2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
65 #define NR_STRIPES 256
66 #define STRIPE_SIZE PAGE_SIZE
67 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
68 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
69 #define IO_THRESHOLD 1
70 #define BYPASS_THRESHOLD 1
71 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
72 #define HASH_MASK (NR_HASH - 1)
74 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
76 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
77 * order without overlap. There may be several bio's per stripe+device, and
78 * a bio could span several devices.
79 * When walking this list for a particular stripe+device, we must never proceed
80 * beyond a bio that extends past this device, as the next bio might no longer
82 * This macro is used to determine the 'next' bio in the list, given the sector
83 * of the current stripe+device
85 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
87 * The following can be used to debug the driver
89 #define RAID5_PARANOIA 1
90 #if RAID5_PARANOIA && defined(CONFIG_SMP)
91 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
93 # define CHECK_DEVLOCK()
102 * We maintain a biased count of active stripes in the bottom 16 bits of
103 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
105 static inline int raid5_bi_phys_segments(struct bio
*bio
)
107 return bio
->bi_phys_segments
& 0xffff;
110 static inline int raid5_bi_hw_segments(struct bio
*bio
)
112 return (bio
->bi_phys_segments
>> 16) & 0xffff;
115 static inline int raid5_dec_bi_phys_segments(struct bio
*bio
)
117 --bio
->bi_phys_segments
;
118 return raid5_bi_phys_segments(bio
);
121 static inline int raid5_dec_bi_hw_segments(struct bio
*bio
)
123 unsigned short val
= raid5_bi_hw_segments(bio
);
126 bio
->bi_phys_segments
= (val
<< 16) | raid5_bi_phys_segments(bio
);
130 static inline void raid5_set_bi_hw_segments(struct bio
*bio
, unsigned int cnt
)
132 bio
->bi_phys_segments
= raid5_bi_phys_segments(bio
) | (cnt
<< 16);
135 /* Find first data disk in a raid6 stripe */
136 static inline int raid6_d0(struct stripe_head
*sh
)
139 /* ddf always start from first device */
141 /* md starts just after Q block */
142 if (sh
->qd_idx
== sh
->disks
- 1)
145 return sh
->qd_idx
+ 1;
147 static inline int raid6_next_disk(int disk
, int raid_disks
)
150 return (disk
< raid_disks
) ? disk
: 0;
153 /* When walking through the disks in a raid5, starting at raid6_d0,
154 * We need to map each disk to a 'slot', where the data disks are slot
155 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
156 * is raid_disks-1. This help does that mapping.
158 static int raid6_idx_to_slot(int idx
, struct stripe_head
*sh
,
159 int *count
, int syndrome_disks
)
165 if (idx
== sh
->pd_idx
)
166 return syndrome_disks
;
167 if (idx
== sh
->qd_idx
)
168 return syndrome_disks
+ 1;
174 static void return_io(struct bio
*return_bi
)
176 struct bio
*bi
= return_bi
;
179 return_bi
= bi
->bi_next
;
187 static void print_raid5_conf (raid5_conf_t
*conf
);
189 static int stripe_operations_active(struct stripe_head
*sh
)
191 return sh
->check_state
|| sh
->reconstruct_state
||
192 test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
) ||
193 test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
196 static void __release_stripe(raid5_conf_t
*conf
, struct stripe_head
*sh
)
198 if (atomic_dec_and_test(&sh
->count
)) {
199 BUG_ON(!list_empty(&sh
->lru
));
200 BUG_ON(atomic_read(&conf
->active_stripes
)==0);
201 if (test_bit(STRIPE_HANDLE
, &sh
->state
)) {
202 if (test_bit(STRIPE_DELAYED
, &sh
->state
))
203 list_add_tail(&sh
->lru
, &conf
->delayed_list
);
204 else if (test_bit(STRIPE_BIT_DELAY
, &sh
->state
) &&
205 sh
->bm_seq
- conf
->seq_write
> 0)
206 list_add_tail(&sh
->lru
, &conf
->bitmap_list
);
208 clear_bit(STRIPE_BIT_DELAY
, &sh
->state
);
209 list_add_tail(&sh
->lru
, &conf
->handle_list
);
211 md_wakeup_thread(conf
->mddev
->thread
);
213 BUG_ON(stripe_operations_active(sh
));
214 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
215 atomic_dec(&conf
->preread_active_stripes
);
216 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
)
217 md_wakeup_thread(conf
->mddev
->thread
);
219 atomic_dec(&conf
->active_stripes
);
220 if (!test_bit(STRIPE_EXPANDING
, &sh
->state
)) {
221 list_add_tail(&sh
->lru
, &conf
->inactive_list
);
222 wake_up(&conf
->wait_for_stripe
);
223 if (conf
->retry_read_aligned
)
224 md_wakeup_thread(conf
->mddev
->thread
);
230 static void release_stripe(struct stripe_head
*sh
)
232 raid5_conf_t
*conf
= sh
->raid_conf
;
235 spin_lock_irqsave(&conf
->device_lock
, flags
);
236 __release_stripe(conf
, sh
);
237 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
240 static inline void remove_hash(struct stripe_head
*sh
)
242 pr_debug("remove_hash(), stripe %llu\n",
243 (unsigned long long)sh
->sector
);
245 hlist_del_init(&sh
->hash
);
248 static inline void insert_hash(raid5_conf_t
*conf
, struct stripe_head
*sh
)
250 struct hlist_head
*hp
= stripe_hash(conf
, sh
->sector
);
252 pr_debug("insert_hash(), stripe %llu\n",
253 (unsigned long long)sh
->sector
);
256 hlist_add_head(&sh
->hash
, hp
);
260 /* find an idle stripe, make sure it is unhashed, and return it. */
261 static struct stripe_head
*get_free_stripe(raid5_conf_t
*conf
)
263 struct stripe_head
*sh
= NULL
;
264 struct list_head
*first
;
267 if (list_empty(&conf
->inactive_list
))
269 first
= conf
->inactive_list
.next
;
270 sh
= list_entry(first
, struct stripe_head
, lru
);
271 list_del_init(first
);
273 atomic_inc(&conf
->active_stripes
);
278 static void shrink_buffers(struct stripe_head
*sh
)
282 int num
= sh
->raid_conf
->pool_size
;
284 for (i
= 0; i
< num
; i
++) {
288 sh
->dev
[i
].page
= NULL
;
293 static int grow_buffers(struct stripe_head
*sh
)
296 int num
= sh
->raid_conf
->pool_size
;
298 for (i
= 0; i
< num
; i
++) {
301 if (!(page
= alloc_page(GFP_KERNEL
))) {
304 sh
->dev
[i
].page
= page
;
309 static void raid5_build_block(struct stripe_head
*sh
, int i
, int previous
);
310 static void stripe_set_idx(sector_t stripe
, raid5_conf_t
*conf
, int previous
,
311 struct stripe_head
*sh
);
313 static void init_stripe(struct stripe_head
*sh
, sector_t sector
, int previous
)
315 raid5_conf_t
*conf
= sh
->raid_conf
;
318 BUG_ON(atomic_read(&sh
->count
) != 0);
319 BUG_ON(test_bit(STRIPE_HANDLE
, &sh
->state
));
320 BUG_ON(stripe_operations_active(sh
));
323 pr_debug("init_stripe called, stripe %llu\n",
324 (unsigned long long)sh
->sector
);
328 sh
->generation
= conf
->generation
- previous
;
329 sh
->disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
331 stripe_set_idx(sector
, conf
, previous
, sh
);
335 for (i
= sh
->disks
; i
--; ) {
336 struct r5dev
*dev
= &sh
->dev
[i
];
338 if (dev
->toread
|| dev
->read
|| dev
->towrite
|| dev
->written
||
339 test_bit(R5_LOCKED
, &dev
->flags
)) {
340 printk(KERN_ERR
"sector=%llx i=%d %p %p %p %p %d\n",
341 (unsigned long long)sh
->sector
, i
, dev
->toread
,
342 dev
->read
, dev
->towrite
, dev
->written
,
343 test_bit(R5_LOCKED
, &dev
->flags
));
347 raid5_build_block(sh
, i
, previous
);
349 insert_hash(conf
, sh
);
352 static struct stripe_head
*__find_stripe(raid5_conf_t
*conf
, sector_t sector
,
355 struct stripe_head
*sh
;
356 struct hlist_node
*hn
;
359 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector
);
360 hlist_for_each_entry(sh
, hn
, stripe_hash(conf
, sector
), hash
)
361 if (sh
->sector
== sector
&& sh
->generation
== generation
)
363 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector
);
368 * Need to check if array has failed when deciding whether to:
370 * - remove non-faulty devices
373 * This determination is simple when no reshape is happening.
374 * However if there is a reshape, we need to carefully check
375 * both the before and after sections.
376 * This is because some failed devices may only affect one
377 * of the two sections, and some non-in_sync devices may
378 * be insync in the section most affected by failed devices.
380 static int has_failed(raid5_conf_t
*conf
)
384 if (conf
->mddev
->reshape_position
== MaxSector
)
385 return conf
->mddev
->degraded
> conf
->max_degraded
;
389 for (i
= 0; i
< conf
->previous_raid_disks
; i
++) {
390 mdk_rdev_t
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
391 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
393 else if (test_bit(In_sync
, &rdev
->flags
))
396 /* not in-sync or faulty.
397 * If the reshape increases the number of devices,
398 * this is being recovered by the reshape, so
399 * this 'previous' section is not in_sync.
400 * If the number of devices is being reduced however,
401 * the device can only be part of the array if
402 * we are reverting a reshape, so this section will
405 if (conf
->raid_disks
>= conf
->previous_raid_disks
)
409 if (degraded
> conf
->max_degraded
)
413 for (i
= 0; i
< conf
->raid_disks
; i
++) {
414 mdk_rdev_t
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
415 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
417 else if (test_bit(In_sync
, &rdev
->flags
))
420 /* not in-sync or faulty.
421 * If reshape increases the number of devices, this
422 * section has already been recovered, else it
423 * almost certainly hasn't.
425 if (conf
->raid_disks
<= conf
->previous_raid_disks
)
429 if (degraded
> conf
->max_degraded
)
434 static struct stripe_head
*
435 get_active_stripe(raid5_conf_t
*conf
, sector_t sector
,
436 int previous
, int noblock
, int noquiesce
)
438 struct stripe_head
*sh
;
440 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector
);
442 spin_lock_irq(&conf
->device_lock
);
445 wait_event_lock_irq(conf
->wait_for_stripe
,
446 conf
->quiesce
== 0 || noquiesce
,
447 conf
->device_lock
, /* nothing */);
448 sh
= __find_stripe(conf
, sector
, conf
->generation
- previous
);
450 if (!conf
->inactive_blocked
)
451 sh
= get_free_stripe(conf
);
452 if (noblock
&& sh
== NULL
)
455 conf
->inactive_blocked
= 1;
456 wait_event_lock_irq(conf
->wait_for_stripe
,
457 !list_empty(&conf
->inactive_list
) &&
458 (atomic_read(&conf
->active_stripes
)
459 < (conf
->max_nr_stripes
*3/4)
460 || !conf
->inactive_blocked
),
463 conf
->inactive_blocked
= 0;
465 init_stripe(sh
, sector
, previous
);
467 if (atomic_read(&sh
->count
)) {
468 BUG_ON(!list_empty(&sh
->lru
)
469 && !test_bit(STRIPE_EXPANDING
, &sh
->state
));
471 if (!test_bit(STRIPE_HANDLE
, &sh
->state
))
472 atomic_inc(&conf
->active_stripes
);
473 if (list_empty(&sh
->lru
) &&
474 !test_bit(STRIPE_EXPANDING
, &sh
->state
))
476 list_del_init(&sh
->lru
);
479 } while (sh
== NULL
);
482 atomic_inc(&sh
->count
);
484 spin_unlock_irq(&conf
->device_lock
);
489 raid5_end_read_request(struct bio
*bi
, int error
);
491 raid5_end_write_request(struct bio
*bi
, int error
);
493 static void ops_run_io(struct stripe_head
*sh
, struct stripe_head_state
*s
)
495 raid5_conf_t
*conf
= sh
->raid_conf
;
496 int i
, disks
= sh
->disks
;
500 for (i
= disks
; i
--; ) {
504 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
)) {
505 if (test_and_clear_bit(R5_WantFUA
, &sh
->dev
[i
].flags
))
509 } else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
514 bi
= &sh
->dev
[i
].req
;
518 bi
->bi_end_io
= raid5_end_write_request
;
520 bi
->bi_end_io
= raid5_end_read_request
;
523 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
524 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
527 atomic_inc(&rdev
->nr_pending
);
530 /* We have already checked bad blocks for reads. Now
531 * need to check for writes.
