2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/err.h>
20 #include <linux/mutex.h>
21 #include <linux/suspend.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/regulator/driver.h>
24 #include <linux/regulator/machine.h>
26 #define REGULATOR_VERSION "0.5"
28 static DEFINE_MUTEX(regulator_list_mutex
);
29 static LIST_HEAD(regulator_list
);
30 static LIST_HEAD(regulator_map_list
);
31 static int has_full_constraints
;
34 * struct regulator_map
36 * Used to provide symbolic supply names to devices.
38 struct regulator_map
{
39 struct list_head list
;
42 struct regulator_dev
*regulator
;
48 * One for each consumer device.
52 struct list_head list
;
57 struct device_attribute dev_attr
;
58 struct regulator_dev
*rdev
;
61 static int _regulator_is_enabled(struct regulator_dev
*rdev
);
62 static int _regulator_disable(struct regulator_dev
*rdev
);
63 static int _regulator_get_voltage(struct regulator_dev
*rdev
);
64 static int _regulator_get_current_limit(struct regulator_dev
*rdev
);
65 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
);
66 static void _notifier_call_chain(struct regulator_dev
*rdev
,
67 unsigned long event
, void *data
);
69 /* gets the regulator for a given consumer device */
70 static struct regulator
*get_device_regulator(struct device
*dev
)
72 struct regulator
*regulator
= NULL
;
73 struct regulator_dev
*rdev
;
75 mutex_lock(®ulator_list_mutex
);
76 list_for_each_entry(rdev
, ®ulator_list
, list
) {
77 mutex_lock(&rdev
->mutex
);
78 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
79 if (regulator
->dev
== dev
) {
80 mutex_unlock(&rdev
->mutex
);
81 mutex_unlock(®ulator_list_mutex
);
85 mutex_unlock(&rdev
->mutex
);
87 mutex_unlock(®ulator_list_mutex
);
91 /* Platform voltage constraint check */
92 static int regulator_check_voltage(struct regulator_dev
*rdev
,
93 int *min_uV
, int *max_uV
)
95 BUG_ON(*min_uV
> *max_uV
);
97 if (!rdev
->constraints
) {
98 printk(KERN_ERR
"%s: no constraints for %s\n", __func__
,
102 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
)) {
103 printk(KERN_ERR
"%s: operation not allowed for %s\n",
104 __func__
, rdev
->desc
->name
);
108 if (*max_uV
> rdev
->constraints
->max_uV
)
109 *max_uV
= rdev
->constraints
->max_uV
;
110 if (*min_uV
< rdev
->constraints
->min_uV
)
111 *min_uV
= rdev
->constraints
->min_uV
;
113 if (*min_uV
> *max_uV
)
119 /* current constraint check */
120 static int regulator_check_current_limit(struct regulator_dev
*rdev
,
121 int *min_uA
, int *max_uA
)
123 BUG_ON(*min_uA
> *max_uA
);
125 if (!rdev
->constraints
) {
126 printk(KERN_ERR
"%s: no constraints for %s\n", __func__
,
130 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_CURRENT
)) {
131 printk(KERN_ERR
"%s: operation not allowed for %s\n",
132 __func__
, rdev
->desc
->name
);
136 if (*max_uA
> rdev
->constraints
->max_uA
)
137 *max_uA
= rdev
->constraints
->max_uA
;
138 if (*min_uA
< rdev
->constraints
->min_uA
)
139 *min_uA
= rdev
->constraints
->min_uA
;
141 if (*min_uA
> *max_uA
)
147 /* operating mode constraint check */
148 static int regulator_check_mode(struct regulator_dev
*rdev
, int mode
)
151 case REGULATOR_MODE_FAST
:
152 case REGULATOR_MODE_NORMAL
:
153 case REGULATOR_MODE_IDLE
:
154 case REGULATOR_MODE_STANDBY
:
160 if (!rdev
->constraints
) {
161 printk(KERN_ERR
"%s: no constraints for %s\n", __func__
,
165 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_MODE
)) {
166 printk(KERN_ERR
"%s: operation not allowed for %s\n",
167 __func__
, rdev
->desc
->name
);
170 if (!(rdev
->constraints
->valid_modes_mask
& mode
)) {
171 printk(KERN_ERR
"%s: invalid mode %x for %s\n",
172 __func__
, mode
, rdev
->desc
->name
);
178 /* dynamic regulator mode switching constraint check */
179 static int regulator_check_drms(struct regulator_dev
*rdev
)
181 if (!rdev
->constraints
) {
182 printk(KERN_ERR
"%s: no constraints for %s\n", __func__
,
186 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_DRMS
)) {
187 printk(KERN_ERR
"%s: operation not allowed for %s\n",
188 __func__
, rdev
->desc
->name
);
194 static ssize_t
device_requested_uA_show(struct device
*dev
,
195 struct device_attribute
*attr
, char *buf
)
197 struct regulator
*regulator
;
199 regulator
= get_device_regulator(dev
);
200 if (regulator
== NULL
)
203 return sprintf(buf
, "%d\n", regulator
->uA_load
);
206 static ssize_t
regulator_uV_show(struct device
*dev
,
207 struct device_attribute
*attr
, char *buf
)
209 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
212 mutex_lock(&rdev
->mutex
);
213 ret
= sprintf(buf
, "%d\n", _regulator_get_voltage(rdev
));
214 mutex_unlock(&rdev
->mutex
);
218 static DEVICE_ATTR(microvolts
, 0444, regulator_uV_show
, NULL
);
220 static ssize_t
regulator_uA_show(struct device
*dev
,
221 struct device_attribute
*attr
, char *buf
)
223 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
225 return sprintf(buf
, "%d\n", _regulator_get_current_limit(rdev
));
227 static DEVICE_ATTR(microamps
, 0444, regulator_uA_show
, NULL
);
229 static ssize_t
regulator_name_show(struct device
*dev
,
230 struct device_attribute
*attr
, char *buf
)
232 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
235 if (rdev
->constraints
->name
)
236 name
= rdev
->constraints
->name
;
237 else if (rdev
->desc
->name
)
238 name
= rdev
->desc
->name
;
242 return sprintf(buf
, "%s\n", name
);
245 static ssize_t
regulator_print_opmode(char *buf
, int mode
)
248 case REGULATOR_MODE_FAST
:
249 return sprintf(buf
, "fast\n");
250 case REGULATOR_MODE_NORMAL
:
251 return sprintf(buf
, "normal\n");
252 case REGULATOR_MODE_IDLE
:
253 return sprintf(buf
, "idle\n");
254 case REGULATOR_MODE_STANDBY
:
255 return sprintf(buf
, "standby\n");
257 return sprintf(buf
, "unknown\n");
260 static ssize_t
regulator_opmode_show(struct device
*dev
,
261 struct device_attribute
*attr
, char *buf
)
263 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
265 return regulator_print_opmode(buf
, _regulator_get_mode(rdev
));
267 static DEVICE_ATTR(opmode
, 0444, regulator_opmode_show
, NULL
);
269 static ssize_t
regulator_print_state(char *buf
, int state
)
272 return sprintf(buf
, "enabled\n");
274 return sprintf(buf
, "disabled\n");
276 return sprintf(buf
, "unknown\n");
279 static ssize_t
regulator_state_show(struct device
*dev
,
280 struct device_attribute
*attr
, char *buf
)
282 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
284 return regulator_print_state(buf
, _regulator_is_enabled(rdev
));
286 static DEVICE_ATTR(state
, 0444, regulator_state_show
, NULL
);
288 static ssize_t
regulator_status_show(struct device
