_alloc_fmr(rds_ibdev);
772 if (IS_ERR(ibmr))
773 return ibmr;
775 ret = rds_ib_map_fmr(rds_ibdev, ibmr, sg, nents);
776 if (ret == 0)
777 *key_ret = ibmr->fmr->rkey;
778 else
779 printk(KERN_WARNING "RDS/IB: map_fmr failed (errno=%d)\n", ret);
781 ibmr->device = rds_ibdev;
782 rds_ibdev = NULL;
784 out:
785 if (ret) {
786 if (ibmr)
787 rds_ib_free_mr(ibmr, 0);
788 ibmr = ERR_PTR(ret);
790 if (rds_ibdev)
791 rds_ib_dev_put(rds_ibdev);
792 return ibmr;