533 while ((rw
& WRITE
) && rdev
&&
534 test_bit(WriteErrorSeen
, &rdev
->flags
)) {
537 int bad
= is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
538 &first_bad
, &bad_sectors
);
543 set_bit(BlockedBadBlocks
, &rdev
->flags
);
544 if (!conf
->mddev
->external
&&
545 conf
->mddev
->flags
) {
546 /* It is very unlikely, but we might
547 * still need to write out the
548 * bad block log - better give it
550 md_check_recovery(conf
->mddev
);
552 md_wait_for_blocked_rdev(rdev
, conf
->mddev
);
554 /* Acknowledged bad block - skip the write */
555 rdev_dec_pending(rdev
, conf
->mddev
);
561 if (s
->syncing
|| s
->expanding
|| s
->expanded
)
562 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
564 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
566 bi
->bi_bdev
= rdev
->bdev
;
567 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
568 __func__
, (unsigned long long)sh
->sector
,
570 atomic_inc(&sh
->count
);
571 bi
->bi_sector
= sh
->sector
+ rdev
->data_offset
;
572 bi
->bi_flags
= 1 << BIO_UPTODATE
;
576 bi
->bi_io_vec
= &sh
->dev
[i
].vec
;
577 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
578 bi
->bi_io_vec
[0].bv_offset
= 0;
579 bi
->bi_size
= STRIPE_SIZE
;
581 generic_make_request(bi
);
584 set_bit(STRIPE_DEGRADED
, &sh
->state
);
585 pr_debug("skip op %ld on disc %d for sector %llu\n",
586 bi
->bi_rw
, i
, (unsigned long long)sh
->sector
);
587 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
588 set_bit(STRIPE_HANDLE
, &sh
->state
);
593 static struct dma_async_tx_descriptor
*
594 async_copy_data(int frombio
, struct bio
*bio
, struct page
*page
,
595 sector_t sector
, struct dma_async_tx_descriptor
*tx
)
598 struct page
*bio_page
;
601 struct async_submit_ctl submit
;
602 enum async_tx_flags flags
= 0;
604 if (bio
->bi_sector
>= sector
)
605 page_offset
= (signed)(bio
->bi_sector
- sector
) * 512;
607 page_offset
= (signed)(sector
- bio
->bi_sector
) * -512;
610 flags
|= ASYNC_TX_FENCE
;
611 init_async_submit(&submit
, flags
, tx
, NULL
, NULL
, NULL
);
613 bio_for_each_segment(bvl
, bio
, i
) {
614 int len
= bvl
->bv_len
;
618 if (page_offset
< 0) {
619 b_offset
= -page_offset
;
620 page_offset
+= b_offset
;
624 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
625 clen
= STRIPE_SIZE
- page_offset
;
630 b_offset
+= bvl
->bv_offset
;
631 bio_page
= bvl
->bv_page
;
633 tx
= async_memcpy(page
, bio_page
, page_offset
,
634 b_offset
, clen
, &submit
);
636 tx
= async_memcpy(bio_page
, page
, b_offset
,
637 page_offset
, clen
, &submit
);
639 /* chain the operations */
640 submit
.depend_tx
= tx
;
642 if (clen
< len
) /* hit end of page */
650 static void ops_complete_biofill(void *stripe_head_ref
)
652 struct stripe_head
*sh
= stripe_head_ref
;
653 struct bio
*return_bi
= NULL
;
654 raid5_conf_t
*conf
= sh
->raid_conf
;
657 pr_debug("%s: stripe %llu\n", __func__
,
658 (unsigned long long)sh
->sector
);
660 /* clear completed biofills */
661 spin_lock_irq(&conf
->device_lock
);
662 for (i
= sh
->disks
; i
--; ) {
663 struct r5dev
*dev
= &sh
->dev
[i
];
665 /* acknowledge completion of a biofill operation */
666 /* and check if we need to reply to a read request,
667 * new R5_Wantfill requests are held off until
668 * !STRIPE_BIOFILL_RUN
670 if (test_and_clear_bit(R5_Wantfill
, &dev
->flags
)) {
671 struct bio
*rbi
, *rbi2
;
676 while (rbi
&& rbi
->bi_sector
<
677 dev
->sector
+ STRIPE_SECTORS
) {
678 rbi2
= r5_next_bio(rbi
, dev
->sector
);
679 if (!raid5_dec_bi_phys_segments(rbi
)) {
680 rbi
->bi_next
= return_bi
;
687 spin_unlock_irq(&conf
->device_lock
);
688 clear_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
690 return_io(return_bi
);
692 set_bit(STRIPE_HANDLE
, &sh
->state
);
696 static void ops_run_biofill(struct stripe_head
*sh
)
698 struct dma_async_tx_descriptor
*tx
= NULL
;
699 raid5_conf_t
*conf
= sh
->raid_conf
;
700 struct async_submit_ctl submit
;
703 pr_debug("%s: stripe %llu\n", __func__
,
704 (unsigned long long)sh
->sector
);
706 for (i
= sh
->disks
; i
--; ) {
707 struct r5dev
*dev
= &sh
->dev
[i
];
708 if (test_bit(R5_Wantfill
, &dev
->flags
)) {
710 spin_lock_irq(&conf
->device_lock
);
711 dev
->read
= rbi
= dev
->toread
;
713 spin_unlock_irq(&conf
->device_lock
);
714 while (rbi
&& rbi
->bi_sector
<
715 dev
->sector
+ STRIPE_SECTORS
) {
716 tx
= async_copy_data(0, rbi
, dev
->page
,
718 rbi
= r5_next_bio(rbi
, dev
->sector
);
723 atomic_inc(&sh
->count
);
724 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_biofill
, sh
, NULL
);
725 async_trigger_callback(&submit
);
728 static void mark_target_uptodate(struct stripe_head
*sh
, int target
)
735 tgt
= &sh
->dev
[target
];
736 set_bit(R5_UPTODATE
, &tgt
->flags
);
737 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
738 clear_bit(R5_Wantcompute
, &tgt
->flags
);
741 static void ops_complete_compute(void *stripe_head_ref
)
743 struct stripe_head
*sh
= stripe_head_ref
;
745 pr_debug("%s: stripe %llu\n", __func__
,
746 (unsigned long long)sh
->sector
);
748 /* mark the computed target(s) as uptodate */
749 mark_target_uptodate(sh
, sh
->ops
.target
);
750 mark_target_uptodate(sh
, sh
->ops
.target2
);
752 clear_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
753 if (sh
->check_state
== check_state_compute_run
)
754 sh
->check_state
= check_state_compute_result
;
755 set_bit(STRIPE_HANDLE
, &sh
->state
);
759 /* return a pointer to the address conversion region of the scribble buffer */
760 static addr_conv_t
*to_addr_conv(struct stripe_head
*sh
,
761 struct raid5_percpu
*percpu
)
763 return percpu
->scribble
+ sizeof(struct page
*) * (sh
->disks
+ 2);
766 static struct dma_async_tx_descriptor
*
767 ops_run_compute5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
769 int disks
= sh
->disks
;
770 struct page
**xor_srcs
= percpu
->scribble
;
771 int target
= sh
->ops
.target
;
772 struct r5dev
*tgt
= &sh
->dev
[target
];
773 struct page
*xor_dest
= tgt
->page
;
775 struct dma_async_tx_descriptor
*tx
;
776 struct async_submit_ctl submit
;
779 pr_debug("%s: stripe %llu block: %d\n",
780 __func__
, (unsigned long long)sh
->sector
, target
);
781 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
783 for (i
= disks
; i
--; )
785 xor_srcs
[count
++] = sh
->dev
[i
].page
;
787 atomic_inc(&sh
->count
);
789 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
, NULL
,
790 ops_complete_compute
, sh
, to_addr_conv(sh
, percpu
));
791 if (unlikely(count
== 1))
792 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
794 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
799 /* set_syndrome_sources - populate source buffers for gen_syndrome
800 * @srcs - (struct page *) array of size sh->disks
801 * @sh - stripe_head to parse
803 * Populates srcs in proper layout order for the stripe and returns the
804 * 'count' of sources to be used in a call to async_gen_syndrome. The P
805 * destination buffer is recorded in srcs[count] and the Q destination
806 * is recorded in srcs[count+1]].
808 static int set_syndrome_sources(struct page
**srcs
, struct stripe_head
*sh
)
810 int disks
= sh
->disks
;
811 int syndrome_disks
= sh
->ddf_layout
? disks
: (disks
- 2);
812 int d0_idx
= raid6_d0(sh
);
816 for (i
= 0; i
< disks
; i
++)
822 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
824 srcs
[slot
] = sh
->dev
[i
].page
;
825 i
= raid6_next_disk(i
, disks
);
826 } while (i
!= d0_idx
);
828 return syndrome_disks
;
831 static struct dma_async_tx_descriptor
*
832 ops_run_compute6_1(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
834 int disks
= sh
->disks
;
835 struct page
**blocks
= percpu
->scribble
;
837 int qd_idx
= sh
->qd_idx
;
838 struct dma_async_tx_descriptor
*tx
;
839 struct async_submit_ctl submit
;
845 if (sh
->ops
.target
< 0)
846 target
= sh
->ops
.target2
;
847 else if (sh
->ops
.target2
< 0)
848 target
= sh
->ops
.target
;
850 /* we should only have one valid target */
853 pr_debug("%s: stripe %llu block: %d\n",
854 __func__
, (unsigned long long)sh
->sector
, target
);
856 tgt
= &sh
->dev
[target
];
857 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
860 atomic_inc(&sh
->count
);
862 if (target
== qd_idx
) {
863 count
= set_syndrome_sources(blocks
, sh
);
864 blocks
[count
] = NULL
; /* regenerating p is not necessary */
865 BUG_ON(blocks
[count
+1] != dest
); /* q should already be set */
866 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
867 ops_complete_compute
, sh
,
868 to_addr_conv(sh
, percpu
));
869 tx
= async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
871 /* Compute any data- or p-drive using XOR */
873 for (i
= disks
; i
-- ; ) {
874 if (i
== target
|| i
== qd_idx
)
876 blocks
[count
++] = sh
->dev
[i
].page
;
879 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
880 NULL
, ops_complete_compute
, sh
,
881 to_addr_conv(sh
, percpu
));
882 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
, &submit
);
888 static struct dma_async_tx_descriptor
*
889 ops_run_compute6_2(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
891 int i
, count
, disks
= sh
->disks
;
892 int syndrome_disks
= sh
->ddf_layout
? disks
: disks
-2;
893 int d0_idx
= raid6_d0(sh
);
894 int faila
= -1, failb
= -1;
895 int target
= sh
->ops
.target
;
896 int target2
= sh
->ops
.target2
;
897 struct r5dev
*tgt
= &sh
->dev
[target
];
898 struct r5dev
*tgt2
= &sh
->dev
[target2
];
899 struct dma_async_tx_descriptor
*tx
;
900 struct page
**blocks
= percpu
->scribble
;
901 struct async_submit_ctl submit
;
903 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
904 __func__
, (unsigned long long)sh
->sector
, target
, target2
);
905 BUG_ON(target
< 0 || target2
< 0);
906 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
907 BUG_ON(!test_bit(R5_Wantcompute
, &tgt2
->flags
));
909 /* we need to open-code set_syndrome_sources to handle the
910 * slot number conversion for 'faila' and 'failb'
912 for (i
= 0; i
< disks
; i
++)
917 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
919 blocks
[slot
] = sh
->dev
[i
].page
;
925 i
= raid6_next_disk(i
, disks
);
926 } while (i
!= d0_idx
);
928 BUG_ON(faila
== failb
);
931 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
932 __func__
, (unsigned long long)sh
->sector
, faila
, failb
);
934 atomic_inc(&sh
->count
);
936 if (failb
== syndrome_disks
+1) {
937 /* Q disk is one of the missing disks */
938 if (faila
== syndrome_disks
) {
939 /* Missing P+Q, just recompute */
940 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
941 ops_complete_compute
, sh
,
942 to_addr_conv(sh
, percpu
));
943 return async_gen_syndrome(blocks
, 0, syndrome_disks
+2,
944 STRIPE_SIZE
, &submit
);
948 int qd_idx
= sh
->qd_idx
;
950 /* Missing D+Q: recompute D from P, then recompute Q */
951 if (target
== qd_idx
)
952 data_target
= target2
;
954 data_target
= target
;
957 for (i
= disks
; i
-- ; ) {
958 if (i
== data_target
|| i
== qd_idx
)
960 blocks
[count
++] = sh
->dev
[i
].page
;
962 dest
= sh
->dev
[data_target
].page
;
963 init_async_submit(&submit
,
964 ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
966 to_addr_conv(sh
, percpu
));
967 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
,
970 count
= set_syndrome_sources(blocks
, sh
);
971 init_async_submit(&submit
, ASYNC_TX_FENCE
, tx
,
972 ops_complete_compute
, sh
,
973 to_addr_conv(sh
, percpu
));
974 return async_gen_syndrome(blocks
, 0, count
+2,
975 STRIPE_SIZE
, &submit
);
978 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