*dev
,
289 struct device_attribute
*attr
, char *buf
)
291 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
295 status
= rdev
->desc
->ops
->get_status(rdev
);
300 case REGULATOR_STATUS_OFF
:
303 case REGULATOR_STATUS_ON
:
306 case REGULATOR_STATUS_ERROR
:
309 case REGULATOR_STATUS_FAST
:
312 case REGULATOR_STATUS_NORMAL
:
315 case REGULATOR_STATUS_IDLE
:
318 case REGULATOR_STATUS_STANDBY
:
325 return sprintf(buf
, "%s\n", label
);
327 static DEVICE_ATTR(status
, 0444, regulator_status_show
, NULL
);
329 static ssize_t
regulator_min_uA_show(struct device
*dev
,
330 struct device_attribute
*attr
, char *buf
)
332 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
334 if (!rdev
->constraints
)
335 return sprintf(buf
, "constraint not defined\n");
337 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uA
);
339 static DEVICE_ATTR(min_microamps
, 0444, regulator_min_uA_show
, NULL
);
341 static ssize_t
regulator_max_uA_show(struct device
*dev
,
342 struct device_attribute
*attr
, char *buf
)
344 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
346 if (!rdev
->constraints
)
347 return sprintf(buf
, "constraint not defined\n");
349 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uA
);
351 static DEVICE_ATTR(max_microamps
, 0444, regulator_max_uA_show
, NULL
);
353 static ssize_t
regulator_min_uV_show(struct device
*dev
,
354 struct device_attribute
*attr
, char *buf
)
356 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
358 if (!rdev
->constraints
)
359 return sprintf(buf
, "constraint not defined\n");
361 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uV
);
363 static DEVICE_ATTR(min_microvolts
, 0444, regulator_min_uV_show
, NULL
);
365 static ssize_t
regulator_max_uV_show(struct device
*dev
,
366 struct device_attribute
*attr
, char *buf
)
368 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
370 if (!rdev
->constraints
)
371 return sprintf(buf
, "constraint not defined\n");
373 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uV
);
375 static DEVICE_ATTR(max_microvolts
, 0444, regulator_max_uV_show
, NULL
);
377 static ssize_t
regulator_total_uA_show(struct device
*dev
,
378 struct device_attribute
*attr
, char *buf
)
380 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
381 struct regulator
*regulator
;
384 mutex_lock(&rdev
->mutex
);
385 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
)
386 uA
+= regulator
->uA_load
;
387 mutex_unlock(&rdev
->mutex
);
388 return sprintf(buf
, "%d\n", uA
);
390 static DEVICE_ATTR(requested_microamps
, 0444, regulator_total_uA_show
, NULL
);
392 static ssize_t
regulator_num_users_show(struct device
*dev
,
393 struct device_attribute
*attr
, char *buf
)
395 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
396 return sprintf(buf
, "%d\n", rdev
->use_count
);
399 static ssize_t
regulator_type_show(struct device
*dev
,
400 struct device_attribute
*attr
, char *buf
)
402 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
404 switch (rdev
->desc
->type
) {
405 case REGULATOR_VOLTAGE
:
406 return sprintf(buf
, "voltage\n");
407 case REGULATOR_CURRENT
:
408 return sprintf(buf
, "current\n");
410 return sprintf(buf
, "unknown\n");
413 static ssize_t
regulator_suspend_mem_uV_show(struct device
*dev
,
414 struct device_attribute
*attr
, char *buf
)
416 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
418 return sprintf(buf
, "%d\n", rdev
->constraints
->state_mem
.uV
);
420 static DEVICE_ATTR(suspend_mem_microvolts
, 0444,
421 regulator_suspend_mem_uV_show
, NULL
);
423 static ssize_t
regulator_suspend_disk_uV_show(struct device
*dev
,
424 struct device_attribute
*attr
, char *buf
)
426 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
428 return sprintf(buf
, "%d\n", rdev
->constraints
->state_disk
.uV
);
430 static DEVICE_ATTR(suspend_disk_microvolts
, 0444,
431 regulator_suspend_disk_uV_show
, NULL
);
433 static ssize_t
regulator_suspend_standby_uV_show(struct device
*dev
,
434 struct device_attribute
*attr
, char *buf
)
436 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
438 return sprintf(buf
, "%d\n", rdev
->constraints
->state_standby
.uV
);
440 static DEVICE_ATTR(suspend_standby_microvolts
, 0444,
441 regulator_suspend_standby_uV_show
, NULL
);
443 static ssize_t
regulator_suspend_mem_mode_show(struct device
*dev
,
444 struct device_attribute
*attr
, char *buf
)
446 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
448 return regulator_print_opmode(buf
,
449 rdev
->constraints
->state_mem
.mode
);
451 static DEVICE_ATTR(suspend_mem_mode
, 0444,
452 regulator_suspend_mem_mode_show
, NULL
);
454 static ssize_t
regulator_suspend_disk_mode_show(struct device
*dev
,
455 struct device_attribute
*attr
, char *buf
)
457 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
459 return regulator_print_opmode(buf
,
460 rdev
->constraints
->state_disk
.mode
);
462 static DEVICE_ATTR(suspend_disk_mode
, 0444,
463 regulator_suspend_disk_mode_show
, NULL
);
465 static ssize_t
regulator_suspend_standby_mode_show(struct device
*dev
,
466 struct device_attribute
*attr
, char *buf
)
468 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
470 return regulator_print_opmode(buf
,
471 rdev
->constraints
->state_standby
.mode
);
473 static DEVICE_ATTR(suspend_standby_mode
, 0444,
474 regulator_suspend_standby_mode_show
, NULL
);
476 static ssize_t
regulator_suspend_mem_state_show(struct device
*dev
,
477 struct device_attribute
*attr
, char *buf
)
479 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
481 return regulator_print_state(buf
,
482 rdev
->constraints
->state_mem
.enabled
);
484 static DEVICE_ATTR(suspend_mem_state
, 0444,
485 regulator_suspend_mem_state_show
, NULL
);
487 static ssize_t
regulator_suspend_disk_state_show(struct device
*dev
,
488 struct device_attribute
*attr
, char *buf
)
490 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
492 return regulator_print_state(buf
,
493 rdev
->constraints
->state_disk
.enabled
);
495 static DEVICE_ATTR(suspend_disk_state
, 0444,
496 regulator_suspend_disk_state_show
, NULL
);
498 static ssize_t
regulator_suspend_standby_state_show(struct device
*dev
,
499 struct device_attribute
*attr
, char *buf
)
501 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
503 return regulator_print_state(buf
,
504 rdev
->constraints
->state_standby
.enabled
);
506 static DEVICE_ATTR(suspend_standby_state
, 0444,
507 regulator_suspend_standby_state_show
, NULL
);
511 * These are the only attributes are present for all regulators.
512 * Other attributes are a function of regulator functionality.
