Remote DFS root support.
[linux-2.6/next.git] / drivers / regulator / core.c
blob01f7702a805dc462f29d59110c1c76bb9985c480
1 /*
2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/err.h>
20 #include <linux/mutex.h>
21 #include <linux/suspend.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/regulator/driver.h>
24 #include <linux/regulator/machine.h>
26 #define REGULATOR_VERSION "0.5"
28 static DEFINE_MUTEX(regulator_list_mutex);
29 static LIST_HEAD(regulator_list);
30 static LIST_HEAD(regulator_map_list);
31 static int has_full_constraints;
34 * struct regulator_map
36 * Used to provide symbolic supply names to devices.
38 struct regulator_map {
39 struct list_head list;
40 struct device *dev;
41 const char *supply;
42 struct regulator_dev *regulator;
46 * struct regulator
48 * One for each consumer device.
50 struct regulator {
51 struct device *dev;
52 struct list_head list;
53 int uA_load;
54 int min_uV;
55 int max_uV;
56 char *supply_name;
57 struct device_attribute dev_attr;
58 struct regulator_dev *rdev;
61 static int _regulator_is_enabled(struct regulator_dev *rdev);
62 static int _regulator_disable(struct regulator_dev *rdev);
63 static int _regulator_get_voltage(struct regulator_dev *rdev);
64 static int _regulator_get_current_limit(struct regulator_dev *rdev);
65 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
66 static void _notifier_call_chain(struct regulator_dev *rdev,
67 unsigned long event, void *data);
69 /* gets the regulator for a given consumer device */
70 static struct regulator *get_device_regulator(struct device *dev)
72 struct regulator *regulator = NULL;
73 struct regulator_dev *rdev;
75 mutex_lock(&regulator_list_mutex);
76 list_for_each_entry(rdev, &regulator_list, list) {
77 mutex_lock(&rdev->mutex);
78 list_for_each_entry(regulator, &rdev->consumer_list, list) {
79 if (regulator->dev == dev) {
80 mutex_unlock(&rdev->mutex);
81 mutex_unlock(&regulator_list_mutex);
82 return regulator;
85 mutex_unlock(&rdev->mutex);
87 mutex_unlock(&regulator_list_mutex);
88 return NULL;
91 /* Platform voltage constraint check */
92 static int regulator_check_voltage(struct regulator_dev *rdev,
93 int *min_uV, int *max_uV)
95 BUG_ON(*min_uV > *max_uV);
97 if (!rdev->constraints) {
98 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
99 rdev->desc->name);
100 return -ENODEV;
102 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
103 printk(KERN_ERR "%s: operation not allowed for %s\n",
104 __func__, rdev->desc->name);
105 return -EPERM;
108 if (*max_uV > rdev->constraints->max_uV)
109 *max_uV = rdev->constraints->max_uV;
110 if (*min_uV < rdev->constraints->min_uV)
111 *min_uV = rdev->constraints->min_uV;
113 if (*min_uV > *max_uV)
114 return -EINVAL;
116 return 0;
119 /* current constraint check */
120 static int regulator_check_current_limit(struct regulator_dev *rdev,
121 int *min_uA, int *max_uA)
123 BUG_ON(*min_uA > *max_uA);
125 if (!rdev->constraints) {
126 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
127 rdev->desc->name);
128 return -ENODEV;
130 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
131 printk(KERN_ERR "%s: operation not allowed for %s\n",
132 __func__, rdev->desc->name);
133 return -EPERM;
136 if (*max_uA > rdev->constraints->max_uA)
137 *max_uA = rdev->constraints->max_uA;
138 if (*min_uA < rdev->constraints->min_uA)
139 *min_uA = rdev->constraints->min_uA;
141 if (*min_uA > *max_uA)
142 return -EINVAL;
144 return 0;
147 /* operating mode constraint check */
148 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
150 switch (mode) {
151 case REGULATOR_MODE_FAST:
152 case REGULATOR_MODE_NORMAL:
153 case REGULATOR_MODE_IDLE:
154 case REGULATOR_MODE_STANDBY:
155 break;
156 default:
157 return -EINVAL;
160 if (!rdev->constraints) {
161 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
162 rdev->desc->name);
163 return -ENODEV;
165 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
166 printk(KERN_ERR "%s: operation not allowed for %s\n",
167 __func__, rdev->desc->name);
168 return -EPERM;
170 if (!(rdev->constraints->valid_modes_mask & mode)) {
171 printk(KERN_ERR "%s: invalid mode %x for %s\n",
172 __func__, mode, rdev->desc->name);
173 return -EINVAL;
175 return 0;
178 /* dynamic regulator mode switching constraint check */
179 static int regulator_check_drms(struct regulator_dev *rdev)
181 if (!rdev->constraints) {
182 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
183 rdev->desc->name);
184 return -ENODEV;
186 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
187 printk(KERN_ERR "%s: operation not allowed for %s\n",
188 __func__, rdev->desc->name);
189 return -EPERM;
191 return 0;
194 static ssize_t device_requested_uA_show(struct device *dev,
195 struct device_attribute *attr, char *buf)
197 struct regulator *regulator;
199 regulator = get_device_regulator(dev);
200 if (regulator == NULL)
201 return 0;
203 return sprintf(buf, "%d\n", regulator->uA_load);
206 static ssize_t regulator_uV_show(struct device *dev,
207 struct device_attribute *attr, char *buf)
209 struct regulator_dev *rdev = dev_get_drvdata(dev);
210 ssize_t ret;
212 mutex_lock(&rdev->mutex);
213 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
214 mutex_unlock(&rdev->mutex);
216 return ret;
218 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
220 static ssize_t regulator_uA_show(struct device *dev,
221 struct device_attribute *attr, char *buf)
223 struct regulator_dev *rdev = dev_get_drvdata(dev);
225 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
227 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
229 static ssize_t regulator_name_show(struct device *dev,
230 struct device_attribute *attr, char *buf)
232 struct regulator_dev *rdev = dev_get_drvdata(dev);
233 const char *name;
235 if (rdev->constraints->name)
236 name = rdev->constraints->name;
237 else if (rdev->desc->name)
238 name = rdev->desc->name;
239 else
240 name = "";
242 return sprintf(buf, "%s\n", name);
245 static ssize_t regulator_print_opmode(char *buf, int mode)
247 switch (mode) {
248 case REGULATOR_MODE_FAST:
249 return sprintf(buf, "fast\n");
250 case REGULATOR_MODE_NORMAL:
251 return sprintf(buf, "normal\n");
252 case REGULATOR_MODE_IDLE:
253 return sprintf(buf, "idle\n");
254 case REGULATOR_MODE_STANDBY:
255 return sprintf(buf, "standby\n");
257 return sprintf(buf, "unknown\n");
260 static ssize_t regulator_opmode_show(struct device *dev,
261 struct device_attribute *attr, char *buf)
263 struct regulator_dev *rdev = dev_get_drvdata(dev);
265 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
267 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
269 static ssize_t regulator_print_state(char *buf, int state)
271 if (state > 0)
272 return sprintf(buf, "enabled\n");
273 else if (state == 0)
274 return sprintf(buf, "disabled\n");
275 else
276 return sprintf(buf, "unknown\n");
279 static ssize_t regulator_state_show(struct device *dev,
280 struct device_attribute *attr, char *buf)
282 struct regulator_dev *rdev = dev_get_drvdata(dev);
284 return regulator_print_state(buf, _regulator_is_enabled(rdev));
286 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
288 static ssize_t regulator_status_show(struct device *dev,
289 struct device_attribute *attr, char *buf)
291 struct regulator_dev *rdev = dev_get_drvdata(dev);
292 int status;
293 char *label;
295 status = rdev->desc->ops->get_status(rdev);
296 if (status < 0)
297 return status;
299 switch (status) {
300 case REGULATOR_STATUS_OFF:
301 label = "off";
302 break;
303 case REGULATOR_STATUS_ON:
304 label = "on";
305 break;
306 case REGULATOR_STATUS_ERROR:
307 label = "error";
308 break;
309 case REGULATOR_STATUS_FAST:
310 label = "fast";
311 break;
312 case REGULATOR_STATUS_NORMAL:
313 label = "normal";
314 break;
315 case REGULATOR_STATUS_IDLE:
316 label = "idle";
317 break;
318 case REGULATOR_STATUS_STANDBY:
319 label = "standby";
320 break;
321 default:
322 return -ERANGE;
325 return sprintf(buf, "%s\n", label);
327 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
329 static ssize_t regulator_min_uA_show(struct device *dev,
330 struct device_attribute *attr, char *buf)
332 struct regulator_dev *rdev = dev_get_drvdata(dev);
334 if (!rdev->constraints)
335 return sprintf(buf, "constraint not defined\n");
337 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
339 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
341 static ssize_t regulator_max_uA_show(struct device *dev,
342 struct device_attribute *attr, char *buf)
344 struct regulator_dev *rdev = dev_get_drvdata(dev);
346 if (!rdev->constraints)
347 return sprintf(buf, "constraint not defined\n");
349 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
351 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
353 static ssize_t regulator_min_uV_show(struct device *dev,
354 struct device_attribute *attr, char *buf)
356 struct regulator_dev *rdev = dev_get_drvdata(dev);
358 if (!rdev->constraints)
359 return sprintf(buf, "constraint not defined\n");
361 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
363 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
365 static ssize_t regulator_max_uV_show(struct device *dev,
366 struct device_attribute *attr, char *buf)
368 struct regulator_dev *rdev = dev_get_drvdata(dev);
