2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for further copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
33 * RAID10 provides a combination of RAID0 and RAID1 functionality.
34 * The layout of data is defined by
37 * near_copies (stored in low byte of layout)
38 * far_copies (stored in second byte of layout)
39 * far_offset (stored in bit 16 of layout )
41 * The data to be stored is divided into chunks using chunksize.
42 * Each device is divided into far_copies sections.
43 * In each section, chunks are laid out in a style similar to raid0, but
44 * near_copies copies of each chunk is stored (each on a different drive).
45 * The starting device for each section is offset near_copies from the starting
46 * device of the previous section.
47 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
49 * near_copies and far_copies must be at least one, and their product is at most
52 * If far_offset is true, then the far_copies are handled a bit differently.
53 * The copies are still in different stripes, but instead of be very far apart
54 * on disk, there are adjacent stripes.
58 * Number of guaranteed r10bios in case of extreme VM load:
60 #define NR_RAID10_BIOS 256
62 static void allow_barrier(conf_t
*conf
);
63 static void lower_barrier(conf_t
*conf
);
65 static void * r10bio_pool_alloc(gfp_t gfp_flags
, void *data
)
68 int size
= offsetof(struct r10bio_s
, devs
[conf
->copies
]);
70 /* allocate a r10bio with room for raid_disks entries in the bios array */
71 return kzalloc(size
, gfp_flags
);
74 static void r10bio_pool_free(void *r10_bio
, void *data
)
79 /* Maximum size of each resync request */
80 #define RESYNC_BLOCK_SIZE (64*1024)
81 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
82 /* amount of memory to reserve for resync requests */
83 #define RESYNC_WINDOW (1024*1024)
84 /* maximum number of concurrent requests, memory permitting */
85 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
88 * When performing a resync, we need to read and compare, so
89 * we need as many pages are there are copies.
90 * When performing a recovery, we need 2 bios, one for read,
91 * one for write (we recover only one drive per r10buf)
94 static void * r10buf_pool_alloc(gfp_t gfp_flags
, void *data
)
103 r10_bio
= r10bio_pool_alloc(gfp_flags
, conf
);
107 if (test_bit(MD_RECOVERY_SYNC
, &conf
->mddev
->recovery
))
108 nalloc
= conf
->copies
; /* resync */
110 nalloc
= 2; /* recovery */
115 for (j
= nalloc
; j
-- ; ) {
116 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
119 r10_bio
->devs
[j
].bio
= bio
;
122 * Allocate RESYNC_PAGES data pages and attach them
125 for (j
= 0 ; j
< nalloc
; j
++) {
126 bio
= r10_bio
->devs
[j
].bio
;
127 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
128 if (j
== 1 && !test_bit(MD_RECOVERY_SYNC
,
129 &conf
->mddev
->recovery
)) {
130 /* we can share bv_page's during recovery */
131 struct bio
*rbio
= r10_bio
->devs
[0].bio
;
132 page
= rbio
->bi_io_vec
[i
].bv_page
;
135 page
= alloc_page(gfp_flags
);
139 bio
->bi_io_vec
[i
].bv_page
= page
;
147 safe_put_page(bio
->bi_io_vec
[i
-1].bv_page
);
149 for (i
= 0; i
< RESYNC_PAGES
; i
++)
150 safe_put_page(r10_bio
->devs
[j
].bio
->bi_io_vec
[i
].bv_page
);
153 while ( ++j
< nalloc
)
154 bio_put(r10_bio
->devs
[j
].bio
);
155 r10bio_pool_free(r10_bio
, conf
);
159 static void r10buf_pool_free(void *__r10_bio
, void *data
)
163 r10bio_t
*r10bio
= __r10_bio
;
166 for (j
=0; j
< conf
->copies
; j
++) {
167 struct bio
*bio
= r10bio
->devs
[j
].bio
;
169 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
170 safe_put_page(bio
->bi_io_vec
[i
].bv_page
);
171 bio
->bi_io_vec
[i
].bv_page
= NULL
;
176 r10bio_pool_free(r10bio
, conf
);
179 static void put_all_bios(conf_t
*conf
, r10bio_t
*r10_bio
)
183 for (i
= 0; i
< conf
->copies
; i
++) {
184 struct bio
**bio
= & r10_bio
->devs
[i
].bio
;
185 if (!BIO_SPECIAL(*bio
))
191 static void free_r10bio(r10bio_t
*r10_bio
)
193 conf_t
*conf
= r10_bio
->mddev
->private;
195 put_all_bios(conf
, r10_bio
);
196 mempool_free(r10_bio
, conf
->r10bio_pool
);
199 static void put_buf(r10bio_t
*r10_bio
)
201 conf_t
*conf
= r10_bio
->mddev
->private;
203 mempool_free(r10_bio
, conf
->r10buf_pool
);
208 static void reschedule_retry(r10bio_t
*r10_bio
)
211 mddev_t
*mddev
= r10_bio
->mddev
;
212 conf_t
*conf
= mddev
->private;
214 spin_lock_irqsave(&conf
->device_lock
, flags
);
215 list_add(&r10_bio
->retry_list
, &conf
->retry_list
);
217 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
219 /* wake up frozen array... */
220 wake_up(&conf
->wait_barrier
);
222 md_wakeup_thread(mddev
->thread
);
226 * raid_end_bio_io() is called when we have finished servicing a mirrored
227 * operation and are ready to return a success/failure code to the buffer
230 static void raid_end_bio_io(r10bio_t
*r10_bio
)
232 struct bio
*bio
= r10_bio
->master_bio
;
234 conf_t
*conf
= r10_bio
->mddev
->private;
236 if (bio
->bi_phys_segments
) {
238 spin_lock_irqsave(&conf
->device_lock
, flags
);
239 bio
->bi_phys_segments
--;
240 done
= (bio
->bi_phys_segments
== 0);
241 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
244 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
))
245 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
249 * Wake up any possible resync thread that waits for the device
254 free_r10bio(r10_bio
);
258 * Update disk head position estimator based on IRQ completion info.
260 static inline void update_head_pos(int slot
, r10bio_t
*r10_bio
)
262 conf_t
*conf
= r10_bio
->mddev
->private;
264 conf
->mirrors
[r10_bio
->devs
[slot
].devnum
].head_position
=
265 r10_bio
->devs
[slot
].addr
+ (r10_bio
->sectors
);
269 * Find the disk number which triggered given bio
271 static int find_bio_disk(conf_t
*conf
, r10bio_t
*r10_bio
,
272 struct bio
*bio
, int *slotp
)
276 for (slot
= 0; slot
< conf
->copies
; slot
++)
277 if (r10_bio
->devs
[slot
].bio
== bio
)
280 BUG_ON(slot
== conf
->copies
);
281 update_head_pos(slot
, r10_bio
);
285 return r10_bio
->devs
[slot
].devnum
;
288 static void raid10_end_read_request(struct bio
*bio
, int error
)
290 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
291 r10bio_t
*r10_bio
= bio
->bi_private
;
293 conf_t
*conf
= r10_bio
->mddev
->private;
296 slot
= r10_bio
->read_slot
;
297 dev
= r10_bio
->devs
[slot
].devnum
;
299 * this branch is our 'one mirror IO has finished' event handler:
301 update_head_pos(slot
, r10_bio
);
305 * Set R10BIO_Uptodate in our master bio, so that
306 * we will return a good error code to the higher
307 * levels even if IO on some other mirrored buffer fails.
309 * The 'master' represents the composite IO operation to
310 * user-side. So if something waits for IO, then it will
311 * wait for the 'master' bio.
313 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
314 raid_end_bio_io(r10_bio
);
315 rdev_dec_pending(conf
->mirrors
[dev
].rdev
, conf
->mddev
);
318 * oops, read error - keep the refcount on the rdev
320 char b
[BDEVNAME_SIZE
];
321 printk_ratelimited(KERN_ERR
322 "md/raid10:%s: %s: rescheduling sector %llu\n",
324 bdevname(conf
->mirrors
[dev
].rdev
->bdev
, b
),
325 (unsigned long long)r10_bio
->sector
);
326 set_bit(R10BIO_ReadError
, &r10_bio
->state
);
327 reschedule_retry(r10_bio
);
331 static void close_write(r10bio_t
*r10_bio
)
333 /* clear the bitmap if all writes complete successfully */
334 bitmap_endwrite(r10_bio
->mddev
->bitmap
, r10_bio
->sector
,
336 !test_bit(R10BIO_Degraded
, &r10_bio
->state
),
338 md_write_end(r10_bio
->mddev
);
341 static void raid10_end_write_request(struct bio
*bio
, int error
)
343 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
344 r10bio_t
*r10_bio
= bio
->bi_private
;
347 conf_t
*conf
= r10_bio
->mddev
->private;
350 dev
= find_bio_disk(conf
, r10_bio
, bio
, &slot
);
353 * this branch is our 'one mirror IO has finished' event handler:
356 set_bit(WriteErrorSeen
, &conf
->mirrors
[dev
].rdev
->flags
);
357 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
361 * Set R10BIO_Uptodate in our master bio, so that
362 * we will return a good error code for to the higher
363 * levels even if IO on some other mirrored buffer fails.
365 * The 'master' represents the composite IO operation to
366 * user-side. So if something waits for IO, then it will
367 * wait for the 'master' bio.
372 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
374 /* Maybe we can clear some bad blocks. */
375 if (is_badblock(conf
->mirrors
[dev
].rdev
,
376 r10_bio
->devs
[slot
].addr
,
378 &first_bad
, &bad_sectors
)) {
380 r10_bio
->devs
[slot
].bio
= IO_MADE_GOOD
;
382 set_bit(R10BIO_MadeGood
, &r10_bio
->state
);
388 * Let's see if all mirrored write operations have finished
391 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
392 if (test_bit(R10BIO_WriteError
, &r10_bio
->state
))
393 reschedule_retry(r10_bio
);
395 close_write(r10_bio
);
396 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
))
397 reschedule_retry(r10_bio
);
399 raid_end_bio_io(r10_bio
);
403 rdev_dec_pending(conf
->mirrors
[dev
].rdev
, conf
->mddev
);
408 * RAID10 layout manager
409 * As well as the chunksize and raid_disks count, there are two
410 * parameters: near_copies and far_copies.
411 * near_copies * far_copies must be <= raid_disks.
412 * Normally one of these will be 1.
413 * If both are 1, we get raid0.
414 * If near_copies == raid_disks, we get raid1.
416 * Chunks are laid out in raid0 style with near_copies copies of the
417 * first chunk, followed by near_copies copies of the next chunk and
419 * If far_copies > 1, then after 1/far_copies of the array has been assigned
420 * as described above, we start again with a device offset of near_copies.
421 * So we effectively have another copy of the whole array further down all
422 * the drives, but with blocks on different drives.
423 * With this layout, and block is never stored twice on the one device.
425 * raid10_find_phys finds the sector offset of a given virtual sector
426 * on each device that it is on.