514 static struct device_attribute regulator_dev_attrs
[] = {
515 __ATTR(name
, 0444, regulator_name_show
, NULL
),
516 __ATTR(num_users
, 0444, regulator_num_users_show
, NULL
),
517 __ATTR(type
, 0444, regulator_type_show
, NULL
),
521 static void regulator_dev_release(struct device
*dev
)
523 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
527 static struct class regulator_class
= {
529 .dev_release
= regulator_dev_release
,
530 .dev_attrs
= regulator_dev_attrs
,
533 /* Calculate the new optimum regulator operating mode based on the new total
534 * consumer load. All locks held by caller */
535 static void drms_uA_update(struct regulator_dev
*rdev
)
537 struct regulator
*sibling
;
538 int current_uA
= 0, output_uV
, input_uV
, err
;
541 err
= regulator_check_drms(rdev
);
542 if (err
< 0 || !rdev
->desc
->ops
->get_optimum_mode
||
543 !rdev
->desc
->ops
->get_voltage
|| !rdev
->desc
->ops
->set_mode
);
546 /* get output voltage */
547 output_uV
= rdev
->desc
->ops
->get_voltage(rdev
);
551 /* get input voltage */
552 if (rdev
->supply
&& rdev
->supply
->desc
->ops
->get_voltage
)
553 input_uV
= rdev
->supply
->desc
->ops
->get_voltage(rdev
->supply
);
555 input_uV
= rdev
->constraints
->input_uV
;
559 /* calc total requested load */
560 list_for_each_entry(sibling
, &rdev
->consumer_list
, list
)
561 current_uA
+= sibling
->uA_load
;
563 /* now get the optimum mode for our new total regulator load */
564 mode
= rdev
->desc
->ops
->get_optimum_mode(rdev
, input_uV
,
565 output_uV
, current_uA
);
567 /* check the new mode is allowed */
568 err
= regulator_check_mode(rdev
, mode
);
570 rdev
->desc
->ops
->set_mode(rdev
, mode
);
573 static int suspend_set_state(struct regulator_dev
*rdev
,
574 struct regulator_state
*rstate
)
578 /* enable & disable are mandatory for suspend control */
579 if (!rdev
->desc
->ops
->set_suspend_enable
||
580 !rdev
->desc
->ops
->set_suspend_disable
) {
581 printk(KERN_ERR
"%s: no way to set suspend state\n",
587 ret
= rdev
->desc
->ops
->set_suspend_enable(rdev
);
589 ret
= rdev
->desc
->ops
->set_suspend_disable(rdev
);
591 printk(KERN_ERR
"%s: failed to enabled/disable\n", __func__
);
595 if (rdev
->desc
->ops
->set_suspend_voltage
&& rstate
->uV
> 0) {
596 ret
= rdev
->desc
->ops
->set_suspend_voltage(rdev
, rstate
->uV
);
598 printk(KERN_ERR
"%s: failed to set voltage\n",
604 if (rdev
->desc
->ops
->set_suspend_mode
&& rstate
->mode
> 0) {
605 ret
= rdev
->desc
->ops
->set_suspend_mode(rdev
, rstate
->mode
);
607 printk(KERN_ERR
"%s: failed to set mode\n", __func__
);
614 /* locks held by caller */
615 static int suspend_prepare(struct regulator_dev
*rdev
, suspend_state_t state
)
617 if (!rdev
->constraints
)
621 case PM_SUSPEND_STANDBY
:
622 return suspend_set_state(rdev
,
623 &rdev
->constraints
->state_standby
);
625 return suspend_set_state(rdev
,
626 &rdev
->constraints
->state_mem
);
628 return suspend_set_state(rdev
,
629 &rdev
->constraints
->state_disk
);
635 static void print_constraints(struct regulator_dev
*rdev
)
637 struct regulation_constraints
*constraints
= rdev
->constraints
;
641 if (rdev
->desc
->type
== REGULATOR_VOLTAGE
) {
642 if (constraints
->min_uV
== constraints
->max_uV
)
643 count
= sprintf(buf
, "%d mV ",
644 constraints
->min_uV
/ 1000);
646 count
= sprintf(buf
, "%d <--> %d mV ",
647 constraints
->min_uV
/ 1000,
648 constraints
->max_uV
/ 1000);
650 if (constraints
->min_uA
== constraints
->max_uA
)
651 count
= sprintf(buf
, "%d mA ",
652 constraints
->min_uA
/ 1000);
654 count
= sprintf(buf
, "%d <--> %d mA ",
655 constraints
->min_uA
/ 1000,
656 constraints
->max_uA
/ 1000);
658 if (constraints
->valid_modes_mask
& REGULATOR_MODE_FAST
)
659 count
+= sprintf(buf
+ count
, "fast ");
660 if (constraints
->valid_modes_mask
& REGULATOR_MODE_NORMAL
)
661 count
+= sprintf(buf
+ count
, "normal ");
662 if (constraints
->valid_modes_mask
& REGULATOR_MODE_IDLE
)
663 count
+= sprintf(buf
+ count
, "idle ");
664 if (constraints
->valid_modes_mask
& REGULATOR_MODE_STANDBY
)
665 count
+= sprintf(buf
+ count
, "standby");
667 printk(KERN_INFO
"regulator: %s: %s\n", rdev
->desc
->name
, buf
);
671 * set_machine_constraints - sets regulator constraints
672 * @rdev: regulator source
673 * @constraints: constraints to apply
675 * Allows platform initialisation code to define and constrain
676 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
677 * Constraints *must* be set by platform code in order for some
678 * regulator operations to proceed i.e. set_voltage, set_current_limit,
681 static int set_machine_constraints(struct regulator_dev
*rdev
,
682 struct regulation_constraints
*constraints
)
686 struct regulator_ops
*ops
= rdev
->desc
->ops
;
688 if (constraints
->name
)
689 name
= constraints
->name
;
690 else if (rdev
->desc
->name
)
691 name
= rdev
->desc
->name
;
695 /* constrain machine-level voltage specs to fit
696 * the actual range supported by this regulator.
698 if (ops
->list_voltage
&& rdev
->desc
->n_voltages
) {
699 int count
= rdev
->desc
->n_voltages
;
701 int min_uV
= INT_MAX
;
702 int max_uV
= INT_MIN
;
703 int cmin
= constraints
->min_uV
;
704 int cmax
= constraints
->max_uV
;
706 /* it's safe to autoconfigure fixed-voltage supplies */
707 if (count
== 1 && !cmin
) {
712 /* voltage constraints are optional */
713 if ((cmin
== 0) && (cmax
== 0))
716 /* else require explicit machine-level constraints */
717 if (cmin
<= 0 || cmax
<= 0 || cmax
< cmin
) {
718 pr_err("%s: %s '%s' voltage constraints\n",
719 __func__
, "invalid", name
);
724 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
725 for (i
= 0; i
< count
; i
++) {
728 value
= ops
->list_voltage(rdev
, i
);
732 /* maybe adjust [min_uV..max_uV] */
733 if (value
>= cmin
&& value
< min_uV
)
735 if (value
<= cmax
&& value
> max_uV
)
739 /* final: [min_uV..max_uV] valid iff constraints valid */
740 if (max_uV
< min_uV
) {
741 pr_err("%s: %s '%s' voltage constraints\n",
742 __func__
, "unsupportable", name
);
747 /* use regulator's subset of machine constraints */
748 if (constraints
->min_uV
< min_uV
) {
749 pr_debug("%s: override '%s' %s, %d -> %d\n",
750 __func__
, name
, "min_uV",
751 constraints
->min_uV
, min_uV
);
752 constraints
->min_uV
= min_uV
;
754 if (constraints
->max_uV
> max_uV
) {
755 pr_debug("%s: override '%s' %s, %d -> %d\n",
756 __func__
, name
, "max_uV",
757 constraints
->max_uV
, max_uV
);
758 constraints
->max_uV
= max_uV
;
762 rdev
->constraints
= constraints
;
764 /* do we need to apply the constraint voltage */
765 if (rdev
->constraints
->apply_uV
&&
766 rdev
->constraints
->min_uV
== rdev
->constraints
->max_uV
&&
768 ret
= ops
->set_voltage(rdev
,
769 rdev
->constraints
->min_uV
, rdev
->constraints
->max_uV
);
771 printk(KERN_ERR
"%s: failed to apply %duV constraint to %s\n",
773 rdev
->constraints
->min_uV
, name
);
774 rdev
->constraints
= NULL
;
779 /* do we need to setup our suspend state */
780 if (constraints
->initial_state
) {
781 ret
= suspend_prepare(rdev
, constraints
->initial_state
);
783 printk(KERN_ERR
"%s: failed to set suspend state for %s\n",
785 rdev
->constraints
= NULL
;
790 if (constraints
->initial_mode
) {
791 if (!ops
->set_mode
) {
792 printk(KERN_ERR
"%s: no set_mode operation for %s\n",
798 ret
= ops
->set_mode(rdev
, constraints
->initial_mode
);
801 "%s: failed to set initial mode for %s: %d\n",
802 __func__
, name
, ret
);
807 /* If the constraints say the regulator should be on at this point
808 * and we have control then make sure it is enabled.
810 if ((constraints
->always_on
|| constraints
->boot_on
) && ops
->enable
) {
811 ret
= ops
->enable(rdev
);
813 printk(KERN_ERR
"%s: failed to enable %s\n",
815 rdev
->constraints
= NULL
;
820 print_constraints(rdev
);
826 * set_supply - set regulator supply regulator
827 * @rdev: regulator name
828 * @supply_rdev: supply regulator name
830 * Called by platform initialisation code to set the supply regulator for this
831 * regulator. This ensures that a regulators supply will also be enabled by the
832 * core if it's child is enabled.
834 static int set_supply(struct regulator_dev
*rdev
,
835 struct regulator_dev
*supply_rdev
)
839 err
= sysfs_create_link(&rdev
->dev
.kobj
, &supply_rdev
->dev
.kobj
,
843 "%s: could not add device link %s err %d\n",
844 __func__
, supply_rdev
->dev
.kobj
.name
, err
);
847 rdev
->supply
= supply_rdev
;
848 list_add(&rdev
->slist
, &supply_rdev
->supply_list
);
854 * set_consumer_device_supply: Bind a regulator to a symbolic supply
855 * @rdev: regulator source
856 * @consumer_dev: device the supply applies to
857 * @supply: symbolic name for supply
859 * Allows platform initialisation code to map physical regulator
860 * sources to symbolic names for supplies for use by devices. Devices
861 * should use these symbolic names to request regulators, avoiding the
862 * need to provide board-specific regulator names as platform data.