370 if (!rdev->constraints)
371 return sprintf(buf, "constraint not defined\n");
373 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
375 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
377 static ssize_t regulator_total_uA_show(struct device *dev,
378 struct device_attribute *attr, char *buf)
380 struct regulator_dev *rdev = dev_get_drvdata(dev);
381 struct regulator *regulator;
382 int uA = 0;
384 mutex_lock(&rdev->mutex);
385 list_for_each_entry(regulator, &rdev->consumer_list, list)
386 uA += regulator->uA_load;
387 mutex_unlock(&rdev->mutex);
388 return sprintf(buf, "%d\n", uA);
390 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
392 static ssize_t regulator_num_users_show(struct device *dev,
393 struct device_attribute *attr, char *buf)
395 struct regulator_dev *rdev = dev_get_drvdata(dev);
396 return sprintf(buf, "%d\n", rdev->use_count);
399 static ssize_t regulator_type_show(struct device *dev,
400 struct device_attribute *attr, char *buf)
402 struct regulator_dev *rdev = dev_get_drvdata(dev);
404 switch (rdev->desc->type) {
405 case REGULATOR_VOLTAGE:
406 return sprintf(buf, "voltage\n");
407 case REGULATOR_CURRENT:
408 return sprintf(buf, "current\n");
410 return sprintf(buf, "unknown\n");
413 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
414 struct device_attribute *attr, char *buf)
416 struct regulator_dev *rdev = dev_get_drvdata(dev);
418 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
420 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
421 regulator_suspend_mem_uV_show, NULL);
423 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
424 struct device_attribute *attr, char *buf)
426 struct regulator_dev *rdev = dev_get_drvdata(dev);
428 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
430 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
431 regulator_suspend_disk_uV_show, NULL);
433 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
434 struct device_attribute *attr, char *buf)
436 struct regulator_dev *rdev = dev_get_drvdata(dev);
438 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
440 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
441 regulator_suspend_standby_uV_show, NULL);
443 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
444 struct device_attribute *attr, char *buf)
446 struct regulator_dev *rdev = dev_get_drvdata(dev);
448 return regulator_print_opmode(buf,
449 rdev->constraints->state_mem.mode);
451 static DEVICE_ATTR(suspend_mem_mode, 0444,
452 regulator_suspend_mem_mode_show, NULL);
454 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
455 struct device_attribute *attr, char *buf)
457 struct regulator_dev *rdev = dev_get_drvdata(dev);
459 return regulator_print_opmode(buf,
460 rdev->constraints->state_disk.mode);
462 static DEVICE_ATTR(suspend_disk_mode, 0444,
463 regulator_suspend_disk_mode_show, NULL);
465 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
466 struct device_attribute *attr, char *buf)
468 struct regulator_dev *rdev = dev_get_drvdata(dev);
470 return regulator_print_opmode(buf,
471 rdev->constraints->state_standby.mode);
473 static DEVICE_ATTR(suspend_standby_mode, 0444,
474 regulator_suspend_standby_mode_show, NULL);
476 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
477 struct device_attribute *attr, char *buf)
479 struct regulator_dev *rdev = dev_get_drvdata(dev);
481 return regulator_print_state(buf,
482 rdev->constraints->state_mem.enabled);
484 static DEVICE_ATTR(suspend_mem_state, 0444,
485 regulator_suspend_mem_state_show, NULL);
487 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
488 struct device_attribute *attr, char *buf)
490 struct regulator_dev *rdev = dev_get_drvdata(dev);
492 return regulator_print_state(buf,
493 rdev->constraints->state_disk.enabled);
495 static DEVICE_ATTR(suspend_disk_state, 0444,
496 regulator_suspend_disk_state_show, NULL);
498 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
499 struct device_attribute *attr, char *buf)
501 struct regulator_dev *rdev = dev_get_drvdata(dev);
503 return regulator_print_state(buf,
504 rdev->constraints->state_standby.enabled);
506 static DEVICE_ATTR(suspend_standby_state, 0444,
507 regulator_suspend_standby_state_show, NULL);
511 * These are the only attributes are present for all regulators.
512 * Other attributes are a function of regulator functionality.
514 static struct device_attribute regulator_dev_attrs[] = {
515 __ATTR(name, 0444, regulator_name_show, NULL),
516 __ATTR(num_users, 0444, regulator_num_users_show, NULL),
517 __ATTR(type, 0444, regulator_type_show, NULL),
518 __ATTR_NULL,
521 static void regulator_dev_release(struct device *dev)
523 struct regulator_dev *rdev = dev_get_drvdata(dev);
524 kfree(rdev);
527 static struct class regulator_class = {
528 .name = "regulator",
529 .dev_release = regulator_dev_release,
530 .dev_attrs = regulator_dev_attrs,
533 /* Calculate the new optimum regulator operating mode based on the new total
534 * consumer load. All locks held by caller */
535 static void drms_uA_update(struct regulator_dev *rdev)
537 struct regulator *sibling;
538 int current_uA = 0, output_uV, input_uV, err;
539 unsigned int mode;
541 err = regulator_check_drms(rdev);
542 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
543 !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode);
544 return;
546 /* get output voltage */
547 output_uV = rdev->desc->ops->get_voltage(rdev);
548 if (output_uV <= 0)
549 return;
551 /* get input voltage */
552 if (rdev->supply && rdev->supply->desc->ops->get_voltage)
553 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
554 else
555 input_uV = rdev->constraints->input_uV;
556 if (input_uV <= 0)
557 return;
559 /* calc total requested load */
560 list_for_each_entry(sibling, &rdev->consumer_list, list)
561 current_uA += sibling->uA_load;
563 /* now get the optimum mode for our new total regulator load */
564 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
565 output_uV, current_uA);
567 /* check the new mode is allowed */
568 err = regulator_check_mode(rdev, mode);
569 if (err == 0)
570 rdev->desc->ops->set_mode(rdev, mode);
573 static int suspend_set_state(struct regulator_dev *rdev,
574 struct regulator_state *rstate)
576 int ret = 0;
578 /* enable & disable are mandatory for suspend control */
579 if (!rdev->desc->ops->set_suspend_enable ||
580 !rdev->desc->ops->set_suspend_disable) {
581 printk(KERN_ERR "%s: no way to set suspend state\n",
582 __func__);
583 return -EINVAL;
586 if (rstate->enabled)
587 ret = rdev->desc->ops->set_suspend_enable(rdev);
588 else
589 ret = rdev->desc->ops->set_suspend_disable(rdev);
590 if (ret < 0) {
591 printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
592 return ret;
595 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
596 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
597 if (ret < 0) {
598 printk(KERN_ERR "%s: failed to set voltage\n",
599 __func__);
600 return ret;
604 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
605 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
606 if (ret < 0) {
607 printk(KERN_ERR "%s: failed to set mode\n", __func__);
608 return ret;
611 return ret;
614 /* locks held by caller */
615 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
617 if (!rdev->constraints)
618 return -EINVAL;
620 switch (state) {
621 case PM_SUSPEND_STANDBY:
622 return suspend_set_state(rdev,
623 &rdev->constraints->state_standby);
624 case PM_SUSPEND_MEM:
625 return suspend_set_state(rdev,
626 &rdev->constraints->state_mem);
627 case PM_SUSPEND_MAX:
628 return suspend_set_state(rdev,
629 &rdev->constraints->state_disk);
630 default:
631 return -EINVAL;
635 static void print_constraints(struct regulator_dev *rdev)
637 struct regulation_constraints *constraints = rdev->constraints;
638 char buf[80];
639 int count;
641 if (rdev->desc->type == REGULATOR_VOLTAGE) {
642 if (constraints->min_uV == constraints->max_uV)
643 count = sprintf(buf, "%d mV ",
644 constraints->min_uV / 1000);
645 else
646 count = sprintf(buf, "%d <--> %d mV ",
647 constraints->min_uV / 1000,
648 constraints->max_uV / 1000);
649 } else {
650 if (constraints->min_uA == constraints->max_uA)
651 count = sprintf(buf, "%d mA ",
652 constraints->min_uA / 1000);
653 else
654 count = sprintf(buf, "%d <--> %d mA ",
655 constraints->min_uA / 1000,
656 constraints->max_uA / 1000);
658 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
659 count += sprintf(buf + count, "fast ");
660 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
661 count += sprintf(buf + count, "normal ");
662 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
663 count += sprintf(buf + count, "idle ");
664 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
665 count += sprintf(buf + count, "standby");
667 printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
671 * set_machine_constraints - sets regulator constraints
672 * @rdev: regulator source
673 * @constraints: constraints to apply
675 * Allows platform initialisation code to define and constrain
676 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
677 * Constraints *must* be set by platform code in order for some
678 * regulator operations to proceed i.e. set_voltage, set_current_limit,
679 * set_mode.