979 ops_complete_compute
, sh
,
980 to_addr_conv(sh
, percpu
));
981 if (failb
== syndrome_disks
) {
982 /* We're missing D+P. */
983 return async_raid6_datap_recov(syndrome_disks
+2,
987 /* We're missing D+D. */
988 return async_raid6_2data_recov(syndrome_disks
+2,
989 STRIPE_SIZE
, faila
, failb
,
996 static void ops_complete_prexor(void *stripe_head_ref
)
998 struct stripe_head
*sh
= stripe_head_ref
;
1000 pr_debug("%s: stripe %llu\n", __func__
,
1001 (unsigned long long)sh
->sector
);
1004 static struct dma_async_tx_descriptor
*
1005 ops_run_prexor(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1006 struct dma_async_tx_descriptor
*tx
)
1008 int disks
= sh
->disks
;
1009 struct page
**xor_srcs
= percpu
->scribble
;
1010 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
1011 struct async_submit_ctl submit
;
1013 /* existing parity data subtracted */
1014 struct page
*xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
1016 pr_debug("%s: stripe %llu\n", __func__
,
1017 (unsigned long long)sh
->sector
);
1019 for (i
= disks
; i
--; ) {
1020 struct r5dev
*dev
= &sh
->dev
[i
];
1021 /* Only process blocks that are known to be uptodate */
1022 if (test_bit(R5_Wantdrain
, &dev
->flags
))
1023 xor_srcs
[count
++] = dev
->page
;
1026 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_DROP_DST
, tx
,
1027 ops_complete_prexor
, sh
, to_addr_conv(sh
, percpu
));
1028 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1033 static struct dma_async_tx_descriptor
*
1034 ops_run_biodrain(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
1036 int disks
= sh
->disks
;
1039 pr_debug("%s: stripe %llu\n", __func__
,
1040 (unsigned long long)sh
->sector
);
1042 for (i
= disks
; i
--; ) {
1043 struct r5dev
*dev
= &sh
->dev
[i
];
1046 if (test_and_clear_bit(R5_Wantdrain
, &dev
->flags
)) {
1049 spin_lock_irq(&sh
->raid_conf
->device_lock
);
1050 chosen
= dev
->towrite
;
1051 dev
->towrite
= NULL
;
1052 BUG_ON(dev
->written
);
1053 wbi
= dev
->written
= chosen
;
1054 spin_unlock_irq(&sh
->raid_conf
->device_lock
);
1056 while (wbi
&& wbi
->bi_sector
<
1057 dev
->sector
+ STRIPE_SECTORS
) {
1058 if (wbi
->bi_rw
& REQ_FUA
)
1059 set_bit(R5_WantFUA
, &dev
->flags
);
1060 tx
= async_copy_data(1, wbi
, dev
->page
,
1062 wbi
= r5_next_bio(wbi
, dev
->sector
);
1070 static void ops_complete_reconstruct(void *stripe_head_ref
)
1072 struct stripe_head
*sh
= stripe_head_ref
;
1073 int disks
= sh
->disks
;
1074 int pd_idx
= sh
->pd_idx
;
1075 int qd_idx
= sh
->qd_idx
;
1079 pr_debug("%s: stripe %llu\n", __func__
,
1080 (unsigned long long)sh
->sector
);
1082 for (i
= disks
; i
--; )
1083 fua
|= test_bit(R5_WantFUA
, &sh
->dev
[i
].flags
);
1085 for (i
= disks
; i
--; ) {
1086 struct r5dev
*dev
= &sh
->dev
[i
];
1088 if (dev
->written
|| i
== pd_idx
|| i
== qd_idx
) {
1089 set_bit(R5_UPTODATE
, &dev
->flags
);
1091 set_bit(R5_WantFUA
, &dev
->flags
);
1095 if (sh
->reconstruct_state
== reconstruct_state_drain_run
)
1096 sh
->reconstruct_state
= reconstruct_state_drain_result
;
1097 else if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
)
1098 sh
->reconstruct_state
= reconstruct_state_prexor_drain_result
;
1100 BUG_ON(sh
->reconstruct_state
!= reconstruct_state_run
);
1101 sh
->reconstruct_state
= reconstruct_state_result
;
1104 set_bit(STRIPE_HANDLE
, &sh
->state
);
1109 ops_run_reconstruct5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1110 struct dma_async_tx_descriptor
*tx
)
1112 int disks
= sh
->disks
;
1113 struct page
**xor_srcs
= percpu
->scribble
;
1114 struct async_submit_ctl submit
;
1115 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
1116 struct page
*xor_dest
;
1118 unsigned long flags
;
1120 pr_debug("%s: stripe %llu\n", __func__
,
1121 (unsigned long long)sh
->sector
);
1123 /* check if prexor is active which means only process blocks
1124 * that are part of a read-modify-write (written)
1126 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
) {
1128 xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
1129 for (i
= disks
; i
--; ) {
1130 struct r5dev
*dev
= &sh
->dev
[i
];
1132 xor_srcs
[count
++] = dev
->page
;
1135 xor_dest
= sh
->dev
[pd_idx
].page
;
1136 for (i
= disks
; i
--; ) {
1137 struct r5dev
*dev
= &sh
->dev
[i
];
1139 xor_srcs
[count
++] = dev
->page
;
1143 /* 1/ if we prexor'd then the dest is reused as a source
1144 * 2/ if we did not prexor then we are redoing the parity
1145 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1146 * for the synchronous xor case
1148 flags
= ASYNC_TX_ACK
|
1149 (prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
);
1151 atomic_inc(&sh
->count
);
1153 init_async_submit(&submit
, flags
, tx
, ops_complete_reconstruct
, sh
,
1154 to_addr_conv(sh
, percpu
));
1155 if (unlikely(count
== 1))
1156 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
1158 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1162 ops_run_reconstruct6(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1163 struct dma_async_tx_descriptor
*tx
)
1165 struct async_submit_ctl submit
;
1166 struct page
**blocks
= percpu
->scribble
;
1169 pr_debug("%s: stripe %llu\n", __func__
, (unsigned long long)sh
->sector
);
1171 count
= set_syndrome_sources(blocks
, sh
);
1173 atomic_inc(&sh
->count
);
1175 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_reconstruct
,
1176 sh
, to_addr_conv(sh
, percpu
));
1177 async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1180 static void ops_complete_check(void *stripe_head_ref
)
1182 struct stripe_head
*sh
= stripe_head_ref
;
1184 pr_debug("%s: stripe %llu\n", __func__
,
1185 (unsigned long long)sh
->sector
);
1187 sh
->check_state
= check_state_check_result
;
1188 set_bit(STRIPE_HANDLE
, &sh
->state
);
1192 static void ops_run_check_p(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1194 int disks
= sh
->disks
;
1195 int pd_idx
= sh
->pd_idx
;
1196 int qd_idx
= sh
->qd_idx
;
1197 struct page
*xor_dest
;
1198 struct page
**xor_srcs
= percpu
->scribble
;
1199 struct dma_async_tx_descriptor
*tx
;
1200 struct async_submit_ctl submit
;
1204 pr_debug("%s: stripe %llu\n", __func__
,
1205 (unsigned long long)sh
->sector
);
1208 xor_dest
= sh
->dev
[pd_idx
].page
;
1209 xor_srcs
[count
++] = xor_dest
;
1210 for (i
= disks
; i
--; ) {
1211 if (i
== pd_idx
|| i
== qd_idx
)
1213 xor_srcs
[count
++] = sh
->dev
[i
].page
;
1216 init_async_submit(&submit
, 0, NULL
, NULL
, NULL
,
1217 to_addr_conv(sh
, percpu
));
1218 tx
= async_xor_val(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
1219 &sh
->ops
.zero_sum_result
, &submit
);
1221 atomic_inc(&sh
->count
);
1222 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_check
, sh
, NULL
);
1223 tx
= async_trigger_callback(&submit
);
1226 static void ops_run_check_pq(struct stripe_head
*sh
, struct raid5_percpu
*percpu
, int checkp
)
1228 struct page
**srcs
= percpu
->scribble
;
1229 struct async_submit_ctl submit
;
1232 pr_debug("%s: stripe %llu checkp: %d\n", __func__
,
1233 (unsigned long long)sh
->sector
, checkp
);
1235 count
= set_syndrome_sources(srcs
, sh
);
1239 atomic_inc(&sh
->count
);
1240 init_async_submit(&submit
, ASYNC_TX_ACK
, NULL
, ops_complete_check
,
1241 sh
, to_addr_conv(sh
, percpu
));
1242 async_syndrome_val(srcs
, 0, count
+2, STRIPE_SIZE
,
1243 &sh
->ops
.zero_sum_result
, percpu
->spare_page
, &submit
);
1246 static void __raid_run_ops(struct stripe_head
*sh
, unsigned long ops_request
)
1248 int overlap_clear
= 0, i
, disks
= sh
->disks
;
1249 struct dma_async_tx_descriptor
*tx
= NULL
;
1250 raid5_conf_t
*conf
= sh
->raid_conf
;
1251 int level
= conf
->level
;
1252 struct raid5_percpu
*percpu
;
1256 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
1257 if (test_bit(STRIPE_OP_BIOFILL
, &ops_request
)) {
1258 ops_run_biofill(sh
);
1262 if (test_bit(STRIPE_OP_COMPUTE_BLK
, &ops_request
)) {
1264 tx
= ops_run_compute5(sh
, percpu
);
1266 if (sh
->ops
.target2
< 0 || sh
->ops
.target
< 0)
1267 tx
= ops_run_compute6_1(sh
, percpu
);
1269 tx
= ops_run_compute6_2(sh
, percpu
);
1271 /* terminate the chain if reconstruct is not set to be run */
1272 if (tx
&& !test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
))
1276 if (test_bit(STRIPE_OP_PREXOR
, &ops_request
))
1277 tx
= ops_run_prexor(sh
, percpu
, tx
);
1279 if (test_bit(STRIPE_OP_BIODRAIN
, &ops_request
)) {
1280 tx
= ops_run_biodrain(sh
, tx
);
1284 if (test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
)) {
1286 ops_run_reconstruct5(sh
, percpu
, tx
);
1288 ops_run_reconstruct6(sh
, percpu
, tx
);
1291 if (test_bit(STRIPE_OP_CHECK
, &ops_request
)) {
1292 if (sh
->check_state
== check_state_run
)
1293 ops_run_check_p(sh
, percpu
);
1294 else if (sh
->check_state
== check_state_run_q
)
1295 ops_run_check_pq(sh
, percpu
, 0);
1296 else if (sh
->check_state
== check_state_run_pq
)
1297 ops_run_check_pq(sh
, percpu
, 1);
1303 for (i
= disks
; i
--; ) {
1304 struct r5dev
*dev
= &sh
->dev
[i
];
1305 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
1306 wake_up(&sh
->raid_conf
->wait_for_overlap
);
1311 #ifdef CONFIG_MULTICORE_RAID456
1312 static void async_run_ops(void *param
, async_cookie_t cookie
)
1314 struct stripe_head
*sh
= param
;
1315 unsigned long ops_request
= sh
->ops
.request
;
1317 clear_bit_unlock(STRIPE_OPS_REQ_PENDING
, &sh
->state
);
1318 wake_up(&sh
->ops
.wait_for_ops
);
1320 __raid_run_ops(sh
, ops_request
);
1324 static void raid_run_ops(struct stripe_head
*sh
, unsigned long ops_request
)
1326 /* since handle_stripe can be called outside of raid5d context
1327 * we need to ensure sh->ops.request is de-staged before another
1330 wait_event(sh
->ops
.wait_for_ops
,
1331 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING
, &sh
->state
));
1332 sh
->ops
.request
= ops_request
;
1334 atomic_inc(&sh
->count
);
1335 async_schedule(async_run_ops
, sh
);
1338 #define raid_run_ops __raid_run_ops
1341 static int grow_one_stripe(raid5_conf_t
*conf
)
1343 struct stripe_head
*sh
;
1344 sh
= kmem_cache_zalloc(conf
->slab_cache
, GFP_KERNEL
);
1348 sh
->raid_conf
= conf
;
1349 #ifdef CONFIG_MULTICORE_RAID456
1350 init_waitqueue_head(&sh
->ops
.wait_for_ops
);
1353 if (grow_buffers(sh
)) {
1355 kmem_cache_free(conf
->slab_cache
, sh
);
1358 /* we just created an active stripe so... */
1359 atomic_set(&sh
->count
, 1);
1360 atomic_inc(&conf
->active_stripes
);
1361 INIT_LIST_HEAD(&sh
->lru
);
1366 static int grow_stripes(raid5_conf_t
*conf
, int num
)
1368 struct kmem_cache
*sc
;
1369 int devs
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
1371 if (conf
->mddev
->gendisk
)
1372 sprintf(conf
->cache_name
[0],
1373 "raid%d-%s", conf
->level
, mdname(conf
->mddev
));
1375 sprintf(conf
->cache_name
[0],
1376 "raid%d-%p", conf
->level
, conf
->mddev
);
1377 sprintf(conf
->cache_name
[1], "%s-alt", conf
->cache_name
[0]);
1379 conf
->active_name
= 0;
1380 sc
= kmem_cache_create(conf
->cache_name
[conf
->active_name
],
1381 sizeof(struct stripe_head
)+(devs
-1)*sizeof(struct r5dev
),
1385 conf
->slab_cache
= sc
;
1386 conf
->pool_size
= devs
;
1388 if (!grow_one_stripe(conf
))
1394 * scribble_len - return the required size of the scribble region
1395 * @num - total number of disks in the array
1397 * The size must be enough to contain:
1398 * 1/ a struct page pointer for each device in the array +2
1399 * 2/ room to convert each entry in (1) to its corresponding dma
1400 * (dma_map_page()) or page (page_address()) address.