864 static int set_consumer_device_supply(struct regulator_dev
*rdev
,
865 struct device
*consumer_dev
, const char *supply
)
867 struct regulator_map
*node
;
872 list_for_each_entry(node
, ®ulator_map_list
, list
) {
873 if (consumer_dev
!= node
->dev
)
875 if (strcmp(node
->supply
, supply
) != 0)
878 dev_dbg(consumer_dev
, "%s/%s is '%s' supply; fail %s/%s\n",
879 dev_name(&node
->regulator
->dev
),
880 node
->regulator
->desc
->name
,
882 dev_name(&rdev
->dev
), rdev
->desc
->name
);
886 node
= kmalloc(sizeof(struct regulator_map
), GFP_KERNEL
);
890 node
->regulator
= rdev
;
891 node
->dev
= consumer_dev
;
892 node
->supply
= supply
;
894 list_add(&node
->list
, ®ulator_map_list
);
898 static void unset_consumer_device_supply(struct regulator_dev
*rdev
,
899 struct device
*consumer_dev
)
901 struct regulator_map
*node
, *n
;
903 list_for_each_entry_safe(node
, n
, ®ulator_map_list
, list
) {
904 if (rdev
== node
->regulator
&&
905 consumer_dev
== node
->dev
) {
906 list_del(&node
->list
);
913 static void unset_regulator_supplies(struct regulator_dev
*rdev
)
915 struct regulator_map
*node
, *n
;
917 list_for_each_entry_safe(node
, n
, ®ulator_map_list
, list
) {
918 if (rdev
== node
->regulator
) {
919 list_del(&node
->list
);
926 #define REG_STR_SIZE 32
928 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
930 const char *supply_name
)
932 struct regulator
*regulator
;
933 char buf
[REG_STR_SIZE
];
936 regulator
= kzalloc(sizeof(*regulator
), GFP_KERNEL
);
937 if (regulator
== NULL
)
940 mutex_lock(&rdev
->mutex
);
941 regulator
->rdev
= rdev
;
942 list_add(®ulator
->list
, &rdev
->consumer_list
);
945 /* create a 'requested_microamps_name' sysfs entry */
946 size
= scnprintf(buf
, REG_STR_SIZE
, "microamps_requested_%s",
948 if (size
>= REG_STR_SIZE
)
951 regulator
->dev
= dev
;
952 regulator
->dev_attr
.attr
.name
= kstrdup(buf
, GFP_KERNEL
);
953 if (regulator
->dev_attr
.attr
.name
== NULL
)
956 regulator
->dev_attr
.attr
.owner
= THIS_MODULE
;
957 regulator
->dev_attr
.attr
.mode
= 0444;
958 regulator
->dev_attr
.show
= device_requested_uA_show
;
959 err
= device_create_file(dev
, ®ulator
->dev_attr
);
961 printk(KERN_WARNING
"%s: could not add regulator_dev"
962 " load sysfs\n", __func__
);
966 /* also add a link to the device sysfs entry */
967 size
= scnprintf(buf
, REG_STR_SIZE
, "%s-%s",
968 dev
->kobj
.name
, supply_name
);
969 if (size
>= REG_STR_SIZE
)
972 regulator
->supply_name
= kstrdup(buf
, GFP_KERNEL
);
973 if (regulator
->supply_name
== NULL
)
976 err
= sysfs_create_link(&rdev
->dev
.kobj
, &dev
->kobj
,
980 "%s: could not add device link %s err %d\n",
981 __func__
, dev
->kobj
.name
, err
);
982 device_remove_file(dev
, ®ulator
->dev_attr
);
986 mutex_unlock(&rdev
->mutex
);
989 kfree(regulator
->supply_name
);
991 device_remove_file(regulator
->dev
, ®ulator
->dev_attr
);
993 kfree(regulator
->dev_attr
.attr
.name
);
995 list_del(®ulator
->list
);
997 mutex_unlock(&rdev
->mutex
);
1002 * regulator_get - lookup and obtain a reference to a regulator.
1003 * @dev: device for regulator "consumer"
1004 * @id: Supply name or regulator ID.
1006 * Returns a struct regulator corresponding to the regulator producer,
1007 * or IS_ERR() condition containing errno.
1009 * Use of supply names configured via regulator_set_device_supply() is
1010 * strongly encouraged. It is recommended that the supply name used
1011 * should match the name used for the supply and/or the relevant
1012 * device pins in the datasheet.
1014 struct regulator
*regulator_get(struct device
*dev
, const char *id
)
1016 struct regulator_dev
*rdev
;
1017 struct regulator_map
*map
;
1018 struct regulator
*regulator
= ERR_PTR(-ENODEV
);
1021 printk(KERN_ERR
"regulator: get() with no identifier\n");
1025 mutex_lock(®ulator_list_mutex
);
1027 list_for_each_entry(map
, ®ulator_map_list
, list
) {
1028 if (dev
== map
->dev
&&
1029 strcmp(map
->supply
, id
) == 0) {
1030 rdev
= map
->regulator
;
1034 mutex_unlock(®ulator_list_mutex
);
1038 if (!try_module_get(rdev
->owner
))
1041 regulator
= create_regulator(rdev
, dev
, id
);
1042 if (regulator
== NULL
) {
1043 regulator
= ERR_PTR(-ENOMEM
);
1044 module_put(rdev
->owner
);
1048 mutex_unlock(®ulator_list_mutex
);
1051 EXPORT_SYMBOL_GPL(regulator_get
);
1054 * regulator_put - "free" the regulator source
1055 * @regulator: regulator source
1057 * Note: drivers must ensure that all regulator_enable calls made on this
1058 * regulator source are balanced by regulator_disable calls prior to calling
1061 void regulator_put(struct regulator
*regulator
)
1063 struct regulator_dev
*rdev
;
1065 if (regulator
== NULL
|| IS_ERR(regulator
))
1068 mutex_lock(®ulator_list_mutex
);
1069 rdev
= regulator
->rdev
;
1071 /* remove any sysfs entries */
1072 if (regulator
->dev
) {
1073 sysfs_remove_link(&rdev
->dev
.kobj
, regulator
->supply_name
);
1074 kfree(regulator
->supply_name
);
1075 device_remove_file(regulator
->dev
, ®ulator
->dev_attr
);
1076 kfree(regulator
->dev_attr
.attr
.name
);
1078 list_del(®ulator
->list
);
1081 module_put(rdev
->owner
);
1082 mutex_unlock(®ulator_list_mutex
);
1084 EXPORT_SYMBOL_GPL(regulator_put
);
1086 /* locks held by regulator_enable() */
1087 static int _regulator_enable(struct regulator_dev
*rdev
)
1091 if (!rdev
->constraints
) {
1092 printk(KERN_ERR
"%s: %s has no constraints\n",
1093 __func__
, rdev
->desc
->name
);
1097 /* do we need to enable the supply regulator first */
1099 ret
= _regulator_enable(rdev
->supply
);
1101 printk(KERN_ERR
"%s: failed to enable %s: %d\n",
1102 __func__
, rdev
->desc
->name
, ret
);
1107 /* check voltage and requested load before enabling */
1108 if (rdev
->desc
->ops
->enable
) {
1110 if (rdev
->constraints
&&
1111 (rdev
->constraints
->valid_ops_mask
&
1112 REGULATOR_CHANGE_DRMS
))
1113 drms_uA_update(rdev
);
1115 ret
= rdev
->desc
->ops
->enable(rdev
);
1117 printk(KERN_ERR
"%s: failed to enable %s: %d\n",
1118 __func__
, rdev
->desc
->name
, ret
);
1129 * regulator_enable - enable regulator output
1130 * @regulator: regulator source
1132 * Request that the regulator be enabled with the regulator output at
1133 * the predefined voltage or current value. Calls to regulator_enable()
1134 * must be balanced with calls to regulator_disable().
1136 * NOTE: the output value can be set by other drivers, boot loader or may be
1137 * hardwired in the regulator.