681 static int set_machine_constraints(struct regulator_dev *rdev,
682 struct regulation_constraints *constraints)
684 int ret = 0;
685 const char *name;
686 struct regulator_ops *ops = rdev->desc->ops;
688 if (constraints->name)
689 name = constraints->name;
690 else if (rdev->desc->name)
691 name = rdev->desc->name;
692 else
693 name = "regulator";
695 /* constrain machine-level voltage specs to fit
696 * the actual range supported by this regulator.
698 if (ops->list_voltage && rdev->desc->n_voltages) {
699 int count = rdev->desc->n_voltages;
700 int i;
701 int min_uV = INT_MAX;
702 int max_uV = INT_MIN;
703 int cmin = constraints->min_uV;
704 int cmax = constraints->max_uV;
706 /* it's safe to autoconfigure fixed-voltage supplies */
707 if (count == 1 && !cmin) {
708 cmin = INT_MIN;
709 cmax = INT_MAX;
712 /* voltage constraints are optional */
713 if ((cmin == 0) && (cmax == 0))
714 goto out;
716 /* else require explicit machine-level constraints */
717 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
718 pr_err("%s: %s '%s' voltage constraints\n",
719 __func__, "invalid", name);
720 ret = -EINVAL;
721 goto out;
724 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
725 for (i = 0; i < count; i++) {
726 int value;
728 value = ops->list_voltage(rdev, i);
729 if (value <= 0)
730 continue;
732 /* maybe adjust [min_uV..max_uV] */
733 if (value >= cmin && value < min_uV)
734 min_uV = value;
735 if (value <= cmax && value > max_uV)
736 max_uV = value;
739 /* final: [min_uV..max_uV] valid iff constraints valid */
740 if (max_uV < min_uV) {
741 pr_err("%s: %s '%s' voltage constraints\n",
742 __func__, "unsupportable", name);
743 ret = -EINVAL;
744 goto out;
747 /* use regulator's subset of machine constraints */
748 if (constraints->min_uV < min_uV) {
749 pr_debug("%s: override '%s' %s, %d -> %d\n",
750 __func__, name, "min_uV",
751 constraints->min_uV, min_uV);
752 constraints->min_uV = min_uV;
754 if (constraints->max_uV > max_uV) {
755 pr_debug("%s: override '%s' %s, %d -> %d\n",
756 __func__, name, "max_uV",
757 constraints->max_uV, max_uV);
758 constraints->max_uV = max_uV;
762 rdev->constraints = constraints;
764 /* do we need to apply the constraint voltage */
765 if (rdev->constraints->apply_uV &&
766 rdev->constraints->min_uV == rdev->constraints->max_uV &&
767 ops->set_voltage) {
768 ret = ops->set_voltage(rdev,
769 rdev->constraints->min_uV, rdev->constraints->max_uV);
770 if (ret < 0) {
771 printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
772 __func__,
773 rdev->constraints->min_uV, name);
774 rdev->constraints = NULL;
775 goto out;
779 /* do we need to setup our suspend state */
780 if (constraints->initial_state) {
781 ret = suspend_prepare(rdev, constraints->initial_state);
782 if (ret < 0) {
783 printk(KERN_ERR "%s: failed to set suspend state for %s\n",
784 __func__, name);
785 rdev->constraints = NULL;
786 goto out;
790 if (constraints->initial_mode) {
791 if (!ops->set_mode) {
792 printk(KERN_ERR "%s: no set_mode operation for %s\n",
793 __func__, name);
794 ret = -EINVAL;
795 goto out;
798 ret = ops->set_mode(rdev, constraints->initial_mode);
799 if (ret < 0) {
800 printk(KERN_ERR
801 "%s: failed to set initial mode for %s: %d\n",
802 __func__, name, ret);
803 goto out;
807 /* If the constraints say the regulator should be on at this point
808 * and we have control then make sure it is enabled.
810 if ((constraints->always_on || constraints->boot_on) && ops->enable) {
811 ret = ops->enable(rdev);
812 if (ret < 0) {
813 printk(KERN_ERR "%s: failed to enable %s\n",
814 __func__, name);
815 rdev->constraints = NULL;
816 goto out;
820 print_constraints(rdev);
821 out:
822 return ret;
826 * set_supply - set regulator supply regulator
827 * @rdev: regulator name
828 * @supply_rdev: supply regulator name
830 * Called by platform initialisation code to set the supply regulator for this
831 * regulator. This ensures that a regulators supply will also be enabled by the
832 * core if it's child is enabled.
834 static int set_supply(struct regulator_dev *rdev,
835 struct regulator_dev *supply_rdev)
837 int err;
839 err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
840 "supply");
841 if (err) {
842 printk(KERN_ERR
843 "%s: could not add device link %s err %d\n",
844 __func__, supply_rdev->dev.kobj.name, err);
845 goto out;
847 rdev->supply = supply_rdev;
848 list_add(&rdev->slist, &supply_rdev->supply_list);
849 out:
850 return err;
854 * set_consumer_device_supply: Bind a regulator to a symbolic supply
855 * @rdev: regulator source
856 * @consumer_dev: device the supply applies to
857 * @supply: symbolic name for supply
859 * Allows platform initialisation code to map physical regulator
860 * sources to symbolic names for supplies for use by devices. Devices
861 * should use these symbolic names to request regulators, avoiding the
862 * need to provide board-specific regulator names as platform data.
