The discovered bit in PGCCSR register indicates if the device has been
[linux-2.6/next.git] / drivers / dma / imx-sdma.c
blobb5cc27dc9a51d20c87b7648b093d6450e28fe00d
1 /*
2 * drivers/dma/imx-sdma.c
4 * This file contains a driver for the Freescale Smart DMA engine
6 * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
8 * Based on code from Freescale:
10 * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
12 * The code contained herein is licensed under the GNU General Public
13 * License. You may obtain a copy of the GNU General Public License
14 * Version 2 or later at the following locations:
16 * http://www.opensource.org/licenses/gpl-license.html
17 * http://www.gnu.org/copyleft/gpl.html
20 #include <linux/init.h>
21 #include <linux/types.h>
22 #include <linux/mm.h>
23 #include <linux/interrupt.h>
24 #include <linux/clk.h>
25 #include <linux/wait.h>
26 #include <linux/sched.h>
27 #include <linux/semaphore.h>
28 #include <linux/spinlock.h>
29 #include <linux/device.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/firmware.h>
32 #include <linux/slab.h>
33 #include <linux/platform_device.h>
34 #include <linux/dmaengine.h>
35 #include <linux/of.h>
36 #include <linux/of_device.h>
38 #include <asm/irq.h>
39 #include <mach/sdma.h>
40 #include <mach/dma.h>
41 #include <mach/hardware.h>
43 /* SDMA registers */
44 #define SDMA_H_C0PTR 0x000
45 #define SDMA_H_INTR 0x004
46 #define SDMA_H_STATSTOP 0x008
47 #define SDMA_H_START 0x00c
48 #define SDMA_H_EVTOVR 0x010
49 #define SDMA_H_DSPOVR 0x014
50 #define SDMA_H_HOSTOVR 0x018
51 #define SDMA_H_EVTPEND 0x01c
52 #define SDMA_H_DSPENBL 0x020
53 #define SDMA_H_RESET 0x024
54 #define SDMA_H_EVTERR 0x028
55 #define SDMA_H_INTRMSK 0x02c
56 #define SDMA_H_PSW 0x030
57 #define SDMA_H_EVTERRDBG 0x034
58 #define SDMA_H_CONFIG 0x038
59 #define SDMA_ONCE_ENB 0x040
60 #define SDMA_ONCE_DATA 0x044
61 #define SDMA_ONCE_INSTR 0x048
62 #define SDMA_ONCE_STAT 0x04c
63 #define SDMA_ONCE_CMD 0x050
64 #define SDMA_EVT_MIRROR 0x054
65 #define SDMA_ILLINSTADDR 0x058
66 #define SDMA_CHN0ADDR 0x05c
67 #define SDMA_ONCE_RTB 0x060
68 #define SDMA_XTRIG_CONF1 0x070
69 #define SDMA_XTRIG_CONF2 0x074
70 #define SDMA_CHNENBL0_IMX35 0x200
71 #define SDMA_CHNENBL0_IMX31 0x080
72 #define SDMA_CHNPRI_0 0x100
75 * Buffer descriptor status values.
77 #define BD_DONE 0x01
78 #define BD_WRAP 0x02
79 #define BD_CONT 0x04
80 #define BD_INTR 0x08
81 #define BD_RROR 0x10
82 #define BD_LAST 0x20
83 #define BD_EXTD 0x80
86 * Data Node descriptor status values.
88 #define DND_END_OF_FRAME 0x80
89 #define DND_END_OF_XFER 0x40
90 #define DND_DONE 0x20
91 #define DND_UNUSED 0x01
94 * IPCV2 descriptor status values.
96 #define BD_IPCV2_END_OF_FRAME 0x40
98 #define IPCV2_MAX_NODES 50
100 * Error bit set in the CCB status field by the SDMA,
101 * in setbd routine, in case of a transfer error
103 #define DATA_ERROR 0x10000000
106 * Buffer descriptor commands.