1139 int regulator_enable(struct regulator
*regulator
)
1141 struct regulator_dev
*rdev
= regulator
->rdev
;
1144 mutex_lock(&rdev
->mutex
);
1145 ret
= _regulator_enable(rdev
);
1146 mutex_unlock(&rdev
->mutex
);
1149 EXPORT_SYMBOL_GPL(regulator_enable
);
1151 /* locks held by regulator_disable() */
1152 static int _regulator_disable(struct regulator_dev
*rdev
)
1156 if (WARN(rdev
->use_count
<= 0,
1157 "unbalanced disables for %s\n",
1161 /* are we the last user and permitted to disable ? */
1162 if (rdev
->use_count
== 1 && !rdev
->constraints
->always_on
) {
1164 /* we are last user */
1165 if (rdev
->desc
->ops
->disable
) {
1166 ret
= rdev
->desc
->ops
->disable(rdev
);
1168 printk(KERN_ERR
"%s: failed to disable %s\n",
1169 __func__
, rdev
->desc
->name
);
1174 /* decrease our supplies ref count and disable if required */
1176 _regulator_disable(rdev
->supply
);
1178 rdev
->use_count
= 0;
1179 } else if (rdev
->use_count
> 1) {
1181 if (rdev
->constraints
&&
1182 (rdev
->constraints
->valid_ops_mask
&
1183 REGULATOR_CHANGE_DRMS
))
1184 drms_uA_update(rdev
);
1192 * regulator_disable - disable regulator output
1193 * @regulator: regulator source
1195 * Disable the regulator output voltage or current. Calls to
1196 * regulator_enable() must be balanced with calls to
1197 * regulator_disable().
1199 * NOTE: this will only disable the regulator output if no other consumer
1200 * devices have it enabled, the regulator device supports disabling and
1201 * machine constraints permit this operation.
1203 int regulator_disable(struct regulator
*regulator
)
1205 struct regulator_dev
*rdev
= regulator
->rdev
;
1208 mutex_lock(&rdev
->mutex
);
1209 ret
= _regulator_disable(rdev
);
1210 mutex_unlock(&rdev
->mutex
);
1213 EXPORT_SYMBOL_GPL(regulator_disable
);
1215 /* locks held by regulator_force_disable() */
1216 static int _regulator_force_disable(struct regulator_dev
*rdev
)
1221 if (rdev
->desc
->ops
->disable
) {
1222 /* ah well, who wants to live forever... */
1223 ret
= rdev
->desc
->ops
->disable(rdev
);
1225 printk(KERN_ERR
"%s: failed to force disable %s\n",
1226 __func__
, rdev
->desc
->name
);
1229 /* notify other consumers that power has been forced off */
1230 _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
,
1234 /* decrease our supplies ref count and disable if required */
1236 _regulator_disable(rdev
->supply
);
1238 rdev
->use_count
= 0;
1243 * regulator_force_disable - force disable regulator output
1244 * @regulator: regulator source
1246 * Forcibly disable the regulator output voltage or current.
1247 * NOTE: this *will* disable the regulator output even if other consumer
1248 * devices have it enabled. This should be used for situations when device
1249 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1251 int regulator_force_disable(struct regulator
*regulator
)
1255 mutex_lock(®ulator
->rdev
->mutex
);
1256 regulator
->uA_load
= 0;
1257 ret
= _regulator_force_disable(regulator
->rdev
);
1258 mutex_unlock(®ulator
->rdev
->mutex
);
1261 EXPORT_SYMBOL_GPL(regulator_force_disable
);
1263 static int _regulator_is_enabled(struct regulator_dev
*rdev
)
1267 mutex_lock(&rdev
->mutex
);
1270 if (!rdev
->desc
->ops
->is_enabled
) {
1275 ret
= rdev
->desc
->ops
->is_enabled(rdev
);
1277 mutex_unlock(&rdev
->mutex
);
1282 * regulator_is_enabled - is the regulator output enabled
1283 * @regulator: regulator source
1285 * Returns positive if the regulator driver backing the source/client
1286 * has requested that the device be enabled, zero if it hasn't, else a
1287 * negative errno code.
1289 * Note that the device backing this regulator handle can have multiple
1290 * users, so it might be enabled even if regulator_enable() was never
1291 * called for this particular source.
1293 int regulator_is_enabled(struct regulator
*regulator
)
1295 return _regulator_is_enabled(regulator
->rdev
);
1297 EXPORT_SYMBOL_GPL(regulator_is_enabled
);
1300 * regulator_count_voltages - count regulator_list_voltage() selectors
1301 * @regulator: regulator source
1303 * Returns number of selectors, or negative errno. Selectors are
1304 * numbered starting at zero, and typically correspond to bitfields
1305 * in hardware registers.
1307 int regulator_count_voltages(struct regulator
*regulator
)
1309 struct regulator_dev
*rdev
= regulator
->rdev
;
1311 return rdev
->desc
->n_voltages
? : -EINVAL
;
1313 EXPORT_SYMBOL_GPL(regulator_count_voltages
);
1316 * regulator_list_voltage - enumerate supported voltages
1317 * @regulator: regulator source
1318 * @selector: identify voltage to list
1319 * Context: can sleep
1321 * Returns a voltage that can be passed to @regulator_set_voltage(),
1322 * zero if this selector code can't be used on this sytem, or a
1325 int regulator_list_voltage(struct regulator
*regulator
, unsigned selector
)
1327 struct regulator_dev
*rdev
= regulator
->rdev
;
1328 struct regulator_ops
*ops
= rdev
->desc
->ops
;
1331 if (!ops
->list_voltage
|| selector
>= rdev
->desc
->n_voltages
)
1334 mutex_lock(&rdev
->mutex
);
1335 ret
= ops
->list_voltage(rdev
, selector
);
1336 mutex_unlock(&rdev
->mutex
);
1339 if (ret
< rdev
->constraints
->min_uV
)
1341 else if (ret
> rdev
->constraints
->max_uV
)
1347 EXPORT_SYMBOL_GPL(regulator_list_voltage
);
1350 * regulator_set_voltage - set regulator output voltage
1351 * @regulator: regulator source
1352 * @min_uV: Minimum required voltage in uV
1353 * @max_uV: Maximum acceptable voltage in uV
1355 * Sets a voltage regulator to the desired output voltage. This can be set
1356 * during any regulator state. IOW, regulator can be disabled or enabled.
1358 * If the regulator is enabled then the voltage will change to the new value
1359 * immediately otherwise if the regulator is disabled the regulator will
1360 * output at the new voltage when enabled.
1362 * NOTE: If the regulator is shared between several devices then the lowest
1363 * request voltage that meets the system constraints will be used.
1364 * Regulator system constraints must be set for this regulator before
1365 * calling this function otherwise this call will fail.
1367 int regulator_set_voltage(struct regulator
*regulator
, int min_uV
, int max_uV
)
1369 struct regulator_dev
*rdev
= regulator
->rdev
;
1372 mutex_lock(&rdev
->mutex
);
1375 if (!rdev
->desc
->ops
->set_voltage
) {
1380 /* constraints check */
1381 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
1384 regulator
->min_uV
= min_uV
;
1385 regulator
->max_uV
= max_uV
;
1386 ret
= rdev
->desc
->ops
->set_voltage(rdev
, min_uV
, max_uV
);
1389 _notifier_call_chain(rdev
, REGULATOR_EVENT_VOLTAGE_CHANGE
, NULL
);
1390 mutex_unlock(&rdev
->mutex
);
1393 EXPORT_SYMBOL_GPL(regulator_set_voltage
);
1395 static int _regulator_get_voltage(struct regulator_dev
*rdev
)
1398 if (rdev
->desc
->ops
->get_voltage
)
1399 return rdev
->desc
->ops
->get_voltage(rdev
);
1405 * regulator_get_voltage - get regulator output voltage
1406 * @regulator: regulator source
1408 * This returns the current regulator voltage in uV.
1410 * NOTE: If the regulator is disabled it will return the voltage value. This
1411 * function should not be used to determine regulator state.
1413 int regulator_get_voltage(struct regulator
*regulator
)
1417 mutex_lock(®ulator
->rdev
->mutex
);
1419 ret
= _regulator_get_voltage(regulator
->rdev
);
1421 mutex_unlock(®ulator
->rdev
->mutex
);
1425 EXPORT_SYMBOL_GPL(regulator_get_voltage
);
1428 * regulator_set_current_limit - set regulator output current limit
1429 * @regulator: regulator source
1430 * @min_uA: Minimuum supported current in uA
1431 * @max_uA: Maximum supported current in uA
1433 * Sets current sink to the desired output current. This can be set during
1434 * any regulator state. IOW, regulator can be disabled or enabled.
