Initial EXPERIMENTAL implementation of device-mapper thin provisioning
[linux-2.6/next.git] / net / rfkill / core.c
blobbe90640a2774bfedb73a89ea340186428d2afdfd
1 /*
2 * Copyright (C) 2006 - 2007 Ivo van Doorn
3 * Copyright (C) 2007 Dmitry Torokhov
4 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the
18 * Free Software Foundation, Inc.,
19 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/workqueue.h>
26 #include <linux/capability.h>
27 #include <linux/list.h>
28 #include <linux/mutex.h>
29 #include <linux/rfkill.h>
30 #include <linux/sched.h>
31 #include <linux/spinlock.h>
32 #include <linux/miscdevice.h>
33 #include <linux/wait.h>
34 #include <linux/poll.h>
35 #include <linux/fs.h>
36 #include <linux/slab.h>
38 #include "rfkill.h"
40 #define POLL_INTERVAL (5 * HZ)
42 #define RFKILL_BLOCK_HW BIT(0)
43 #define RFKILL_BLOCK_SW BIT(1)
44 #define RFKILL_BLOCK_SW_PREV BIT(2)
45 #define RFKILL_BLOCK_ANY (RFKILL_BLOCK_HW |\
46 RFKILL_BLOCK_SW |\
47 RFKILL_BLOCK_SW_PREV)
48 #define RFKILL_BLOCK_SW_SETCALL BIT(31)
50 struct rfkill {
51 spinlock_t lock;
53 const char *name;
54 enum rfkill_type type;
56 unsigned long state;
58 u32 idx;
60 bool registered;
61 bool persistent;
63 const struct rfkill_ops *ops;
64 void *data;
66 #ifdef CONFIG_RFKILL_LEDS
67 struct led_trigger led_trigger;
68 const char *ledtrigname;
69 #endif
71 struct device dev;
72 struct list_head node;
74 struct delayed_work poll_work;
75 struct work_struct uevent_work;
76 struct work_struct sync_work;
78 #define to_rfkill(d) container_of(d, struct rfkill, dev)
80 struct rfkill_int_event {
81 struct list_head list;
82 struct rfkill_event ev;
85 struct rfkill_data {
86 struct list_head list;
87 struct list_head events;
88 struct mutex mtx;
89 wait_queue_head_t read_wait;
90 bool input_handler;
94 MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
95 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
96 MODULE_DESCRIPTION("RF switch support");
97 MODULE_LICENSE("GPL");
101 * The locking here should be made much smarter, we currently have
102 * a bit of a stupid situation because drivers might want to register
103 * the rfkill struct under their own lock, and take this lock during
104 * rfkill method calls -- which will cause an AB-BA deadlock situation.
106 * To fix that, we need to rework this code here to be mostly lock-free
107 * and only use the mutex for list manipulations, not to protect the
108 * various other global variables. Then we can avoid holding the mutex
109 * around driver operations, and all is happy.
111 static LIST_HEAD(rfkill_list); /* list of registered rf switches */
112 static DEFINE_MUTEX(rfkill_global_mutex);
113 static LIST_HEAD(rfkill_fds); /* list of open fds of /dev/rfkill */
115 static unsigned int rfkill_default_state = 1;
116 module_param_named(default_state, rfkill_default_state, uint, 0444);
117 MODULE_PARM_DESC(default_state,
118 "Default initial state for all radio types, 0 = radio off");
120 static struct {
121 bool cur, sav;
122 } rfkill_global_states[NUM_RFKILL_TYPES];
124 static bool rfkill_epo_lock_active;
127 #ifdef CONFIG_RFKILL_LEDS
128 static void rfkill_led_trigger_event(struct rfkill *rfkill)
130 struct led_trigger *trigger;
132 if (!rfkill->registered)
133 return;
135 trigger = &rfkill->led_trigger;
137 if (rfkill->state & RFKILL_BLOCK_ANY)
138 led_trigger_event(trigger, LED_OFF);
139 else
140 led_trigger_event(trigger, LED_FULL);
143 static void rfkill_led_trigger_activate(struct led_classdev *led)
145 struct rfkill *rfkill;
147 rfkill = container_of(led->trigger, struct rfkill, led_trigger);
149 rfkill_led_trigger_event(rfkill);
152 static int rfkill_led_trigger_register(struct rfkill *rfkill)
154 rfkill->led_trigger.name = rfkill->ledtrigname
155 ? : dev_name(&rfkill->dev);
156 rfkill->led_trigger.activate = rfkill_led_trigger_activate;
157 return led_trigger_register(&rfkill->led_trigger);
160 static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
162 led_trigger_unregister(&rfkill->led_trigger);
164 #else
165 static void rfkill_led_trigger_event(struct rfkill *rfkill)