864 static int set_consumer_device_supply(struct regulator_dev *rdev,
865 struct device *consumer_dev, const char *supply)
867 struct regulator_map *node;
869 if (supply == NULL)
870 return -EINVAL;
872 list_for_each_entry(node, &regulator_map_list, list) {
873 if (consumer_dev != node->dev)
874 continue;
875 if (strcmp(node->supply, supply) != 0)
876 continue;
878 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
879 dev_name(&node->regulator->dev),
880 node->regulator->desc->name,
881 supply,
882 dev_name(&rdev->dev), rdev->desc->name);
883 return -EBUSY;
886 node = kmalloc(sizeof(struct regulator_map), GFP_KERNEL);
887 if (node == NULL)
888 return -ENOMEM;
890 node->regulator = rdev;
891 node->dev = consumer_dev;
892 node->supply = supply;
894 list_add(&node->list, &regulator_map_list);
895 return 0;
898 static void unset_consumer_device_supply(struct regulator_dev *rdev,
899 struct device *consumer_dev)
901 struct regulator_map *node, *n;
903 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
904 if (rdev == node->regulator &&
905 consumer_dev == node->dev) {
906 list_del(&node->list);
907 kfree(node);
908 return;
913 static void unset_regulator_supplies(struct regulator_dev *rdev)
915 struct regulator_map *node, *n;
917 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
918 if (rdev == node->regulator) {
919 list_del(&node->list);
920 kfree(node);
921 return;
926 #define REG_STR_SIZE 32
928 static struct regulator *create_regulator(struct regulator_dev *rdev,
929 struct device *dev,
930 const char *supply_name)
932 struct regulator *regulator;
933 char buf[REG_STR_SIZE];
934 int err, size;
936 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
937 if (regulator == NULL)
938 return NULL;
940 mutex_lock(&rdev->mutex);
941 regulator->rdev = rdev;
942 list_add(&regulator->list, &rdev->consumer_list);
944 if (dev) {
945 /* create a 'requested_microamps_name' sysfs entry */
946 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
947 supply_name);
948 if (size >= REG_STR_SIZE)
949 goto overflow_err;
951 regulator->dev = dev;
952 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
953 if (regulator->dev_attr.attr.name == NULL)
954 goto attr_name_err;
956 regulator->dev_attr.attr.owner = THIS_MODULE;
957 regulator->dev_attr.attr.mode = 0444;
958 regulator->dev_attr.show = device_requested_uA_show;
959 err = device_create_file(dev, &regulator->dev_attr);
960 if (err < 0) {
961 printk(KERN_WARNING "%s: could not add regulator_dev"
962 " load sysfs\n", __func__);
963 goto attr_name_err;
966 /* also add a link to the device sysfs entry */
967 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
968 dev->kobj.name, supply_name);
969 if (size >= REG_STR_SIZE)
970 goto attr_err;
972 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
973 if (regulator->supply_name == NULL)
974 goto attr_err;
976 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
977 buf);
978 if (err) {
979 printk(KERN_WARNING
980 "%s: could not add device link %s err %d\n",
981 __func__, dev->kobj.name, err);
982 device_remove_file(dev, &regulator->dev_attr);
983 goto link_name_err;
986 mutex_unlock(&rdev->mutex);
987 return regulator;
988 link_name_err:
989 kfree(regulator->supply_name);
990 attr_err:
991 device_remove_file(regulator->dev, &regulator->dev_attr);
992 attr_name_err:
993 kfree(regulator->dev_attr.attr.name);
994 overflow_err:
995 list_del(&regulator->list);
996 kfree(regulator);
997 mutex_unlock(&rdev->mutex);
998 return NULL;
1002 * regulator_get - lookup and obtain a reference to a regulator.
1003 * @dev: device for regulator "consumer"
1004 * @id: Supply name or regulator ID.
1006 * Returns a struct regulator corresponding to the regulator producer,
1007 * or IS_ERR() condition containing errno.
1009 * Use of supply names configured via regulator_set_device_supply() is
1010 * strongly encouraged. It is recommended that the supply name used
1011 * should match the name used for the supply and/or the relevant
1012 * device pins in the datasheet.
1014 struct regulator *regulator_get(struct device *dev, const char *id)
1016 struct regulator_dev *rdev;
1017 struct regulator_map *map;
1018 struct regulator *regulator = ERR_PTR(-ENODEV);
1020 if (id == NULL) {
1021 printk(KERN_ERR "regulator: get() with no identifier\n");
1022 return regulator;
1025 mutex_lock(&regulator_list_mutex);
1027 list_for_each_entry(map, &regulator_map_list, list) {
1028 if (dev == map->dev &&
1029 strcmp(map->supply, id) == 0) {
1030 rdev = map->regulator;
1031 goto found;
1034 mutex_unlock(&regulator_list_mutex);
1035 return regulator;
1037 found:
1038 if (!try_module_get(rdev->owner))
1039 goto out;
1041 regulator = create_regulator(rdev, dev, id);
1042 if (regulator == NULL) {
1043 regulator = ERR_PTR(-ENOMEM);
1044 module_put(rdev->owner);
1047 out:
1048 mutex_unlock(&regulator_list_mutex);
1049 return regulator;
1051 EXPORT_SYMBOL_GPL(regulator_get);
1054 * regulator_put - "free" the regulator source
1055 * @regulator: regulator source
1057 * Note: drivers must ensure that all regulator_enable calls made on this
1058 * regulator source are balanced by regulator_disable calls prior to calling
1059 * this function.
1061 void regulator_put(struct regulator *regulator)
1063 struct regulator_dev *rdev;
1065 if (regulator == NULL || IS_ERR(regulator))
1066 return;
1068 mutex_lock(&regulator_list_mutex);
1069 rdev = regulator->rdev;
1071 /* remove any sysfs entries */
1072 if (regulator->dev) {
1073 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1074 kfree(regulator->supply_name);
1075 device_remove_file(regulator->dev, &regulator->dev_attr);
1076 kfree(regulator->dev_attr.attr.name);
1078 list_del(&regulator->list);
1079 kfree(regulator);
1081 module_put(rdev->owner);
1082 mutex_unlock(&regulator_list_mutex);
1084 EXPORT_SYMBOL_GPL(regulator_put);
1086 /* locks held by regulator_enable() */
1087 static int _regulator_enable(struct regulator_dev *rdev)
1089 int ret = -EINVAL;
1091 if (!rdev->constraints) {
1092 printk(KERN_ERR "%s: %s has no constraints\n",
1093 __func__, rdev->desc->name);
1094 return ret;
1097 /* do we need to enable the supply regulator first */
1098 if (rdev->supply) {
1099 ret = _regulator_enable(rdev->supply);
1100 if (ret < 0) {
1101 printk(KERN_ERR "%s: failed to enable %s: %d\n",
1102 __func__, rdev->desc->name, ret);
1103 return ret;
1107 /* check voltage and requested load before enabling */
1108 if (rdev->desc->ops->enable) {
1110 if (rdev->constraints &&
1111 (rdev->constraints->valid_ops_mask &
1112 REGULATOR_CHANGE_DRMS))
1113 drms_uA_update(rdev);
1115 ret = rdev->desc->ops->enable(rdev);
1116 if (ret < 0) {
1117 printk(KERN_ERR "%s: failed to enable %s: %d\n",
1118 __func__, rdev->desc->name, ret);
1119 return ret;
1121 rdev->use_count++;
1122 return ret;
1125 return ret;
1129 * regulator_enable - enable regulator output
1130 * @regulator: regulator source
1132 * Request that the regulator be enabled with the regulator output at
1133 * the predefined voltage or current value. Calls to regulator_enable()
1134 * must be balanced with calls to regulator_disable().
1136 * NOTE: the output value can be set by other drivers, boot loader or may be
1137 * hardwired in the regulator.