1436 * If the regulator is enabled then the current will change to the new value
1437 * immediately otherwise if the regulator is disabled the regulator will
1438 * output at the new current when enabled.
1440 * NOTE: Regulator system constraints must be set for this regulator before
1441 * calling this function otherwise this call will fail.
1443 int regulator_set_current_limit(struct regulator
*regulator
,
1444 int min_uA
, int max_uA
)
1446 struct regulator_dev
*rdev
= regulator
->rdev
;
1449 mutex_lock(&rdev
->mutex
);
1452 if (!rdev
->desc
->ops
->set_current_limit
) {
1457 /* constraints check */
1458 ret
= regulator_check_current_limit(rdev
, &min_uA
, &max_uA
);
1462 ret
= rdev
->desc
->ops
->set_current_limit(rdev
, min_uA
, max_uA
);
1464 mutex_unlock(&rdev
->mutex
);
1467 EXPORT_SYMBOL_GPL(regulator_set_current_limit
);
1469 static int _regulator_get_current_limit(struct regulator_dev
*rdev
)
1473 mutex_lock(&rdev
->mutex
);
1476 if (!rdev
->desc
->ops
->get_current_limit
) {
1481 ret
= rdev
->desc
->ops
->get_current_limit(rdev
);
1483 mutex_unlock(&rdev
->mutex
);
1488 * regulator_get_current_limit - get regulator output current
1489 * @regulator: regulator source
1491 * This returns the current supplied by the specified current sink in uA.
1493 * NOTE: If the regulator is disabled it will return the current value. This
1494 * function should not be used to determine regulator state.
1496 int regulator_get_current_limit(struct regulator
*regulator
)
1498 return _regulator_get_current_limit(regulator
->rdev
);
1500 EXPORT_SYMBOL_GPL(regulator_get_current_limit
);
1503 * regulator_set_mode - set regulator operating mode
1504 * @regulator: regulator source
1505 * @mode: operating mode - one of the REGULATOR_MODE constants
1507 * Set regulator operating mode to increase regulator efficiency or improve
1508 * regulation performance.
1510 * NOTE: Regulator system constraints must be set for this regulator before
1511 * calling this function otherwise this call will fail.
1513 int regulator_set_mode(struct regulator
*regulator
, unsigned int mode
)
1515 struct regulator_dev
*rdev
= regulator
->rdev
;
1518 mutex_lock(&rdev
->mutex
);
1521 if (!rdev
->desc
->ops
->set_mode
) {
1526 /* constraints check */
1527 ret
= regulator_check_mode(rdev
, mode
);
1531 ret
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
1533 mutex_unlock(&rdev
->mutex
);
1536 EXPORT_SYMBOL_GPL(regulator_set_mode
);
1538 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
)
1542 mutex_lock(&rdev
->mutex
);
1545 if (!rdev
->desc
->ops
->get_mode
) {
1550 ret
= rdev
->desc
->ops
->get_mode(rdev
);
1552 mutex_unlock(&rdev
->mutex
);
1557 * regulator_get_mode - get regulator operating mode
1558 * @regulator: regulator source
1560 * Get the current regulator operating mode.
1562 unsigned int regulator_get_mode(struct regulator
*regulator
)
1564 return _regulator_get_mode(regulator
->rdev
);
1566 EXPORT_SYMBOL_GPL(regulator_get_mode
);
1569 * regulator_set_optimum_mode - set regulator optimum operating mode
1570 * @regulator: regulator source
1571 * @uA_load: load current
1573 * Notifies the regulator core of a new device load. This is then used by
1574 * DRMS (if enabled by constraints) to set the most efficient regulator
1575 * operating mode for the new regulator loading.
1577 * Consumer devices notify their supply regulator of the maximum power
1578 * they will require (can be taken from device datasheet in the power
1579 * consumption tables) when they change operational status and hence power
1580 * state. Examples of operational state changes that can affect power
1581 * consumption are :-
1583 * o Device is opened / closed.
1584 * o Device I/O is about to begin or has just finished.
1585 * o Device is idling in between work.
1587 * This information is also exported via sysfs to userspace.
1589 * DRMS will sum the total requested load on the regulator and change
1590 * to the most efficient operating mode if platform constraints allow.
1592 * Returns the new regulator mode or error.
1594 int regulator_set_optimum_mode(struct regulator
*regulator
, int uA_load
)
1596 struct regulator_dev
*rdev
= regulator
->rdev
;
1597 struct regulator
*consumer
;
1598 int ret
, output_uV
, input_uV
, total_uA_load
= 0;
1601 mutex_lock(&rdev
->mutex
);
1603 regulator
->uA_load
= uA_load
;
1604 ret
= regulator_check_drms(rdev
);
1610 if (!rdev
->desc
->ops
->get_optimum_mode
)
1613 /* get output voltage */
1614 output_uV
= rdev
->desc
->ops
->get_voltage(rdev
);
1615 if (output_uV
<= 0) {
1616 printk(KERN_ERR
"%s: invalid output voltage found for %s\n",
1617 __func__
, rdev
->desc
->name
);
1621 /* get input voltage */
1622 if (rdev
->supply
&& rdev
->supply
->desc
->ops
->get_voltage
)
1623 input_uV
= rdev
->supply
->desc
->ops
->get_voltage(rdev
->supply
);
1625 input_uV
= rdev
->constraints
->input_uV
;
1626 if (input_uV
<= 0) {
1627 printk(KERN_ERR
"%s: invalid input voltage found for %s\n",
1628 __func__
, rdev
->desc
->name
);
1632 /* calc total requested load for this regulator */
1633 list_for_each_entry(consumer
, &rdev
->consumer_list
, list
)
1634 total_uA_load
+= consumer
->uA_load
;
1636 mode
= rdev
->desc
->ops
->get_optimum_mode(rdev
,
1637 input_uV
, output_uV
,
1639 ret
= regulator_check_mode(rdev
, mode
);
1641 printk(KERN_ERR
"%s: failed to get optimum mode for %s @"
1642 " %d uA %d -> %d uV\n", __func__
, rdev
->desc
->name
,
1643 total_uA_load
, input_uV
, output_uV
);
1647 ret
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
1649 printk(KERN_ERR
"%s: failed to set optimum mode %x for %s\n",
1650 __func__
, mode
, rdev
->desc
->name
);
1655 mutex_unlock(&rdev
->mutex
);
1658 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode
);
1661 * regulator_register_notifier - register regulator event notifier
1662 * @regulator: regulator source
1663 * @nb: notifier block
1665 * Register notifier block to receive regulator events.
1667 int regulator_register_notifier(struct regulator
*regulator
,
1668 struct notifier_block
*nb
)
1670 return blocking_notifier_chain_register(®ulator
->rdev
->notifier
,
1673 EXPORT_SYMBOL_GPL(regulator_register_notifier
);
1676 * regulator_unregister_notifier - unregister regulator event notifier
1677 * @regulator: regulator source
1678 * @nb: notifier block
1680 * Unregister regulator event notifier block.
1682 int regulator_unregister_notifier(struct regulator
*regulator
,
1683 struct notifier_block
*nb
)
1685 return blocking_notifier_chain_unregister(®ulator
->rdev
->notifier
,
1688 EXPORT_SYMBOL_GPL(regulator_unregister_notifier
);
1690 /* notify regulator consumers and downstream regulator consumers.
1691 * Note mutex must be held by caller.
1693 static void _notifier_call_chain(struct regulator_dev
*rdev
,
1694 unsigned long event
, void *data
)
1696 struct regulator_dev
*_rdev
;
1698 /* call rdev chain first */
1699 blocking_notifier_call_chain(&rdev
->notifier
, event
, NULL
);
1701 /* now notify regulator we supply */
1702 list_for_each_entry(_rdev
, &rdev
->supply_list
, slist
) {
1703 mutex_lock(&_rdev
->mutex
);
1704 _notifier_call_chain(_rdev
, event
, data
);
1705 mutex_unlock(&_rdev
->mutex
);
1710 * regulator_bulk_get - get multiple regulator consumers
1712 * @dev: Device to supply
1713 * @num_consumers: Number of consumers to register
1714 * @consumers: Configuration of consumers; clients are stored here.