1402 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1403 * calculate over all devices (not just the data blocks), using zeros in place
1404 * of the P and Q blocks.
1406 static size_t scribble_len(int num
)
1410 len
= sizeof(struct page
*) * (num
+2) + sizeof(addr_conv_t
) * (num
+2);
1415 static int resize_stripes(raid5_conf_t
*conf
, int newsize
)
1417 /* Make all the stripes able to hold 'newsize' devices.
1418 * New slots in each stripe get 'page' set to a new page.
1420 * This happens in stages:
1421 * 1/ create a new kmem_cache and allocate the required number of
1423 * 2/ gather all the old stripe_heads and tranfer the pages across
1424 * to the new stripe_heads. This will have the side effect of
1425 * freezing the array as once all stripe_heads have been collected,
1426 * no IO will be possible. Old stripe heads are freed once their
1427 * pages have been transferred over, and the old kmem_cache is
1428 * freed when all stripes are done.
1429 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1430 * we simple return a failre status - no need to clean anything up.
1431 * 4/ allocate new pages for the new slots in the new stripe_heads.
1432 * If this fails, we don't bother trying the shrink the
1433 * stripe_heads down again, we just leave them as they are.
1434 * As each stripe_head is processed the new one is released into
1437 * Once step2 is started, we cannot afford to wait for a write,
1438 * so we use GFP_NOIO allocations.
1440 struct stripe_head
*osh
, *nsh
;
1441 LIST_HEAD(newstripes
);
1442 struct disk_info
*ndisks
;
1445 struct kmem_cache
*sc
;
1448 if (newsize
<= conf
->pool_size
)
1449 return 0; /* never bother to shrink */
1451 err
= md_allow_write(conf
->mddev
);
1456 sc
= kmem_cache_create(conf
->cache_name
[1-conf
->active_name
],
1457 sizeof(struct stripe_head
)+(newsize
-1)*sizeof(struct r5dev
),
1462 for (i
= conf
->max_nr_stripes
; i
; i
--) {
1463 nsh
= kmem_cache_zalloc(sc
, GFP_KERNEL
);
1467 nsh
->raid_conf
= conf
;
1468 #ifdef CONFIG_MULTICORE_RAID456
1469 init_waitqueue_head(&nsh
->ops
.wait_for_ops
);
1472 list_add(&nsh
->lru
, &newstripes
);
1475 /* didn't get enough, give up */
1476 while (!list_empty(&newstripes
)) {
1477 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
1478 list_del(&nsh
->lru
);
1479 kmem_cache_free(sc
, nsh
);
1481 kmem_cache_destroy(sc
);
1484 /* Step 2 - Must use GFP_NOIO now.
1485 * OK, we have enough stripes, start collecting inactive
1486 * stripes and copying them over
1488 list_for_each_entry(nsh
, &newstripes
, lru
) {
1489 spin_lock_irq(&conf
->device_lock
);
1490 wait_event_lock_irq(conf
->wait_for_stripe
,
1491 !list_empty(&conf
->inactive_list
),
1494 osh
= get_free_stripe(conf
);
1495 spin_unlock_irq(&conf
->device_lock
);
1496 atomic_set(&nsh
->count
, 1);
1497 for(i
=0; i
<conf
->pool_size
; i
++)
1498 nsh
->dev
[i
].page
= osh
->dev
[i
].page
;
1499 for( ; i
<newsize
; i
++)
1500 nsh
->dev
[i
].page
= NULL
;
1501 kmem_cache_free(conf
->slab_cache
, osh
);
1503 kmem_cache_destroy(conf
->slab_cache
);
1506 * At this point, we are holding all the stripes so the array
1507 * is completely stalled, so now is a good time to resize
1508 * conf->disks and the scribble region
1510 ndisks
= kzalloc(newsize
* sizeof(struct disk_info
), GFP_NOIO
);
1512 for (i
=0; i
<conf
->raid_disks
; i
++)
1513 ndisks
[i
] = conf
->disks
[i
];
1515 conf
->disks
= ndisks
;
1520 conf
->scribble_len
= scribble_len(newsize
);
1521 for_each_present_cpu(cpu
) {
1522 struct raid5_percpu
*percpu
;
1525 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
1526 scribble
= kmalloc(conf
->scribble_len
, GFP_NOIO
);
1529 kfree(percpu
->scribble
);
1530 percpu
->scribble
= scribble
;
1538 /* Step 4, return new stripes to service */
1539 while(!list_empty(&newstripes
)) {
1540 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
1541 list_del_init(&nsh
->lru
);
1543 for (i
=conf
->raid_disks
; i
< newsize
; i
++)
1544 if (nsh
->dev
[i
].page
== NULL
) {
1545 struct page
*p
= alloc_page(GFP_NOIO
);
1546 nsh
->dev
[i
].page
= p
;
1550 release_stripe(nsh
);
1552 /* critical section pass, GFP_NOIO no longer needed */
1554 conf
->slab_cache
= sc
;
1555 conf
->active_name
= 1-conf
->active_name
;
1556 conf
->pool_size
= newsize
;
1560 static int drop_one_stripe(raid5_conf_t
*conf
)
1562 struct stripe_head
*sh
;
1564 spin_lock_irq(&conf
->device_lock
);
1565 sh
= get_free_stripe(conf
);
1566 spin_unlock_irq(&conf
->device_lock
);
1569 BUG_ON(atomic_read(&sh
->count
));
1571 kmem_cache_free(conf
->slab_cache
, sh
);
1572 atomic_dec(&conf
->active_stripes
);
1576 static void shrink_stripes(raid5_conf_t
*conf
)
1578 while (drop_one_stripe(conf
))
1581 if (conf
->slab_cache
)
1582 kmem_cache_destroy(conf
->slab_cache
);
1583 conf
->slab_cache
= NULL
;
1586 static void raid5_end_read_request(struct bio
* bi
, int error
)
1588 struct stripe_head
*sh
= bi
->bi_private
;
1589 raid5_conf_t
*conf
= sh
->raid_conf
;
1590 int disks
= sh
->disks
, i
;
1591 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1592 char b
[BDEVNAME_SIZE
];
1596 for (i
=0 ; i
<disks
; i
++)
1597 if (bi
== &sh
->dev
[i
].req
)
1600 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1601 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
1609 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1610 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
1611 rdev
= conf
->disks
[i
].rdev
;
1614 "md/raid:%s: read error corrected"
1615 " (%lu sectors at %llu on %s)\n",
1616 mdname(conf
->mddev
), STRIPE_SECTORS
,
1617 (unsigned long long)(sh
->sector
1618 + rdev
->data_offset
),
1619 bdevname(rdev
->bdev
, b
));
1620 atomic_add(STRIPE_SECTORS
, &rdev
->corrected_errors
);
1621 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1622 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
1624 if (atomic_read(&conf
->disks
[i
].rdev
->read_errors
))
1625 atomic_set(&conf
->disks
[i
].rdev
->read_errors
, 0);
1627 const char *bdn
= bdevname(conf
->disks
[i
].rdev
->bdev
, b
);
1629 rdev
= conf
->disks
[i
].rdev
;
1631 clear_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1632 atomic_inc(&rdev
->read_errors
);
1633 if (conf
->mddev
->degraded
>= conf
->max_degraded
)
1636 "md/raid:%s: read error not correctable "
1637 "(sector %llu on %s).\n",
1638 mdname(conf
->mddev
),
1639 (unsigned long long)(sh
->sector
1640 + rdev
->data_offset
),
1642 else if (test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
1646 "md/raid:%s: read error NOT corrected!! "
1647 "(sector %llu on %s).\n",
1648 mdname(conf
->mddev
),
1649 (unsigned long long)(sh
->sector
1650 + rdev
->data_offset
),
1652 else if (atomic_read(&rdev
->read_errors
)
1653 > conf
->max_nr_stripes
)
1655 "md/raid:%s: Too many read errors, failing device %s.\n",
1656 mdname(conf
->mddev
), bdn
);
1660 set_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1662 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1663 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
1664 md_error(conf
->mddev
, rdev
);
1667 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
1668 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1669 set_bit(STRIPE_HANDLE
, &sh
->state
);
1673 static void raid5_end_write_request(struct bio
*bi
, int error
)
1675 struct stripe_head
*sh
= bi
->bi_private
;
1676 raid5_conf_t
*conf
= sh
->raid_conf
;
1677 int disks
= sh
->disks
, i
;
1678 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1682 for (i
=0 ; i
<disks
; i
++)
1683 if (bi
== &sh
->dev
[i
].req
)
1686 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1687 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
1695 set_bit(WriteErrorSeen
, &conf
->disks
[i
].rdev
->flags
);
1696 set_bit(R5_WriteError
, &sh
->dev
[i
].flags
);
1697 } else if (is_badblock(conf
->disks
[i
].rdev
, sh
->sector
, STRIPE_SECTORS
,
1698 &first_bad
, &bad_sectors
))
1699 set_bit(R5_MadeGood
, &sh
->dev
[i
].flags
);
1701 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
1703 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1704 set_bit(STRIPE_HANDLE
, &sh
->state
);
1709 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
, int previous
);
1711 static void raid5_build_block(struct stripe_head
*sh
, int i
, int previous
)
1713 struct r5dev
*dev
= &sh
->dev
[i
];
1715 bio_init(&dev
->req
);
1716 dev
->req
.bi_io_vec
= &dev
->vec
;
1718 dev
->req
.bi_max_vecs
++;
1719 dev
->vec
.bv_page
= dev
->page
;
1720 dev
->vec
.bv_len
= STRIPE_SIZE
;
1721 dev
->vec
.bv_offset
= 0;
1723 dev
->req
.bi_sector
= sh
->sector
;
1724 dev
->req
.bi_private
= sh
;
1727 dev
->sector
= compute_blocknr(sh
, i
, previous
);
1730 static void error(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
1732 char b
[BDEVNAME_SIZE
];
1733 raid5_conf_t
*conf
= mddev
->private;
1734 pr_debug("raid456: error called\n");
1736 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1737 unsigned long flags
;
1738 spin_lock_irqsave(&conf
->device_lock
, flags
);
1740 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1742 * if recovery was running, make sure it aborts.
1744 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1746 set_bit(Blocked
, &rdev
->flags
);
1747 set_bit(Faulty
, &rdev
->flags
);
1748 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1750 "md/raid:%s: Disk failure on %s, disabling device.\n"
1751 "md/raid:%s: Operation continuing on %d devices.\n",
1753 bdevname(rdev
->bdev
, b
),
1755 conf
->raid_disks
- mddev
->degraded
);
1759 * Input: a 'big' sector number,
1760 * Output: index of the data and parity disk, and the sector # in them.
1762 static sector_t
raid5_compute_sector(raid5_conf_t
*conf
, sector_t r_sector
,
1763 int previous
, int *dd_idx
,
1764 struct stripe_head
*sh
)
1766 sector_t stripe
, stripe2
;
1767 sector_t chunk_number
;
1768 unsigned int chunk_offset
;
1771 sector_t new_sector
;
1772 int algorithm
= previous
? conf
->prev_algo
1774 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
1775 : conf
->chunk_sectors
;
1776 int raid_disks
= previous
? conf
->previous_raid_disks
1778 int data_disks
= raid_disks
- conf
->max_degraded
;
1780 /* First compute the information on this sector */
1783 * Compute the chunk number and the sector offset inside the chunk
1785 chunk_offset
= sector_div(r_sector
, sectors_per_chunk
);
1786 chunk_number
= r_sector
;
1789 * Compute the stripe number
1791 stripe
= chunk_number
;
1792 *dd_idx
= sector_div(stripe
, data_disks
);
1795 * Select the parity disk based on the user selected algorithm.