428 * raid10_find_virt does the reverse mapping, from a device and a
429 * sector offset to a virtual address
432 static void raid10_find_phys(conf_t
*conf
, r10bio_t
*r10bio
)
442 /* now calculate first sector/dev */
443 chunk
= r10bio
->sector
>> conf
->chunk_shift
;
444 sector
= r10bio
->sector
& conf
->chunk_mask
;
446 chunk
*= conf
->near_copies
;
448 dev
= sector_div(stripe
, conf
->raid_disks
);
449 if (conf
->far_offset
)
450 stripe
*= conf
->far_copies
;
452 sector
+= stripe
<< conf
->chunk_shift
;
454 /* and calculate all the others */
455 for (n
=0; n
< conf
->near_copies
; n
++) {
458 r10bio
->devs
[slot
].addr
= sector
;
459 r10bio
->devs
[slot
].devnum
= d
;
462 for (f
= 1; f
< conf
->far_copies
; f
++) {
463 d
+= conf
->near_copies
;
464 if (d
>= conf
->raid_disks
)
465 d
-= conf
->raid_disks
;
467 r10bio
->devs
[slot
].devnum
= d
;
468 r10bio
->devs
[slot
].addr
= s
;
472 if (dev
>= conf
->raid_disks
) {
474 sector
+= (conf
->chunk_mask
+ 1);
477 BUG_ON(slot
!= conf
->copies
);
480 static sector_t
raid10_find_virt(conf_t
*conf
, sector_t sector
, int dev
)
482 sector_t offset
, chunk
, vchunk
;
484 offset
= sector
& conf
->chunk_mask
;
485 if (conf
->far_offset
) {
487 chunk
= sector
>> conf
->chunk_shift
;
488 fc
= sector_div(chunk
, conf
->far_copies
);
489 dev
-= fc
* conf
->near_copies
;
491 dev
+= conf
->raid_disks
;
493 while (sector
>= conf
->stride
) {
494 sector
-= conf
->stride
;
495 if (dev
< conf
->near_copies
)
496 dev
+= conf
->raid_disks
- conf
->near_copies
;
498 dev
-= conf
->near_copies
;
500 chunk
= sector
>> conf
->chunk_shift
;
502 vchunk
= chunk
* conf
->raid_disks
+ dev
;
503 sector_div(vchunk
, conf
->near_copies
);
504 return (vchunk
<< conf
->chunk_shift
) + offset
;
508 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
510 * @bvm: properties of new bio
511 * @biovec: the request that could be merged to it.
513 * Return amount of bytes we can accept at this offset
514 * If near_copies == raid_disk, there are no striping issues,
515 * but in that case, the function isn't called at all.
517 static int raid10_mergeable_bvec(struct request_queue
*q
,
518 struct bvec_merge_data
*bvm
,
519 struct bio_vec
*biovec
)
521 mddev_t
*mddev
= q
->queuedata
;
522 sector_t sector
= bvm
->bi_sector
+ get_start_sect(bvm
->bi_bdev
);
524 unsigned int chunk_sectors
= mddev
->chunk_sectors
;
525 unsigned int bio_sectors
= bvm
->bi_size
>> 9;
527 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1)) + bio_sectors
)) << 9;
528 if (max
< 0) max
= 0; /* bio_add cannot handle a negative return */
529 if (max
<= biovec
->bv_len
&& bio_sectors
== 0)
530 return biovec
->bv_len
;
536 * This routine returns the disk from which the requested read should
537 * be done. There is a per-array 'next expected sequential IO' sector
538 * number - if this matches on the next IO then we use the last disk.
539 * There is also a per-disk 'last know head position' sector that is
540 * maintained from IRQ contexts, both the normal and the resync IO
541 * completion handlers update this position correctly. If there is no
542 * perfect sequential match then we pick the disk whose head is closest.
544 * If there are 2 mirrors in the same 2 devices, performance degrades
545 * because position is mirror, not device based.
547 * The rdev for the device selected will have nr_pending incremented.
551 * FIXME: possibly should rethink readbalancing and do it differently
552 * depending on near_copies / far_copies geometry.
554 static int read_balance(conf_t
*conf
, r10bio_t
*r10_bio
, int *max_sectors
)
556 const sector_t this_sector
= r10_bio
->sector
;
558 int sectors
= r10_bio
->sectors
;
559 int best_good_sectors
;
560 sector_t new_distance
, best_dist
;
565 raid10_find_phys(conf
, r10_bio
);
568 sectors
= r10_bio
->sectors
;
570 best_dist
= MaxSector
;
571 best_good_sectors
= 0;
574 * Check if we can balance. We can balance on the whole
575 * device if no resync is going on (recovery is ok), or below
576 * the resync window. We take the first readable disk when
577 * above the resync window.
579 if (conf
->mddev
->recovery_cp
< MaxSector
580 && (this_sector
+ sectors
>= conf
->next_resync
))
583 for (slot
= 0; slot
< conf
->copies
; slot
++) {
588 if (r10_bio
->devs
[slot
].bio
== IO_BLOCKED
)
590 disk
= r10_bio
->devs
[slot
].devnum
;
591 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
594 if (!test_bit(In_sync
, &rdev
->flags
))
597 dev_sector
= r10_bio
->devs
[slot
].addr
;
598 if (is_badblock(rdev
, dev_sector
, sectors
,
599 &first_bad
, &bad_sectors
)) {
600 if (best_dist
< MaxSector
)
601 /* Already have a better slot */
603 if (first_bad
<= dev_sector
) {
604 /* Cannot read here. If this is the
605 * 'primary' device, then we must not read
606 * beyond 'bad_sectors' from another device.
608 bad_sectors
-= (dev_sector
- first_bad
);
609 if (!do_balance
&& sectors
> bad_sectors
)
610 sectors
= bad_sectors
;
611 if (best_good_sectors
> sectors
)
612 best_good_sectors
= sectors
;
614 sector_t good_sectors
=
615 first_bad
- dev_sector
;
616 if (good_sectors
> best_good_sectors
) {
617 best_good_sectors
= good_sectors
;
621 /* Must read from here */
626 best_good_sectors
= sectors
;
631 /* This optimisation is debatable, and completely destroys
632 * sequential read speed for 'far copies' arrays. So only
633 * keep it for 'near' arrays, and review those later.
635 if (conf
->near_copies
> 1 && !atomic_read(&rdev
->nr_pending
))
638 /* for far > 1 always use the lowest address */
639 if (conf
->far_copies
> 1)
640 new_distance
= r10_bio
->devs
[slot
].addr
;
642 new_distance
= abs(r10_bio
->devs
[slot
].addr
-
643 conf
->mirrors
[disk
].head_position
);
644 if (new_distance
< best_dist
) {
645 best_dist
= new_distance
;
649 if (slot
== conf
->copies
)
653 disk
= r10_bio
->devs
[slot
].devnum
;
654 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
657 atomic_inc(&rdev
->nr_pending
);
658 if (test_bit(Faulty
, &rdev
->flags
)) {
659 /* Cannot risk returning a device that failed
660 * before we inc'ed nr_pending
662 rdev_dec_pending(rdev
, conf
->mddev
);
665 r10_bio
->read_slot
= slot
;
669 *max_sectors
= best_good_sectors
;
674 static int raid10_congested(void *data
, int bits
)
676 mddev_t
*mddev
= data
;
677 conf_t
*conf
= mddev
->private;
680 if (mddev_congested(mddev
, bits
))
683 for (i
= 0; i
< conf
->raid_disks
&& ret
== 0; i
++) {
684 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
685 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
686 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
688 ret
|= bdi_congested(&q
->backing_dev_info
, bits
);
695 static void flush_pending_writes(conf_t
*conf
)
697 /* Any writes that have been queued but are awaiting
698 * bitmap updates get flushed here.
700 spin_lock_irq(&conf
->device_lock
);
702 if (conf
->pending_bio_list
.head
) {
704 bio
= bio_list_get(&conf
->pending_bio_list
);
705 spin_unlock_irq(&conf
->device_lock
);
706 /* flush any pending bitmap writes to disk
707 * before proceeding w/ I/O */
708 bitmap_unplug(conf
->mddev
->bitmap
);
710 while (bio
) { /* submit pending writes */
711 struct bio
*next
= bio
->bi_next
;
713 generic_make_request(bio
);
717 spin_unlock_irq(&conf
->device_lock
);
721 * Sometimes we need to suspend IO while we do something else,
722 * either some resync/recovery, or reconfigure the array.
723 * To do this we raise a 'barrier'.
724 * The 'barrier' is a counter that can be raised multiple times
725 * to count how many activities are happening which preclude
727 * We can only raise the barrier if there is no pending IO.
728 * i.e. if nr_pending == 0.
729 * We choose only to raise the barrier if no-one is waiting for the
730 * barrier to go down. This means that as soon as an IO request
731 * is ready, no other operations which require a barrier will start
732 * until the IO request has had a chance.
734 * So: regular IO calls 'wait_barrier'. When that returns there
735 * is no backgroup IO happening, It must arrange to call
736 * allow_barrier when it has finished its IO.
737 * backgroup IO calls must call raise_barrier. Once that returns
738 * there is no normal IO happeing. It must arrange to call
739 * lower_barrier when the particular background IO completes.
742 static void raise_barrier(conf_t
*conf
, int force
)
744 BUG_ON(force
&& !conf
->barrier
);
745 spin_lock_irq(&conf
->resync_lock
);
747 /* Wait until no block IO is waiting (unless 'force') */
748 wait_event_lock_irq(conf
->wait_barrier
, force
|| !conf
->nr_waiting
,
749 conf
->resync_lock
, );
751 /* block any new IO from starting */
754 /* Now wait for all pending IO to complete */
755 wait_event_lock_irq(conf
->wait_barrier
,
756 !conf
->nr_pending
&& conf
->barrier
< RESYNC_DEPTH
,
757 conf
->resync_lock
, );
759 spin_unlock_irq(&conf
->resync_lock
);
762 static void lower_barrier(conf_t
*conf
)
765 spin_lock_irqsave(&conf
->resync_lock
, flags
);
767 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
768 wake_up(&conf
->wait_barrier
);
771 static void wait_barrier(conf_t
*conf
)
773 spin_lock_irq(&conf
->resync_lock
);
776 wait_event_lock_irq(conf
->wait_barrier
, !conf
->barrier
,
782 spin_unlock_irq(&conf
->resync_lock
);
785 static void allow_barrier(conf_t
*conf
)
788 spin_lock_irqsave(&conf
->resync_lock
, flags
);
790 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
791 wake_up(&conf
->wait_barrier
);
794 static void freeze_array(conf_t
*conf
)
796 /* stop syncio and normal IO and wait for everything to
798 * We increment barrier and nr_waiting, and then
799 * wait until nr_pending match nr_queued+1
800 * This is called in the context of one normal IO request
801 * that has failed. Thus any sync request that might be pending
802 * will be blocked by nr_pending, and we need to wait for
803 * pending IO requests to complete or be queued for re-try.