1716 * @return 0 on success, an errno on failure.
1718 * This helper function allows drivers to get several regulator
1719 * consumers in one operation. If any of the regulators cannot be
1720 * acquired then any regulators that were allocated will be freed
1721 * before returning to the caller.
1723 int regulator_bulk_get(struct device
*dev
, int num_consumers
,
1724 struct regulator_bulk_data
*consumers
)
1729 for (i
= 0; i
< num_consumers
; i
++)
1730 consumers
[i
].consumer
= NULL
;
1732 for (i
= 0; i
< num_consumers
; i
++) {
1733 consumers
[i
].consumer
= regulator_get(dev
,
1734 consumers
[i
].supply
);
1735 if (IS_ERR(consumers
[i
].consumer
)) {
1736 dev_err(dev
, "Failed to get supply '%s'\n",
1737 consumers
[i
].supply
);
1738 ret
= PTR_ERR(consumers
[i
].consumer
);
1739 consumers
[i
].consumer
= NULL
;
1747 for (i
= 0; i
< num_consumers
&& consumers
[i
].consumer
; i
++)
1748 regulator_put(consumers
[i
].consumer
);
1752 EXPORT_SYMBOL_GPL(regulator_bulk_get
);
1755 * regulator_bulk_enable - enable multiple regulator consumers
1757 * @num_consumers: Number of consumers
1758 * @consumers: Consumer data; clients are stored here.
1759 * @return 0 on success, an errno on failure
1761 * This convenience API allows consumers to enable multiple regulator
1762 * clients in a single API call. If any consumers cannot be enabled
1763 * then any others that were enabled will be disabled again prior to
1766 int regulator_bulk_enable(int num_consumers
,
1767 struct regulator_bulk_data
*consumers
)
1772 for (i
= 0; i
< num_consumers
; i
++) {
1773 ret
= regulator_enable(consumers
[i
].consumer
);
1781 printk(KERN_ERR
"Failed to enable %s\n", consumers
[i
].supply
);
1782 for (i
= 0; i
< num_consumers
; i
++)
1783 regulator_disable(consumers
[i
].consumer
);
1787 EXPORT_SYMBOL_GPL(regulator_bulk_enable
);
1790 * regulator_bulk_disable - disable multiple regulator consumers
1792 * @num_consumers: Number of consumers
1793 * @consumers: Consumer data; clients are stored here.
1794 * @return 0 on success, an errno on failure
1796 * This convenience API allows consumers to disable multiple regulator
1797 * clients in a single API call. If any consumers cannot be enabled
1798 * then any others that were disabled will be disabled again prior to
1801 int regulator_bulk_disable(int num_consumers
,
1802 struct regulator_bulk_data
*consumers
)
1807 for (i
= 0; i
< num_consumers
; i
++) {
1808 ret
= regulator_disable(consumers
[i
].consumer
);
1816 printk(KERN_ERR
"Failed to disable %s\n", consumers
[i
].supply
);
1817 for (i
= 0; i
< num_consumers
; i
++)
1818 regulator_enable(consumers
[i
].consumer
);
1822 EXPORT_SYMBOL_GPL(regulator_bulk_disable
);
1825 * regulator_bulk_free - free multiple regulator consumers
1827 * @num_consumers: Number of consumers
1828 * @consumers: Consumer data; clients are stored here.
1830 * This convenience API allows consumers to free multiple regulator
1831 * clients in a single API call.
1833 void regulator_bulk_free(int num_consumers
,
1834 struct regulator_bulk_data
*consumers
)
1838 for (i
= 0; i
< num_consumers
; i
++) {
1839 regulator_put(consumers
[i
].consumer
);
1840 consumers
[i
].consumer
= NULL
;
1843 EXPORT_SYMBOL_GPL(regulator_bulk_free
);
1846 * regulator_notifier_call_chain - call regulator event notifier
1847 * @rdev: regulator source
1848 * @event: notifier block
1849 * @data: callback-specific data.
1851 * Called by regulator drivers to notify clients a regulator event has
1852 * occurred. We also notify regulator clients downstream.
1853 * Note lock must be held by caller.
1855 int regulator_notifier_call_chain(struct regulator_dev
*rdev
,
1856 unsigned long event
, void *data
)
1858 _notifier_call_chain(rdev
, event
, data
);
1862 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain
);
1865 * To avoid cluttering sysfs (and memory) with useless state, only
1866 * create attributes that can be meaningfully displayed.
1868 static int add_regulator_attributes(struct regulator_dev
*rdev
)
1870 struct device
*dev
= &rdev
->dev
;
1871 struct regulator_ops
*ops
= rdev
->desc
->ops
;
1874 /* some attributes need specific methods to be displayed */
1875 if (ops
->get_voltage
) {
1876 status
= device_create_file(dev
, &dev_attr_microvolts
);
1880 if (ops
->get_current_limit
) {
1881 status
= device_create_file(dev
, &dev_attr_microamps
);
1885 if (ops
->get_mode
) {
1886 status
= device_create_file(dev
, &dev_attr_opmode
);
1890 if (ops
->is_enabled
) {
1891 status
= device_create_file(dev
, &dev_attr_state
);
1895 if (ops
->get_status
) {
1896 status
= device_create_file(dev
, &dev_attr_status
);
1901 /* some attributes are type-specific */
1902 if (rdev
->desc
->type
== REGULATOR_CURRENT
) {
1903 status
= device_create_file(dev
, &dev_attr_requested_microamps
);
1908 /* all the other attributes exist to support constraints;
1909 * don't show them if there are no constraints, or if the
1910 * relevant supporting methods are missing.
1912 if (!rdev
->constraints
)
1915 /* constraints need specific supporting methods */
1916 if (ops
->set_voltage
) {
1917 status
= device_create_file(dev
, &dev_attr_min_microvolts
);
1920 status
= device_create_file(dev
, &dev_attr_max_microvolts
);
1924 if (ops
->set_current_limit
) {
1925 status
= device_create_file(dev
, &dev_attr_min_microamps
);
1928 status
= device_create_file(dev
, &dev_attr_max_microamps
);
1933 /* suspend mode constraints need multiple supporting methods */
1934 if (!(ops
->set_suspend_enable
&& ops
->set_suspend_disable
))
1937 status
= device_create_file(dev
, &dev_attr_suspend_standby_state
);
1940 status
= device_create_file(dev
, &dev_attr_suspend_mem_state
);
1943 status
= device_create_file(dev
, &dev_attr_suspend_disk_state
);
1947 if (ops
->set_suspend_voltage
) {
1948 status
= device_create_file(dev
,
1949 &dev_attr_suspend_standby_microvolts
);
1952 status
= device_create_file(dev
,
1953 &dev_attr_suspend_mem_microvolts
);
1956 status
= device_create_file(dev
,
1957 &dev_attr_suspend_disk_microvolts
);
1962 if (ops
->set_suspend_mode
) {
1963 status
= device_create_file(dev
,
1964 &dev_attr_suspend_standby_mode
);
1967 status
= device_create_file(dev
,
1968 &dev_attr_suspend_mem_mode
);
1971 status
= device_create_file(dev
,
1972 &dev_attr_suspend_disk_mode
);
1981 * regulator_register - register regulator
1982 * @regulator_desc: regulator to register
1983 * @dev: struct device for the regulator
1984 * @init_data: platform provided init data, passed through by driver
1985 * @driver_data: private regulator data
1987 * Called by regulator drivers to register a regulator.
1988 * Returns 0 on success.