1797 pd_idx
= qd_idx
= -1;
1798 switch(conf
->level
) {
1800 pd_idx
= data_disks
;
1803 switch (algorithm
) {
1804 case ALGORITHM_LEFT_ASYMMETRIC
:
1805 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
);
1806 if (*dd_idx
>= pd_idx
)
1809 case ALGORITHM_RIGHT_ASYMMETRIC
:
1810 pd_idx
= sector_div(stripe2
, raid_disks
);
1811 if (*dd_idx
>= pd_idx
)
1814 case ALGORITHM_LEFT_SYMMETRIC
:
1815 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
);
1816 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1818 case ALGORITHM_RIGHT_SYMMETRIC
:
1819 pd_idx
= sector_div(stripe2
, raid_disks
);
1820 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1822 case ALGORITHM_PARITY_0
:
1826 case ALGORITHM_PARITY_N
:
1827 pd_idx
= data_disks
;
1835 switch (algorithm
) {
1836 case ALGORITHM_LEFT_ASYMMETRIC
:
1837 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
1838 qd_idx
= pd_idx
+ 1;
1839 if (pd_idx
== raid_disks
-1) {
1840 (*dd_idx
)++; /* Q D D D P */
1842 } else if (*dd_idx
>= pd_idx
)
1843 (*dd_idx
) += 2; /* D D P Q D */
1845 case ALGORITHM_RIGHT_ASYMMETRIC
:
1846 pd_idx
= sector_div(stripe2
, raid_disks
);
1847 qd_idx
= pd_idx
+ 1;
1848 if (pd_idx
== raid_disks
-1) {
1849 (*dd_idx
)++; /* Q D D D P */
1851 } else if (*dd_idx
>= pd_idx
)
1852 (*dd_idx
) += 2; /* D D P Q D */
1854 case ALGORITHM_LEFT_SYMMETRIC
:
1855 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
1856 qd_idx
= (pd_idx
+ 1) % raid_disks
;
1857 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
1859 case ALGORITHM_RIGHT_SYMMETRIC
:
1860 pd_idx
= sector_div(stripe2
, raid_disks
);
1861 qd_idx
= (pd_idx
+ 1) % raid_disks
;
1862 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
1865 case ALGORITHM_PARITY_0
:
1870 case ALGORITHM_PARITY_N
:
1871 pd_idx
= data_disks
;
1872 qd_idx
= data_disks
+ 1;
1875 case ALGORITHM_ROTATING_ZERO_RESTART
:
1876 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1877 * of blocks for computing Q is different.
1879 pd_idx
= sector_div(stripe2
, raid_disks
);
1880 qd_idx
= pd_idx
+ 1;
1881 if (pd_idx
== raid_disks
-1) {
1882 (*dd_idx
)++; /* Q D D D P */
1884 } else if (*dd_idx
>= pd_idx
)
1885 (*dd_idx
) += 2; /* D D P Q D */
1889 case ALGORITHM_ROTATING_N_RESTART
:
1890 /* Same a left_asymmetric, by first stripe is
1891 * D D D P Q rather than
1895 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
1896 qd_idx
= pd_idx
+ 1;
1897 if (pd_idx
== raid_disks
-1) {
1898 (*dd_idx
)++; /* Q D D D P */
1900 } else if (*dd_idx
>= pd_idx
)
1901 (*dd_idx
) += 2; /* D D P Q D */
1905 case ALGORITHM_ROTATING_N_CONTINUE
:
1906 /* Same as left_symmetric but Q is before P */
1907 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
1908 qd_idx
= (pd_idx
+ raid_disks
- 1) % raid_disks
;
1909 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1913 case ALGORITHM_LEFT_ASYMMETRIC_6
:
1914 /* RAID5 left_asymmetric, with Q on last device */
1915 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
-1);
1916 if (*dd_idx
>= pd_idx
)
1918 qd_idx
= raid_disks
- 1;
1921 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
1922 pd_idx
= sector_div(stripe2
, raid_disks
-1);
1923 if (*dd_idx
>= pd_idx
)
1925 qd_idx
= raid_disks
- 1;
1928 case ALGORITHM_LEFT_SYMMETRIC_6
:
1929 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
-1);
1930 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
1931 qd_idx
= raid_disks
- 1;
1934 case ALGORITHM_RIGHT_SYMMETRIC_6
:
1935 pd_idx
= sector_div(stripe2
, raid_disks
-1);
1936 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
1937 qd_idx
= raid_disks
- 1;
1940 case ALGORITHM_PARITY_0_6
:
1943 qd_idx
= raid_disks
- 1;
1953 sh
->pd_idx
= pd_idx
;
1954 sh
->qd_idx
= qd_idx
;
1955 sh
->ddf_layout
= ddf_layout
;
1958 * Finally, compute the new sector number
1960 new_sector
= (sector_t
)stripe
* sectors_per_chunk
+ chunk_offset
;
1965 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
, int previous
)
1967 raid5_conf_t
*conf
= sh
->raid_conf
;
1968 int raid_disks
= sh
->disks
;
1969 int data_disks
= raid_disks
- conf
->max_degraded
;
1970 sector_t new_sector
= sh
->sector
, check
;
1971 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
1972 : conf
->chunk_sectors
;
1973 int algorithm
= previous
? conf
->prev_algo
1977 sector_t chunk_number
;
1978 int dummy1
, dd_idx
= i
;
1980 struct stripe_head sh2
;
1983 chunk_offset
= sector_div(new_sector
, sectors_per_chunk
);
1984 stripe
= new_sector
;
1986 if (i
== sh
->pd_idx
)
1988 switch(conf
->level
) {
1991 switch (algorithm
) {
1992 case ALGORITHM_LEFT_ASYMMETRIC
:
1993 case ALGORITHM_RIGHT_ASYMMETRIC
:
1997 case ALGORITHM_LEFT_SYMMETRIC
:
1998 case ALGORITHM_RIGHT_SYMMETRIC
:
2001 i
-= (sh
->pd_idx
+ 1);
2003 case ALGORITHM_PARITY_0
:
2006 case ALGORITHM_PARITY_N
:
2013 if (i
== sh
->qd_idx
)
2014 return 0; /* It is the Q disk */
2015 switch (algorithm
) {
2016 case ALGORITHM_LEFT_ASYMMETRIC
:
2017 case ALGORITHM_RIGHT_ASYMMETRIC
:
2018 case ALGORITHM_ROTATING_ZERO_RESTART
:
2019 case ALGORITHM_ROTATING_N_RESTART
:
2020 if (sh
->pd_idx
== raid_disks
-1)
2021 i
--; /* Q D D D P */
2022 else if (i
> sh
->pd_idx
)
2023 i
-= 2; /* D D P Q D */
2025 case ALGORITHM_LEFT_SYMMETRIC
:
2026 case ALGORITHM_RIGHT_SYMMETRIC
:
2027 if (sh
->pd_idx
== raid_disks
-1)
2028 i
--; /* Q D D D P */
2033 i
-= (sh
->pd_idx
+ 2);
2036 case ALGORITHM_PARITY_0
:
2039 case ALGORITHM_PARITY_N
:
2041 case ALGORITHM_ROTATING_N_CONTINUE
:
2042 /* Like left_symmetric, but P is before Q */
2043 if (sh
->pd_idx
== 0)
2044 i
--; /* P D D D Q */
2049 i
-= (sh
->pd_idx
+ 1);
2052 case ALGORITHM_LEFT_ASYMMETRIC_6
:
2053 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
2057 case ALGORITHM_LEFT_SYMMETRIC_6
:
2058 case ALGORITHM_RIGHT_SYMMETRIC_6
:
2060 i
+= data_disks
+ 1;
2061 i
-= (sh
->pd_idx
+ 1);
2063 case ALGORITHM_PARITY_0_6
:
2072 chunk_number
= stripe
* data_disks
+ i
;
2073 r_sector
= chunk_number
* sectors_per_chunk
+ chunk_offset
;
2075 check
= raid5_compute_sector(conf
, r_sector
,
2076 previous
, &dummy1
, &sh2
);
2077 if (check
!= sh
->sector
|| dummy1
!= dd_idx
|| sh2
.pd_idx
!= sh
->pd_idx
2078 || sh2
.qd_idx
!= sh
->qd_idx
) {
2079 printk(KERN_ERR
"md/raid:%s: compute_blocknr: map not correct\n",
2080 mdname(conf
->mddev
));
2088 schedule_reconstruction(struct stripe_head
*sh
, struct stripe_head_state
*s
,
2089 int rcw
, int expand
)
2091 int i
, pd_idx
= sh
->pd_idx
, disks
= sh
->disks
;
2092 raid5_conf_t
*conf
= sh
->raid_conf
;
2093 int level
= conf
->level
;
2096 /* if we are not expanding this is a proper write request, and
2097 * there will be bios with new data to be drained into the
2101 sh
->reconstruct_state
= reconstruct_state_drain_run
;
2102 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
2104 sh
->reconstruct_state
= reconstruct_state_run
;
2106 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
2108 for (i
= disks
; i
--; ) {
2109 struct r5dev
*dev
= &sh
->dev
[i
];
2112 set_bit(R5_LOCKED
, &dev
->flags
);
2113 set_bit(R5_Wantdrain
, &dev
->flags
);
2115 clear_bit(R5_UPTODATE
, &dev
->flags
);
2119 if (s
->locked
+ conf
->max_degraded
== disks
)
2120 if (!test_and_set_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2121 atomic_inc(&conf
->pending_full_writes
);
2124 BUG_ON(!(test_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
) ||
2125 test_bit(R5_Wantcompute
, &sh
->dev
[pd_idx
].flags
)));
2127 sh
->reconstruct_state
= reconstruct_state_prexor_drain_run
;
2128 set_bit(STRIPE_OP_PREXOR
, &s
->ops_request
);
2129 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
2130 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
2132 for (i
= disks
; i
--; ) {
2133 struct r5dev
*dev
= &sh
->dev
[i
];
2138 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
2139 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2140 set_bit(R5_Wantdrain
, &dev
->flags
);
2141 set_bit(R5_LOCKED
, &dev
->flags
);
2142 clear_bit(R5_UPTODATE
, &dev
->flags
);
2148 /* keep the parity disk(s) locked while asynchronous operations
2151 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
2152 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
2156 int qd_idx
= sh
->qd_idx
;
2157 struct r5dev
*dev
= &sh
->dev
[qd_idx
];
2159 set_bit(R5_LOCKED
, &dev
->flags
);
2160 clear_bit(R5_UPTODATE
, &dev
->flags
);
2164 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2165 __func__
, (unsigned long long)sh
->sector
,
2166 s
->locked
, s
->ops_request
);
2170 * Each stripe/dev can have one or more bion attached.
2171 * toread/towrite point to the first in a chain.
2172 * The bi_next chain must be in order.
2174 static int add_stripe_bio(struct stripe_head
*sh
, struct bio
*bi
, int dd_idx
, int forwrite
)
2177 raid5_conf_t
*conf
= sh
->raid_conf
;
2180 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2181 (unsigned long long)bi
->bi_sector
,
2182 (unsigned long long)sh
->sector
);
2185 spin_lock_irq(&conf
->device_lock
);
2187 bip
= &sh
->dev
[dd_idx
].towrite
;
2188 if (*bip
== NULL
&& sh
->dev
[dd_idx
].written
== NULL
)
2191 bip
= &sh
->dev
[dd_idx
].toread
;
2192 while (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
) {
2193 if ((*bip
)->bi_sector
+ ((*bip
)->bi_size
>> 9) > bi
->bi_sector
)
2195 bip
= & (*bip
)->bi_next
;
2197 if (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
+ ((bi
->bi_size
)>>9))
2200 BUG_ON(*bip
&& bi
->bi_next
&& (*bip
) != bi
->bi_next
);
2204 bi
->bi_phys_segments
++;
2207 /* check if page is covered */
2208 sector_t sector
= sh
->dev
[dd_idx
].sector
;
2209 for (bi
=sh
->dev
[dd_idx
].towrite
;
2210 sector
< sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
&&
2211 bi
&& bi
->bi_sector
<= sector
;
2212 bi
= r5_next_bio(bi
, sh
->dev
[dd_idx
].sector
)) {
2213 if (bi
->bi_sector
+ (bi
->bi_size
>>9) >= sector
)
2214 sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
2216 if (sector
>= sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
)
2217 set_bit(R5_OVERWRITE
, &sh
->dev
[dd_idx
].flags
);
2219 spin_unlock_irq(&conf
->device_lock
);
2221 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2222 (unsigned long long)(*bip
)->bi_sector
,
2223 (unsigned long long)sh
->sector
, dd_idx
);
2225 if (conf
->mddev
->bitmap
&& firstwrite
) {
2226 bitmap_startwrite(conf
->mddev
->bitmap
, sh
->sector
,
2228 sh
->bm_seq
= conf
->seq_flush
+1;
2229 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
2234 set_bit(R5_Overlap
, &sh
->dev
[dd_idx
].flags
);
2235 spin_unlock_irq(&conf
->device_lock
);
2239 static void end_reshape(raid5_conf_t
*conf
);
2241 static void stripe_set_idx(sector_t stripe
, raid5_conf_t
*conf
, int previous
,
2242 struct stripe_head
*sh
)
2244 int sectors_per_chunk
=
2245 previous
? conf
->prev_chunk_sectors
: conf
->chunk_sectors
;
2247 int chunk_offset
= sector_div(stripe
, sectors_per_chunk
);
2248 int disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
2250 raid5_compute_sector(conf
,
2251 stripe
* (disks
- conf
->max_degraded
)
2252 *sectors_per_chunk
+ chunk_offset
,
2258 handle_failed_stripe(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2259 struct stripe_head_state
*s
, int disks
,
2260 struct bio
**return_bi
)
2263 for (i
= disks
; i
--; ) {
2267 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
2270 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2271 if (rdev
&& test_bit(In_sync
, &rdev
->flags
))
2272 atomic_inc(&rdev
->nr_pending
);
2277 if (!rdev_set_badblocks(
2281 md_error(conf
->mddev
, rdev
);
2282 rdev_dec_pending(rdev
, conf
->mddev
);
2285 spin_lock_irq(&conf
->device_lock
);
2286 /* fail all writes first */
2287 bi
= sh
->dev
[i
].towrite
;
2288 sh
->dev
[i
].towrite
= NULL
;
2294 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2295 wake_up(&conf
->wait_for_overlap
);
2297 while (bi
&& bi
->bi_sector
<
2298 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2299 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
2300 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2301 if (!raid5_dec_bi_phys_segments(bi
)) {
2302 md_write_end(conf
->mddev
);
2303 bi
->bi_next
= *return_bi
;
2308 /* and fail all 'written' */
2309 bi
= sh
->dev
[i
].written
;
2310 sh
->dev
[i
].written
= NULL
;
2311 if (bi
) bitmap_end
= 1;
2312 while (bi
&& bi
->bi_sector
<
2313 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2314 struct bio
*bi2
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
2315 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2316 if (!raid5_dec_bi_phys_segments(bi
)) {
2317 md_write_end(conf
->mddev
);
2318 bi
->bi_next
= *return_bi
;
2324 /* fail any reads if this device is non-operational and
2325 * the data has not reached the cache yet.