1139 int regulator_enable(struct regulator *regulator)
1141 struct regulator_dev *rdev = regulator->rdev;
1142 int ret = 0;
1144 mutex_lock(&rdev->mutex);
1145 ret = _regulator_enable(rdev);
1146 mutex_unlock(&rdev->mutex);
1147 return ret;
1149 EXPORT_SYMBOL_GPL(regulator_enable);
1151 /* locks held by regulator_disable() */
1152 static int _regulator_disable(struct regulator_dev *rdev)
1154 int ret = 0;
1156 if (WARN(rdev->use_count <= 0,
1157 "unbalanced disables for %s\n",
1158 rdev->desc->name))
1159 return -EIO;
1161 /* are we the last user and permitted to disable ? */
1162 if (rdev->use_count == 1 && !rdev->constraints->always_on) {
1164 /* we are last user */
1165 if (rdev->desc->ops->disable) {
1166 ret = rdev->desc->ops->disable(rdev);
1167 if (ret < 0) {
1168 printk(KERN_ERR "%s: failed to disable %s\n",
1169 __func__, rdev->desc->name);
1170 return ret;
1174 /* decrease our supplies ref count and disable if required */
1175 if (rdev->supply)
1176 _regulator_disable(rdev->supply);
1178 rdev->use_count = 0;
1179 } else if (rdev->use_count > 1) {
1181 if (rdev->constraints &&
1182 (rdev->constraints->valid_ops_mask &
1183 REGULATOR_CHANGE_DRMS))
1184 drms_uA_update(rdev);
1186 rdev->use_count--;
1188 return ret;
1192 * regulator_disable - disable regulator output
1193 * @regulator: regulator source
1195 * Disable the regulator output voltage or current. Calls to
1196 * regulator_enable() must be balanced with calls to
1197 * regulator_disable().
1199 * NOTE: this will only disable the regulator output if no other consumer
1200 * devices have it enabled, the regulator device supports disabling and
1201 * machine constraints permit this operation.
1203 int regulator_disable(struct regulator *regulator)
1205 struct regulator_dev *rdev = regulator->rdev;
1206 int ret = 0;
1208 mutex_lock(&rdev->mutex);
1209 ret = _regulator_disable(rdev);
1210 mutex_unlock(&rdev->mutex);
1211 return ret;
1213 EXPORT_SYMBOL_GPL(regulator_disable);
1215 /* locks held by regulator_force_disable() */
1216 static int _regulator_force_disable(struct regulator_dev *rdev)
1218 int ret = 0;
1220 /* force disable */
1221 if (rdev->desc->ops->disable) {
1222 /* ah well, who wants to live forever... */
1223 ret = rdev->desc->ops->disable(rdev);
1224 if (ret < 0) {
1225 printk(KERN_ERR "%s: failed to force disable %s\n",
1226 __func__, rdev->desc->name);
1227 return ret;
1229 /* notify other consumers that power has been forced off */
1230 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1231 NULL);
1234 /* decrease our supplies ref count and disable if required */
1235 if (rdev->supply)
1236 _regulator_disable(rdev->supply);
1238 rdev->use_count = 0;
1239 return ret;
1243 * regulator_force_disable - force disable regulator output
1244 * @regulator: regulator source
1246 * Forcibly disable the regulator output voltage or current.
1247 * NOTE: this *will* disable the regulator output even if other consumer
1248 * devices have it enabled. This should be used for situations when device
1249 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1251 int regulator_force_disable(struct regulator *regulator)
1253 int ret;
1255 mutex_lock(&regulator->rdev->mutex);
1256 regulator->uA_load = 0;
1257 ret = _regulator_force_disable(regulator->rdev);
1258 mutex_unlock(&regulator->rdev->mutex);
1259 return ret;
1261 EXPORT_SYMBOL_GPL(regulator_force_disable);
1263 static int _regulator_is_enabled(struct regulator_dev *rdev)
1265 int ret;
1267 mutex_lock(&rdev->mutex);
1269 /* sanity check */
1270 if (!rdev->desc->ops->is_enabled) {
1271 ret = -EINVAL;
1272 goto out;
1275 ret = rdev->desc->ops->is_enabled(rdev);
1276 out:
1277 mutex_unlock(&rdev->mutex);
1278 return ret;
1282 * regulator_is_enabled - is the regulator output enabled
1283 * @regulator: regulator source
1285 * Returns positive if the regulator driver backing the source/client
1286 * has requested that the device be enabled, zero if it hasn't, else a
1287 * negative errno code.
1289 * Note that the device backing this regulator handle can have multiple
1290 * users, so it might be enabled even if regulator_enable() was never
1291 * called for this particular source.
1293 int regulator_is_enabled(struct regulator *regulator)
1295 return _regulator_is_enabled(regulator->rdev);
1297 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1300 * regulator_count_voltages - count regulator_list_voltage() selectors
1301 * @regulator: regulator source
1303 * Returns number of selectors, or negative errno. Selectors are
1304 * numbered starting at zero, and typically correspond to bitfields
1305 * in hardware registers.
1307 int regulator_count_voltages(struct regulator *regulator)
1309 struct regulator_dev *rdev = regulator->rdev;
1311 return rdev->desc->n_voltages ? : -EINVAL;
1313 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1316 * regulator_list_voltage - enumerate supported voltages
1317 * @regulator: regulator source
1318 * @selector: identify voltage to list
1319 * Context: can sleep
1321 * Returns a voltage that can be passed to @regulator_set_voltage(),
1322 * zero if this selector code can't be used on this sytem, or a
1323 * negative errno.
1325 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1327 struct regulator_dev *rdev = regulator->rdev;
1328 struct regulator_ops *ops = rdev->desc->ops;
1329 int ret;
1331 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1332 return -EINVAL;
1334 mutex_lock(&rdev->mutex);
1335 ret = ops->list_voltage(rdev, selector);
1336 mutex_unlock(&rdev->mutex);
1338 if (ret > 0) {
1339 if (ret < rdev->constraints->min_uV)
1340 ret = 0;
1341 else if (ret > rdev->constraints->max_uV)
1342 ret = 0;
1345 return ret;
1347 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1350 * regulator_set_voltage - set regulator output voltage
1351 * @regulator: regulator source
1352 * @min_uV: Minimum required voltage in uV
1353 * @max_uV: Maximum acceptable voltage in uV
1355 * Sets a voltage regulator to the desired output voltage. This can be set
1356 * during any regulator state. IOW, regulator can be disabled or enabled.
1358 * If the regulator is enabled then the voltage will change to the new value
1359 * immediately otherwise if the regulator is disabled the regulator will
1360 * output at the new voltage when enabled.
1362 * NOTE: If the regulator is shared between several devices then the lowest
1363 * request voltage that meets the system constraints will be used.
1364 * Regulator system constraints must be set for this regulator before
1365 * calling this function otherwise this call will fail.
1367 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1369 struct regulator_dev *rdev = regulator->rdev;
1370 int ret;
1372 mutex_lock(&rdev->mutex);
1374 /* sanity check */
1375 if (!rdev->desc->ops->set_voltage) {
1376 ret = -EINVAL;
1377 goto out;
1380 /* constraints check */
1381 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1382 if (ret < 0)
1383 goto out;
1384 regulator->min_uV = min_uV;
1385 regulator->max_uV = max_uV;
1386 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1388 out:
1389 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1390 mutex_unlock(&rdev->mutex);
1391 return ret;
1393 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1395 static int _regulator_get_voltage(struct regulator_dev *rdev)
1397 /* sanity check */
1398 if (rdev->desc->ops->get_voltage)
1399 return rdev->desc->ops->get_voltage(rdev);
1400 else
1401 return -EINVAL;
1405 * regulator_get_voltage - get regulator output voltage
1406 * @regulator: regulator source
1408 * This returns the current regulator voltage in uV.
1410 * NOTE: If the regulator is disabled it will return the voltage value. This
1411 * function should not be used to determine regulator state.
1413 int regulator_get_voltage(struct regulator *regulator)
1415 int ret;
1417 mutex_lock(&regulator->rdev->mutex);
1419 ret = _regulator_get_voltage(regulator->rdev);
1421 mutex_unlock(&regulator->rdev->mutex);
1423 return ret;
1425 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1428 * regulator_set_current_limit - set regulator output current limit
1429 * @regulator: regulator source
1430 * @min_uA: Minimuum supported current in uA
1431 * @max_uA: Maximum supported current in uA
1433 * Sets current sink to the desired output current. This can be set during
1434 * any regulator state. IOW, regulator can be disabled or enabled.
1436 * If the regulator is enabled then the current will change to the new value
1437 * immediately otherwise if the regulator is disabled the regulator will
1438 * output at the new current when enabled.
1440 * NOTE: Regulator system constraints must be set for this regulator before
1441 * calling this function otherwise this call will fail.