169 static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
171 return 0;
174 static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
177 #endif /* CONFIG_RFKILL_LEDS */
179 static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
180 enum rfkill_operation op)
182 unsigned long flags;
184 ev->idx = rfkill->idx;
185 ev->type = rfkill->type;
186 ev->op = op;
188 spin_lock_irqsave(&rfkill->lock, flags);
189 ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
190 ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
191 RFKILL_BLOCK_SW_PREV));
192 spin_unlock_irqrestore(&rfkill->lock, flags);
195 static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
197 struct rfkill_data *data;
198 struct rfkill_int_event *ev;
200 list_for_each_entry(data, &rfkill_fds, list) {
201 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
202 if (!ev)
203 continue;
204 rfkill_fill_event(&ev->ev, rfkill, op);
205 mutex_lock(&data->mtx);
206 list_add_tail(&ev->list, &data->events);
207 mutex_unlock(&data->mtx);
208 wake_up_interruptible(&data->read_wait);
212 static void rfkill_event(struct rfkill *rfkill)
214 if (!rfkill->registered)
215 return;
217 kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
219 /* also send event to /dev/rfkill */
220 rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
223 static bool __rfkill_set_hw_state(struct rfkill *rfkill,
224 bool blocked, bool *change)
226 unsigned long flags;
227 bool prev, any;
229 BUG_ON(!rfkill);
231 spin_lock_irqsave(&rfkill->lock, flags);
232 prev = !!(rfkill->state & RFKILL_BLOCK_HW);
233 if (blocked)
234 rfkill->state |= RFKILL_BLOCK_HW;
235 else
236 rfkill->state &= ~RFKILL_BLOCK_HW;
237 *change = prev != blocked;
238 any = rfkill->state & RFKILL_BLOCK_ANY;
239 spin_unlock_irqrestore(&rfkill->lock, flags);
241 rfkill_led_trigger_event(rfkill);
243 return any;
247 * rfkill_set_block - wrapper for set_block method
249 * @rfkill: the rfkill struct to use
250 * @blocked: the new software state
252 * Calls the set_block method (when applicable) and handles notifications
253 * etc. as well.
255 static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
257 unsigned long flags;
258 int err;
260 if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
261 return;
264 * Some platforms (...!) generate input events which affect the
265 * _hard_ kill state -- whenever something tries to change the
266 * current software state query the hardware state too.
268 if (rfkill->ops->query)
269 rfkill->ops->query(rfkill, rfkill->data);
271 spin_lock_irqsave(&rfkill->lock, flags);
272 if (rfkill->state & RFKILL_BLOCK_SW)
273 rfkill->state |= RFKILL_BLOCK_SW_PREV;
274 else
275 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
277 if (blocked)
278 rfkill->state |= RFKILL_BLOCK_SW;
279 else
280 rfkill->state &= ~RFKILL_BLOCK_SW;
282 rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
283 spin_unlock_irqrestore(&rfkill->lock, flags);
285 err = rfkill->ops->set_block(rfkill->data, blocked);
287 spin_lock_irqsave(&rfkill->lock, flags);
288 if (err) {
290 * Failed -- reset status to _prev, this may be different
291 * from what set set _PREV to earlier in this function
292 * if rfkill_set_sw_state was invoked.
294 if (rfkill->state & RFKILL_BLOCK_SW_PREV)
295 rfkill->state |= RFKILL_BLOCK_SW;
296 else
297 rfkill->state &= ~RFKILL_BLOCK_SW;
299 rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
300 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
301 spin_unlock_irqrestore(&rfkill->lock, flags);
303 rfkill_led_trigger_event(rfkill);
304 rfkill_event(rfkill);
307 #ifdef CONFIG_RFKILL_INPUT
308 static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
311 * __rfkill_switch_all - Toggle state of all switches of given type
312 * @type: type of interfaces to be affected
313 * @state: the new state
315 * This function sets the state of all switches of given type,
316 * unless a specific switch is claimed by userspace (in which case,
317 * that switch is left alone) or suspended.
319 * Caller must have acquired rfkill_global_mutex.