108 #define C0_ADDR 0x01
109 #define C0_LOAD 0x02
110 #define C0_DUMP 0x03
111 #define C0_SETCTX 0x07
112 #define C0_GETCTX 0x03
113 #define C0_SETDM 0x01
114 #define C0_SETPM 0x04
115 #define C0_GETDM 0x02
116 #define C0_GETPM 0x08
118 * Change endianness indicator in the BD command field
120 #define CHANGE_ENDIANNESS 0x80
123 * Mode/Count of data node descriptors - IPCv2
125 struct sdma_mode_count {
126 u32 count : 16; /* size of the buffer pointed by this BD */
127 u32 status : 8; /* E,R,I,C,W,D status bits stored here */
128 u32 command : 8; /* command mostlky used for channel 0 */
132 * Buffer descriptor
134 struct sdma_buffer_descriptor {
135 struct sdma_mode_count mode;
136 u32 buffer_addr; /* address of the buffer described */
137 u32 ext_buffer_addr; /* extended buffer address */
138 } __attribute__ ((packed));
141 * struct sdma_channel_control - Channel control Block
143 * @current_bd_ptr current buffer descriptor processed
144 * @base_bd_ptr first element of buffer descriptor array
145 * @unused padding. The SDMA engine expects an array of 128 byte
146 * control blocks
148 struct sdma_channel_control {
149 u32 current_bd_ptr;
150 u32 base_bd_ptr;
151 u32 unused[2];
152 } __attribute__ ((packed));
155 * struct sdma_state_registers - SDMA context for a channel
157 * @pc: program counter
158 * @t: test bit: status of arithmetic & test instruction
159 * @rpc: return program counter
160 * @sf: source fault while loading data
161 * @spc: loop start program counter
162 * @df: destination fault while storing data
163 * @epc: loop end program counter
164 * @lm: loop mode
166 struct sdma_state_registers {
167 u32 pc :14;
168 u32 unused1: 1;
169 u32 t : 1;
170 u32 rpc :14;
171 u32 unused0: 1;
172 u32 sf : 1;
173 u32 spc :14;
174 u32 unused2: 1;
175 u32 df : 1;
176 u32 epc :14;
177 u32 lm : 2;
178 } __attribute__ ((packed));
181 * struct sdma_context_data - sdma context specific to a channel
183 * @channel_state: channel state bits
184 * @gReg: general registers
185 * @mda: burst dma destination address register
186 * @msa: burst dma source address register
187 * @ms: burst dma status register
188 * @md: burst dma data register
189 * @pda: peripheral dma destination address register
190 * @psa: peripheral dma source address register
191 * @ps: peripheral dma status register
192 * @pd: peripheral dma data register
193 * @ca: CRC polynomial register
194 * @cs: CRC accumulator register
195 * @dda: dedicated core destination address register
196 * @dsa: dedicated core source address register
197 * @ds: dedicated core status register
198 * @dd: dedicated core data register
200 struct sdma_context_data {
201 struct sdma_state_registers channel_state;
202 u32 gReg[8];
203 u32 mda;
204 u32 msa;
205 u32 ms;
206 u32 md;
207 u32 pda;
208 u32 psa;
209 u32 ps;
210 u32 pd;
211 u32 ca;
212 u32 cs;
213 u32 dda;
214 u32 dsa;
215 u32 ds;
216 u32 dd;
217 u32 scratch0;
218 u32 scratch1;
219 u32 scratch2;
220 u32 scratch3;
221 u32 scratch4;
222 u32 scratch5;
223 u32 scratch6;
224 u32 scratch7;
225 } __attribute__ ((packed));
227 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
229 struct sdma_engine;
232 * struct sdma_channel - housekeeping for a SDMA channel
234 * @sdma pointer to the SDMA engine for this channel
235 * @channel the channel number, matches dmaengine chan_id + 1
236 * @direction transfer type. Needed for setting SDMA script
237 * @peripheral_type Peripheral type. Needed for setting SDMA script
238 * @event_id0 aka dma request line
239 * @event_id1 for channels that use 2 events
240 * @word_size peripheral access size
241 * @buf_tail ID of the buffer that was processed
242 * @done channel completion
243 * @num_bd max NUM_BD. number of descriptors currently handling
245 struct sdma_channel {
246 struct sdma_engine *sdma;
247 unsigned int channel;
248 enum dma_data_direction direction;
249 enum sdma_peripheral_type peripheral_type;
250 unsigned int event_id0;
251 unsigned int event_id1;
252 enum dma_slave_buswidth word_size;
253 unsigned int buf_tail;
254 struct completion done;
255 unsigned int num_bd;
256 struct sdma_buffer_descriptor *bd;
257 dma_addr_t bd_phys;
258 unsigned int pc_from_device, pc_to_device;
259 unsigned long flags;
260 dma_addr_t per_address;
261 u32 event_mask0, event_mask1;
262 u32 watermark_level;
263 u32 shp_addr, per_addr;
264 struct dma_chan chan;
265 spinlock_t lock;
266 struct dma_async_tx_descriptor desc;
267 dma_cookie_t last_completed;
268 enum dma_status status;
271 #define IMX_DMA_SG_LOOP (1 << 0)
273 #define MAX_DMA_CHANNELS 32
274 #define MXC_SDMA_DEFAULT_PRIORITY 1
275 #define MXC_SDMA_MIN_PRIORITY 1
276 #define MXC_SDMA_MAX_PRIORITY 7
278 #define SDMA_FIRMWARE_MAGIC 0x414d4453
281 * struct sdma_firmware_header - Layout of the firmware image
283 * @magic "SDMA"
284 * @version_major increased whenever layout of struct sdma_script_start_addrs
285 * changes.