1443 int regulator_set_current_limit(struct regulator *regulator,
1444 int min_uA, int max_uA)
1446 struct regulator_dev *rdev = regulator->rdev;
1447 int ret;
1449 mutex_lock(&rdev->mutex);
1451 /* sanity check */
1452 if (!rdev->desc->ops->set_current_limit) {
1453 ret = -EINVAL;
1454 goto out;
1457 /* constraints check */
1458 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1459 if (ret < 0)
1460 goto out;
1462 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1463 out:
1464 mutex_unlock(&rdev->mutex);
1465 return ret;
1467 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1469 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1471 int ret;
1473 mutex_lock(&rdev->mutex);
1475 /* sanity check */
1476 if (!rdev->desc->ops->get_current_limit) {
1477 ret = -EINVAL;
1478 goto out;
1481 ret = rdev->desc->ops->get_current_limit(rdev);
1482 out:
1483 mutex_unlock(&rdev->mutex);
1484 return ret;
1488 * regulator_get_current_limit - get regulator output current
1489 * @regulator: regulator source
1491 * This returns the current supplied by the specified current sink in uA.
1493 * NOTE: If the regulator is disabled it will return the current value. This
1494 * function should not be used to determine regulator state.
1496 int regulator_get_current_limit(struct regulator *regulator)
1498 return _regulator_get_current_limit(regulator->rdev);
1500 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1503 * regulator_set_mode - set regulator operating mode
1504 * @regulator: regulator source
1505 * @mode: operating mode - one of the REGULATOR_MODE constants
1507 * Set regulator operating mode to increase regulator efficiency or improve
1508 * regulation performance.
1510 * NOTE: Regulator system constraints must be set for this regulator before
1511 * calling this function otherwise this call will fail.
1513 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1515 struct regulator_dev *rdev = regulator->rdev;
1516 int ret;
1518 mutex_lock(&rdev->mutex);
1520 /* sanity check */
1521 if (!rdev->desc->ops->set_mode) {
1522 ret = -EINVAL;
1523 goto out;
1526 /* constraints check */
1527 ret = regulator_check_mode(rdev, mode);
1528 if (ret < 0)
1529 goto out;
1531 ret = rdev->desc->ops->set_mode(rdev, mode);
1532 out:
1533 mutex_unlock(&rdev->mutex);
1534 return ret;
1536 EXPORT_SYMBOL_GPL(regulator_set_mode);
1538 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1540 int ret;
1542 mutex_lock(&rdev->mutex);
1544 /* sanity check */
1545 if (!rdev->desc->ops->get_mode) {
1546 ret = -EINVAL;
1547 goto out;
1550 ret = rdev->desc->ops->get_mode(rdev);
1551 out:
1552 mutex_unlock(&rdev->mutex);
1553 return ret;
1557 * regulator_get_mode - get regulator operating mode
1558 * @regulator: regulator source
1560 * Get the current regulator operating mode.
1562 unsigned int regulator_get_mode(struct regulator *regulator)
1564 return _regulator_get_mode(regulator->rdev);
1566 EXPORT_SYMBOL_GPL(regulator_get_mode);
1569 * regulator_set_optimum_mode - set regulator optimum operating mode
1570 * @regulator: regulator source
1571 * @uA_load: load current
1573 * Notifies the regulator core of a new device load. This is then used by
1574 * DRMS (if enabled by constraints) to set the most efficient regulator
1575 * operating mode for the new regulator loading.
1577 * Consumer devices notify their supply regulator of the maximum power
1578 * they will require (can be taken from device datasheet in the power
1579 * consumption tables) when they change operational status and hence power
1580 * state. Examples of operational state changes that can affect power
1581 * consumption are :-
1583 * o Device is opened / closed.
1584 * o Device I/O is about to begin or has just finished.
1585 * o Device is idling in between work.
1587 * This information is also exported via sysfs to userspace.
1589 * DRMS will sum the total requested load on the regulator and change
1590 * to the most efficient operating mode if platform constraints allow.
1592 * Returns the new regulator mode or error.
1594 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1596 struct regulator_dev *rdev = regulator->rdev;
1597 struct regulator *consumer;
1598 int ret, output_uV, input_uV, total_uA_load = 0;
1599 unsigned int mode;
1601 mutex_lock(&rdev->mutex);
1603 regulator->uA_load = uA_load;
1604 ret = regulator_check_drms(rdev);
1605 if (ret < 0)
1606 goto out;
1607 ret = -EINVAL;
1609 /* sanity check */
1610 if (!rdev->desc->ops->get_optimum_mode)
1611 goto out;
1613 /* get output voltage */
1614 output_uV = rdev->desc->ops->get_voltage(rdev);
1615 if (output_uV <= 0) {
1616 printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1617 __func__, rdev->desc->name);
1618 goto out;
1621 /* get input voltage */
1622 if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1623 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1624 else
1625 input_uV = rdev->constraints->input_uV;
1626 if (input_uV <= 0) {
1627 printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1628 __func__, rdev->desc->name);
1629 goto out;
1632 /* calc total requested load for this regulator */
1633 list_for_each_entry(consumer, &rdev->consumer_list, list)
1634 total_uA_load += consumer->uA_load;
1636 mode = rdev->desc->ops->get_optimum_mode(rdev,
1637 input_uV, output_uV,
1638 total_uA_load);
1639 ret = regulator_check_mode(rdev, mode);
1640 if (ret < 0) {
1641 printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1642 " %d uA %d -> %d uV\n", __func__, rdev->desc->name,
1643 total_uA_load, input_uV, output_uV);
1644 goto out;
1647 ret = rdev->desc->ops->set_mode(rdev, mode);
1648 if (ret < 0) {
1649 printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1650 __func__, mode, rdev->desc->name);
1651 goto out;
1653 ret = mode;
1654 out:
1655 mutex_unlock(&rdev->mutex);
1656 return ret;
1658 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1661 * regulator_register_notifier - register regulator event notifier
1662 * @regulator: regulator source
1663 * @nb: notifier block
1665 * Register notifier block to receive regulator events.
1667 int regulator_register_notifier(struct regulator *regulator,
1668 struct notifier_block *nb)
1670 return blocking_notifier_chain_register(&regulator->rdev->notifier,
1671 nb);
1673 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1676 * regulator_unregister_notifier - unregister regulator event notifier
1677 * @regulator: regulator source
1678 * @nb: notifier block
1680 * Unregister regulator event notifier block.
1682 int regulator_unregister_notifier(struct regulator *regulator,
1683 struct notifier_block *nb)
1685 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1686 nb);
1688 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1690 /* notify regulator consumers and downstream regulator consumers.
1691 * Note mutex must be held by caller.
1693 static void _notifier_call_chain(struct regulator_dev *rdev,
1694 unsigned long event, void *data)
1696 struct regulator_dev *_rdev;
1698 /* call rdev chain first */
1699 blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1701 /* now notify regulator we supply */
1702 list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1703 mutex_lock(&_rdev->mutex);
1704 _notifier_call_chain(_rdev, event, data);
1705 mutex_unlock(&_rdev->mutex);
1710 * regulator_bulk_get - get multiple regulator consumers
1712 * @dev: Device to supply
1713 * @num_consumers: Number of consumers to register
1714 * @consumers: Configuration of consumers; clients are stored here.
1716 * @return 0 on success, an errno on failure.
1718 * This helper function allows drivers to get several regulator
1719 * consumers in one operation. If any of the regulators cannot be
1720 * acquired then any regulators that were allocated will be freed
1721 * before returning to the caller.
1723 int regulator_bulk_get(struct device *dev, int num_consumers,
1724 struct regulator_bulk_data *consumers)
1726 int i;
1727 int ret;
1729 for (i = 0; i < num_consumers; i++)
1730 consumers[i].consumer = NULL;
1732 for (i = 0; i < num_consumers; i++) {
1733 consumers[i].consumer = regulator_get(dev,
1734 consumers[i].supply);
1735 if (IS_ERR(consumers[i].consumer)) {
1736 dev_err(dev, "Failed to get supply '%s'\n",
1737 consumers[i].supply);
1738 ret = PTR_ERR(consumers[i].consumer);
1739 consumers[i].consumer = NULL;
1740 goto err;
1744 return 0;
1746 err:
1747 for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1748 regulator_put(consumers[i].consumer);
1750 return ret;
1752 EXPORT_SYMBOL_GPL(regulator_bulk_get);
1755 * regulator_bulk_enable - enable multiple regulator consumers
1757 * @num_consumers: Number of consumers
1758 * @consumers: Consumer data; clients are stored here.