321 static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
323 struct rfkill *rfkill;
325 rfkill_global_states[type].cur = blocked;
326 list_for_each_entry(rfkill, &rfkill_list, node) {
327 if (rfkill->type != type)
328 continue;
330 rfkill_set_block(rfkill, blocked);
335 * rfkill_switch_all - Toggle state of all switches of given type
336 * @type: type of interfaces to be affected
337 * @state: the new state
339 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
340 * Please refer to __rfkill_switch_all() for details.
342 * Does nothing if the EPO lock is active.
344 void rfkill_switch_all(enum rfkill_type type, bool blocked)
346 if (atomic_read(&rfkill_input_disabled))
347 return;
349 mutex_lock(&rfkill_global_mutex);
351 if (!rfkill_epo_lock_active)
352 __rfkill_switch_all(type, blocked);
354 mutex_unlock(&rfkill_global_mutex);
358 * rfkill_epo - emergency power off all transmitters
360 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
361 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
363 * The global state before the EPO is saved and can be restored later
364 * using rfkill_restore_states().
366 void rfkill_epo(void)
368 struct rfkill *rfkill;
369 int i;
371 if (atomic_read(&rfkill_input_disabled))
372 return;
374 mutex_lock(&rfkill_global_mutex);
376 rfkill_epo_lock_active = true;
377 list_for_each_entry(rfkill, &rfkill_list, node)
378 rfkill_set_block(rfkill, true);
380 for (i = 0; i < NUM_RFKILL_TYPES; i++) {
381 rfkill_global_states[i].sav = rfkill_global_states[i].cur;
382 rfkill_global_states[i].cur = true;
385 mutex_unlock(&rfkill_global_mutex);
389 * rfkill_restore_states - restore global states
391 * Restore (and sync switches to) the global state from the
392 * states in rfkill_default_states. This can undo the effects of
393 * a call to rfkill_epo().
395 void rfkill_restore_states(void)
397 int i;
399 if (atomic_read(&rfkill_input_disabled))
400 return;
402 mutex_lock(&rfkill_global_mutex);
404 rfkill_epo_lock_active = false;
405 for (i = 0; i < NUM_RFKILL_TYPES; i++)
406 __rfkill_switch_all(i, rfkill_global_states[i].sav);
407 mutex_unlock(&rfkill_global_mutex);
411 * rfkill_remove_epo_lock - unlock state changes
413 * Used by rfkill-input manually unlock state changes, when
414 * the EPO switch is deactivated.
416 void rfkill_remove_epo_lock(void)
418 if (atomic_read(&rfkill_input_disabled))
419 return;
421 mutex_lock(&rfkill_global_mutex);
422 rfkill_epo_lock_active = false;
423 mutex_unlock(&rfkill_global_mutex);
427 * rfkill_is_epo_lock_active - returns true EPO is active
429 * Returns 0 (false) if there is NOT an active EPO contidion,
430 * and 1 (true) if there is an active EPO contition, which
431 * locks all radios in one of the BLOCKED states.
433 * Can be called in atomic context.
435 bool rfkill_is_epo_lock_active(void)
437 return rfkill_epo_lock_active;
441 * rfkill_get_global_sw_state - returns global state for a type
442 * @type: the type to get the global state of
444 * Returns the current global state for a given wireless
445 * device type.
447 bool rfkill_get_global_sw_state(const enum rfkill_type type)
449 return rfkill_global_states[type].cur;
451 #endif
454 bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
456 bool ret, change;
458 ret = __rfkill_set_hw_state(rfkill, blocked, &change);
460 if (!rfkill->registered)
461 return ret;
463 if (change)
464 schedule_work(&rfkill->uevent_work);
466 return ret;
468 EXPORT_SYMBOL(rfkill_set_hw_state);
470 static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
472 u32 bit = RFKILL_BLOCK_SW;
474 /* if in a ops->set_block right now, use other bit */
475 if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
476 bit = RFKILL_BLOCK_SW_PREV;
478 if (blocked)
479 rfkill->state |= bit;
480 else
481 rfkill->state &= ~bit;
484 bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
486 unsigned long flags;
487 bool prev, hwblock;
489 BUG_ON(!rfkill);
491 spin_lock_irqsave(&rfkill->lock, flags);
492 prev = !!(rfkill->state & RFKILL_BLOCK_SW);
493 __rfkill_set_sw_state(rfkill, blocked);
494 hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
495 blocked = blocked || hwblock;
496 spin_unlock_irqrestore(&rfkill->lock, flags);
498 if (!rfkill->registered)
499 return blocked;
501 if (prev != blocked && !hwblock)
502 schedule_work(&rfkill->uevent_work);
504 rfkill_led_trigger_event(rfkill);
506 return blocked;
508 EXPORT_SYMBOL(rfkill_set_sw_state);
510 void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
512 unsigned long flags;
514 BUG_ON(!rfkill);
515 BUG_ON(rfkill->registered);
517 spin_lock_irqsave(&rfkill->lock, flags);
518 __rfkill_set_sw_state(rfkill, blocked);
519 rfkill->persistent = true;
520 spin_unlock_irqrestore(&rfkill->lock, flags);
522 EXPORT_SYMBOL(rfkill_init_sw_state);
524 void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
526 unsigned long flags;
527 bool swprev, hwprev;
529 BUG_ON(!rfkill);
531 spin_lock_irqsave(&rfkill->lock, flags);
534 * No need to care about prev/setblock ... this is for uevent only
535 * and that will get triggered by rfkill_set_block anyway.