804 * Thus the number queued (nr_queued) plus this request (1)
805 * must match the number of pending IOs (nr_pending) before
808 spin_lock_irq(&conf
->resync_lock
);
811 wait_event_lock_irq(conf
->wait_barrier
,
812 conf
->nr_pending
== conf
->nr_queued
+1,
814 flush_pending_writes(conf
));
816 spin_unlock_irq(&conf
->resync_lock
);
819 static void unfreeze_array(conf_t
*conf
)
821 /* reverse the effect of the freeze */
822 spin_lock_irq(&conf
->resync_lock
);
825 wake_up(&conf
->wait_barrier
);
826 spin_unlock_irq(&conf
->resync_lock
);
829 static int make_request(mddev_t
*mddev
, struct bio
* bio
)
831 conf_t
*conf
= mddev
->private;
832 mirror_info_t
*mirror
;
834 struct bio
*read_bio
;
836 int chunk_sects
= conf
->chunk_mask
+ 1;
837 const int rw
= bio_data_dir(bio
);
838 const unsigned long do_sync
= (bio
->bi_rw
& REQ_SYNC
);
839 const unsigned long do_fua
= (bio
->bi_rw
& REQ_FUA
);
841 mdk_rdev_t
*blocked_rdev
;
846 if (unlikely(bio
->bi_rw
& REQ_FLUSH
)) {
847 md_flush_request(mddev
, bio
);
851 /* If this request crosses a chunk boundary, we need to
852 * split it. This will only happen for 1 PAGE (or less) requests.
854 if (unlikely( (bio
->bi_sector
& conf
->chunk_mask
) + (bio
->bi_size
>> 9)
856 conf
->near_copies
< conf
->raid_disks
)) {
858 /* Sanity check -- queue functions should prevent this happening */
859 if (bio
->bi_vcnt
!= 1 ||
862 /* This is a one page bio that upper layers
863 * refuse to split for us, so we need to split it.
866 chunk_sects
- (bio
->bi_sector
& (chunk_sects
- 1)) );
868 /* Each of these 'make_request' calls will call 'wait_barrier'.
869 * If the first succeeds but the second blocks due to the resync
870 * thread raising the barrier, we will deadlock because the
871 * IO to the underlying device will be queued in generic_make_request
872 * and will never complete, so will never reduce nr_pending.
873 * So increment nr_waiting here so no new raise_barriers will
874 * succeed, and so the second wait_barrier cannot block.
876 spin_lock_irq(&conf
->resync_lock
);
878 spin_unlock_irq(&conf
->resync_lock
);
880 if (make_request(mddev
, &bp
->bio1
))
881 generic_make_request(&bp
->bio1
);
882 if (make_request(mddev
, &bp
->bio2
))
883 generic_make_request(&bp
->bio2
);
885 spin_lock_irq(&conf
->resync_lock
);
887 wake_up(&conf
->wait_barrier
);
888 spin_unlock_irq(&conf
->resync_lock
);
890 bio_pair_release(bp
);
893 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
894 " or bigger than %dk %llu %d\n", mdname(mddev
), chunk_sects
/2,
895 (unsigned long long)bio
->bi_sector
, bio
->bi_size
>> 10);
901 md_write_start(mddev
, bio
);
904 * Register the new request and wait if the reconstruction
905 * thread has put up a bar for new requests.
906 * Continue immediately if no resync is active currently.
910 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
912 r10_bio
->master_bio
= bio
;
913 r10_bio
->sectors
= bio
->bi_size
>> 9;
915 r10_bio
->mddev
= mddev
;
916 r10_bio
->sector
= bio
->bi_sector
;
919 /* We might need to issue multiple reads to different
920 * devices if there are bad blocks around, so we keep
921 * track of the number of reads in bio->bi_phys_segments.
922 * If this is 0, there is only one r10_bio and no locking
923 * will be needed when the request completes. If it is
924 * non-zero, then it is the number of not-completed requests.
926 bio
->bi_phys_segments
= 0;
927 clear_bit(BIO_SEG_VALID
, &bio
->bi_flags
);
931 * read balancing logic:
937 disk
= read_balance(conf
, r10_bio
, &max_sectors
);
938 slot
= r10_bio
->read_slot
;
940 raid_end_bio_io(r10_bio
);
943 mirror
= conf
->mirrors
+ disk
;
945 read_bio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
946 md_trim_bio(read_bio
, r10_bio
->sector
- bio
->bi_sector
,
949 r10_bio
->devs
[slot
].bio
= read_bio
;
951 read_bio
->bi_sector
= r10_bio
->devs
[slot
].addr
+
952 mirror
->rdev
->data_offset
;
953 read_bio
->bi_bdev
= mirror
->rdev
->bdev
;
954 read_bio
->bi_end_io
= raid10_end_read_request
;
955 read_bio
->bi_rw
= READ
| do_sync
;
956 read_bio
->bi_private
= r10_bio
;
958 if (max_sectors
< r10_bio
->sectors
) {
959 /* Could not read all from this device, so we will
960 * need another r10_bio.
962 sectors_handled
= (r10_bio
->sectors
+ max_sectors
964 r10_bio
->sectors
= max_sectors
;
965 spin_lock_irq(&conf
->device_lock
);
966 if (bio
->bi_phys_segments
== 0)
967 bio
->bi_phys_segments
= 2;
969 bio
->bi_phys_segments
++;
970 spin_unlock(&conf
->device_lock
);
971 /* Cannot call generic_make_request directly
972 * as that will be queued in __generic_make_request
973 * and subsequent mempool_alloc might block
974 * waiting for it. so hand bio over to raid10d.
976 reschedule_retry(r10_bio
);
978 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
980 r10_bio
->master_bio
= bio
;
981 r10_bio
->sectors
= ((bio
->bi_size
>> 9)
984 r10_bio
->mddev
= mddev
;
985 r10_bio
->sector
= bio
->bi_sector
+ sectors_handled
;
988 generic_make_request(read_bio
);
995 /* first select target devices under rcu_lock and
996 * inc refcount on their rdev. Record them by setting
998 * If there are known/acknowledged bad blocks on any device
999 * on which we have seen a write error, we want to avoid
1000 * writing to those blocks. This potentially requires several
1001 * writes to write around the bad blocks. Each set of writes
1002 * gets its own r10_bio with a set of bios attached. The number
1003 * of r10_bios is recored in bio->bi_phys_segments just as with
1006 plugged
= mddev_check_plugged(mddev
);
1008 raid10_find_phys(conf
, r10_bio
);
1010 blocked_rdev
= NULL
;
1012 max_sectors
= r10_bio
->sectors
;
1014 for (i
= 0; i
< conf
->copies
; i
++) {
1015 int d
= r10_bio
->devs
[i
].devnum
;
1016 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1017 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
1018 atomic_inc(&rdev
->nr_pending
);
1019 blocked_rdev
= rdev
;
1022 r10_bio
->devs
[i
].bio
= NULL
;
1023 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
)) {
1024 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
1027 if (test_bit(WriteErrorSeen
, &rdev
->flags
)) {
1029 sector_t dev_sector
= r10_bio
->devs
[i
].addr
;
1033 is_bad
= is_badblock(rdev
, dev_sector
,
1035 &first_bad
, &bad_sectors
);
1037 /* Mustn't write here until the bad block
1040 atomic_inc(&rdev
->nr_pending
);
1041 set_bit(BlockedBadBlocks
, &rdev
->flags
);
1042 blocked_rdev
= rdev
;
1045 if (is_bad
&& first_bad
<= dev_sector
) {
1046 /* Cannot write here at all */
1047 bad_sectors
-= (dev_sector
- first_bad
);
1048 if (bad_sectors
< max_sectors
)
1049 /* Mustn't write more than bad_sectors
1050 * to other devices yet
1052 max_sectors
= bad_sectors
;
1053 /* We don't set R10BIO_Degraded as that
1054 * only applies if the disk is missing,
1055 * so it might be re-added, and we want to
1056 * know to recover this chunk.
1057 * In this case the device is here, and the
1058 * fact that this chunk is not in-sync is
1059 * recorded in the bad block log.
1064 int good_sectors
= first_bad
- dev_sector
;
1065 if (good_sectors
< max_sectors
)
1066 max_sectors
= good_sectors
;
1069 r10_bio
->devs
[i
].bio
= bio
;
1070 atomic_inc(&rdev
->nr_pending
);
1074 if (unlikely(blocked_rdev
)) {
1075 /* Have to wait for this device to get unblocked, then retry */
1079 for (j
= 0; j
< i
; j
++)
1080 if (r10_bio
->devs
[j
].bio
) {
1081 d
= r10_bio
->devs
[j
].devnum
;
1082 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
1084 allow_barrier(conf
);
1085 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
1090 if (max_sectors
< r10_bio
->sectors
) {
1091 /* We are splitting this into multiple parts, so
1092 * we need to prepare for allocating another r10_bio.
1094 r10_bio
->sectors
= max_sectors
;
1095 spin_lock_irq(&conf
->device_lock
);
1096 if (bio
->bi_phys_segments
== 0)
1097 bio
->bi_phys_segments
= 2;
1099 bio
->bi_phys_segments
++;
1100 spin_unlock_irq(&conf
->device_lock
);
1102 sectors_handled
= r10_bio
->sector
+ max_sectors
- bio
->bi_sector
;
1104 atomic_set(&r10_bio
->remaining
, 1);
1105 bitmap_startwrite(mddev
->bitmap
, r10_bio
->sector
, r10_bio
->sectors
, 0);
1107 for (i
= 0; i
< conf
->copies
; i
++) {
1109 int d
= r10_bio
->devs
[i
].devnum
;
1110 if (!r10_bio
->devs
[i
].bio
)
1113 mbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1114 md_trim_bio(mbio
, r10_bio
->sector
- bio
->bi_sector
,
1116 r10_bio
->devs
[i
].bio
= mbio
;
1118 mbio
->bi_sector
= (r10_bio
->devs
[i
].addr
+
1119 conf
->mirrors
[d
].rdev
->data_offset
);
1120 mbio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
1121 mbio
->bi_end_io
= raid10_end_write_request
;
1122 mbio
->bi_rw
= WRITE
| do_sync
| do_fua
;
1123 mbio
->bi_private
= r10_bio
;
1125 atomic_inc(&r10_bio
->remaining
);
1126 spin_lock_irqsave(&conf
->device_lock
, flags
);
1127 bio_list_add(&conf
->pending_bio_list
, mbio
);
1128 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1131 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
1132 /* This matches the end of raid10_end_write_request() */
1133 bitmap_endwrite(r10_bio
->mddev
->bitmap
, r10_bio
->sector
,
1135 !test_bit(R10BIO_Degraded
, &r10_bio
->state
),
1137 md_write_end(mddev
);
1138 raid_end_bio_io(r10_bio
);
1141 /* In case raid10d snuck in to freeze_array */
1142 wake_up(&conf
->wait_barrier
);
1144 if (sectors_handled
< (bio
->bi_size
>> 9)) {
1145 /* We need another r10_bio. It has already been counted
1146 * in bio->bi_phys_segments.
1148 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
1150 r10_bio
->master_bio
= bio
;
1151 r10_bio
->sectors
= (bio
->bi_size
>> 9) - sectors_handled
;
1153 r10_bio
->mddev
= mddev
;
1154 r10_bio
->sector
= bio
->bi_sector
+ sectors_handled
;
1159 if (do_sync
|| !mddev
->bitmap
|| !plugged
)
1160 md_wakeup_thread(mddev
->thread
);
1164 static void status(struct seq_file
*seq
, mddev_t
*mddev
)
1166 conf_t
*conf
= mddev
->private;
1169 if (conf
->near_copies
< conf
->raid_disks
)
1170 seq_printf(seq
, " %dK chunks", mddev
->chunk_sectors
/ 2);
1171 if (conf
->near_copies
> 1)
1172 seq_printf(seq
, " %d near-copies", conf
->near_copies
);
1173 if (conf
->far_copies
> 1) {
1174 if (conf
->far_offset
)
1175 seq_printf(seq
, " %d offset-copies", conf
->far_copies
);
1177 seq_printf(seq
, " %d far-copies", conf
->far_copies
);
1179 seq_printf(seq
, " [%d/%d] [", conf
->raid_disks
,
1180 conf
->raid_disks
- mddev
->degraded
);
1181 for (i
= 0; i
< conf
->raid_disks
; i
++)
1182 seq_printf(seq
, "%s",
1183 conf
->mirrors
[i
].rdev
&&
1184 test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ? "U" : "_");
1185 seq_printf(seq
, "]");
1188 /* check if there are enough drives for
1189 * every block to appear on atleast one.