2327 if (!test_bit(R5_Wantfill
, &sh
->dev
[i
].flags
) &&
2328 (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
) ||
2329 test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))) {
2330 bi
= sh
->dev
[i
].toread
;
2331 sh
->dev
[i
].toread
= NULL
;
2332 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2333 wake_up(&conf
->wait_for_overlap
);
2334 if (bi
) s
->to_read
--;
2335 while (bi
&& bi
->bi_sector
<
2336 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2337 struct bio
*nextbi
=
2338 r5_next_bio(bi
, sh
->dev
[i
].sector
);
2339 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2340 if (!raid5_dec_bi_phys_segments(bi
)) {
2341 bi
->bi_next
= *return_bi
;
2347 spin_unlock_irq(&conf
->device_lock
);
2349 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
2350 STRIPE_SECTORS
, 0, 0);
2351 /* If we were in the middle of a write the parity block might
2352 * still be locked - so just clear all R5_LOCKED flags
2354 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
2357 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2358 if (atomic_dec_and_test(&conf
->pending_full_writes
))
2359 md_wakeup_thread(conf
->mddev
->thread
);
2363 handle_failed_sync(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2364 struct stripe_head_state
*s
)
2369 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 0);
2370 clear_bit(STRIPE_SYNCING
, &sh
->state
);
2372 /* There is nothing more to do for sync/check/repair.
2373 * For recover we need to record a bad block on all
2374 * non-sync devices, or abort the recovery
2376 if (!test_bit(MD_RECOVERY_RECOVER
, &conf
->mddev
->recovery
))
2378 /* During recovery devices cannot be removed, so locking and
2379 * refcounting of rdevs is not needed
2381 for (i
= 0; i
< conf
->raid_disks
; i
++) {
2382 mdk_rdev_t
*rdev
= conf
->disks
[i
].rdev
;
2384 || test_bit(Faulty
, &rdev
->flags
)
2385 || test_bit(In_sync
, &rdev
->flags
))
2387 if (!rdev_set_badblocks(rdev
, sh
->sector
,
2392 conf
->recovery_disabled
= conf
->mddev
->recovery_disabled
;
2393 set_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
);
2397 /* fetch_block - checks the given member device to see if its data needs
2398 * to be read or computed to satisfy a request.
2400 * Returns 1 when no more member devices need to be checked, otherwise returns
2401 * 0 to tell the loop in handle_stripe_fill to continue
2403 static int fetch_block(struct stripe_head
*sh
, struct stripe_head_state
*s
,
2404 int disk_idx
, int disks
)
2406 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
2407 struct r5dev
*fdev
[2] = { &sh
->dev
[s
->failed_num
[0]],
2408 &sh
->dev
[s
->failed_num
[1]] };
2410 /* is the data in this block needed, and can we get it? */
2411 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2412 !test_bit(R5_UPTODATE
, &dev
->flags
) &&
2414 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
2415 s
->syncing
|| s
->expanding
||
2416 (s
->failed
>= 1 && fdev
[0]->toread
) ||
2417 (s
->failed
>= 2 && fdev
[1]->toread
) ||
2418 (sh
->raid_conf
->level
<= 5 && s
->failed
&& fdev
[0]->towrite
&&
2419 !test_bit(R5_OVERWRITE
, &fdev
[0]->flags
)) ||
2420 (sh
->raid_conf
->level
== 6 && s
->failed
&& s
->to_write
))) {
2421 /* we would like to get this block, possibly by computing it,
2422 * otherwise read it if the backing disk is insync
2424 BUG_ON(test_bit(R5_Wantcompute
, &dev
->flags
));
2425 BUG_ON(test_bit(R5_Wantread
, &dev
->flags
));
2426 if ((s
->uptodate
== disks
- 1) &&
2427 (s
->failed
&& (disk_idx
== s
->failed_num
[0] ||
2428 disk_idx
== s
->failed_num
[1]))) {
2429 /* have disk failed, and we're requested to fetch it;
2432 pr_debug("Computing stripe %llu block %d\n",
2433 (unsigned long long)sh
->sector
, disk_idx
);
2434 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2435 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2436 set_bit(R5_Wantcompute
, &dev
->flags
);
2437 sh
->ops
.target
= disk_idx
;
2438 sh
->ops
.target2
= -1; /* no 2nd target */
2440 /* Careful: from this point on 'uptodate' is in the eye
2441 * of raid_run_ops which services 'compute' operations
2442 * before writes. R5_Wantcompute flags a block that will
2443 * be R5_UPTODATE by the time it is needed for a
2444 * subsequent operation.
2448 } else if (s
->uptodate
== disks
-2 && s
->failed
>= 2) {
2449 /* Computing 2-failure is *very* expensive; only
2450 * do it if failed >= 2
2453 for (other
= disks
; other
--; ) {
2454 if (other
== disk_idx
)
2456 if (!test_bit(R5_UPTODATE
,
2457 &sh
->dev
[other
].flags
))
2461 pr_debug("Computing stripe %llu blocks %d,%d\n",
2462 (unsigned long long)sh
->sector
,
2464 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2465 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2466 set_bit(R5_Wantcompute
, &sh
->dev
[disk_idx
].flags
);
2467 set_bit(R5_Wantcompute
, &sh
->dev
[other
].flags
);
2468 sh
->ops
.target
= disk_idx
;
2469 sh
->ops
.target2
= other
;
2473 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
2474 set_bit(R5_LOCKED
, &dev
->flags
);
2475 set_bit(R5_Wantread
, &dev
->flags
);
2477 pr_debug("Reading block %d (sync=%d)\n",
2478 disk_idx
, s
->syncing
);
2486 * handle_stripe_fill - read or compute data to satisfy pending requests.
2488 static void handle_stripe_fill(struct stripe_head
*sh
,
2489 struct stripe_head_state
*s
,
2494 /* look for blocks to read/compute, skip this if a compute
2495 * is already in flight, or if the stripe contents are in the
2496 * midst of changing due to a write
2498 if (!test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) && !sh
->check_state
&&
2499 !sh
->reconstruct_state
)
2500 for (i
= disks
; i
--; )
2501 if (fetch_block(sh
, s
, i
, disks
))
2503 set_bit(STRIPE_HANDLE
, &sh
->state
);
2507 /* handle_stripe_clean_event
2508 * any written block on an uptodate or failed drive can be returned.
2509 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2510 * never LOCKED, so we don't need to test 'failed' directly.
2512 static void handle_stripe_clean_event(raid5_conf_t
*conf
,
2513 struct stripe_head
*sh
, int disks
, struct bio
**return_bi
)
2518 for (i
= disks
; i
--; )
2519 if (sh
->dev
[i
].written
) {
2521 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2522 test_bit(R5_UPTODATE
, &dev
->flags
)) {
2523 /* We can return any write requests */
2524 struct bio
*wbi
, *wbi2
;
2526 pr_debug("Return write for disc %d\n", i
);
2527 spin_lock_irq(&conf
->device_lock
);
2529 dev
->written
= NULL
;
2530 while (wbi
&& wbi
->bi_sector
<
2531 dev
->sector
+ STRIPE_SECTORS
) {
2532 wbi2
= r5_next_bio(wbi
, dev
->sector
);
2533 if (!raid5_dec_bi_phys_segments(wbi
)) {
2534 md_write_end(conf
->mddev
);
2535 wbi
->bi_next
= *return_bi
;
2540 if (dev
->towrite
== NULL
)
2542 spin_unlock_irq(&conf
->device_lock
);
2544 bitmap_endwrite(conf
->mddev
->bitmap
,
2547 !test_bit(STRIPE_DEGRADED
, &sh
->state
),
2552 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2553 if (atomic_dec_and_test(&conf
->pending_full_writes
))
2554 md_wakeup_thread(conf
->mddev
->thread
);
2557 static void handle_stripe_dirtying(raid5_conf_t
*conf
,
2558 struct stripe_head
*sh
,
2559 struct stripe_head_state
*s
,
2562 int rmw
= 0, rcw
= 0, i
;
2563 if (conf
->max_degraded
== 2) {
2564 /* RAID6 requires 'rcw' in current implementation
2565 * Calculate the real rcw later - for now fake it
2566 * look like rcw is cheaper
2569 } else for (i
= disks
; i
--; ) {
2570 /* would I have to read this buffer for read_modify_write */
2571 struct r5dev
*dev
= &sh
->dev
[i
];
2572 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
2573 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2574 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2575 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2576 if (test_bit(R5_Insync
, &dev
->flags
))
2579 rmw
+= 2*disks
; /* cannot read it */
2581 /* Would I have to read this buffer for reconstruct_write */
2582 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) && i
!= sh
->pd_idx
&&
2583 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2584 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2585 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2586 if (test_bit(R5_Insync
, &dev
->flags
)) rcw
++;
2591 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2592 (unsigned long long)sh
->sector
, rmw
, rcw
);
2593 set_bit(STRIPE_HANDLE
, &sh
->state
);
2594 if (rmw
< rcw
&& rmw
> 0)
2595 /* prefer read-modify-write, but need to get some data */
2596 for (i
= disks
; i
--; ) {
2597 struct r5dev
*dev
= &sh
->dev
[i
];
2598 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
2599 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2600 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2601 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
2602 test_bit(R5_Insync
, &dev
->flags
)) {
2604 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2605 pr_debug("Read_old block "
2606 "%d for r-m-w\n", i
);
2607 set_bit(R5_LOCKED
, &dev
->flags
);
2608 set_bit(R5_Wantread
, &dev
->flags
);
2611 set_bit(STRIPE_DELAYED
, &sh
->state
);
2612 set_bit(STRIPE_HANDLE
, &sh
->state
);
2616 if (rcw
<= rmw
&& rcw
> 0) {
2617 /* want reconstruct write, but need to get some data */
2619 for (i
= disks
; i
--; ) {
2620 struct r5dev
*dev
= &sh
->dev
[i
];
2621 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
2622 i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
&&
2623 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2624 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2625 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2627 if (!test_bit(R5_Insync
, &dev
->flags
))
2628 continue; /* it's a failed drive */
2630 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2631 pr_debug("Read_old block "
2632 "%d for Reconstruct\n", i
);
2633 set_bit(R5_LOCKED
, &dev
->flags
);
2634 set_bit(R5_Wantread
, &dev
->flags
);
2637 set_bit(STRIPE_DELAYED
, &sh
->state
);
2638 set_bit(STRIPE_HANDLE
, &sh
->state
);
2643 /* now if nothing is locked, and if we have enough data,
2644 * we can start a write request
2646 /* since handle_stripe can be called at any time we need to handle the
2647 * case where a compute block operation has been submitted and then a
2648 * subsequent call wants to start a write request. raid_run_ops only
2649 * handles the case where compute block and reconstruct are requested
2650 * simultaneously. If this is not the case then new writes need to be
2651 * held off until the compute completes.