537 swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
538 hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
539 __rfkill_set_sw_state(rfkill, sw);
540 if (hw)
541 rfkill->state |= RFKILL_BLOCK_HW;
542 else
543 rfkill->state &= ~RFKILL_BLOCK_HW;
545 spin_unlock_irqrestore(&rfkill->lock, flags);
547 if (!rfkill->registered) {
548 rfkill->persistent = true;
549 } else {
550 if (swprev != sw || hwprev != hw)
551 schedule_work(&rfkill->uevent_work);
553 rfkill_led_trigger_event(rfkill);
556 EXPORT_SYMBOL(rfkill_set_states);
558 static ssize_t rfkill_name_show(struct device *dev,
559 struct device_attribute *attr,
560 char *buf)
562 struct rfkill *rfkill = to_rfkill(dev);
564 return sprintf(buf, "%s\n", rfkill->name);
567 static const char *rfkill_get_type_str(enum rfkill_type type)
569 BUILD_BUG_ON(NUM_RFKILL_TYPES != RFKILL_TYPE_FM + 1);
571 switch (type) {
572 case RFKILL_TYPE_WLAN:
573 return "wlan";
574 case RFKILL_TYPE_BLUETOOTH:
575 return "bluetooth";
576 case RFKILL_TYPE_UWB:
577 return "ultrawideband";
578 case RFKILL_TYPE_WIMAX:
579 return "wimax";
580 case RFKILL_TYPE_WWAN:
581 return "wwan";
582 case RFKILL_TYPE_GPS:
583 return "gps";
584 case RFKILL_TYPE_FM:
585 return "fm";
586 default:
587 BUG();
591 static ssize_t rfkill_type_show(struct device *dev,
592 struct device_attribute *attr,
593 char *buf)
595 struct rfkill *rfkill = to_rfkill(dev);
597 return sprintf(buf, "%s\n", rfkill_get_type_str(rfkill->type));
600 static ssize_t rfkill_idx_show(struct device *dev,
601 struct device_attribute *attr,
602 char *buf)
604 struct rfkill *rfkill = to_rfkill(dev);
606 return sprintf(buf, "%d\n", rfkill->idx);
609 static ssize_t rfkill_persistent_show(struct device *dev,
610 struct device_attribute *attr,
611 char *buf)
613 struct rfkill *rfkill = to_rfkill(dev);
615 return sprintf(buf, "%d\n", rfkill->persistent);
618 static ssize_t rfkill_hard_show(struct device *dev,
619 struct device_attribute *attr,
620 char *buf)
622 struct rfkill *rfkill = to_rfkill(dev);
624 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
627 static ssize_t rfkill_soft_show(struct device *dev,
628 struct device_attribute *attr,
629 char *buf)
631 struct rfkill *rfkill = to_rfkill(dev);
633 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
636 static ssize_t rfkill_soft_store(struct device *dev,
637 struct device_attribute *attr,
638 const char *buf, size_t count)
640 struct rfkill *rfkill = to_rfkill(dev);
641 unsigned long state;
642 int err;
644 if (!capable(CAP_NET_ADMIN))
645 return -EPERM;
647 err = strict_strtoul(buf, 0, &state);
648 if (err)
649 return err;
651 if (state > 1 )
652 return -EINVAL;
654 mutex_lock(&rfkill_global_mutex);
655 rfkill_set_block(rfkill, state);
656 mutex_unlock(&rfkill_global_mutex);
658 return err ?: count;
661 static u8 user_state_from_blocked(unsigned long state)
663 if (state & RFKILL_BLOCK_HW)
664 return RFKILL_USER_STATE_HARD_BLOCKED;
665 if (state & RFKILL_BLOCK_SW)
666 return RFKILL_USER_STATE_SOFT_BLOCKED;
668 return RFKILL_USER_STATE_UNBLOCKED;
671 static ssize_t rfkill_state_show(struct device *dev,
672 struct device_attribute *attr,
673 char *buf)
675 struct rfkill *rfkill = to_rfkill(dev);
677 return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
680 static ssize_t rfkill_state_store(struct device *dev,
681 struct device_attribute *attr,
682 const char *buf, size_t count)
684 struct rfkill *rfkill = to_rfkill(dev);
685 unsigned long state;
686 int err;