1190 * Don't consider the device numbered 'ignore'
1191 * as we might be about to remove it.
1193 static int enough(conf_t
*conf
, int ignore
)
1198 int n
= conf
->copies
;
1201 if (conf
->mirrors
[first
].rdev
&&
1204 first
= (first
+1) % conf
->raid_disks
;
1208 } while (first
!= 0);
1212 static void error(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
1214 char b
[BDEVNAME_SIZE
];
1215 conf_t
*conf
= mddev
->private;
1218 * If it is not operational, then we have already marked it as dead
1219 * else if it is the last working disks, ignore the error, let the
1220 * next level up know.
1221 * else mark the drive as failed
1223 if (test_bit(In_sync
, &rdev
->flags
)
1224 && !enough(conf
, rdev
->raid_disk
))
1226 * Don't fail the drive, just return an IO error.
1229 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1230 unsigned long flags
;
1231 spin_lock_irqsave(&conf
->device_lock
, flags
);
1233 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1235 * if recovery is running, make sure it aborts.
1237 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1239 set_bit(Blocked
, &rdev
->flags
);
1240 set_bit(Faulty
, &rdev
->flags
);
1241 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1243 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1244 "md/raid10:%s: Operation continuing on %d devices.\n",
1245 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1246 mdname(mddev
), conf
->raid_disks
- mddev
->degraded
);
1249 static void print_conf(conf_t
*conf
)
1254 printk(KERN_DEBUG
"RAID10 conf printout:\n");
1256 printk(KERN_DEBUG
"(!conf)\n");
1259 printk(KERN_DEBUG
" --- wd:%d rd:%d\n", conf
->raid_disks
- conf
->mddev
->degraded
,
1262 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1263 char b
[BDEVNAME_SIZE
];
1264 tmp
= conf
->mirrors
+ i
;
1266 printk(KERN_DEBUG
" disk %d, wo:%d, o:%d, dev:%s\n",
1267 i
, !test_bit(In_sync
, &tmp
->rdev
->flags
),
1268 !test_bit(Faulty
, &tmp
->rdev
->flags
),
1269 bdevname(tmp
->rdev
->bdev
,b
));
1273 static void close_sync(conf_t
*conf
)
1276 allow_barrier(conf
);
1278 mempool_destroy(conf
->r10buf_pool
);
1279 conf
->r10buf_pool
= NULL
;
1282 static int raid10_spare_active(mddev_t
*mddev
)
1285 conf_t
*conf
= mddev
->private;
1288 unsigned long flags
;
1291 * Find all non-in_sync disks within the RAID10 configuration
1292 * and mark them in_sync
1294 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1295 tmp
= conf
->mirrors
+ i
;
1297 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
1298 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
1300 sysfs_notify_dirent(tmp
->rdev
->sysfs_state
);
1303 spin_lock_irqsave(&conf
->device_lock
, flags
);
1304 mddev
->degraded
-= count
;
1305 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1312 static int raid10_add_disk(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
1314 conf_t
*conf
= mddev
->private;
1318 int last
= conf
->raid_disks
- 1;
1320 if (mddev
->recovery_cp
< MaxSector
)
1321 /* only hot-add to in-sync arrays, as recovery is
1322 * very different from resync
1325 if (!enough(conf
, -1))
1328 if (rdev
->raid_disk
>= 0)
1329 first
= last
= rdev
->raid_disk
;
1331 if (rdev
->saved_raid_disk
>= first
&&
1332 conf
->mirrors
[rdev
->saved_raid_disk
].rdev
== NULL
)
1333 mirror
= rdev
->saved_raid_disk
;
1336 for ( ; mirror
<= last
; mirror
++) {
1337 mirror_info_t
*p
= &conf
->mirrors
[mirror
];
1338 if (p
->recovery_disabled
== mddev
->recovery_disabled
)
1343 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1344 rdev
->data_offset
<< 9);
1345 /* as we don't honour merge_bvec_fn, we must
1346 * never risk violating it, so limit
1347 * ->max_segments to one lying with a single
1348 * page, as a one page request is never in
1351 if (rdev
->bdev
->bd_disk
->queue
->merge_bvec_fn
) {
1352 blk_queue_max_segments(mddev
->queue
, 1);
1353 blk_queue_segment_boundary(mddev
->queue
,
1354 PAGE_CACHE_SIZE
- 1);
1357 p
->head_position
= 0;
1358 rdev
->raid_disk
= mirror
;
1360 if (rdev
->saved_raid_disk
!= mirror
)
1362 rcu_assign_pointer(p
->rdev
, rdev
);
1366 md_integrity_add_rdev(rdev
, mddev
);
1371 static int raid10_remove_disk(mddev_t
*mddev
, int number
)
1373 conf_t
*conf
= mddev
->private;
1376 mirror_info_t
*p
= conf
->mirrors
+ number
;
1381 if (test_bit(In_sync
, &rdev
->flags
) ||
1382 atomic_read(&rdev
->nr_pending
)) {
1386 /* Only remove faulty devices in recovery
1389 if (!test_bit(Faulty
, &rdev
->flags
) &&
1390 mddev
->recovery_disabled
!= p
->recovery_disabled
&&
1397 if (atomic_read(&rdev
->nr_pending
)) {
1398 /* lost the race, try later */
1403 err
= md_integrity_register(mddev
);
1412 static void end_sync_read(struct bio
*bio
, int error
)
1414 r10bio_t
*r10_bio
= bio
->bi_private
;
1415 conf_t
*conf
= r10_bio
->mddev
->private;
1418 d
= find_bio_disk(conf
, r10_bio
, bio
, NULL
);
1420 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
1421 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
1423 /* The write handler will notice the lack of
1424 * R10BIO_Uptodate and record any errors etc
1426 atomic_add(r10_bio
->sectors
,
1427 &conf
->mirrors
[d
].rdev
->corrected_errors
);
1429 /* for reconstruct, we always reschedule after a read.
1430 * for resync, only after all reads
1432 rdev_dec_pending(conf
->mirrors
[d
].rdev
, conf
->mddev
);
1433 if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
) ||
1434 atomic_dec_and_test(&r10_bio
->remaining
)) {
1435 /* we have read all the blocks,
1436 * do the comparison in process context in raid10d
1438 reschedule_retry(r10_bio
);
1442 static void end_sync_request(r10bio_t
*r10_bio
)
1444 mddev_t
*mddev
= r10_bio
->mddev
;
1446 while (atomic_dec_and_test(&r10_bio
->remaining
)) {
1447 if (r10_bio
->master_bio
== NULL
) {
1448 /* the primary of several recovery bios */
1449 sector_t s
= r10_bio
->sectors
;
1450 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
1451 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
1452 reschedule_retry(r10_bio
);
1455 md_done_sync(mddev
, s
, 1);
1458 r10bio_t
*r10_bio2
= (r10bio_t
*)r10_bio
->master_bio
;
1459 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
1460 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
1461 reschedule_retry(r10_bio
);
1469 static void end_sync_write(struct bio
*bio
, int error
)
1471 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1472 r10bio_t
*r10_bio
= bio
->bi_private
;
1473 mddev_t
*mddev
= r10_bio
->mddev
;
1474 conf_t
*conf
= mddev
->private;
1480 d
= find_bio_disk(conf
, r10_bio
, bio
, &slot
);
1483 set_bit(WriteErrorSeen
, &conf
->mirrors
[d
].rdev
->flags
);
1484 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
1485 } else if (is_badblock(conf
->mirrors
[d
].rdev
,
1486 r10_bio
->devs
[slot
].addr
,
1488 &first_bad
, &bad_sectors
))
1489 set_bit(R10BIO_MadeGood
, &r10_bio
->state
);
1491 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
1493 end_sync_request(r10_bio
);
1497 * Note: sync and recover and handled very differently for raid10
1498 * This code is for resync.
1499 * For resync, we read through virtual addresses and read all blocks.
1500 * If there is any error, we schedule a write. The lowest numbered
1501 * drive is authoritative.
1502 * However requests come for physical address, so we need to map.
1503 * For every physical address there are raid_disks/copies virtual addresses,
1504 * which is always are least one, but is not necessarly an integer.
1505 * This means that a physical address can span multiple chunks, so we may
1506 * have to submit multiple io requests for a single sync request.
1509 * We check if all blocks are in-sync and only write to blocks that
1512 static void sync_request_write(mddev_t
*mddev
, r10bio_t
*r10_bio
)
1514 conf_t
*conf
= mddev
->private;
1516 struct bio
*tbio
, *fbio
;
1518 atomic_set(&r10_bio
->remaining
, 1);
1520 /* find the first device with a block */
1521 for (i
=0; i
<conf
->copies
; i
++)
1522 if (test_bit(BIO_UPTODATE
, &r10_bio
->devs
[i
].bio
->bi_flags
))
1525 if (i
== conf
->copies
)
1529 fbio
= r10_bio
->devs
[i
].bio
;
1531 /* now find blocks with errors */
1532 for (i
=0 ; i
< conf
->copies
; i
++) {
1534 int vcnt
= r10_bio
->sectors
>> (PAGE_SHIFT
-9);
1536 tbio
= r10_bio
->devs
[i
].bio
;
1538 if (tbio
->bi_end_io
!= end_sync_read
)
1542 if (test_bit(BIO_UPTODATE
, &r10_bio
->devs
[i
].bio
->bi_flags
)) {
1543 /* We know that the bi_io_vec layout is the same for
1544 * both 'first' and 'i', so we just compare them.
1545 * All vec entries are PAGE_SIZE;
1547 for (j
= 0; j
< vcnt
; j
++)
1548 if (memcmp(page_address(fbio
->bi_io_vec
[j
].bv_page
),
1549 page_address(tbio
->bi_io_vec
[j
].bv_page
),
1554 mddev
->resync_mismatches
+= r10_bio
->sectors
;
1555 if (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
))
1556 /* Don't fix anything. */
1559 /* Ok, we need to write this bio, either to correct an
1560 * inconsistency or to correct an unreadable block.