1759 * @return 0 on success, an errno on failure
1761 * This convenience API allows consumers to enable multiple regulator
1762 * clients in a single API call. If any consumers cannot be enabled
1763 * then any others that were enabled will be disabled again prior to
1764 * return.
1766 int regulator_bulk_enable(int num_consumers,
1767 struct regulator_bulk_data *consumers)
1769 int i;
1770 int ret;
1772 for (i = 0; i < num_consumers; i++) {
1773 ret = regulator_enable(consumers[i].consumer);
1774 if (ret != 0)
1775 goto err;
1778 return 0;
1780 err:
1781 printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply);
1782 for (i = 0; i < num_consumers; i++)
1783 regulator_disable(consumers[i].consumer);
1785 return ret;
1787 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1790 * regulator_bulk_disable - disable multiple regulator consumers
1792 * @num_consumers: Number of consumers
1793 * @consumers: Consumer data; clients are stored here.
1794 * @return 0 on success, an errno on failure
1796 * This convenience API allows consumers to disable multiple regulator
1797 * clients in a single API call. If any consumers cannot be enabled
1798 * then any others that were disabled will be disabled again prior to
1799 * return.
1801 int regulator_bulk_disable(int num_consumers,
1802 struct regulator_bulk_data *consumers)
1804 int i;
1805 int ret;
1807 for (i = 0; i < num_consumers; i++) {
1808 ret = regulator_disable(consumers[i].consumer);
1809 if (ret != 0)
1810 goto err;
1813 return 0;
1815 err:
1816 printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply);
1817 for (i = 0; i < num_consumers; i++)
1818 regulator_enable(consumers[i].consumer);
1820 return ret;
1822 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
1825 * regulator_bulk_free - free multiple regulator consumers
1827 * @num_consumers: Number of consumers
1828 * @consumers: Consumer data; clients are stored here.
1830 * This convenience API allows consumers to free multiple regulator
1831 * clients in a single API call.
1833 void regulator_bulk_free(int num_consumers,
1834 struct regulator_bulk_data *consumers)
1836 int i;
1838 for (i = 0; i < num_consumers; i++) {
1839 regulator_put(consumers[i].consumer);
1840 consumers[i].consumer = NULL;
1843 EXPORT_SYMBOL_GPL(regulator_bulk_free);
1846 * regulator_notifier_call_chain - call regulator event notifier
1847 * @rdev: regulator source
1848 * @event: notifier block
1849 * @data: callback-specific data.
1851 * Called by regulator drivers to notify clients a regulator event has
1852 * occurred. We also notify regulator clients downstream.
1853 * Note lock must be held by caller.
1855 int regulator_notifier_call_chain(struct regulator_dev *rdev,
1856 unsigned long event, void *data)
1858 _notifier_call_chain(rdev, event, data);
1859 return NOTIFY_DONE;
1862 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
1865 * To avoid cluttering sysfs (and memory) with useless state, only
1866 * create attributes that can be meaningfully displayed.
1868 static int add_regulator_attributes(struct regulator_dev *rdev)
1870 struct device *dev = &rdev->dev;
1871 struct regulator_ops *ops = rdev->desc->ops;
1872 int status = 0;
1874 /* some attributes need specific methods to be displayed */
1875 if (ops->get_voltage) {
1876 status = device_create_file(dev, &dev_attr_microvolts);
1877 if (status < 0)
1878 return status;
1880 if (ops->get_current_limit) {
1881 status = device_create_file(dev, &dev_attr_microamps);
1882 if (status < 0)
1883 return status;
1885 if (ops->get_mode) {
1886 status = device_create_file(dev, &dev_attr_opmode);
1887 if (status < 0)
1888 return status;
1890 if (ops->is_enabled) {
1891 status = device_create_file(dev, &dev_attr_state);
1892 if (status < 0)
1893 return status;
1895 if (ops->get_status) {
1896 status = device_create_file(dev, &dev_attr_status);
1897 if (status < 0)
1898 return status;
1901 /* some attributes are type-specific */
1902 if (rdev->desc->type == REGULATOR_CURRENT) {
1903 status = device_create_file(dev, &dev_attr_requested_microamps);
1904 if (status < 0)
1905 return status;
1908 /* all the other attributes exist to support constraints;
1909 * don't show them if there are no constraints, or if the
1910 * relevant supporting methods are missing.
1912 if (!rdev->constraints)
1913 return status;
1915 /* constraints need specific supporting methods */
1916 if (ops->set_voltage) {
1917 status = device_create_file(dev, &dev_attr_min_microvolts);
1918 if (status < 0)
1919 return status;
1920 status = device_create_file(dev, &dev_attr_max_microvolts);
1921 if (status < 0)
1922 return status;
1924 if (ops->set_current_limit) {
1925 status = device_create_file(dev, &dev_attr_min_microamps);
1926 if (status < 0)
1927 return status;
1928 status = device_create_file(dev, &dev_attr_max_microamps);
1929 if (status < 0)
1930 return status;
1933 /* suspend mode constraints need multiple supporting methods */
1934 if (!(ops->set_suspend_enable && ops->set_suspend_disable))
1935 return status;
1937 status = device_create_file(dev, &dev_attr_suspend_standby_state);
1938 if (status < 0)
1939 return status;
1940 status = device_create_file(dev, &dev_attr_suspend_mem_state);
1941 if (status < 0)
1942 return status;
1943 status = device_create_file(dev, &dev_attr_suspend_disk_state);
1944 if (status < 0)
1945 return status;
1947 if (ops->set_suspend_voltage) {
1948 status = device_create_file(dev,
1949 &dev_attr_suspend_standby_microvolts);
1950 if (status < 0)
1951 return status;
1952 status = device_create_file(dev,
1953 &dev_attr_suspend_mem_microvolts);
1954 if (status < 0)
1955 return status;
1956 status = device_create_file(dev,
1957 &dev_attr_suspend_disk_microvolts);
1958 if (status < 0)
1959 return status;
1962 if (ops->set_suspend_mode) {
1963 status = device_create_file(dev,
1964 &dev_attr_suspend_standby_mode);
1965 if (status < 0)
1966 return status;
1967 status = device_create_file(dev,
1968 &dev_attr_suspend_mem_mode);
1969 if (status < 0)
1970 return status;
1971 status = device_create_file(dev,
1972 &dev_attr_suspend_disk_mode);
1973 if (status < 0)
1974 return status;
1977 return status;
1981 * regulator_register - register regulator
1982 * @regulator_desc: regulator to register
1983 * @dev: struct device for the regulator
1984 * @init_data: platform provided init data, passed through by driver
1985 * @driver_data: private regulator data
1987 * Called by regulator drivers to register a regulator.
1988 * Returns 0 on success.