688 if (!capable(CAP_NET_ADMIN))
689 return -EPERM;
691 err = strict_strtoul(buf, 0, &state);
692 if (err)
693 return err;
695 if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
696 state != RFKILL_USER_STATE_UNBLOCKED)
697 return -EINVAL;
699 mutex_lock(&rfkill_global_mutex);
700 rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
701 mutex_unlock(&rfkill_global_mutex);
703 return err ?: count;
706 static ssize_t rfkill_claim_show(struct device *dev,
707 struct device_attribute *attr,
708 char *buf)
710 return sprintf(buf, "%d\n", 0);
713 static ssize_t rfkill_claim_store(struct device *dev,
714 struct device_attribute *attr,
715 const char *buf, size_t count)
717 return -EOPNOTSUPP;
720 static struct device_attribute rfkill_dev_attrs[] = {
721 __ATTR(name, S_IRUGO, rfkill_name_show, NULL),
722 __ATTR(type, S_IRUGO, rfkill_type_show, NULL),
723 __ATTR(index, S_IRUGO, rfkill_idx_show, NULL),
724 __ATTR(persistent, S_IRUGO, rfkill_persistent_show, NULL),
725 __ATTR(state, S_IRUGO|S_IWUSR, rfkill_state_show, rfkill_state_store),
726 __ATTR(claim, S_IRUGO|S_IWUSR, rfkill_claim_show, rfkill_claim_store),
727 __ATTR(soft, S_IRUGO|S_IWUSR, rfkill_soft_show, rfkill_soft_store),
728 __ATTR(hard, S_IRUGO, rfkill_hard_show, NULL),
729 __ATTR_NULL
732 static void rfkill_release(struct device *dev)
734 struct rfkill *rfkill = to_rfkill(dev);
736 kfree(rfkill);
739 static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
741 struct rfkill *rfkill = to_rfkill(dev);
742 unsigned long flags;
743 u32 state;
744 int error;
746 error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
747 if (error)
748 return error;
749 error = add_uevent_var(env, "RFKILL_TYPE=%s",
750 rfkill_get_type_str(rfkill->type));
751 if (error)
752 return error;
753 spin_lock_irqsave(&rfkill->lock, flags);
754 state = rfkill->state;
755 spin_unlock_irqrestore(&rfkill->lock, flags);
756 error = add_uevent_var(env, "RFKILL_STATE=%d",
757 user_state_from_blocked(state));
758 return error;
761 void rfkill_pause_polling(struct rfkill *rfkill)
763 BUG_ON(!rfkill);
765 if (!rfkill->ops->poll)
766 return;
768 cancel_delayed_work_sync(&rfkill->poll_work);
770 EXPORT_SYMBOL(rfkill_pause_polling);
772 void rfkill_resume_polling(struct rfkill *rfkill)
774 BUG_ON(!rfkill);
776 if (!rfkill->ops->poll)
777 return;
779 schedule_work(&rfkill->poll_work.work);
781 EXPORT_SYMBOL(rfkill_resume_polling);
783 static int rfkill_suspend(struct device *dev, pm_message_t state)
785 struct rfkill *rfkill = to_rfkill(dev);
787 rfkill_pause_polling(rfkill);
789 return 0;
792 static int rfkill_resume(struct device *dev)
794 struct rfkill *rfkill = to_rfkill(dev);
795 bool cur;
797 if (!rfkill->persistent) {
798 cur = !!(rfkill->state & RFKILL_BLOCK_SW);
799 rfkill_set_block(rfkill, cur);
802 rfkill_resume_polling(rfkill);
804 return 0;
807 static struct class rfkill_class = {
808 .name = "rfkill",
809 .dev_release = rfkill_release,
810 .dev_attrs = rfkill_dev_attrs,
811 .dev_uevent = rfkill_dev_uevent,
812 .suspend = rfkill_suspend,
813 .resume = rfkill_resume,
816 bool rfkill_blocked(struct rfkill *rfkill)
818 unsigned long flags;
819 u32 state;
821 spin_lock_irqsave(&rfkill->lock, flags);
822 state = rfkill->state;
823 spin_unlock_irqrestore(&rfkill->lock, flags);
825 return !!(state & RFKILL_BLOCK_ANY);
827 EXPORT_SYMBOL(rfkill_blocked);
830 struct rfkill * __must_check rfkill_alloc(const char *name,
831 struct device *parent,
832 const enum rfkill_type type,
833 const struct rfkill_ops *ops,