2653 if ((s
->req_compute
|| !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)) &&
2654 (s
->locked
== 0 && (rcw
== 0 || rmw
== 0) &&
2655 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)))
2656 schedule_reconstruction(sh
, s
, rcw
== 0, 0);
2659 static void handle_parity_checks5(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2660 struct stripe_head_state
*s
, int disks
)
2662 struct r5dev
*dev
= NULL
;
2664 set_bit(STRIPE_HANDLE
, &sh
->state
);
2666 switch (sh
->check_state
) {
2667 case check_state_idle
:
2668 /* start a new check operation if there are no failures */
2669 if (s
->failed
== 0) {
2670 BUG_ON(s
->uptodate
!= disks
);
2671 sh
->check_state
= check_state_run
;
2672 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
2673 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
2677 dev
= &sh
->dev
[s
->failed_num
[0]];
2679 case check_state_compute_result
:
2680 sh
->check_state
= check_state_idle
;
2682 dev
= &sh
->dev
[sh
->pd_idx
];
2684 /* check that a write has not made the stripe insync */
2685 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
2688 /* either failed parity check, or recovery is happening */
2689 BUG_ON(!test_bit(R5_UPTODATE
, &dev
->flags
));
2690 BUG_ON(s
->uptodate
!= disks
);
2692 set_bit(R5_LOCKED
, &dev
->flags
);
2694 set_bit(R5_Wantwrite
, &dev
->flags
);
2696 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
2697 set_bit(STRIPE_INSYNC
, &sh
->state
);
2699 case check_state_run
:
2700 break; /* we will be called again upon completion */
2701 case check_state_check_result
:
2702 sh
->check_state
= check_state_idle
;
2704 /* if a failure occurred during the check operation, leave
2705 * STRIPE_INSYNC not set and let the stripe be handled again
2710 /* handle a successful check operation, if parity is correct
2711 * we are done. Otherwise update the mismatch count and repair
2712 * parity if !MD_RECOVERY_CHECK
2714 if ((sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) == 0)
2715 /* parity is correct (on disc,
2716 * not in buffer any more)
2718 set_bit(STRIPE_INSYNC
, &sh
->state
);
2720 conf
->mddev
->resync_mismatches
+= STRIPE_SECTORS
;
2721 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
2722 /* don't try to repair!! */
2723 set_bit(STRIPE_INSYNC
, &sh
->state
);
2725 sh
->check_state
= check_state_compute_run
;
2726 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2727 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2728 set_bit(R5_Wantcompute
,
2729 &sh
->dev
[sh
->pd_idx
].flags
);
2730 sh
->ops
.target
= sh
->pd_idx
;
2731 sh
->ops
.target2
= -1;
2736 case check_state_compute_run
:
2739 printk(KERN_ERR
"%s: unknown check_state: %d sector: %llu\n",
2740 __func__
, sh
->check_state
,
2741 (unsigned long long) sh
->sector
);
2747 static void handle_parity_checks6(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2748 struct stripe_head_state
*s
,
2751 int pd_idx
= sh
->pd_idx
;
2752 int qd_idx
= sh
->qd_idx
;
2755 set_bit(STRIPE_HANDLE
, &sh
->state
);
2757 BUG_ON(s
->failed
> 2);
2759 /* Want to check and possibly repair P and Q.
2760 * However there could be one 'failed' device, in which
2761 * case we can only check one of them, possibly using the
2762 * other to generate missing data
2765 switch (sh
->check_state
) {
2766 case check_state_idle
:
2767 /* start a new check operation if there are < 2 failures */
2768 if (s
->failed
== s
->q_failed
) {
2769 /* The only possible failed device holds Q, so it
2770 * makes sense to check P (If anything else were failed,
2771 * we would have used P to recreate it).
2773 sh
->check_state
= check_state_run
;
2775 if (!s
->q_failed
&& s
->failed
< 2) {
2776 /* Q is not failed, and we didn't use it to generate
2777 * anything, so it makes sense to check it
2779 if (sh
->check_state
== check_state_run
)
2780 sh
->check_state
= check_state_run_pq
;
2782 sh
->check_state
= check_state_run_q
;
2785 /* discard potentially stale zero_sum_result */
2786 sh
->ops
.zero_sum_result
= 0;
2788 if (sh
->check_state
== check_state_run
) {
2789 /* async_xor_zero_sum destroys the contents of P */
2790 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
2793 if (sh
->check_state
>= check_state_run
&&
2794 sh
->check_state
<= check_state_run_pq
) {
2795 /* async_syndrome_zero_sum preserves P and Q, so
2796 * no need to mark them !uptodate here
2798 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
2802 /* we have 2-disk failure */
2803 BUG_ON(s
->failed
!= 2);
2805 case check_state_compute_result
:
2806 sh
->check_state
= check_state_idle
;
2808 /* check that a write has not made the stripe insync */
2809 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
2812 /* now write out any block on a failed drive,
2813 * or P or Q if they were recomputed
2815 BUG_ON(s
->uptodate
< disks
- 1); /* We don't need Q to recover */
2816 if (s
->failed
== 2) {
2817 dev
= &sh
->dev
[s
->failed_num
[1]];
2819 set_bit(R5_LOCKED
, &dev
->flags
);
2820 set_bit(R5_Wantwrite
, &dev
->flags
);
2822 if (s
->failed
>= 1) {
2823 dev
= &sh
->dev
[s
->failed_num
[0]];
2825 set_bit(R5_LOCKED
, &dev
->flags
);
2826 set_bit(R5_Wantwrite
, &dev
->flags
);
2828 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
2829 dev
= &sh
->dev
[pd_idx
];
2831 set_bit(R5_LOCKED
, &dev
->flags
);
2832 set_bit(R5_Wantwrite
, &dev
->flags
);
2834 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
2835 dev
= &sh
->dev
[qd_idx
];
2837 set_bit(R5_LOCKED
, &dev
->flags
);
2838 set_bit(R5_Wantwrite
, &dev
->flags
);
2840 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
2842 set_bit(STRIPE_INSYNC
, &sh
->state
);
2844 case check_state_run
:
2845 case check_state_run_q
:
2846 case check_state_run_pq
:
2847 break; /* we will be called again upon completion */
2848 case check_state_check_result
:
2849 sh
->check_state
= check_state_idle
;
2851 /* handle a successful check operation, if parity is correct
2852 * we are done. Otherwise update the mismatch count and repair
2853 * parity if !MD_RECOVERY_CHECK
2855 if (sh
->ops
.zero_sum_result
== 0) {
2856 /* both parities are correct */
2858 set_bit(STRIPE_INSYNC
, &sh
->state
);
2860 /* in contrast to the raid5 case we can validate
2861 * parity, but still have a failure to write
2864 sh
->check_state
= check_state_compute_result
;
2865 /* Returning at this point means that we may go
2866 * off and bring p and/or q uptodate again so
2867 * we make sure to check zero_sum_result again
2868 * to verify if p or q need writeback
2872 conf
->mddev
->resync_mismatches
+= STRIPE_SECTORS
;
2873 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
2874 /* don't try to repair!! */
2875 set_bit(STRIPE_INSYNC
, &sh
->state
);
2877 int *target
= &sh
->ops
.target
;
2879 sh
->ops
.target
= -1;
2880 sh
->ops
.target2
= -1;
2881 sh
->check_state
= check_state_compute_run
;
2882 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2883 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2884 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
2885 set_bit(R5_Wantcompute
,
2886 &sh
->dev
[pd_idx
].flags
);
2888 target
= &sh
->ops
.target2
;
2891 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
2892 set_bit(R5_Wantcompute
,
2893 &sh
->dev
[qd_idx
].flags
);
2900 case check_state_compute_run
:
2903 printk(KERN_ERR
"%s: unknown check_state: %d sector: %llu\n",
2904 __func__
, sh
->check_state
,
2905 (unsigned long long) sh
->sector
);
2910 static void handle_stripe_expansion(raid5_conf_t
*conf
, struct stripe_head
*sh
)
2914 /* We have read all the blocks in this stripe and now we need to
2915 * copy some of them into a target stripe for expand.
2917 struct dma_async_tx_descriptor
*tx
= NULL
;
2918 clear_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
2919 for (i
= 0; i
< sh
->disks
; i
++)
2920 if (i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
) {
2922 struct stripe_head
*sh2
;
2923 struct async_submit_ctl submit
;
2925 sector_t bn
= compute_blocknr(sh
, i
, 1);
2926 sector_t s
= raid5_compute_sector(conf
, bn
, 0,
2928 sh2
= get_active_stripe(conf
, s
, 0, 1, 1);
2930 /* so far only the early blocks of this stripe
2931 * have been requested. When later blocks
2932 * get requested, we will try again
2935 if (!test_bit(STRIPE_EXPANDING
, &sh2
->state
) ||
2936 test_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
)) {
2937 /* must have already done this block */
2938 release_stripe(sh2
);
2942 /* place all the copies on one channel */
2943 init_async_submit(&submit
, 0, tx
, NULL
, NULL
, NULL
);
2944 tx
= async_memcpy(sh2
->dev
[dd_idx
].page
,
2945 sh
->dev
[i
].page
, 0, 0, STRIPE_SIZE
,
2948 set_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
);
2949 set_bit(R5_UPTODATE
, &sh2
->dev
[dd_idx
].flags
);
2950 for (j
= 0; j
< conf
->raid_disks
; j
++)
2951 if (j
!= sh2
->pd_idx
&&
2953 !test_bit(R5_Expanded
, &sh2
->dev
[j
].flags
))
2955 if (j
== conf
->raid_disks
) {
2956 set_bit(STRIPE_EXPAND_READY
, &sh2
->state
);
2957 set_bit(STRIPE_HANDLE
, &sh2
->state
);
2959 release_stripe(sh2
);
2962 /* done submitting copies, wait for them to complete */
2965 dma_wait_for_async_tx(tx
);
2971 * handle_stripe - do things to a stripe.
2973 * We lock the stripe and then examine the state of various bits
2974 * to see what needs to be done.
2976 * return some read request which now have data
2977 * return some write requests which are safely on disc
2978 * schedule a read on some buffers
2979 * schedule a write of some buffers
2980 * return confirmation of parity correctness
2982 * buffers are taken off read_list or write_list, and bh_cache buffers
2983 * get BH_Lock set before the stripe lock is released.
2987 static void analyse_stripe(struct stripe_head
*sh
, struct stripe_head_state
*s
)
2989 raid5_conf_t
*conf
= sh
->raid_conf
;
2990 int disks
= sh
->disks
;
2994 memset(s
, 0, sizeof(*s
));
2996 s
->syncing
= test_bit(STRIPE_SYNCING
, &sh
->state
);
2997 s
->expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
2998 s
->expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
);
2999 s
->failed_num
[0] = -1;
3000 s
->failed_num
[1] = -1;
3002 /* Now to look around and see what can be done */
3004 spin_lock_irq(&conf
->device_lock
);
3005 for (i
=disks
; i
--; ) {
3013 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3014 i
, dev
->flags
, dev
->toread
, dev
->towrite
, dev
->written
);
3015 /* maybe we can reply to a read
3017 * new wantfill requests are only permitted while
3018 * ops_complete_biofill is guaranteed to be inactive
3020 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
&&
3021 !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
))
3022 set_bit(R5_Wantfill
, &dev
->flags
);
3024 /* now count some things */
3025 if (test_bit(R5_LOCKED
, &dev
->flags
))
3027 if (test_bit(R5_UPTODATE
, &dev
->flags
))
3029 if (test_bit(R5_Wantcompute
, &dev
->flags
)) {
3031 BUG_ON(s
->compute
> 2);
3034 if (test_bit(R5_Wantfill
, &dev
->flags
))
3036 else if (dev
->toread
)
3040 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
3045 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3047 is_bad
= is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
3048 &first_bad
, &bad_sectors
);
3049 if (s
->blocked_rdev
== NULL
3050 && (test_bit(Blocked
, &rdev
->flags
)
3053 set_bit(BlockedBadBlocks
,
3055 s
->blocked_rdev
= rdev
;
3056 atomic_inc(&rdev
->nr_pending
);
3059 clear_bit(R5_Insync
, &dev
->flags
);
3063 /* also not in-sync */
3064 if (!test_bit(WriteErrorSeen
, &rdev
->flags
)) {
3065 /* treat as in-sync, but with a read error
3066 * which we can now try to correct
3068 set_bit(R5_Insync
, &dev
->flags
);
3069 set_bit(R5_ReadError
, &dev
->flags
);
3071 } else if (test_bit(In_sync
, &rdev
->flags
))
3072 set_bit(R5_Insync
, &dev
->flags
);
3074 /* in sync if before recovery_offset */
3075 if (sh
->sector
+ STRIPE_SECTORS
<= rdev
->recovery_offset
)
3076 set_bit(R5_Insync
, &dev
->flags
);
3078 if (test_bit(R5_WriteError
, &dev
->flags
)) {
3079 clear_bit(R5_Insync
, &dev
->flags
);
3080 if (!test_bit(Faulty
, &rdev
->flags
)) {
3081 s
->handle_bad_blocks
= 1;
3082 atomic_inc(&rdev
->nr_pending
);
3084 clear_bit(R5_WriteError
, &dev
->flags
);
3086 if (test_bit(R5_MadeGood
, &dev
->flags
)) {
3087 if (!test_bit(Faulty
, &rdev
->flags
)) {
3088 s
->handle_bad_blocks
= 1;
3089 atomic_inc(&rdev
->nr_pending
);
3091 clear_bit(R5_MadeGood
, &dev
->flags
);
3093 if (!test_bit(R5_Insync
, &dev
->flags
)) {
3094 /* The ReadError flag will just be confusing now */
3095 clear_bit(R5_ReadError
, &dev
->flags
);
3096 clear_bit(R5_ReWrite
, &dev
->flags
);
3098 if (test_bit(R5_ReadError
, &dev
->flags
))
3099 clear_bit(R5_Insync
, &dev
->flags
);
3100 if (!test_bit(R5_Insync
, &dev
->flags
)) {
3102 s
->failed_num
[s
->failed
] = i
;
3106 spin_unlock_irq(&conf
->device_lock
);
3110 static void handle_stripe(struct stripe_head
*sh
)
3112 struct stripe_head_state s
;
3113 raid5_conf_t
*conf
= sh
->raid_conf
;
3116 int disks
= sh
->disks
;
3117 struct r5dev
*pdev
, *qdev
;
3119 clear_bit(STRIPE_HANDLE
, &sh
->state
);
3120 if (test_and_set_bit(STRIPE_ACTIVE
, &sh
->state
)) {
3121 /* already being handled, ensure it gets handled
3122 * again when current action finishes */
3123 set_bit(STRIPE_HANDLE
, &sh
->state
);
3127 if (test_and_clear_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
)) {
3128 set_bit(STRIPE_SYNCING
, &sh
->state
);
3129 clear_bit(STRIPE_INSYNC
, &sh
->state
);
3131 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3133 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3134 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3135 (unsigned long long)sh
->sector
, sh
->state
,
3136 atomic_read(&sh
->count
), sh
->pd_idx
, sh
->qd_idx
,
3137 sh
->check_state
, sh
->reconstruct_state
);
3139 analyse_stripe(sh
, &s
);
3141 if (s
.handle_bad_blocks
) {
3142 set_bit(STRIPE_HANDLE
, &sh
->state
);
3146 if (unlikely(s
.blocked_rdev
)) {
3147 if (s
.syncing
|| s
.expanding
|| s
.expanded
||
3148 s
.to_write
|| s
.written
) {
3149 set_bit(STRIPE_HANDLE
, &sh
->state
);
3152 /* There is nothing for the blocked_rdev to block */
3153 rdev_dec_pending(s
.blocked_rdev
, conf
->mddev
);
3154 s
.blocked_rdev
= NULL
;
3157 if (s
.to_fill
&& !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
)) {
3158 set_bit(STRIPE_OP_BIOFILL
, &s
.ops_request
);
3159 set_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
3162 pr_debug("locked=%d uptodate=%d to_read=%d"
3163 " to_write=%d failed=%d failed_num=%d,%d\n",
3164 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
, s
.failed
,
3165 s
.failed_num
[0], s
.failed_num
[1]);
3166 /* check if the array has lost more than max_degraded devices and,
3167 * if so, some requests might need to be failed.