1561 * First we need to fixup bv_offset, bv_len and
1562 * bi_vecs, as the read request might have corrupted these
1564 tbio
->bi_vcnt
= vcnt
;
1565 tbio
->bi_size
= r10_bio
->sectors
<< 9;
1567 tbio
->bi_phys_segments
= 0;
1568 tbio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
1569 tbio
->bi_flags
|= 1 << BIO_UPTODATE
;
1570 tbio
->bi_next
= NULL
;
1571 tbio
->bi_rw
= WRITE
;
1572 tbio
->bi_private
= r10_bio
;
1573 tbio
->bi_sector
= r10_bio
->devs
[i
].addr
;
1575 for (j
=0; j
< vcnt
; j
++) {
1576 tbio
->bi_io_vec
[j
].bv_offset
= 0;
1577 tbio
->bi_io_vec
[j
].bv_len
= PAGE_SIZE
;
1579 memcpy(page_address(tbio
->bi_io_vec
[j
].bv_page
),
1580 page_address(fbio
->bi_io_vec
[j
].bv_page
),
1583 tbio
->bi_end_io
= end_sync_write
;
1585 d
= r10_bio
->devs
[i
].devnum
;
1586 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1587 atomic_inc(&r10_bio
->remaining
);
1588 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, tbio
->bi_size
>> 9);
1590 tbio
->bi_sector
+= conf
->mirrors
[d
].rdev
->data_offset
;
1591 tbio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
1592 generic_make_request(tbio
);
1596 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
1597 md_done_sync(mddev
, r10_bio
->sectors
, 1);
1603 * Now for the recovery code.
1604 * Recovery happens across physical sectors.
1605 * We recover all non-is_sync drives by finding the virtual address of
1606 * each, and then choose a working drive that also has that virt address.
1607 * There is a separate r10_bio for each non-in_sync drive.
1608 * Only the first two slots are in use. The first for reading,
1609 * The second for writing.
1612 static void fix_recovery_read_error(r10bio_t
*r10_bio
)
1614 /* We got a read error during recovery.
1615 * We repeat the read in smaller page-sized sections.
1616 * If a read succeeds, write it to the new device or record
1617 * a bad block if we cannot.
1618 * If a read fails, record a bad block on both old and
1621 mddev_t
*mddev
= r10_bio
->mddev
;
1622 conf_t
*conf
= mddev
->private;
1623 struct bio
*bio
= r10_bio
->devs
[0].bio
;
1625 int sectors
= r10_bio
->sectors
;
1627 int dr
= r10_bio
->devs
[0].devnum
;
1628 int dw
= r10_bio
->devs
[1].devnum
;
1636 if (s
> (PAGE_SIZE
>>9))
1639 rdev
= conf
->mirrors
[dr
].rdev
;
1640 addr
= r10_bio
->devs
[0].addr
+ sect
,
1641 ok
= sync_page_io(rdev
,
1644 bio
->bi_io_vec
[idx
].bv_page
,
1647 rdev
= conf
->mirrors
[dw
].rdev
;
1648 addr
= r10_bio
->devs
[1].addr
+ sect
;
1649 ok
= sync_page_io(rdev
,
1652 bio
->bi_io_vec
[idx
].bv_page
,
1655 set_bit(WriteErrorSeen
, &rdev
->flags
);
1658 /* We don't worry if we cannot set a bad block -
1659 * it really is bad so there is no loss in not
1662 rdev_set_badblocks(rdev
, addr
, s
, 0);
1664 if (rdev
!= conf
->mirrors
[dw
].rdev
) {
1665 /* need bad block on destination too */
1666 mdk_rdev_t
*rdev2
= conf
->mirrors
[dw
].rdev
;
1667 addr
= r10_bio
->devs
[1].addr
+ sect
;
1668 ok
= rdev_set_badblocks(rdev2
, addr
, s
, 0);
1670 /* just abort the recovery */
1672 "md/raid10:%s: recovery aborted"
1673 " due to read error\n",
1676 conf
->mirrors
[dw
].recovery_disabled
1677 = mddev
->recovery_disabled
;
1678 set_bit(MD_RECOVERY_INTR
,
1691 static void recovery_request_write(mddev_t
*mddev
, r10bio_t
*r10_bio
)
1693 conf_t
*conf
= mddev
->private;
1697 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
)) {
1698 fix_recovery_read_error(r10_bio
);
1699 end_sync_request(r10_bio
);
1704 * share the pages with the first bio
1705 * and submit the write request
1707 wbio
= r10_bio
->devs
[1].bio
;
1708 d
= r10_bio
->devs
[1].devnum
;
1710 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1711 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, wbio
->bi_size
>> 9);
1712 generic_make_request(wbio
);
1717 * Used by fix_read_error() to decay the per rdev read_errors.
1718 * We halve the read error count for every hour that has elapsed
1719 * since the last recorded read error.
1722 static void check_decay_read_errors(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
1724 struct timespec cur_time_mon
;
1725 unsigned long hours_since_last
;
1726 unsigned int read_errors
= atomic_read(&rdev
->read_errors
);
1728 ktime_get_ts(&cur_time_mon
);
1730 if (rdev
->last_read_error
.tv_sec
== 0 &&
1731 rdev
->last_read_error
.tv_nsec
== 0) {
1732 /* first time we've seen a read error */
1733 rdev
->last_read_error
= cur_time_mon
;
1737 hours_since_last
= (cur_time_mon
.tv_sec
-
1738 rdev
->last_read_error
.tv_sec
) / 3600;
1740 rdev
->last_read_error
= cur_time_mon
;
1743 * if hours_since_last is > the number of bits in read_errors
1744 * just set read errors to 0. We do this to avoid
1745 * overflowing the shift of read_errors by hours_since_last.
1747 if (hours_since_last
>= 8 * sizeof(read_errors
))
1748 atomic_set(&rdev
->read_errors
, 0);
1750 atomic_set(&rdev
->read_errors
, read_errors
>> hours_since_last
);
1753 static int r10_sync_page_io(mdk_rdev_t
*rdev
, sector_t sector
,
1754 int sectors
, struct page
*page
, int rw
)
1759 if (is_badblock(rdev
, sector
, sectors
, &first_bad
, &bad_sectors
)
1760 && (rw
== READ
|| test_bit(WriteErrorSeen
, &rdev
->flags
)))
1762 if (sync_page_io(rdev
, sector
, sectors
<< 9, page
, rw
, false))
1766 set_bit(WriteErrorSeen
, &rdev
->flags
);
1767 /* need to record an error - either for the block or the device */
1768 if (!rdev_set_badblocks(rdev
, sector
, sectors
, 0))
1769 md_error(rdev
->mddev
, rdev
);
1774 * This is a kernel thread which:
1776 * 1. Retries failed read operations on working mirrors.
1777 * 2. Updates the raid superblock when problems encounter.
1778 * 3. Performs writes following reads for array synchronising.
1781 static void fix_read_error(conf_t
*conf
, mddev_t
*mddev
, r10bio_t
*r10_bio
)
1783 int sect
= 0; /* Offset from r10_bio->sector */
1784 int sectors
= r10_bio
->sectors
;
1786 int max_read_errors
= atomic_read(&mddev
->max_corr_read_errors
);
1787 int d
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
1789 /* still own a reference to this rdev, so it cannot
1790 * have been cleared recently.
1792 rdev
= conf
->mirrors
[d
].rdev
;
1794 if (test_bit(Faulty
, &rdev
->flags
))
1795 /* drive has already been failed, just ignore any
1796 more fix_read_error() attempts */
1799 check_decay_read_errors(mddev
, rdev
);
1800 atomic_inc(&rdev
->read_errors
);
1801 if (atomic_read(&rdev
->read_errors
) > max_read_errors
) {
1802 char b
[BDEVNAME_SIZE
];
1803 bdevname(rdev
->bdev
, b
);
1806 "md/raid10:%s: %s: Raid device exceeded "
1807 "read_error threshold [cur %d:max %d]\n",
1809 atomic_read(&rdev
->read_errors
), max_read_errors
);
1811 "md/raid10:%s: %s: Failing raid device\n",
1813 md_error(mddev
, conf
->mirrors
[d
].rdev
);
1819 int sl
= r10_bio
->read_slot
;
1823 if (s
> (PAGE_SIZE
>>9))
1831 d
= r10_bio
->devs
[sl
].devnum
;
1832 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1834 test_bit(In_sync
, &rdev
->flags
) &&
1835 is_badblock(rdev
, r10_bio
->devs
[sl
].addr
+ sect
, s
,
1836 &first_bad
, &bad_sectors
) == 0) {
1837 atomic_inc(&rdev
->nr_pending
);
1839 success
= sync_page_io(rdev
,
1840 r10_bio
->devs
[sl
].addr
+
1843 conf
->tmppage
, READ
, false);
1844 rdev_dec_pending(rdev
, mddev
);
1850 if (sl
== conf
->copies
)
1852 } while (!success
&& sl
!= r10_bio
->read_slot
);
1856 /* Cannot read from anywhere, just mark the block
1857 * as bad on the first device to discourage future
1860 int dn
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
1861 rdev
= conf
->mirrors
[dn
].rdev
;
1863 if (!rdev_set_badblocks(
1865 r10_bio
->devs
[r10_bio
->read_slot
].addr
1868 md_error(mddev
, rdev
);
1873 /* write it back and re-read */
1875 while (sl
!= r10_bio
->read_slot
) {
1876 char b
[BDEVNAME_SIZE
];
1881 d
= r10_bio
->devs
[sl
].devnum
;
1882 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1884 !test_bit(In_sync
, &rdev
->flags
))
1887 atomic_inc(&rdev
->nr_pending
);
1889 if (r10_sync_page_io(rdev
,
1890 r10_bio
->devs
[sl
].addr
+
1892 s
<<9, conf
->tmppage
, WRITE
)
1894 /* Well, this device is dead */
1896 "md/raid10:%s: read correction "
1898 " (%d sectors at %llu on %s)\n",
1900 (unsigned long long)(
1901 sect
+ rdev
->data_offset
),
1902 bdevname(rdev
->bdev
, b
));
1903 printk(KERN_NOTICE
"md/raid10:%s: %s: failing "
1906 bdevname(rdev
->bdev
, b
));
1908 rdev_dec_pending(rdev
, mddev
);
1912 while (sl
!= r10_bio
->read_slot
) {
1913 char b
[BDEVNAME_SIZE
];
1918 d
= r10_bio
->devs
[sl
].devnum
;
1919 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1921 !test_bit(In_sync
, &rdev
->flags
))
1924 atomic_inc(&rdev
->nr_pending
);
1926 switch (r10_sync_page_io(rdev
,
1927 r10_bio
->devs
[sl
].addr
+
1929 s
<<9, conf
->tmppage
,
1932 /* Well, this device is dead */
1934 "md/raid10:%s: unable to read back "
1936 " (%d sectors at %llu on %s)\n",
1938 (unsigned long long)(
1939 sect
+ rdev
->data_offset
),
1940 bdevname(rdev
->bdev
, b
));
1941 printk(KERN_NOTICE
"md/raid10:%s: %s: failing "
1944 bdevname(rdev
->bdev
, b
));
1948 "md/raid10:%s: read error corrected"
1949 " (%d sectors at %llu on %s)\n",
1951 (unsigned long long)(
1952 sect
+ rdev
->data_offset
),
1953 bdevname(rdev
->bdev
, b
));
1954 atomic_add(s
, &rdev
->corrected_errors
);
1957 rdev_dec_pending(rdev
, mddev
);
1967 static void bi_complete(struct bio
*bio
, int error
)
1969 complete((struct completion
*)bio
->bi_private
);
1972 static int submit_bio_wait(int rw
, struct bio
*bio
)
1974 struct completion event
;
1977 init_completion(&event
);
1978 bio
->bi_private
= &event
;
1979 bio
->bi_end_io
= bi_complete
;
1980 submit_bio(rw
, bio
);
1981 wait_for_completion(&event
);
1983 return test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1986 static int narrow_write_error(r10bio_t
*r10_bio
, int i
)
1988 struct bio
*bio
= r10_bio
->master_bio
;
1989 mddev_t
*mddev
= r10_bio
->mddev
;
1990 conf_t
*conf
= mddev
->private;
1991 mdk_rdev_t
*rdev
= conf
->mirrors
[r10_bio
->devs
[i
].devnum
].rdev
;
1992 /* bio has the data to be written to slot 'i' where
1993 * we just recently had a write error.