834 void *ops_data)
836 struct rfkill *rfkill;
837 struct device *dev;
839 if (WARN_ON(!ops))
840 return NULL;
842 if (WARN_ON(!ops->set_block))
843 return NULL;
845 if (WARN_ON(!name))
846 return NULL;
848 if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
849 return NULL;
851 rfkill = kzalloc(sizeof(*rfkill), GFP_KERNEL);
852 if (!rfkill)
853 return NULL;
855 spin_lock_init(&rfkill->lock);
856 INIT_LIST_HEAD(&rfkill->node);
857 rfkill->type = type;
858 rfkill->name = name;
859 rfkill->ops = ops;
860 rfkill->data = ops_data;
862 dev = &rfkill->dev;
863 dev->class = &rfkill_class;
864 dev->parent = parent;
865 device_initialize(dev);
867 return rfkill;
869 EXPORT_SYMBOL(rfkill_alloc);
871 static void rfkill_poll(struct work_struct *work)
873 struct rfkill *rfkill;
875 rfkill = container_of(work, struct rfkill, poll_work.work);
878 * Poll hardware state -- driver will use one of the
879 * rfkill_set{,_hw,_sw}_state functions and use its
880 * return value to update the current status.
882 rfkill->ops->poll(rfkill, rfkill->data);
884 schedule_delayed_work(&rfkill->poll_work,
885 round_jiffies_relative(POLL_INTERVAL));
888 static void rfkill_uevent_work(struct work_struct *work)
890 struct rfkill *rfkill;
892 rfkill = container_of(work, struct rfkill, uevent_work);
894 mutex_lock(&rfkill_global_mutex);
895 rfkill_event(rfkill);
896 mutex_unlock(&rfkill_global_mutex);
899 static void rfkill_sync_work(struct work_struct *work)
901 struct rfkill *rfkill;
902 bool cur;
904 rfkill = container_of(work, struct rfkill, sync_work);
906 mutex_lock(&rfkill_global_mutex);
907 cur = rfkill_global_states[rfkill->type].cur;
908 rfkill_set_block(rfkill, cur);
909 mutex_unlock(&rfkill_global_mutex);
912 int __must_check rfkill_register(struct rfkill *rfkill)
914 static unsigned long rfkill_no;
915 struct device *dev = &rfkill->dev;
916 int error;
918 BUG_ON(!rfkill);
920 mutex_lock(&rfkill_global_mutex);
922 if (rfkill->registered) {
923 error = -EALREADY;
924 goto unlock;
927 rfkill->idx = rfkill_no;
928 dev_set_name(dev, "rfkill%lu", rfkill_no);
929 rfkill_no++;
931 list_add_tail(&rfkill->node, &rfkill_list);
933 error = device_add(dev);
934 if (error)
935 goto remove;
937 error = rfkill_led_trigger_register(rfkill);
938 if (error)
939 goto devdel;
941 rfkill->registered = true;
943 INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
944 INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
945 INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
947 if (rfkill->ops->poll)
948 schedule_delayed_work(&rfkill->poll_work,
949 round_jiffies_relative(POLL_INTERVAL));
951 if (!rfkill->persistent || rfkill_epo_lock_active) {
952 schedule_work(&rfkill->sync_work);
953 } else {
954 #ifdef CONFIG_RFKILL_INPUT
955 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
957 if (!atomic_read(&rfkill_input_disabled))
958 __rfkill_switch_all(rfkill->type, soft_blocked);
959 #endif
962 rfkill_send_events(rfkill, RFKILL_OP_ADD);
964 mutex_unlock(&rfkill_global_mutex);
965 return 0;
967 devdel:
968 device_del(&rfkill->dev);
969 remove:
970 list_del_init(&rfkill->node);
971 unlock:
972 mutex_unlock(&rfkill_global_mutex);
973 return error;
975 EXPORT_SYMBOL(rfkill_register);
977 void rfkill_unregister(struct rfkill *rfkill)
979 BUG_ON(!rfkill);
981 if (rfkill->ops->poll)
982 cancel_delayed_work_sync(&rfkill->poll_work);
984 cancel_work_sync(&rfkill->uevent_work);
985 cancel_work_sync(&rfkill->sync_work);
987 rfkill->registered = false;