1990 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
1991 struct device *dev, struct regulator_init_data *init_data,
1992 void *driver_data)
1994 static atomic_t regulator_no = ATOMIC_INIT(0);
1995 struct regulator_dev *rdev;
1996 int ret, i;
1998 if (regulator_desc == NULL)
1999 return ERR_PTR(-EINVAL);
2001 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2002 return ERR_PTR(-EINVAL);
2004 if (!regulator_desc->type == REGULATOR_VOLTAGE &&
2005 !regulator_desc->type == REGULATOR_CURRENT)
2006 return ERR_PTR(-EINVAL);
2008 if (!init_data)
2009 return ERR_PTR(-EINVAL);
2011 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2012 if (rdev == NULL)
2013 return ERR_PTR(-ENOMEM);
2015 mutex_lock(&regulator_list_mutex);
2017 mutex_init(&rdev->mutex);
2018 rdev->reg_data = driver_data;
2019 rdev->owner = regulator_desc->owner;
2020 rdev->desc = regulator_desc;
2021 INIT_LIST_HEAD(&rdev->consumer_list);
2022 INIT_LIST_HEAD(&rdev->supply_list);
2023 INIT_LIST_HEAD(&rdev->list);
2024 INIT_LIST_HEAD(&rdev->slist);
2025 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2027 /* preform any regulator specific init */
2028 if (init_data->regulator_init) {
2029 ret = init_data->regulator_init(rdev->reg_data);
2030 if (ret < 0)
2031 goto clean;
2034 /* register with sysfs */
2035 rdev->dev.class = &regulator_class;
2036 rdev->dev.parent = dev;
2037 dev_set_name(&rdev->dev, "regulator.%d",
2038 atomic_inc_return(&regulator_no) - 1);
2039 ret = device_register(&rdev->dev);
2040 if (ret != 0)
2041 goto clean;
2043 dev_set_drvdata(&rdev->dev, rdev);
2045 /* set regulator constraints */
2046 ret = set_machine_constraints(rdev, &init_data->constraints);
2047 if (ret < 0)
2048 goto scrub;
2050 /* add attributes supported by this regulator */
2051 ret = add_regulator_attributes(rdev);
2052 if (ret < 0)
2053 goto scrub;
2055 /* set supply regulator if it exists */
2056 if (init_data->supply_regulator_dev) {
2057 ret = set_supply(rdev,
2058 dev_get_drvdata(init_data->supply_regulator_dev));
2059 if (ret < 0)
2060 goto scrub;
2063 /* add consumers devices */
2064 for (i = 0; i < init_data->num_consumer_supplies; i++) {
2065 ret = set_consumer_device_supply(rdev,
2066 init_data->consumer_supplies[i].dev,
2067 init_data->consumer_supplies[i].supply);
2068 if (ret < 0) {
2069 for (--i; i >= 0; i--)
2070 unset_consumer_device_supply(rdev,
2071 init_data->consumer_supplies[i].dev);
2072 goto scrub;
2076 list_add(&rdev->list, &regulator_list);
2077 out:
2078 mutex_unlock(&regulator_list_mutex);
2079 return rdev;
2081 scrub:
2082 device_unregister(&rdev->dev);
2083 clean:
2084 kfree(rdev);
2085 rdev = ERR_PTR(ret);
2086 goto out;
2088 EXPORT_SYMBOL_GPL(regulator_register);
2091 * regulator_unregister - unregister regulator
2092 * @rdev: regulator to unregister
2094 * Called by regulator drivers to unregister a regulator.
2096 void regulator_unregister(struct regulator_dev *rdev)
2098 if (rdev == NULL)
2099 return;
2101 mutex_lock(&regulator_list_mutex);
2102 unset_regulator_supplies(rdev);
2103 list_del(&rdev->list);
2104 if (rdev->supply)
2105 sysfs_remove_link(&rdev->dev.kobj, "supply");
2106 device_unregister(&rdev->dev);
2107 mutex_unlock(&regulator_list_mutex);
2109 EXPORT_SYMBOL_GPL(regulator_unregister);
2112 * regulator_suspend_prepare - prepare regulators for system wide suspend
2113 * @state: system suspend state
2115 * Configure each regulator with it's suspend operating parameters for state.
2116 * This will usually be called by machine suspend code prior to supending.
2118 int regulator_suspend_prepare(suspend_state_t state)
2120 struct regulator_dev *rdev;
2121 int ret = 0;
2123 /* ON is handled by regulator active state */
2124 if (state == PM_SUSPEND_ON)
2125 return -EINVAL;
2127 mutex_lock(&regulator_list_mutex);
2128 list_for_each_entry(rdev, &regulator_list, list) {
2130 mutex_lock(&rdev->mutex);
2131 ret = suspend_prepare(rdev, state);
2132 mutex_unlock(&rdev->mutex);
2134 if (ret < 0) {
2135 printk(KERN_ERR "%s: failed to prepare %s\n",
2136 __func__, rdev->desc->name);
2137 goto out;
2140 out:
2141 mutex_unlock(&regulator_list_mutex);
2142 return ret;
2144 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2147 * regulator_has_full_constraints - the system has fully specified constraints
2149 * Calling this function will cause the regulator API to disable all
2150 * regulators which have a zero use count and don't have an always_on
2151 * constraint in a late_initcall.
2153 * The intention is that this will become the default behaviour in a
2154 * future kernel release so users are encouraged to use this facility
2155 * now.
2157 void regulator_has_full_constraints(void)
2159 has_full_constraints = 1;
2161 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2164 * rdev_get_drvdata - get rdev regulator driver data
2165 * @rdev: regulator
2167 * Get rdev regulator driver private data. This call can be used in the
2168 * regulator driver context.
2170 void *rdev_get_drvdata(struct regulator_dev *rdev)
2172 return rdev->reg_data;
2174 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2177 * regulator_get_drvdata - get regulator driver data
2178 * @regulator: regulator
2180 * Get regulator driver private data. This call can be used in the consumer
2181 * driver context when non API regulator specific functions need to be called.
2183 void *regulator_get_drvdata(struct regulator *regulator)
2185 return regulator->rdev->reg_data;
2187 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2190 * regulator_set_drvdata - set regulator driver data
2191 * @regulator: regulator
2192 * @data: data
2194 void regulator_set_drvdata(struct regulator *regulator, void *data)
2196 regulator->rdev->reg_data = data;
2198 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2201 * regulator_get_id - get regulator ID
2202 * @rdev: regulator
2204 int rdev_get_id(struct regulator_dev *rdev)
2206 return rdev->desc->id;
2208 EXPORT_SYMBOL_GPL(rdev_get_id);
2210 struct device *rdev_get_dev(struct regulator_dev *rdev)
2212 return &rdev->dev;
2214 EXPORT_SYMBOL_GPL(rdev_get_dev);
2216 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2218 return reg_init_data->driver_data;
2220 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2222 static int __init regulator_init(void)
2224 printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2225 return class_register(&regulator_class);
2228 /* init early to allow our consumers to complete system booting */
2229 core_initcall(regulator_init);
2231 static int __init regulator_init_complete(void)
2233 struct regulator_dev *rdev;
2234 struct regulator_ops *ops;
2235 struct regulation_constraints *c;
2236 int enabled, ret;
2237 const char *name;
2239 mutex_lock(&regulator_list_mutex);
2241 /* If we have a full configuration then disable any regulators
2242 * which are not in use or always_on. This will become the
2243 * default behaviour in the future.
2245 list_for_each_entry(rdev, &regulator_list, list) {
2246 ops = rdev->desc->ops;
2247 c = rdev->constraints;
2249 if (c->name)
2250 name = c->name;
2251 else if (rdev->desc->name)
2252 name = rdev->desc->name;
2253 else
2254 name = "regulator";
2256 if (!ops->disable || c->always_on)
2257 continue;
2259 mutex_lock(&rdev->mutex);
2261 if (rdev->use_count)
2262 goto unlock;
2264 /* If we can't read the status assume it's on. */
2265 if (ops->is_enabled)
2266 enabled = ops->is_enabled(rdev);
2267 else
2268 enabled = 1;
2270 if (!enabled)
2271 goto unlock;
2273 if (has_full_constraints) {
2274 /* We log since this may kill the system if it
2275 * goes wrong. */
2276 printk(KERN_INFO "%s: disabling %s\n",
2277 __func__, name);
2278 ret = ops->disable(rdev);
2279 if (ret != 0) {
2280 printk(KERN_ERR
2281 "%s: couldn't disable %s: %d\n",
2282 __func__, name, ret);
2284 } else {
2285 /* The intention is that in future we will
2286 * assume that full constraints are provided
2287 * so warn even if we aren't going to do
2288 * anything here.
2290 printk(KERN_WARNING
2291 "%s: incomplete constraints, leaving %s on\n",
2292 __func__, name);
2295 unlock:
2296 mutex_unlock(&rdev->mutex);
2299 mutex_unlock(&regulator_list_mutex);
2301 return 0;
2303 late_initcall(regulator_init_complete);