286 * @version_minor firmware minor version (for binary compatible changes)
287 * @script_addrs_start offset of struct sdma_script_start_addrs in this image
288 * @num_script_addrs Number of script addresses in this image
289 * @ram_code_start offset of SDMA ram image in this firmware image
290 * @ram_code_size size of SDMA ram image
291 * @script_addrs Stores the start address of the SDMA scripts
292 * (in SDMA memory space)
294 struct sdma_firmware_header {
295 u32 magic;
296 u32 version_major;
297 u32 version_minor;
298 u32 script_addrs_start;
299 u32 num_script_addrs;
300 u32 ram_code_start;
301 u32 ram_code_size;
304 enum sdma_devtype {
305 IMX31_SDMA, /* runs on i.mx31 */
306 IMX35_SDMA, /* runs on i.mx35 and later */
309 struct sdma_engine {
310 struct device *dev;
311 struct device_dma_parameters dma_parms;
312 struct sdma_channel channel[MAX_DMA_CHANNELS];
313 struct sdma_channel_control *channel_control;
314 void __iomem *regs;
315 enum sdma_devtype devtype;
316 unsigned int num_events;
317 struct sdma_context_data *context;
318 dma_addr_t context_phys;
319 struct dma_device dma_device;
320 struct clk *clk;
321 struct mutex channel_0_lock;
322 struct sdma_script_start_addrs *script_addrs;
325 static struct platform_device_id sdma_devtypes[] = {
327 .name = "imx31-sdma",
328 .driver_data = IMX31_SDMA,
329 }, {
330 .name = "imx35-sdma",
331 .driver_data = IMX35_SDMA,
332 }, {
333 /* sentinel */
336 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
338 static const struct of_device_id sdma_dt_ids[] = {
339 { .compatible = "fsl,imx31-sdma", .data = &sdma_devtypes[IMX31_SDMA], },
340 { .compatible = "fsl,imx35-sdma", .data = &sdma_devtypes[IMX35_SDMA], },
341 { /* sentinel */ }
343 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
345 #define SDMA_H_CONFIG_DSPDMA (1 << 12) /* indicates if the DSPDMA is used */
346 #define SDMA_H_CONFIG_RTD_PINS (1 << 11) /* indicates if Real-Time Debug pins are enabled */
347 #define SDMA_H_CONFIG_ACR (1 << 4) /* indicates if AHB freq /core freq = 2 or 1 */
348 #define SDMA_H_CONFIG_CSM (3) /* indicates which context switch mode is selected*/
350 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
352 u32 chnenbl0 = (sdma->devtype == IMX31_SDMA ? SDMA_CHNENBL0_IMX31 :
353 SDMA_CHNENBL0_IMX35);
354 return chnenbl0 + event * 4;
357 static int sdma_config_ownership(struct sdma_channel *sdmac,
358 bool event_override, bool mcu_override, bool dsp_override)
360 struct sdma_engine *sdma = sdmac->sdma;
361 int channel = sdmac->channel;
362 u32 evt, mcu, dsp;
364 if (event_override && mcu_override && dsp_override)
365 return -EINVAL;
367 evt = __raw_readl(sdma->regs + SDMA_H_EVTOVR);
368 mcu = __raw_readl(sdma->regs + SDMA_H_HOSTOVR);
369 dsp = __raw_readl(sdma->regs + SDMA_H_DSPOVR);
371 if (dsp_override)
372 dsp &= ~(1 << channel);
373 else
374 dsp |= (1 << channel);
376 if (event_override)
377 evt &= ~(1 << channel);
378 else
379 evt |= (1 << channel);
381 if (mcu_override)
382 mcu &= ~(1 << channel);
383 else
384 mcu |= (1 << channel);
386 __raw_writel(evt, sdma->regs + SDMA_H_EVTOVR);
387 __raw_writel(mcu, sdma->regs + SDMA_H_HOSTOVR);
388 __raw_writel(dsp, sdma->regs + SDMA_H_DSPOVR);
390 return 0;
394 * sdma_run_channel - run a channel and wait till it's done
396 static int sdma_run_channel(struct sdma_channel *sdmac)
398 struct sdma_engine *sdma = sdmac->sdma;
399 int channel = sdmac->channel;
400 int ret;
402 init_completion(&sdmac->done);
404 __raw_writel(1 << channel, sdma->regs + SDMA_H_START);
406 ret = wait_for_completion_timeout(&sdmac->done, HZ);
408 return ret ? 0 : -ETIMEDOUT;
411 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
412 u32 address)
414 struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
415 void *buf_virt;
416 dma_addr_t buf_phys;
417 int ret;
419 mutex_lock(&sdma->channel_0_lock);
421 buf_virt = dma_alloc_coherent(NULL,
422 size,
423 &buf_phys, GFP_KERNEL);
424 if (!buf_virt) {
425 ret = -ENOMEM;
426 goto err_out;
429 bd0->mode.command = C0_SETPM;
430 bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
431 bd0->mode.count = size / 2;
432 bd0->buffer_addr = buf_phys;
433 bd0->ext_buffer_addr = address;
435 memcpy(buf_virt, buf, size);
437 ret = sdma_run_channel(&sdma->channel[0]);
439 dma_free_coherent(NULL, size, buf_virt, buf_phys);
441 err_out:
442 mutex_unlock(&sdma->channel_0_lock);
444 return ret;
447 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
449 struct sdma_engine *sdma = sdmac->sdma;
450 int channel = sdmac->channel;
451 u32 val;
452 u32 chnenbl = chnenbl_ofs(sdma, event);
454 val = __raw_readl(sdma->regs + chnenbl);
455 val |= (1 << channel);
456 __raw_writel(val, sdma->regs + chnenbl);
459 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
461 struct sdma_engine *sdma = sdmac->sdma;
462 int channel = sdmac->channel;
463 u32 chnenbl = chnenbl_ofs(sdma, event);
464 u32 val;
466 val = __raw_readl(sdma->regs + chnenbl);
467 val &= ~(1 << channel);
468 __raw_writel(val, sdma->regs + chnenbl);
471 static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
473 struct sdma_buffer_descriptor *bd;
476 * loop mode. Iterate over descriptors, re-setup them and
477 * call callback function.