1994 * We repeatedly clone the bio and trim down to one block,
1995 * then try the write. Where the write fails we record
1997 * It is conceivable that the bio doesn't exactly align with
1998 * blocks. We must handle this.
2000 * We currently own a reference to the rdev.
2006 int sect_to_write
= r10_bio
->sectors
;
2009 if (rdev
->badblocks
.shift
< 0)
2012 block_sectors
= 1 << rdev
->badblocks
.shift
;
2013 sector
= r10_bio
->sector
;
2014 sectors
= ((r10_bio
->sector
+ block_sectors
)
2015 & ~(sector_t
)(block_sectors
- 1))
2018 while (sect_to_write
) {
2020 if (sectors
> sect_to_write
)
2021 sectors
= sect_to_write
;
2022 /* Write at 'sector' for 'sectors' */
2023 wbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
2024 md_trim_bio(wbio
, sector
- bio
->bi_sector
, sectors
);
2025 wbio
->bi_sector
= (r10_bio
->devs
[i
].addr
+
2027 (sector
- r10_bio
->sector
));
2028 wbio
->bi_bdev
= rdev
->bdev
;
2029 if (submit_bio_wait(WRITE
, wbio
) == 0)
2031 ok
= rdev_set_badblocks(rdev
, sector
,
2036 sect_to_write
-= sectors
;
2038 sectors
= block_sectors
;
2043 static void handle_read_error(mddev_t
*mddev
, r10bio_t
*r10_bio
)
2045 int slot
= r10_bio
->read_slot
;
2046 int mirror
= r10_bio
->devs
[slot
].devnum
;
2048 conf_t
*conf
= mddev
->private;
2050 char b
[BDEVNAME_SIZE
];
2051 unsigned long do_sync
;
2054 /* we got a read error. Maybe the drive is bad. Maybe just
2055 * the block and we can fix it.
2056 * We freeze all other IO, and try reading the block from
2057 * other devices. When we find one, we re-write
2058 * and check it that fixes the read error.
2059 * This is all done synchronously while the array is
2062 if (mddev
->ro
== 0) {
2064 fix_read_error(conf
, mddev
, r10_bio
);
2065 unfreeze_array(conf
);
2067 rdev_dec_pending(conf
->mirrors
[mirror
].rdev
, mddev
);
2069 bio
= r10_bio
->devs
[slot
].bio
;
2070 bdevname(bio
->bi_bdev
, b
);
2071 r10_bio
->devs
[slot
].bio
=
2072 mddev
->ro
? IO_BLOCKED
: NULL
;
2074 mirror
= read_balance(conf
, r10_bio
, &max_sectors
);
2076 printk(KERN_ALERT
"md/raid10:%s: %s: unrecoverable I/O"
2077 " read error for block %llu\n",
2079 (unsigned long long)r10_bio
->sector
);
2080 raid_end_bio_io(r10_bio
);
2085 do_sync
= (r10_bio
->master_bio
->bi_rw
& REQ_SYNC
);
2088 slot
= r10_bio
->read_slot
;
2089 rdev
= conf
->mirrors
[mirror
].rdev
;
2092 "md/raid10:%s: %s: redirecting"
2093 "sector %llu to another mirror\n",
2095 bdevname(rdev
->bdev
, b
),
2096 (unsigned long long)r10_bio
->sector
);
2097 bio
= bio_clone_mddev(r10_bio
->master_bio
,
2100 r10_bio
->sector
- bio
->bi_sector
,
2102 r10_bio
->devs
[slot
].bio
= bio
;
2103 bio
->bi_sector
= r10_bio
->devs
[slot
].addr
2104 + rdev
->data_offset
;
2105 bio
->bi_bdev
= rdev
->bdev
;
2106 bio
->bi_rw
= READ
| do_sync
;
2107 bio
->bi_private
= r10_bio
;
2108 bio
->bi_end_io
= raid10_end_read_request
;
2109 if (max_sectors
< r10_bio
->sectors
) {
2110 /* Drat - have to split this up more */
2111 struct bio
*mbio
= r10_bio
->master_bio
;
2112 int sectors_handled
=
2113 r10_bio
->sector
+ max_sectors
2115 r10_bio
->sectors
= max_sectors
;
2116 spin_lock_irq(&conf
->device_lock
);
2117 if (mbio
->bi_phys_segments
== 0)
2118 mbio
->bi_phys_segments
= 2;
2120 mbio
->bi_phys_segments
++;
2121 spin_unlock_irq(&conf
->device_lock
);
2122 generic_make_request(bio
);
2125 r10_bio
= mempool_alloc(conf
->r10bio_pool
,
2127 r10_bio
->master_bio
= mbio
;
2128 r10_bio
->sectors
= (mbio
->bi_size
>> 9)
2131 set_bit(R10BIO_ReadError
,
2133 r10_bio
->mddev
= mddev
;
2134 r10_bio
->sector
= mbio
->bi_sector
2139 generic_make_request(bio
);
2142 static void handle_write_completed(conf_t
*conf
, r10bio_t
*r10_bio
)
2144 /* Some sort of write request has finished and it
2145 * succeeded in writing where we thought there was a
2146 * bad block. So forget the bad block.
2147 * Or possibly if failed and we need to record
2153 if (test_bit(R10BIO_IsSync
, &r10_bio
->state
) ||
2154 test_bit(R10BIO_IsRecover
, &r10_bio
->state
)) {
2155 for (m
= 0; m
< conf
->copies
; m
++) {
2156 int dev
= r10_bio
->devs
[m
].devnum
;
2157 rdev
= conf
->mirrors
[dev
].rdev
;
2158 if (r10_bio
->devs
[m
].bio
== NULL
)
2160 if (test_bit(BIO_UPTODATE
,
2161 &r10_bio
->devs
[m
].bio
->bi_flags
)) {
2162 rdev_clear_badblocks(
2164 r10_bio
->devs
[m
].addr
,
2167 if (!rdev_set_badblocks(
2169 r10_bio
->devs
[m
].addr
,
2170 r10_bio
->sectors
, 0))
2171 md_error(conf
->mddev
, rdev
);
2176 for (m
= 0; m
< conf
->copies
; m
++) {
2177 int dev
= r10_bio
->devs
[m
].devnum
;
2178 struct bio
*bio
= r10_bio
->devs
[m
].bio
;
2179 rdev
= conf
->mirrors
[dev
].rdev
;
2180 if (bio
== IO_MADE_GOOD
) {
2181 rdev_clear_badblocks(
2183 r10_bio
->devs
[m
].addr
,
2185 rdev_dec_pending(rdev
, conf
->mddev
);
2186 } else if (bio
!= NULL
&&
2187 !test_bit(BIO_UPTODATE
, &bio
->bi_flags
)) {
2188 if (!narrow_write_error(r10_bio
, m
)) {
2189 md_error(conf
->mddev
, rdev
);
2190 set_bit(R10BIO_Degraded
,
2193 rdev_dec_pending(rdev
, conf
->mddev
);
2196 if (test_bit(R10BIO_WriteError
,
2198 close_write(r10_bio
);
2199 raid_end_bio_io(r10_bio
);
2203 static void raid10d(mddev_t
*mddev
)
2206 unsigned long flags
;
2207 conf_t
*conf
= mddev
->private;
2208 struct list_head
*head
= &conf
->retry_list
;
2209 struct blk_plug plug
;
2211 md_check_recovery(mddev
);
2213 blk_start_plug(&plug
);
2216 flush_pending_writes(conf
);
2218 spin_lock_irqsave(&conf
->device_lock
, flags
);
2219 if (list_empty(head
)) {
2220 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2223 r10_bio
= list_entry(head
->prev
, r10bio_t
, retry_list
);
2224 list_del(head
->prev
);
2226 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2228 mddev
= r10_bio
->mddev
;
2229 conf
= mddev
->private;
2230 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
2231 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
2232 handle_write_completed(conf
, r10_bio
);
2233 else if (test_bit(R10BIO_IsSync
, &r10_bio
->state
))
2234 sync_request_write(mddev
, r10_bio
);
2235 else if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
))
2236 recovery_request_write(mddev
, r10_bio
);
2237 else if (test_bit(R10BIO_ReadError
, &r10_bio
->state
))
2238 handle_read_error(mddev
, r10_bio
);
2240 /* just a partial read to be scheduled from a
2243 int slot
= r10_bio
->read_slot
;
2244 generic_make_request(r10_bio
->devs
[slot
].bio
);
2248 if (mddev
->flags
& ~(1<<MD_CHANGE_PENDING
))
2249 md_check_recovery(mddev
);
2251 blk_finish_plug(&plug
);
2255 static int init_resync(conf_t
*conf
)
2259 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
2260 BUG_ON(conf
->r10buf_pool
);
2261 conf
->r10buf_pool
= mempool_create(buffs
, r10buf_pool_alloc
, r10buf_pool_free
, conf
);
2262 if (!conf
->r10buf_pool
)
2264 conf
->next_resync
= 0;
2269 * perform a "sync" on one "block"
2271 * We need to make sure that no normal I/O request - particularly write
2272 * requests - conflict with active sync requests.
2274 * This is achieved by tracking pending requests and a 'barrier' concept
2275 * that can be installed to exclude normal IO requests.
2277 * Resync and recovery are handled very differently.
2278 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2280 * For resync, we iterate over virtual addresses, read all copies,
2281 * and update if there are differences. If only one copy is live,
2283 * For recovery, we iterate over physical addresses, read a good
2284 * value for each non-in_sync drive, and over-write.
2286 * So, for recovery we may have several outstanding complex requests for a
2287 * given address, one for each out-of-sync device. We model this by allocating
2288 * a number of r10_bio structures, one for each out-of-sync device.
2289 * As we setup these structures, we collect all bio's together into a list
2290 * which we then process collectively to add pages, and then process again
2291 * to pass to generic_make_request.
2293 * The r10_bio structures are linked using a borrowed master_bio pointer.
2294 * This link is counted in ->remaining. When the r10_bio that points to NULL
2295 * has its remaining count decremented to 0, the whole complex operation
2300 static sector_t
sync_request(mddev_t
*mddev
, sector_t sector_nr
,
2301 int *skipped
, int go_faster
)
2303 conf_t
*conf
= mddev
->private;
2305 struct bio
*biolist
= NULL
, *bio
;
2306 sector_t max_sector
, nr_sectors
;
2309 sector_t sync_blocks
;
2310 sector_t sectors_skipped
= 0;
2311 int chunks_skipped
= 0;
2313 if (!conf
->r10buf_pool
)
2314 if (init_resync(conf
))
2318 max_sector
= mddev
->dev_sectors
;
2319 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
2320 max_sector
= mddev
->resync_max_sectors
;
2321 if (sector_nr
>= max_sector
) {
2322 /* If we aborted, we need to abort the
2323 * sync on the 'current' bitmap chucks (there can
2324 * be several when recovering multiple devices).
2325 * as we may have started syncing it but not finished.