989 device_del(&rfkill->dev);
991 mutex_lock(&rfkill_global_mutex);
992 rfkill_send_events(rfkill, RFKILL_OP_DEL);
993 list_del_init(&rfkill->node);
994 mutex_unlock(&rfkill_global_mutex);
996 rfkill_led_trigger_unregister(rfkill);
998 EXPORT_SYMBOL(rfkill_unregister);
1000 void rfkill_destroy(struct rfkill *rfkill)
1002 if (rfkill)
1003 put_device(&rfkill->dev);
1005 EXPORT_SYMBOL(rfkill_destroy);
1007 static int rfkill_fop_open(struct inode *inode, struct file *file)
1009 struct rfkill_data *data;
1010 struct rfkill *rfkill;
1011 struct rfkill_int_event *ev, *tmp;
1013 data = kzalloc(sizeof(*data), GFP_KERNEL);
1014 if (!data)
1015 return -ENOMEM;
1017 INIT_LIST_HEAD(&data->events);
1018 mutex_init(&data->mtx);
1019 init_waitqueue_head(&data->read_wait);
1021 mutex_lock(&rfkill_global_mutex);
1022 mutex_lock(&data->mtx);
1024 * start getting events from elsewhere but hold mtx to get
1025 * startup events added first
1028 list_for_each_entry(rfkill, &rfkill_list, node) {
1029 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1030 if (!ev)
1031 goto free;
1032 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1033 list_add_tail(&ev->list, &data->events);
1035 list_add(&data->list, &rfkill_fds);
1036 mutex_unlock(&data->mtx);
1037 mutex_unlock(&rfkill_global_mutex);
1039 file->private_data = data;
1041 return nonseekable_open(inode, file);
1043 free:
1044 mutex_unlock(&data->mtx);
1045 mutex_unlock(&rfkill_global_mutex);
1046 mutex_destroy(&data->mtx);
1047 list_for_each_entry_safe(ev, tmp, &data->events, list)
1048 kfree(ev);
1049 kfree(data);
1050 return -ENOMEM;
1053 static unsigned int rfkill_fop_poll(struct file *file, poll_table *wait)
1055 struct rfkill_data *data = file->private_data;
1056 unsigned int res = POLLOUT | POLLWRNORM;
1058 poll_wait(file, &data->read_wait, wait);
1060 mutex_lock(&data->mtx);
1061 if (!list_empty(&data->events))
1062 res = POLLIN | POLLRDNORM;
1063 mutex_unlock(&data->mtx);
1065 return res;
1068 static bool rfkill_readable(struct rfkill_data *data)
1070 bool r;
1072 mutex_lock(&data->mtx);
1073 r = !list_empty(&data->events);
1074 mutex_unlock(&data->mtx);
1076 return r;
1079 static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1080 size_t count, loff_t *pos)
1082 struct rfkill_data *data = file->private_data;
1083 struct rfkill_int_event *ev;
1084 unsigned long sz;
1085 int ret;
1087 mutex_lock(&data->mtx);
1089 while (list_empty(&data->events)) {
1090 if (file->f_flags & O_NONBLOCK) {
1091 ret = -EAGAIN;
1092 goto out;
1094 mutex_unlock(&data->mtx);
1095 ret = wait_event_interruptible(data->read_wait,
1096 rfkill_readable(data));
1097 mutex_lock(&data->mtx);
1099 if (ret)
1100 goto out;
1103 ev = list_first_entry(&data->events, struct rfkill_int_event,
1104 list);
1106 sz = min_t(unsigned long, sizeof(ev->ev), count);
1107 ret = sz;
1108 if (copy_to_user(buf, &ev->ev, sz))
1109 ret = -EFAULT;
1111 list_del(&ev->list);
1112 kfree(ev);
1113 out:
1114 mutex_unlock(&data->mtx);
1115 return ret;
1118 static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1119 size_t count, loff_t *pos)
1121 struct rfkill *rfkill;
1122 struct rfkill_event ev;
1124 /* we don't need the 'hard' variable but accept it */
1125 if (count < RFKILL_EVENT_SIZE_V1 - 1)
1126 return -EINVAL;
1129 * Copy as much data as we can accept into our 'ev' buffer,
1130 * but tell userspace how much we've copied so it can determine
1131 * our API version even in a write() call, if it cares.