479 while (1) {
480 bd = &sdmac->bd[sdmac->buf_tail];
482 if (bd->mode.status & BD_DONE)
483 break;
485 if (bd->mode.status & BD_RROR)
486 sdmac->status = DMA_ERROR;
487 else
488 sdmac->status = DMA_IN_PROGRESS;
490 bd->mode.status |= BD_DONE;
491 sdmac->buf_tail++;
492 sdmac->buf_tail %= sdmac->num_bd;
494 if (sdmac->desc.callback)
495 sdmac->desc.callback(sdmac->desc.callback_param);
499 static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
501 struct sdma_buffer_descriptor *bd;
502 int i, error = 0;
505 * non loop mode. Iterate over all descriptors, collect
506 * errors and call callback function
508 for (i = 0; i < sdmac->num_bd; i++) {
509 bd = &sdmac->bd[i];
511 if (bd->mode.status & (BD_DONE | BD_RROR))
512 error = -EIO;
515 if (error)
516 sdmac->status = DMA_ERROR;
517 else
518 sdmac->status = DMA_SUCCESS;
520 if (sdmac->desc.callback)
521 sdmac->desc.callback(sdmac->desc.callback_param);
522 sdmac->last_completed = sdmac->desc.cookie;
525 static void mxc_sdma_handle_channel(struct sdma_channel *sdmac)
527 complete(&sdmac->done);
529 /* not interested in channel 0 interrupts */
530 if (sdmac->channel == 0)
531 return;
533 if (sdmac->flags & IMX_DMA_SG_LOOP)
534 sdma_handle_channel_loop(sdmac);
535 else
536 mxc_sdma_handle_channel_normal(sdmac);
539 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
541 struct sdma_engine *sdma = dev_id;
542 u32 stat;
544 stat = __raw_readl(sdma->regs + SDMA_H_INTR);
545 __raw_writel(stat, sdma->regs + SDMA_H_INTR);
547 while (stat) {
548 int channel = fls(stat) - 1;
549 struct sdma_channel *sdmac = &sdma->channel[channel];
551 mxc_sdma_handle_channel(sdmac);
553 stat &= ~(1 << channel);
556 return IRQ_HANDLED;
560 * sets the pc of SDMA script according to the peripheral type
562 static void sdma_get_pc(struct sdma_channel *sdmac,
563 enum sdma_peripheral_type peripheral_type)
565 struct sdma_engine *sdma = sdmac->sdma;
566 int per_2_emi = 0, emi_2_per = 0;
568 * These are needed once we start to support transfers between
569 * two peripherals or memory-to-memory transfers
571 int per_2_per = 0, emi_2_emi = 0;
573 sdmac->pc_from_device = 0;
574 sdmac->pc_to_device = 0;
576 switch (peripheral_type) {
577 case IMX_DMATYPE_MEMORY:
578 emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
579 break;
580 case IMX_DMATYPE_DSP:
581 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
582 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
583 break;
584 case IMX_DMATYPE_FIRI:
585 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
586 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
587 break;
588 case IMX_DMATYPE_UART:
589 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
590 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
591 break;
592 case IMX_DMATYPE_UART_SP:
593 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
594 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
595 break;
596 case IMX_DMATYPE_ATA:
597 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
598 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
599 break;
600 case IMX_DMATYPE_CSPI:
601 case IMX_DMATYPE_EXT:
602 case IMX_DMATYPE_SSI:
603 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
604 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
605 break;
606 case IMX_DMATYPE_SSI_SP:
607 case IMX_DMATYPE_MMC:
608 case IMX_DMATYPE_SDHC:
609 case IMX_DMATYPE_CSPI_SP:
610 case IMX_DMATYPE_ESAI:
611 case IMX_DMATYPE_MSHC_SP:
612 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
613 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
614 break;
615 case IMX_DMATYPE_ASRC:
616 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
617 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
618 per_2_per = sdma->script_addrs->per_2_per_addr;
619 break;
620 case IMX_DMATYPE_MSHC:
621 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
622 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
623 break;
624 case IMX_DMATYPE_CCM:
625 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
626 break;
627 case IMX_DMATYPE_SPDIF:
628 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
629 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
630 break;
631 case IMX_DMATYPE_IPU_MEMORY:
632 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
633 break;
634 default:
635 break;
638 sdmac->pc_from_device = per_2_emi;
639 sdmac->pc_to_device = emi_2_per;
642 static int sdma_load_context(struct sdma_channel *sdmac)
644 struct sdma_engine *sdma = sdmac->sdma;
645 int channel = sdmac->channel;
646 int load_address;
647 struct sdma_context_data *context = sdma->context;
648 struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
649 int ret;
651 if (sdmac->direction == DMA_FROM_DEVICE) {
652 load_address = sdmac->pc_from_device;
653 } else {
654 load_address = sdmac->pc_to_device;
657 if (load_address < 0)
658 return load_address;
660 dev_dbg(sdma->dev, "load_address = %d\n", load_address);
661 dev_dbg(sdma->dev, "wml = 0x%08x\n", sdmac->watermark_level);
662 dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