2326 * We can find the current address in
2327 * mddev->curr_resync, but for recovery,
2328 * we need to convert that to several
2329 * virtual addresses.
2331 if (mddev
->curr_resync
< max_sector
) { /* aborted */
2332 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
2333 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
2335 else for (i
=0; i
<conf
->raid_disks
; i
++) {
2337 raid10_find_virt(conf
, mddev
->curr_resync
, i
);
2338 bitmap_end_sync(mddev
->bitmap
, sect
,
2341 } else /* completed sync */
2344 bitmap_close_sync(mddev
->bitmap
);
2347 return sectors_skipped
;
2349 if (chunks_skipped
>= conf
->raid_disks
) {
2350 /* if there has been nothing to do on any drive,
2351 * then there is nothing to do at all..
2354 return (max_sector
- sector_nr
) + sectors_skipped
;
2357 if (max_sector
> mddev
->resync_max
)
2358 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
2360 /* make sure whole request will fit in a chunk - if chunks
2363 if (conf
->near_copies
< conf
->raid_disks
&&
2364 max_sector
> (sector_nr
| conf
->chunk_mask
))
2365 max_sector
= (sector_nr
| conf
->chunk_mask
) + 1;
2367 * If there is non-resync activity waiting for us then
2368 * put in a delay to throttle resync.
2370 if (!go_faster
&& conf
->nr_waiting
)
2371 msleep_interruptible(1000);
2373 /* Again, very different code for resync and recovery.
2374 * Both must result in an r10bio with a list of bios that
2375 * have bi_end_io, bi_sector, bi_bdev set,
2376 * and bi_private set to the r10bio.
2377 * For recovery, we may actually create several r10bios
2378 * with 2 bios in each, that correspond to the bios in the main one.
2379 * In this case, the subordinate r10bios link back through a
2380 * borrowed master_bio pointer, and the counter in the master
2381 * includes a ref from each subordinate.
2383 /* First, we decide what to do and set ->bi_end_io
2384 * To end_sync_read if we want to read, and
2385 * end_sync_write if we will want to write.
2388 max_sync
= RESYNC_PAGES
<< (PAGE_SHIFT
-9);
2389 if (!test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
2390 /* recovery... the complicated one */
2394 for (i
=0 ; i
<conf
->raid_disks
; i
++) {
2401 if (conf
->mirrors
[i
].rdev
== NULL
||
2402 test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
))
2406 /* want to reconstruct this device */
2408 sect
= raid10_find_virt(conf
, sector_nr
, i
);
2409 /* Unless we are doing a full sync, we only need
2410 * to recover the block if it is set in the bitmap
2412 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
2414 if (sync_blocks
< max_sync
)
2415 max_sync
= sync_blocks
;
2418 /* yep, skip the sync_blocks here, but don't assume
2419 * that there will never be anything to do here
2421 chunks_skipped
= -1;
2425 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
2426 raise_barrier(conf
, rb2
!= NULL
);
2427 atomic_set(&r10_bio
->remaining
, 0);
2429 r10_bio
->master_bio
= (struct bio
*)rb2
;
2431 atomic_inc(&rb2
->remaining
);
2432 r10_bio
->mddev
= mddev
;
2433 set_bit(R10BIO_IsRecover
, &r10_bio
->state
);
2434 r10_bio
->sector
= sect
;
2436 raid10_find_phys(conf
, r10_bio
);
2438 /* Need to check if the array will still be
2441 for (j
=0; j
<conf
->raid_disks
; j
++)
2442 if (conf
->mirrors
[j
].rdev
== NULL
||
2443 test_bit(Faulty
, &conf
->mirrors
[j
].rdev
->flags
)) {
2448 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
2449 &sync_blocks
, still_degraded
);
2452 for (j
=0; j
<conf
->copies
;j
++) {
2454 int d
= r10_bio
->devs
[j
].devnum
;
2455 sector_t from_addr
, to_addr
;
2457 sector_t sector
, first_bad
;
2459 if (!conf
->mirrors
[d
].rdev
||
2460 !test_bit(In_sync
, &conf
->mirrors
[d
].rdev
->flags
))
2462 /* This is where we read from */
2464 rdev
= conf
->mirrors
[d
].rdev
;
2465 sector
= r10_bio
->devs
[j
].addr
;
2467 if (is_badblock(rdev
, sector
, max_sync
,
2468 &first_bad
, &bad_sectors
)) {
2469 if (first_bad
> sector
)
2470 max_sync
= first_bad
- sector
;
2472 bad_sectors
-= (sector
2474 if (max_sync
> bad_sectors
)
2475 max_sync
= bad_sectors
;
2479 bio
= r10_bio
->devs
[0].bio
;
2480 bio
->bi_next
= biolist
;
2482 bio
->bi_private
= r10_bio
;
2483 bio
->bi_end_io
= end_sync_read
;
2485 from_addr
= r10_bio
->devs
[j
].addr
;
2486 bio
->bi_sector
= from_addr
+
2487 conf
->mirrors
[d
].rdev
->data_offset
;
2488 bio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
2489 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
2490 atomic_inc(&r10_bio
->remaining
);
2491 /* and we write to 'i' */
2493 for (k
=0; k
<conf
->copies
; k
++)
2494 if (r10_bio
->devs
[k
].devnum
== i
)
2496 BUG_ON(k
== conf
->copies
);
2497 bio
= r10_bio
->devs
[1].bio
;
2498 bio
->bi_next
= biolist
;
2500 bio
->bi_private
= r10_bio
;
2501 bio
->bi_end_io
= end_sync_write
;
2503 to_addr
= r10_bio
->devs
[k
].addr
;
2504 bio
->bi_sector
= to_addr
+
2505 conf
->mirrors
[i
].rdev
->data_offset
;
2506 bio
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
2508 r10_bio
->devs
[0].devnum
= d
;
2509 r10_bio
->devs
[0].addr
= from_addr
;
2510 r10_bio
->devs
[1].devnum
= i
;
2511 r10_bio
->devs
[1].addr
= to_addr
;
2515 if (j
== conf
->copies
) {
2516 /* Cannot recover, so abort the recovery or
2517 * record a bad block */
2520 atomic_dec(&rb2
->remaining
);
2523 /* problem is that there are bad blocks
2524 * on other device(s)
2527 for (k
= 0; k
< conf
->copies
; k
++)
2528 if (r10_bio
->devs
[k
].devnum
== i
)
2530 if (!rdev_set_badblocks(
2531 conf
->mirrors
[i
].rdev
,
2532 r10_bio
->devs
[k
].addr
,
2537 if (!test_and_set_bit(MD_RECOVERY_INTR
,
2539 printk(KERN_INFO
"md/raid10:%s: insufficient "
2540 "working devices for recovery.\n",
2542 conf
->mirrors
[i
].recovery_disabled
2543 = mddev
->recovery_disabled
;
2548 if (biolist
== NULL
) {
2550 r10bio_t
*rb2
= r10_bio
;
2551 r10_bio
= (r10bio_t
*) rb2
->master_bio
;
2552 rb2
->master_bio
= NULL
;
2558 /* resync. Schedule a read for every block at this virt offset */
2561 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
2563 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
2564 &sync_blocks
, mddev
->degraded
) &&
2565 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
,
2566 &mddev
->recovery
)) {
2567 /* We can skip this block */
2569 return sync_blocks
+ sectors_skipped
;
2571 if (sync_blocks
< max_sync
)
2572 max_sync
= sync_blocks
;
2573 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
2575 r10_bio
->mddev
= mddev
;
2576 atomic_set(&r10_bio
->remaining
, 0);
2577 raise_barrier(conf
, 0);
2578 conf
->next_resync
= sector_nr
;
2580 r10_bio
->master_bio
= NULL
;
2581 r10_bio
->sector
= sector_nr
;
2582 set_bit(R10BIO_IsSync
, &r10_bio
->state
);
2583 raid10_find_phys(conf
, r10_bio
);
2584 r10_bio
->sectors
= (sector_nr
| conf
->chunk_mask
) - sector_nr
+1;
2586 for (i
=0; i
<conf
->copies
; i
++) {
2587 int d
= r10_bio
->devs
[i
].devnum
;
2588 sector_t first_bad
, sector
;
2591 bio
= r10_bio
->devs
[i
].bio
;
2592 bio
->bi_end_io
= NULL
;
2593 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
2594 if (conf
->mirrors
[d
].rdev
== NULL
||
2595 test_bit(Faulty
, &conf
->mirrors
[d
].rdev
->flags
))
2597 sector
= r10_bio
->devs
[i
].addr
;
2598 if (is_badblock(conf
->mirrors
[d
].rdev
,
2600 &first_bad
, &bad_sectors
)) {
2601 if (first_bad
> sector
)
2602 max_sync
= first_bad
- sector
;
2604 bad_sectors
-= (sector
- first_bad
);
2605 if (max_sync
> bad_sectors
)
2606 max_sync
= max_sync
;
2610 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
2611 atomic_inc(&r10_bio
->remaining
);
2612 bio
->bi_next
= biolist
;
2614 bio
->bi_private
= r10_bio
;
2615 bio
->bi_end_io
= end_sync_read
;
2617 bio
->bi_sector
= sector
+
2618 conf
->mirrors
[d
].rdev
->data_offset
;
2619 bio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
2624 for (i
=0; i
<conf
->copies
; i
++) {
2625 int d
= r10_bio
->devs
[i
].devnum
;
2626 if (r10_bio
->devs
[i
].bio
->bi_end_io
)
2627 rdev_dec_pending(conf
->mirrors
[d
].rdev
,
2636 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
2638 bio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
2640 bio
->bi_flags
|= 1 << BIO_UPTODATE
;
2643 bio
->bi_phys_segments
= 0;
2648 if (sector_nr
+ max_sync
< max_sector
)
2649 max_sector
= sector_nr
+ max_sync
;
2652 int len
= PAGE_SIZE
;
2653 if (sector_nr
+ (len
>>9) > max_sector
)
2654 len
= (max_sector
- sector_nr
) << 9;
2657 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
2659 page
= bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
;
2660 if (bio_add_page(bio
, page
, len
, 0))
2664 bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
= page
;
2665 for (bio2
= biolist
;
2666 bio2
&& bio2
!= bio
;
2667 bio2
= bio2
->bi_next
) {
2668 /* remove last page from this bio */
2670 bio2
->bi_size
-= len
;
2671 bio2
->bi_flags
&= ~(1<< BIO_SEG_VALID
);
2675 nr_sectors
+= len
>>9;
2676 sector_nr
+= len
>>9;
2677 } while (biolist
->bi_vcnt
< RESYNC_PAGES
);
2679 r10_bio
->sectors
= nr_sectors
;
2683 biolist
= biolist
->bi_next
;
2685 bio
->bi_next
= NULL
;
2686 r10_bio
= bio
->bi_private
;
2687 r10_bio
->sectors
= nr_sectors
;
2689 if (bio
->bi_end_io
== end_sync_read
) {
2690 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
2691 generic_make_request(bio
);
2695 if (sectors_skipped
)
2696 /* pretend they weren't skipped, it makes
2697 * no important difference in this case
2699 md_done_sync(mddev
, sectors_skipped
, 1);
2701 return sectors_skipped
+ nr_sectors
;
2703 /* There is nowhere to write, so all non-sync
2704 * drives must be failed or in resync, all drives
2705 * have a bad block, so try the next chunk...