1133 count = min(count, sizeof(ev));
1134 if (copy_from_user(&ev, buf, count))
1135 return -EFAULT;
1137 if (ev.op != RFKILL_OP_CHANGE && ev.op != RFKILL_OP_CHANGE_ALL)
1138 return -EINVAL;
1140 if (ev.type >= NUM_RFKILL_TYPES)
1141 return -EINVAL;
1143 mutex_lock(&rfkill_global_mutex);
1145 if (ev.op == RFKILL_OP_CHANGE_ALL) {
1146 if (ev.type == RFKILL_TYPE_ALL) {
1147 enum rfkill_type i;
1148 for (i = 0; i < NUM_RFKILL_TYPES; i++)
1149 rfkill_global_states[i].cur = ev.soft;
1150 } else {
1151 rfkill_global_states[ev.type].cur = ev.soft;
1155 list_for_each_entry(rfkill, &rfkill_list, node) {
1156 if (rfkill->idx != ev.idx && ev.op != RFKILL_OP_CHANGE_ALL)
1157 continue;
1159 if (rfkill->type != ev.type && ev.type != RFKILL_TYPE_ALL)
1160 continue;
1162 rfkill_set_block(rfkill, ev.soft);
1164 mutex_unlock(&rfkill_global_mutex);
1166 return count;
1169 static int rfkill_fop_release(struct inode *inode, struct file *file)
1171 struct rfkill_data *data = file->private_data;
1172 struct rfkill_int_event *ev, *tmp;
1174 mutex_lock(&rfkill_global_mutex);
1175 list_del(&data->list);
1176 mutex_unlock(&rfkill_global_mutex);
1178 mutex_destroy(&data->mtx);
1179 list_for_each_entry_safe(ev, tmp, &data->events, list)
1180 kfree(ev);
1182 #ifdef CONFIG_RFKILL_INPUT
1183 if (data->input_handler)
1184 if (atomic_dec_return(&rfkill_input_disabled) == 0)
1185 printk(KERN_DEBUG "rfkill: input handler enabled\n");
1186 #endif
1188 kfree(data);
1190 return 0;
1193 #ifdef CONFIG_RFKILL_INPUT
1194 static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1195 unsigned long arg)
1197 struct rfkill_data *data = file->private_data;
1199 if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1200 return -ENOSYS;
1202 if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1203 return -ENOSYS;
1205 mutex_lock(&data->mtx);
1207 if (!data->input_handler) {
1208 if (atomic_inc_return(&rfkill_input_disabled) == 1)
1209 printk(KERN_DEBUG "rfkill: input handler disabled\n");
1210 data->input_handler = true;
1213 mutex_unlock(&data->mtx);
1215 return 0;
1217 #endif
1219 static const struct file_operations rfkill_fops = {
1220 .owner = THIS_MODULE,
1221 .open = rfkill_fop_open,
1222 .read = rfkill_fop_read,
1223 .write = rfkill_fop_write,
1224 .poll = rfkill_fop_poll,
1225 .release = rfkill_fop_release,
1226 #ifdef CONFIG_RFKILL_INPUT
1227 .unlocked_ioctl = rfkill_fop_ioctl,
1228 .compat_ioctl = rfkill_fop_ioctl,
1229 #endif
1230 .llseek = no_llseek,
1233 static struct miscdevice rfkill_miscdev = {
1234 .name = "rfkill",
1235 .fops = &rfkill_fops,
1236 .minor = MISC_DYNAMIC_MINOR,
1239 static int __init rfkill_init(void)
1241 int error;
1242 int i;
1244 for (i = 0; i < NUM_RFKILL_TYPES; i++)
1245 rfkill_global_states[i].cur = !rfkill_default_state;
1247 error = class_register(&rfkill_class);
1248 if (error)
1249 goto out;
1251 error = misc_register(&rfkill_miscdev);
1252 if (error) {
1253 class_unregister(&rfkill_class);
1254 goto out;
1257 #ifdef CONFIG_RFKILL_INPUT
1258 error = rfkill_handler_init();
1259 if (error) {
1260 misc_deregister(&rfkill_miscdev);
1261 class_unregister(&rfkill_class);
1262 goto out;
1264 #endif
1266 out:
1267 return error;
1269 subsys_initcall(rfkill_init);
1271 static void __exit rfkill_exit(void)
1273 #ifdef CONFIG_RFKILL_INPUT
1274 rfkill_handler_exit();
1275 #endif
1276 misc_deregister(&rfkill_miscdev);
1277 class_unregister(&rfkill_class);
1279 module_exit(rfkill_exit);