663 dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
664 dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", sdmac->event_mask0);
665 dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", sdmac->event_mask1);
667 mutex_lock(&sdma->channel_0_lock);
669 memset(context, 0, sizeof(*context));
670 context->channel_state.pc = load_address;
672 /* Send by context the event mask,base address for peripheral
673 * and watermark level
675 context->gReg[0] = sdmac->event_mask1;
676 context->gReg[1] = sdmac->event_mask0;
677 context->gReg[2] = sdmac->per_addr;
678 context->gReg[6] = sdmac->shp_addr;
679 context->gReg[7] = sdmac->watermark_level;
681 bd0->mode.command = C0_SETDM;
682 bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
683 bd0->mode.count = sizeof(*context) / 4;
684 bd0->buffer_addr = sdma->context_phys;
685 bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
687 ret = sdma_run_channel(&sdma->channel[0]);
689 mutex_unlock(&sdma->channel_0_lock);
691 return ret;
694 static void sdma_disable_channel(struct sdma_channel *sdmac)
696 struct sdma_engine *sdma = sdmac->sdma;
697 int channel = sdmac->channel;
699 __raw_writel(1 << channel, sdma->regs + SDMA_H_STATSTOP);
700 sdmac->status = DMA_ERROR;
703 static int sdma_config_channel(struct sdma_channel *sdmac)
705 int ret;
707 sdma_disable_channel(sdmac);
709 sdmac->event_mask0 = 0;
710 sdmac->event_mask1 = 0;
711 sdmac->shp_addr = 0;
712 sdmac->per_addr = 0;
714 if (sdmac->event_id0) {
715 if (sdmac->event_id0 > 32)
716 return -EINVAL;
717 sdma_event_enable(sdmac, sdmac->event_id0);
720 switch (sdmac->peripheral_type) {
721 case IMX_DMATYPE_DSP:
722 sdma_config_ownership(sdmac, false, true, true);
723 break;
724 case IMX_DMATYPE_MEMORY:
725 sdma_config_ownership(sdmac, false, true, false);
726 break;
727 default:
728 sdma_config_ownership(sdmac, true, true, false);
729 break;
732 sdma_get_pc(sdmac, sdmac->peripheral_type);
734 if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
735 (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
736 /* Handle multiple event channels differently */
737 if (sdmac->event_id1) {
738 sdmac->event_mask1 = 1 << (sdmac->event_id1 % 32);
739 if (sdmac->event_id1 > 31)
740 sdmac->watermark_level |= 1 << 31;
741 sdmac->event_mask0 = 1 << (sdmac->event_id0 % 32);
742 if (sdmac->event_id0 > 31)
743 sdmac->watermark_level |= 1 << 30;
744 } else {
745 sdmac->event_mask0 = 1 << sdmac->event_id0;
746 sdmac->event_mask1 = 1 << (sdmac->event_id0 - 32);
748 /* Watermark Level */
749 sdmac->watermark_level |= sdmac->watermark_level;
750 /* Address */
751 sdmac->shp_addr = sdmac->per_address;
752 } else {
753 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
756 ret = sdma_load_context(sdmac);
758 return ret;
761 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
762 unsigned int priority)
764 struct sdma_engine *sdma = sdmac->sdma;
765 int channel = sdmac->channel;
767 if (priority < MXC_SDMA_MIN_PRIORITY
768 || priority > MXC_SDMA_MAX_PRIORITY) {
769 return -EINVAL;
772 __raw_writel(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
774 return 0;
777 static int sdma_request_channel(struct sdma_channel *sdmac)
779 struct sdma_engine *sdma = sdmac->sdma;
780 int channel = sdmac->channel;
781 int ret = -EBUSY;
783 sdmac->bd = dma_alloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys, GFP_KERNEL);
784 if (!sdmac->bd) {
785 ret = -ENOMEM;
786 goto out;
789 memset(sdmac->bd, 0, PAGE_SIZE);
791 sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
792 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
794 clk_enable(sdma->clk);
796 sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
798 init_completion(&sdmac->done);
800 sdmac->buf_tail = 0;
802 return 0;
803 out:
805 return ret;
808 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
810 __raw_writel(1 << channel, sdma->regs + SDMA_H_START);
813 static dma_cookie_t sdma_assign_cookie(struct sdma_channel *sdmac)
815 dma_cookie_t cookie = sdmac->chan.cookie;
817 if (++cookie < 0)
818 cookie = 1;
820 sdmac->chan.cookie = cookie;
821 sdmac->desc.cookie = cookie;
823 return cookie;
826 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
828 return container_of(chan, struct sdma_channel, chan);
831 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
833 struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
834 struct sdma_engine *sdma = sdmac->sdma;
835 dma_cookie_t cookie;
837 spin_lock_irq(&sdmac->lock);
839 cookie = sdma_assign_cookie(sdmac);
841 sdma_enable_channel(sdma, sdmac->channel);
843 spin_unlock_irq(&sdmac->lock);
845 return cookie;
848 static int sdma_alloc_chan_resources(struct dma_chan *chan)
850 struct sdma_channel *sdmac = to_sdma_chan(chan);
851 struct imx_dma_data *data = chan->private;
852 int prio, ret;
854 if (!data)
855 return -EINVAL;
857 switch (data->priority) {
858 case DMA_PRIO_HIGH:
859 prio = 3;
860 break;
861 case DMA_PRIO_MEDIUM:
862 prio = 2;
863 break;
864 case DMA_PRIO_LOW:
865 default:
866 prio = 1;
867 break;
870 sdmac->peripheral_type = data->peripheral_type;