1990 struct regulator_dev
*regulator_register(struct regulator_desc
*regulator_desc
,
1991 struct device
*dev
, struct regulator_init_data
*init_data
,
1994 static atomic_t regulator_no
= ATOMIC_INIT(0);
1995 struct regulator_dev
*rdev
;
1998 if (regulator_desc
== NULL
)
1999 return ERR_PTR(-EINVAL
);
2001 if (regulator_desc
->name
== NULL
|| regulator_desc
->ops
== NULL
)
2002 return ERR_PTR(-EINVAL
);
2004 if (!regulator_desc
->type
== REGULATOR_VOLTAGE
&&
2005 !regulator_desc
->type
== REGULATOR_CURRENT
)
2006 return ERR_PTR(-EINVAL
);
2009 return ERR_PTR(-EINVAL
);
2011 rdev
= kzalloc(sizeof(struct regulator_dev
), GFP_KERNEL
);
2013 return ERR_PTR(-ENOMEM
);
2015 mutex_lock(®ulator_list_mutex
);
2017 mutex_init(&rdev
->mutex
);
2018 rdev
->reg_data
= driver_data
;
2019 rdev
->owner
= regulator_desc
->owner
;
2020 rdev
->desc
= regulator_desc
;
2021 INIT_LIST_HEAD(&rdev
->consumer_list
);
2022 INIT_LIST_HEAD(&rdev
->supply_list
);
2023 INIT_LIST_HEAD(&rdev
->list
);
2024 INIT_LIST_HEAD(&rdev
->slist
);
2025 BLOCKING_INIT_NOTIFIER_HEAD(&rdev
->notifier
);
2027 /* preform any regulator specific init */
2028 if (init_data
->regulator_init
) {
2029 ret
= init_data
->regulator_init(rdev
->reg_data
);
2034 /* register with sysfs */
2035 rdev
->dev
.class = ®ulator_class
;
2036 rdev
->dev
.parent
= dev
;
2037 dev_set_name(&rdev
->dev
, "regulator.%d",
2038 atomic_inc_return(®ulator_no
) - 1);
2039 ret
= device_register(&rdev
->dev
);
2043 dev_set_drvdata(&rdev
->dev
, rdev
);
2045 /* set regulator constraints */
2046 ret
= set_machine_constraints(rdev
, &init_data
->constraints
);
2050 /* add attributes supported by this regulator */
2051 ret
= add_regulator_attributes(rdev
);
2055 /* set supply regulator if it exists */
2056 if (init_data
->supply_regulator_dev
) {
2057 ret
= set_supply(rdev
,
2058 dev_get_drvdata(init_data
->supply_regulator_dev
));
2063 /* add consumers devices */
2064 for (i
= 0; i
< init_data
->num_consumer_supplies
; i
++) {
2065 ret
= set_consumer_device_supply(rdev
,
2066 init_data
->consumer_supplies
[i
].dev
,
2067 init_data
->consumer_supplies
[i
].supply
);
2069 for (--i
; i
>= 0; i
--)
2070 unset_consumer_device_supply(rdev
,
2071 init_data
->consumer_supplies
[i
].dev
);
2076 list_add(&rdev
->list
, ®ulator_list
);
2078 mutex_unlock(®ulator_list_mutex
);
2082 device_unregister(&rdev
->dev
);
2085 rdev
= ERR_PTR(ret
);
2088 EXPORT_SYMBOL_GPL(regulator_register
);
2091 * regulator_unregister - unregister regulator
2092 * @rdev: regulator to unregister
2094 * Called by regulator drivers to unregister a regulator.
2096 void regulator_unregister(struct regulator_dev
*rdev
)
2101 mutex_lock(®ulator_list_mutex
);
2102 unset_regulator_supplies(rdev
);
2103 list_del(&rdev
->list
);
2105 sysfs_remove_link(&rdev
->dev
.kobj
, "supply");
2106 device_unregister(&rdev
->dev
);
2107 mutex_unlock(®ulator_list_mutex
);
2109 EXPORT_SYMBOL_GPL(regulator_unregister
);
2112 * regulator_suspend_prepare - prepare regulators for system wide suspend
2113 * @state: system suspend state
2115 * Configure each regulator with it's suspend operating parameters for state.
2116 * This will usually be called by machine suspend code prior to supending.
2118 int regulator_suspend_prepare(suspend_state_t state
)
2120 struct regulator_dev
*rdev
;
2123 /* ON is handled by regulator active state */
2124 if (state
== PM_SUSPEND_ON
)
2127 mutex_lock(®ulator_list_mutex
);
2128 list_for_each_entry(rdev
, ®ulator_list
, list
) {
2130 mutex_lock(&rdev
->mutex
);
2131 ret
= suspend_prepare(rdev
, state
);
2132 mutex_unlock(&rdev
->mutex
);
2135 printk(KERN_ERR
"%s: failed to prepare %s\n",
2136 __func__
, rdev
->desc
->name
);
2141 mutex_unlock(®ulator_list_mutex
);
2144 EXPORT_SYMBOL_GPL(regulator_suspend_prepare
);
2147 * regulator_has_full_constraints - the system has fully specified constraints
2149 * Calling this function will cause the regulator API to disable all
2150 * regulators which have a zero use count and don't have an always_on
2151 * constraint in a late_initcall.
2153 * The intention is that this will become the default behaviour in a
2154 * future kernel release so users are encouraged to use this facility
2157 void regulator_has_full_constraints(void)
2159 has_full_constraints
= 1;
2161 EXPORT_SYMBOL_GPL(regulator_has_full_constraints
);
2164 * rdev_get_drvdata - get rdev regulator driver data
2167 * Get rdev regulator driver private data. This call can be used in the
2168 * regulator driver context.
2170 void *rdev_get_drvdata(struct regulator_dev
*rdev
)
2172 return rdev
->reg_data
;
2174 EXPORT_SYMBOL_GPL(rdev_get_drvdata
);
2177 * regulator_get_drvdata - get regulator driver data
2178 * @regulator: regulator
2180 * Get regulator driver private data. This call can be used in the consumer
2181 * driver context when non API regulator specific functions need to be called.
2183 void *regulator_get_drvdata(struct regulator
*regulator
)
2185 return regulator
->rdev
->reg_data
;
2187 EXPORT_SYMBOL_GPL(regulator_get_drvdata
);
2190 * regulator_set_drvdata - set regulator driver data
2191 * @regulator: regulator
2194 void regulator_set_drvdata(struct regulator
*regulator
, void *data
)
2196 regulator
->rdev
->reg_data
= data
;
2198 EXPORT_SYMBOL_GPL(regulator_set_drvdata
);
2201 * regulator_get_id - get regulator ID
2204 int rdev_get_id(struct regulator_dev
*rdev
)
2206 return rdev
->desc
->id
;
2208 EXPORT_SYMBOL_GPL(rdev_get_id
);
2210 struct device
*rdev_get_dev(struct regulator_dev
*rdev
)
2214 EXPORT_SYMBOL_GPL(rdev_get_dev
);
2216 void *regulator_get_init_drvdata(struct regulator_init_data
*reg_init_data
)
2218 return reg_init_data
->driver_data
;
2220 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata
);
2222 static int __init
regulator_init(void)
2224 printk(KERN_INFO
"regulator: core version %s\n", REGULATOR_VERSION
);
2225 return class_register(®ulator_class
);
2228 /* init early to allow our consumers to complete system booting */
2229 core_initcall(regulator_init
);
2231 static int __init
regulator_init_complete(void)
2233 struct regulator_dev
*rdev
;
2234 struct regulator_ops
*ops
;
2235 struct regulation_constraints
*c
;
2239 mutex_lock(®ulator_list_mutex
);
2241 /* If we have a full configuration then disable any regulators
2242 * which are not in use or always_on. This will become the
2243 * default behaviour in the future.
2245 list_for_each_entry(rdev
, ®ulator_list
, list
) {
2246 ops
= rdev
->desc
->ops
;
2247 c
= rdev
->constraints
;
2251 else if (rdev
->desc
->name
)
2252 name
= rdev
->desc
->name
;
2256 if (!ops
->disable
|| c
->always_on
)
2259 mutex_lock(&rdev
->mutex
);
2261 if (rdev
->use_count
)
2264 /* If we can't read the status assume it's on. */
2265 if (ops
->is_enabled
)
2266 enabled
= ops
->is_enabled(rdev
);
2273 if (has_full_constraints
) {
2274 /* We log since this may kill the system if it
2276 printk(KERN_INFO
"%s: disabling %s\n",
2278 ret
= ops
->disable(rdev
);
2281 "%s: couldn't disable %s: %d\n",
2282 __func__
, name
, ret
);
2285 /* The intention is that in future we will
2286 * assume that full constraints are provided
2287 * so warn even if we aren't going to do
2291 "%s: incomplete constraints, leaving %s on\n",
2296 mutex_unlock(&rdev
->mutex
);
2299 mutex_unlock(®ulator_list_mutex
);
2303 late_initcall(regulator_init_complete
);