2707 if (sector_nr
+ max_sync
< max_sector
)
2708 max_sector
= sector_nr
+ max_sync
;
2710 sectors_skipped
+= (max_sector
- sector_nr
);
2712 sector_nr
= max_sector
;
2717 raid10_size(mddev_t
*mddev
, sector_t sectors
, int raid_disks
)
2720 conf_t
*conf
= mddev
->private;
2723 raid_disks
= conf
->raid_disks
;
2725 sectors
= conf
->dev_sectors
;
2727 size
= sectors
>> conf
->chunk_shift
;
2728 sector_div(size
, conf
->far_copies
);
2729 size
= size
* raid_disks
;
2730 sector_div(size
, conf
->near_copies
);
2732 return size
<< conf
->chunk_shift
;
2736 static conf_t
*setup_conf(mddev_t
*mddev
)
2738 conf_t
*conf
= NULL
;
2740 sector_t stride
, size
;
2743 if (mddev
->new_chunk_sectors
< (PAGE_SIZE
>> 9) ||
2744 !is_power_of_2(mddev
->new_chunk_sectors
)) {
2745 printk(KERN_ERR
"md/raid10:%s: chunk size must be "
2746 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
2747 mdname(mddev
), PAGE_SIZE
);
2751 nc
= mddev
->new_layout
& 255;
2752 fc
= (mddev
->new_layout
>> 8) & 255;
2753 fo
= mddev
->new_layout
& (1<<16);
2755 if ((nc
*fc
) <2 || (nc
*fc
) > mddev
->raid_disks
||
2756 (mddev
->new_layout
>> 17)) {
2757 printk(KERN_ERR
"md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
2758 mdname(mddev
), mddev
->new_layout
);
2763 conf
= kzalloc(sizeof(conf_t
), GFP_KERNEL
);
2767 conf
->mirrors
= kzalloc(sizeof(struct mirror_info
)*mddev
->raid_disks
,
2772 conf
->tmppage
= alloc_page(GFP_KERNEL
);
2777 conf
->raid_disks
= mddev
->raid_disks
;
2778 conf
->near_copies
= nc
;
2779 conf
->far_copies
= fc
;
2780 conf
->copies
= nc
*fc
;
2781 conf
->far_offset
= fo
;
2782 conf
->chunk_mask
= mddev
->new_chunk_sectors
- 1;
2783 conf
->chunk_shift
= ffz(~mddev
->new_chunk_sectors
);
2785 conf
->r10bio_pool
= mempool_create(NR_RAID10_BIOS
, r10bio_pool_alloc
,
2786 r10bio_pool_free
, conf
);
2787 if (!conf
->r10bio_pool
)
2790 size
= mddev
->dev_sectors
>> conf
->chunk_shift
;
2791 sector_div(size
, fc
);
2792 size
= size
* conf
->raid_disks
;
2793 sector_div(size
, nc
);
2794 /* 'size' is now the number of chunks in the array */
2795 /* calculate "used chunks per device" in 'stride' */
2796 stride
= size
* conf
->copies
;
2798 /* We need to round up when dividing by raid_disks to
2799 * get the stride size.
2801 stride
+= conf
->raid_disks
- 1;
2802 sector_div(stride
, conf
->raid_disks
);
2804 conf
->dev_sectors
= stride
<< conf
->chunk_shift
;
2809 sector_div(stride
, fc
);
2810 conf
->stride
= stride
<< conf
->chunk_shift
;
2813 spin_lock_init(&conf
->device_lock
);
2814 INIT_LIST_HEAD(&conf
->retry_list
);
2816 spin_lock_init(&conf
->resync_lock
);
2817 init_waitqueue_head(&conf
->wait_barrier
);
2819 conf
->thread
= md_register_thread(raid10d
, mddev
, NULL
);
2823 conf
->mddev
= mddev
;
2827 printk(KERN_ERR
"md/raid10:%s: couldn't allocate memory.\n",
2830 if (conf
->r10bio_pool
)
2831 mempool_destroy(conf
->r10bio_pool
);
2832 kfree(conf
->mirrors
);
2833 safe_put_page(conf
->tmppage
);
2836 return ERR_PTR(err
);
2839 static int run(mddev_t
*mddev
)
2842 int i
, disk_idx
, chunk_size
;
2843 mirror_info_t
*disk
;
2848 * copy the already verified devices into our private RAID10
2849 * bookkeeping area. [whatever we allocate in run(),
2850 * should be freed in stop()]
2853 if (mddev
->private == NULL
) {
2854 conf
= setup_conf(mddev
);
2856 return PTR_ERR(conf
);
2857 mddev
->private = conf
;
2859 conf
= mddev
->private;
2863 mddev
->thread
= conf
->thread
;
2864 conf
->thread
= NULL
;
2866 chunk_size
= mddev
->chunk_sectors
<< 9;
2867 blk_queue_io_min(mddev
->queue
, chunk_size
);
2868 if (conf
->raid_disks
% conf
->near_copies
)
2869 blk_queue_io_opt(mddev
->queue
, chunk_size
* conf
->raid_disks
);
2871 blk_queue_io_opt(mddev
->queue
, chunk_size
*
2872 (conf
->raid_disks
/ conf
->near_copies
));
2874 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
2876 disk_idx
= rdev
->raid_disk
;
2877 if (disk_idx
>= conf
->raid_disks
2880 disk
= conf
->mirrors
+ disk_idx
;
2883 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
2884 rdev
->data_offset
<< 9);
2885 /* as we don't honour merge_bvec_fn, we must never risk
2886 * violating it, so limit max_segments to 1 lying
2887 * within a single page.
2889 if (rdev
->bdev
->bd_disk
->queue
->merge_bvec_fn
) {
2890 blk_queue_max_segments(mddev
->queue
, 1);
2891 blk_queue_segment_boundary(mddev
->queue
,
2892 PAGE_CACHE_SIZE
- 1);
2895 disk
->head_position
= 0;
2897 /* need to check that every block has at least one working mirror */
2898 if (!enough(conf
, -1)) {
2899 printk(KERN_ERR
"md/raid10:%s: not enough operational mirrors.\n",
2904 mddev
->degraded
= 0;
2905 for (i
= 0; i
< conf
->raid_disks
; i
++) {
2907 disk
= conf
->mirrors
+ i
;
2910 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
2911 disk
->head_position
= 0;
2918 if (mddev
->recovery_cp
!= MaxSector
)
2919 printk(KERN_NOTICE
"md/raid10:%s: not clean"
2920 " -- starting background reconstruction\n",
2923 "md/raid10:%s: active with %d out of %d devices\n",
2924 mdname(mddev
), conf
->raid_disks
- mddev
->degraded
,
2927 * Ok, everything is just fine now
2929 mddev
->dev_sectors
= conf
->dev_sectors
;
2930 size
= raid10_size(mddev
, 0, 0);
2931 md_set_array_sectors(mddev
, size
);
2932 mddev
->resync_max_sectors
= size
;
2934 mddev
->queue
->backing_dev_info
.congested_fn
= raid10_congested
;
2935 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
2937 /* Calculate max read-ahead size.
2938 * We need to readahead at least twice a whole stripe....
2942 int stripe
= conf
->raid_disks
*
2943 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
2944 stripe
/= conf
->near_copies
;
2945 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2* stripe
)
2946 mddev
->queue
->backing_dev_info
.ra_pages
= 2* stripe
;
2949 if (conf
->near_copies
< conf
->raid_disks
)
2950 blk_queue_merge_bvec(mddev
->queue
, raid10_mergeable_bvec
);
2952 if (md_integrity_register(mddev
))
2958 md_unregister_thread(mddev
->thread
);
2959 if (conf
->r10bio_pool
)
2960 mempool_destroy(conf
->r10bio_pool
);
2961 safe_put_page(conf
->tmppage
);
2962 kfree(conf
->mirrors
);
2964 mddev
->private = NULL
;
2969 static int stop(mddev_t
*mddev
)
2971 conf_t
*conf
= mddev
->private;
2973 raise_barrier(conf
, 0);
2974 lower_barrier(conf
);
2976 md_unregister_thread(mddev
->thread
);
2977 mddev
->thread
= NULL
;
2978 blk_sync_queue(mddev
->queue
); /* the unplug fn references 'conf'*/
2979 if (conf
->r10bio_pool
)
2980 mempool_destroy(conf
->r10bio_pool
);
2981 kfree(conf
->mirrors
);
2983 mddev
->private = NULL
;
2987 static void raid10_quiesce(mddev_t
*mddev
, int state
)
2989 conf_t
*conf
= mddev
->private;
2993 raise_barrier(conf
, 0);
2996 lower_barrier(conf
);
3001 static void *raid10_takeover_raid0(mddev_t
*mddev
)
3006 if (mddev
->degraded
> 0) {
3007 printk(KERN_ERR
"md/raid10:%s: Error: degraded raid0!\n",
3009 return ERR_PTR(-EINVAL
);
3012 /* Set new parameters */
3013 mddev
->new_level
= 10;
3014 /* new layout: far_copies = 1, near_copies = 2 */
3015 mddev
->new_layout
= (1<<8) + 2;
3016 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
3017 mddev
->delta_disks
= mddev
->raid_disks
;
3018 mddev
->raid_disks
*= 2;
3019 /* make sure it will be not marked as dirty */
3020 mddev
->recovery_cp
= MaxSector
;
3022 conf
= setup_conf(mddev
);
3023 if (!IS_ERR(conf
)) {
3024 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
3025 if (rdev
->raid_disk
>= 0)
3026 rdev
->new_raid_disk
= rdev
->raid_disk
* 2;
3033 static void *raid10_takeover(mddev_t
*mddev
)
3035 struct raid0_private_data
*raid0_priv
;
3037 /* raid10 can take over:
3038 * raid0 - providing it has only two drives
3040 if (mddev
->level
== 0) {
3041 /* for raid0 takeover only one zone is supported */
3042 raid0_priv
= mddev
->private;
3043 if (raid0_priv
->nr_strip_zones
> 1) {
3044 printk(KERN_ERR
"md/raid10:%s: cannot takeover raid 0"
3045 " with more than one zone.\n",
3047 return ERR_PTR(-EINVAL
);
3049 return raid10_takeover_raid0(mddev
);
3051 return ERR_PTR(-EINVAL
);
3054 static struct mdk_personality raid10_personality
=
3058 .owner
= THIS_MODULE
,
3059 .make_request
= make_request
,
3063 .error_handler
= error
,
3064 .hot_add_disk
= raid10_add_disk
,
3065 .hot_remove_disk
= raid10_remove_disk
,
3066 .spare_active
= raid10_spare_active
,
3067 .sync_request
= sync_request
,
3068 .quiesce
= raid10_quiesce
,
3069 .size
= raid10_size
,
3070 .takeover
= raid10_takeover
,
3073 static int __init
raid_init(void)
3075 return register_md_personality(&raid10_personality
);
3078 static void raid_exit(void)
3080 unregister_md_personality(&raid10_personality
);
3083 module_init(raid_init
);
3084 module_exit(raid_exit
);
3085 MODULE_LICENSE("GPL");
3086 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
3087 MODULE_ALIAS("md-personality-9"); /* RAID10 */
3088 MODULE_ALIAS("md-raid10");
3089 MODULE_ALIAS("md-level-10");