871 sdmac->event_id0 = data->dma_request;
872 ret = sdma_set_channel_priority(sdmac, prio);
873 if (ret)
874 return ret;
876 ret = sdma_request_channel(sdmac);
877 if (ret)
878 return ret;
880 dma_async_tx_descriptor_init(&sdmac->desc, chan);
881 sdmac->desc.tx_submit = sdma_tx_submit;
882 /* txd.flags will be overwritten in prep funcs */
883 sdmac->desc.flags = DMA_CTRL_ACK;
885 return 0;
888 static void sdma_free_chan_resources(struct dma_chan *chan)
890 struct sdma_channel *sdmac = to_sdma_chan(chan);
891 struct sdma_engine *sdma = sdmac->sdma;
893 sdma_disable_channel(sdmac);
895 if (sdmac->event_id0)
896 sdma_event_disable(sdmac, sdmac->event_id0);
897 if (sdmac->event_id1)
898 sdma_event_disable(sdmac, sdmac->event_id1);
900 sdmac->event_id0 = 0;
901 sdmac->event_id1 = 0;
903 sdma_set_channel_priority(sdmac, 0);
905 dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
907 clk_disable(sdma->clk);
910 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
911 struct dma_chan *chan, struct scatterlist *sgl,
912 unsigned int sg_len, enum dma_data_direction direction,
913 unsigned long flags)
915 struct sdma_channel *sdmac = to_sdma_chan(chan);
916 struct sdma_engine *sdma = sdmac->sdma;
917 int ret, i, count;
918 int channel = sdmac->channel;
919 struct scatterlist *sg;
921 if (sdmac->status == DMA_IN_PROGRESS)
922 return NULL;
923 sdmac->status = DMA_IN_PROGRESS;
925 sdmac->flags = 0;
927 dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
928 sg_len, channel);
930 sdmac->direction = direction;
931 ret = sdma_load_context(sdmac);
932 if (ret)
933 goto err_out;
935 if (sg_len > NUM_BD) {
936 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
937 channel, sg_len, NUM_BD);
938 ret = -EINVAL;
939 goto err_out;
942 for_each_sg(sgl, sg, sg_len, i) {
943 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
944 int param;
946 bd->buffer_addr = sg->dma_address;
948 count = sg->length;
950 if (count > 0xffff) {
951 dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
952 channel, count, 0xffff);
953 ret = -EINVAL;
954 goto err_out;
957 bd->mode.count = count;
959 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
960 ret = -EINVAL;
961 goto err_out;
964 switch (sdmac->word_size) {
965 case DMA_SLAVE_BUSWIDTH_4_BYTES:
966 bd->mode.command = 0;
967 if (count & 3 || sg->dma_address & 3)
968 return NULL;
969 break;
970 case DMA_SLAVE_BUSWIDTH_2_BYTES:
971 bd->mode.command = 2;
972 if (count & 1 || sg->dma_address & 1)
973 return NULL;
974 break;
975 case DMA_SLAVE_BUSWIDTH_1_BYTE:
976 bd->mode.command = 1;
977 break;
978 default:
979 return NULL;
982 param = BD_DONE | BD_EXTD | BD_CONT;
984 if (i + 1 == sg_len) {
985 param |= BD_INTR;
986 param |= BD_LAST;
987 param &= ~BD_CONT;
990 dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
991 i, count, sg->dma_address,
992 param & BD_WRAP ? "wrap" : "",
993 param & BD_INTR ? " intr" : "");
995 bd->mode.status = param;
998 sdmac->num_bd = sg_len;
999 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1001 return &sdmac->desc;
1002 err_out:
1003 sdmac->status = DMA_ERROR;
1004 return NULL;
1007 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1008 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1009 size_t period_len, enum dma_data_direction direction)
1011 struct sdma_channel *sdmac = to_sdma_chan(chan);
1012 struct sdma_engine *sdma = sdmac->sdma;
1013 int num_periods = buf_len / period_len;
1014 int channel = sdmac->channel;
1015 int ret, i = 0, buf = 0;
1017 dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1019 if (sdmac->status == DMA_IN_PROGRESS)
1020 return NULL;
1022 sdmac->status = DMA_IN_PROGRESS;
1024 sdmac->flags |= IMX_DMA_SG_LOOP;
1025 sdmac->direction = direction;
1026 ret = sdma_load_context(sdmac);
1027 if (ret)
1028 goto err_out;
1030 if (num_periods > NUM_BD) {
1031 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1032 channel, num_periods, NUM_BD);
1033 goto err_out;
1036 if (period_len > 0xffff) {
1037 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1038 channel, period_len, 0xffff);
1039 goto err_out;
1042 while (buf < buf_len) {
1043 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1044 int param;
1046 bd->buffer_addr = dma_addr;
1048 bd->mode.count = period_len;
1050 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1051 goto err_out;
1052 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1053 bd->mode.command = 0;
1054 else
1055 bd->mode.command = sdmac->word_size;
1057 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1058 if (i + 1 == num_periods)
1059 param |= BD_WRAP;
1061 dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
1062 i, period_len, dma_addr,
1063 param & BD_WRAP ? "wrap" : "",
1064 param & BD_INTR ? " intr" : "");
1066 bd->mode.status = param;
1068 dma_addr += period_len;
1069 buf += period_len;
1071 i++;
1074 sdmac->num_bd = num_periods;
1075 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1077 return &sdmac->desc;
1078 err_out:
1079 sdmac->status = DMA_ERROR;
1080 return NULL;
1083 static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1084 unsigned long arg)
1086 struct sdma_channel *sdmac = to_sdma_chan(chan);
1087 struct dma_slave_config *dmaengine_cfg = (void *)arg;
1089 switch (cmd) {
1090 case DMA_TERMINATE_ALL:
1091 sdma_disable_channel(sdmac);
1092 return 0;
1093 case DMA_SLAVE_CONFIG:
1094 if (dmaengine_cfg->direction == DMA_FROM_DEVICE) {
1095 sdmac->per_address = dmaengine_cfg->src_addr;
1096 sdmac->watermark_level = dmaengine_cfg->src_maxburst;
1097 sdmac->word_size = dmaengine_cfg->src_addr_width;
1098 } else {
1099 sdmac->per_address = dmaengine_cfg->dst_addr;
1100 sdmac->watermark_level = dmaengine_cfg->dst_maxburst;
1101 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1103 return sdma_config_channel(sdmac);
1104 default:
1105 return -ENOSYS;
1108 return -EINVAL;
1111 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1112 dma_cookie_t cookie,
1113 struct dma_tx_state *txstate)
1115 struct sdma_channel *sdmac = to_sdma_chan(chan);
1116 dma_cookie_t last_used;
1118 last_used = chan->cookie;
1120 dma_set_tx_state(txstate, sdmac->last_completed, last_used, 0);
1122 return sdmac->status;
1125 static void sdma_issue_pending(struct dma_chan *chan)
1128 * Nothing to do. We only have a single descriptor
1132 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1134 static void sdma_add_scripts(struct sdma_engine *sdma,
1135 const struct sdma_script_start_addrs *addr)
1137 s32 *addr_arr = (u32 *)addr;
1138 s32 *saddr_arr = (u32 *)sdma->script_addrs;
1139 int i;
1141 for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1142 if (addr_arr[i] > 0)
1143 saddr_arr[i] = addr_arr[i];
1146 static void sdma_load_firmware(const struct firmware *fw, void *context)
1148 struct sdma_engine *sdma = context;
1149 const struct sdma_firmware_header *header;
1150 const struct sdma_script_start_addrs *addr;
1151 unsigned short *ram_code;
1153 if (!fw) {
1154 dev_err(sdma->dev, "firmware not found\n");
1155 return;
1158 if (fw->size < sizeof(*header))
1159 goto err_firmware;
1161 header = (struct sdma_firmware_header *)fw->data;
1163 if (header->magic != SDMA_FIRMWARE_MAGIC)
1164 goto err_firmware;
1165 if (header->ram_code_start + header->ram_code_size > fw->size)
1166 goto err_firmware;
1168 addr = (void *)header + header->script_addrs_start;
1169 ram_code = (void *)header + header->ram_code_start;
1171 clk_enable(sdma->clk);
1172 /* download the RAM image for SDMA */
1173 sdma_load_script(sdma, ram_code,
1174 header->ram_code_size,
1175 addr->ram_code_start_addr);
1176 clk_disable(sdma->clk);
1178 sdma_add_scripts(sdma, addr);
1180 dev_info(sdma->dev, "loaded firmware %d.%d\n",
1181 header->version_major,
1182 header->version_minor);
1184 err_firmware:
1185 release_firmware(fw);
1188 static int __init sdma_get_firmware(struct sdma_engine *sdma,
1189 const char *fw_name)
1191 int ret;
1193 ret = request_firmware_nowait(THIS_MODULE,
1194 FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1195 GFP_KERNEL, sdma, sdma_load_firmware);
1197 return ret;
1200 static int __init sdma_init(struct sdma_engine *sdma)
1202 int i, ret;
1203 dma_addr_t ccb_phys;
1205 switch (sdma->devtype) {
1206 case IMX31_SDMA:
1207 sdma->num_events = 32;
1208 break;
1209 case IMX35_SDMA:
1210 sdma->num_events = 48;
1211 break;
1212 default:
1213 dev_err(sdma->dev, "Unknown sdma type %d. aborting\n",
1214 sdma->devtype);
1215 return -ENODEV;
1218 clk_enable(sdma->clk);
1220 /* Be sure SDMA has not started yet */
1221 __raw_writel(0, sdma->regs + SDMA_H_C0PTR);
1223 sdma->channel_control = dma_alloc_coherent(NULL,
1224 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1225 sizeof(struct sdma_context_data),
1226 &ccb_phys, GFP_KERNEL);
1228 if (!sdma->channel_control) {
1229 ret = -ENOMEM;
1230 goto err_dma_alloc;
1233 sdma->context = (void *)sdma->channel_control +
1234 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1235 sdma->context_phys = ccb_phys +
1236 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1238 /* Zero-out the CCB structures array just allocated */
1239 memset(sdma->channel_control, 0,
1240 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1242 /* disable all channels */
1243 for (i = 0; i < sdma->num_events; i++)
1244 __raw_writel(0, sdma->regs + chnenbl_ofs(sdma, i));
1246 /* All channels have priority 0 */
1247 for (i = 0; i < MAX_DMA_CHANNELS; i++)
1248 __raw_writel(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1250 ret = sdma_request_channel(&sdma->channel[0]);
1251 if (ret)
1252 goto err_dma_alloc;
1254 sdma_config_ownership(&sdma->channel[0], false, true, false);
1256 /* Set Command Channel (Channel Zero) */
1257 __raw_writel(0x4050, sdma->regs + SDMA_CHN0ADDR);
1259 /* Set bits of CONFIG register but with static context switching */
1260 /* FIXME: Check whether to set ACR bit depending on clock ratios */
1261 __raw_writel(0, sdma->regs + SDMA_H_CONFIG);
1263 __raw_writel(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1265 /* Set bits of CONFIG register with given context switching mode */
1266 __raw_writel(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
1268 /* Initializes channel's priorities */
1269 sdma_set_channel_priority(&sdma->channel[0], 7);
1271 clk_disable(sdma->clk);
1273 return 0;
1275 err_dma_alloc:
1276 clk_disable(sdma->clk);
1277 dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1278 return ret;
1281 static int __init sdma_probe(struct platform_device *pdev)
1283 const struct of_device_id *of_id =
1284 of_match_device(sdma_dt_ids, &pdev->dev);
1285 struct device_node *np = pdev->dev.of_node;
1286 const char *fw_name;
1287 int ret;
1288 int irq;
1289 struct resource *iores;
1290 struct sdma_platform_data *pdata = pdev->dev.platform_data;
1291 int i;
1292 struct sdma_engine *sdma;
1293 s32 *saddr_arr;
1295 sdma = kzalloc(sizeof(*sdma), GFP_KERNEL);
1296 if (!sdma)
1297 return -ENOMEM;
1299 mutex_init(&sdma->channel_0_lock);
1301 sdma->dev = &pdev->dev;
1303 iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1304 irq = platform_get_irq(pdev, 0);
1305 if (!iores || irq < 0) {
1306 ret = -EINVAL;
1307 goto err_irq;
1310 if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) {
1311 ret = -EBUSY;
1312 goto err_request_region;
1315 sdma->clk = clk_get(&pdev->dev, NULL);
1316 if (IS_ERR(sdma->clk)) {
1317 ret = PTR_ERR(sdma->clk);
1318 goto err_clk;
1321 sdma->regs = ioremap(iores->start, resource_size(iores));
1322 if (!sdma->regs) {
1323 ret = -ENOMEM;
1324 goto err_ioremap;
1327 ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma);
1328 if (ret)
1329 goto err_request_irq;
1331 sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1332 if (!sdma->script_addrs) {
1333 ret = -ENOMEM;
1334 goto err_alloc;
1337 /* initially no scripts available */
1338 saddr_arr = (s32 *)sdma->script_addrs;
1339 for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1340 saddr_arr[i] = -EINVAL;
1342 if (of_id)
1343 pdev->id_entry = of_id->data;
1344 sdma->devtype = pdev->id_entry->driver_data;
1346 dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1347 dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1349 INIT_LIST_HEAD(&sdma->dma_device.channels);
1350 /* Initialize channel parameters */
1351 for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1352 struct sdma_channel *sdmac = &sdma->channel[i];
1354 sdmac->sdma = sdma;
1355 spin_lock_init(&sdmac->lock);
1357 sdmac->chan.device = &sdma->dma_device;
1358 sdmac->channel = i;
1361 * Add the channel to the DMAC list. Do not add channel 0 though
1362 * because we need it internally in the SDMA driver. This also means
1363 * that channel 0 in dmaengine counting matches sdma channel 1.
1365 if (i)
1366 list_add_tail(&sdmac->chan.device_node,
1367 &sdma->dma_device.channels);
1370 ret = sdma_init(sdma);
1371 if (ret)
1372 goto err_init;
1374 if (pdata && pdata->script_addrs)
1375 sdma_add_scripts(sdma, pdata->script_addrs);
1377 if (pdata) {
1378 sdma_get_firmware(sdma, pdata->fw_name);
1379 } else {
1381 * Because that device tree does not encode ROM script address,
1382 * the RAM script in firmware is mandatory for device tree
1383 * probe, otherwise it fails.
1385 ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1386 &fw_name);
1387 if (ret) {
1388 dev_err(&pdev->dev, "failed to get firmware name\n");
1389 goto err_init;
1392 ret = sdma_get_firmware(sdma, fw_name);
1393 if (ret) {
1394 dev_err(&pdev->dev, "failed to get firmware\n");
1395 goto err_init;
1399 sdma->dma_device.dev = &pdev->dev;
1401 sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1402 sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1403 sdma->dma_device.device_tx_status = sdma_tx_status;
1404 sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1405 sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1406 sdma->dma_device.device_control = sdma_control;
1407 sdma->dma_device.device_issue_pending = sdma_issue_pending;
1408 sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1409 dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1411 ret = dma_async_device_register(&sdma->dma_device);
1412 if (ret) {
1413 dev_err(&pdev->dev, "unable to register\n");
1414 goto err_init;
1417 dev_info(sdma->dev, "initialized\n");
1419 return 0;
1421 err_init:
1422 kfree(sdma->script_addrs);
1423 err_alloc:
1424 free_irq(irq, sdma);
1425 err_request_irq:
1426 iounmap(sdma->regs);
1427 err_ioremap:
1428 clk_put(sdma->clk);
1429 err_clk:
1430 release_mem_region(iores->start, resource_size(iores));
1431 err_request_region:
1432 err_irq:
1433 kfree(sdma);
1434 return ret;
1437 static int __exit sdma_remove(struct platform_device *pdev)
1439 return -EBUSY;
1442 static struct platform_driver sdma_driver = {
1443 .driver = {
1444 .name = "imx-sdma",
1445 .of_match_table = sdma_dt_ids,
1447 .id_table = sdma_devtypes,
1448 .remove = __exit_p(sdma_remove),
1451 static int __init sdma_module_init(void)
1453 return platform_driver_probe(&sdma_driver, sdma_probe);
1455 module_init(sdma_module_init);
1457 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1458 MODULE_DESCRIPTION("i.MX SDMA driver");
1459 MODULE_LICENSE("GPL");