3169 if (s
.failed
> conf
->max_degraded
&& s
.to_read
+s
.to_write
+s
.written
)
3170 handle_failed_stripe(conf
, sh
, &s
, disks
, &s
.return_bi
);
3171 if (s
.failed
> conf
->max_degraded
&& s
.syncing
)
3172 handle_failed_sync(conf
, sh
, &s
);
3175 * might be able to return some write requests if the parity blocks
3176 * are safe, or on a failed drive
3178 pdev
= &sh
->dev
[sh
->pd_idx
];
3179 s
.p_failed
= (s
.failed
>= 1 && s
.failed_num
[0] == sh
->pd_idx
)
3180 || (s
.failed
>= 2 && s
.failed_num
[1] == sh
->pd_idx
);
3181 qdev
= &sh
->dev
[sh
->qd_idx
];
3182 s
.q_failed
= (s
.failed
>= 1 && s
.failed_num
[0] == sh
->qd_idx
)
3183 || (s
.failed
>= 2 && s
.failed_num
[1] == sh
->qd_idx
)
3187 (s
.p_failed
|| ((test_bit(R5_Insync
, &pdev
->flags
)
3188 && !test_bit(R5_LOCKED
, &pdev
->flags
)
3189 && test_bit(R5_UPTODATE
, &pdev
->flags
)))) &&
3190 (s
.q_failed
|| ((test_bit(R5_Insync
, &qdev
->flags
)
3191 && !test_bit(R5_LOCKED
, &qdev
->flags
)
3192 && test_bit(R5_UPTODATE
, &qdev
->flags
)))))
3193 handle_stripe_clean_event(conf
, sh
, disks
, &s
.return_bi
);
3195 /* Now we might consider reading some blocks, either to check/generate
3196 * parity, or to satisfy requests
3197 * or to load a block that is being partially written.
3199 if (s
.to_read
|| s
.non_overwrite
3200 || (conf
->level
== 6 && s
.to_write
&& s
.failed
)
3201 || (s
.syncing
&& (s
.uptodate
+ s
.compute
< disks
)) || s
.expanding
)
3202 handle_stripe_fill(sh
, &s
, disks
);
3204 /* Now we check to see if any write operations have recently
3208 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
)
3210 if (sh
->reconstruct_state
== reconstruct_state_drain_result
||
3211 sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
) {
3212 sh
->reconstruct_state
= reconstruct_state_idle
;
3214 /* All the 'written' buffers and the parity block are ready to
3215 * be written back to disk
3217 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
));
3218 BUG_ON(sh
->qd_idx
>= 0 &&
3219 !test_bit(R5_UPTODATE
, &sh
->dev
[sh
->qd_idx
].flags
));
3220 for (i
= disks
; i
--; ) {
3221 struct r5dev
*dev
= &sh
->dev
[i
];
3222 if (test_bit(R5_LOCKED
, &dev
->flags
) &&
3223 (i
== sh
->pd_idx
|| i
== sh
->qd_idx
||
3225 pr_debug("Writing block %d\n", i
);
3226 set_bit(R5_Wantwrite
, &dev
->flags
);
3229 if (!test_bit(R5_Insync
, &dev
->flags
) ||
3230 ((i
== sh
->pd_idx
|| i
== sh
->qd_idx
) &&
3232 set_bit(STRIPE_INSYNC
, &sh
->state
);
3235 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3236 s
.dec_preread_active
= 1;
3239 /* Now to consider new write requests and what else, if anything
3240 * should be read. We do not handle new writes when:
3241 * 1/ A 'write' operation (copy+xor) is already in flight.
3242 * 2/ A 'check' operation is in flight, as it may clobber the parity
3245 if (s
.to_write
&& !sh
->reconstruct_state
&& !sh
->check_state
)
3246 handle_stripe_dirtying(conf
, sh
, &s
, disks
);
3248 /* maybe we need to check and possibly fix the parity for this stripe
3249 * Any reads will already have been scheduled, so we just see if enough
3250 * data is available. The parity check is held off while parity
3251 * dependent operations are in flight.
3253 if (sh
->check_state
||
3254 (s
.syncing
&& s
.locked
== 0 &&
3255 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
3256 !test_bit(STRIPE_INSYNC
, &sh
->state
))) {
3257 if (conf
->level
== 6)
3258 handle_parity_checks6(conf
, sh
, &s
, disks
);
3260 handle_parity_checks5(conf
, sh
, &s
, disks
);
3263 if (s
.syncing
&& s
.locked
== 0 && test_bit(STRIPE_INSYNC
, &sh
->state
)) {
3264 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
3265 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3268 /* If the failed drives are just a ReadError, then we might need
3269 * to progress the repair/check process
3271 if (s
.failed
<= conf
->max_degraded
&& !conf
->mddev
->ro
)
3272 for (i
= 0; i
< s
.failed
; i
++) {
3273 struct r5dev
*dev
= &sh
->dev
[s
.failed_num
[i
]];
3274 if (test_bit(R5_ReadError
, &dev
->flags
)
3275 && !test_bit(R5_LOCKED
, &dev
->flags
)
3276 && test_bit(R5_UPTODATE
, &dev
->flags
)
3278 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
3279 set_bit(R5_Wantwrite
, &dev
->flags
);
3280 set_bit(R5_ReWrite
, &dev
->flags
);
3281 set_bit(R5_LOCKED
, &dev
->flags
);
3284 /* let's read it back */
3285 set_bit(R5_Wantread
, &dev
->flags
);
3286 set_bit(R5_LOCKED
, &dev
->flags
);
3293 /* Finish reconstruct operations initiated by the expansion process */
3294 if (sh
->reconstruct_state
== reconstruct_state_result
) {
3295 struct stripe_head
*sh_src
3296 = get_active_stripe(conf
, sh
->sector
, 1, 1, 1);
3297 if (sh_src
&& test_bit(STRIPE_EXPAND_SOURCE
, &sh_src
->state
)) {
3298 /* sh cannot be written until sh_src has been read.
3299 * so arrange for sh to be delayed a little
3301 set_bit(STRIPE_DELAYED
, &sh
->state
);
3302 set_bit(STRIPE_HANDLE
, &sh
->state
);
3303 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
,
3305 atomic_inc(&conf
->preread_active_stripes
);
3306 release_stripe(sh_src
);
3310 release_stripe(sh_src
);
3312 sh
->reconstruct_state
= reconstruct_state_idle
;
3313 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
3314 for (i
= conf
->raid_disks
; i
--; ) {
3315 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
3316 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3321 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
) &&
3322 !sh
->reconstruct_state
) {
3323 /* Need to write out all blocks after computing parity */
3324 sh
->disks
= conf
->raid_disks
;
3325 stripe_set_idx(sh
->sector
, conf
, 0, sh
);
3326 schedule_reconstruction(sh
, &s
, 1, 1);
3327 } else if (s
.expanded
&& !sh
->reconstruct_state
&& s
.locked
== 0) {
3328 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3329 atomic_dec(&conf
->reshape_stripes
);
3330 wake_up(&conf
->wait_for_overlap
);
3331 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
3334 if (s
.expanding
&& s
.locked
== 0 &&
3335 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
))
3336 handle_stripe_expansion(conf
, sh
);
3339 /* wait for this device to become unblocked */
3340 if (unlikely(s
.blocked_rdev
))
3341 md_wait_for_blocked_rdev(s
.blocked_rdev
, conf
->mddev
);
3343 if (s
.handle_bad_blocks
)
3344 for (i
= disks
; i
--; ) {
3346 struct r5dev
*dev
= &sh
->dev
[i
];
3347 if (test_and_clear_bit(R5_WriteError
, &dev
->flags
)) {
3348 /* We own a safe reference to the rdev */
3349 rdev
= conf
->disks
[i
].rdev
;
3350 if (!rdev_set_badblocks(rdev
, sh
->sector
,
3352 md_error(conf
->mddev
, rdev
);
3353 rdev_dec_pending(rdev
, conf
->mddev
);
3355 if (test_and_clear_bit(R5_MadeGood
, &dev
->flags
)) {
3356 rdev
= conf
->disks
[i
].rdev
;
3357 rdev_clear_badblocks(rdev
, sh
->sector
,
3359 rdev_dec_pending(rdev
, conf
->mddev
);
3364 raid_run_ops(sh
, s
.ops_request
);
3368 if (s
.dec_preread_active
) {
3369 /* We delay this until after ops_run_io so that if make_request
3370 * is waiting on a flush, it won't continue until the writes
3371 * have actually been submitted.
3373 atomic_dec(&conf
->preread_active_stripes
);
3374 if (atomic_read(&conf
->preread_active_stripes
) <
3376 md_wakeup_thread(conf
->mddev
->thread
);
3379 return_io(s
.return_bi
);
3381 clear_bit(STRIPE_ACTIVE
, &sh
->state
);
3384 static void raid5_activate_delayed(raid5_conf_t
*conf
)
3386 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
) {
3387 while (!list_empty(&conf
->delayed_list
)) {
3388 struct list_head
*l
= conf
->delayed_list
.next
;
3389 struct stripe_head
*sh
;
3390 sh
= list_entry(l
, struct stripe_head
, lru
);
3392 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3393 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3394 atomic_inc(&conf
->preread_active_stripes
);
3395 list_add_tail(&sh
->lru
, &conf
->hold_list
);
3400 static void activate_bit_delay(raid5_conf_t
*conf
)
3402 /* device_lock is held */
3403 struct list_head head
;
3404 list_add(&head
, &conf
->bitmap_list
);
3405 list_del_init(&conf
->bitmap_list
);
3406 while (!list_empty(&head
)) {
3407 struct stripe_head
*sh
= list_entry(head
.next
, struct stripe_head
, lru
);
3408 list_del_init(&sh
->lru
);
3409 atomic_inc(&sh
->count
);
3410 __release_stripe(conf
, sh
);
3414 int md_raid5_congested(mddev_t
*mddev
, int bits
)
3416 raid5_conf_t
*conf
= mddev
->private;
3418 /* No difference between reads and writes. Just check
3419 * how busy the stripe_cache is
3422 if (conf
->inactive_blocked
)
3426 if (list_empty_careful(&conf
->inactive_list
))
3431 EXPORT_SYMBOL_GPL(md_raid5_congested
);
3433 static int raid5_congested(void *data
, int bits
)
3435 mddev_t
*mddev
= data
;
3437 return mddev_congested(mddev
, bits
) ||
3438 md_raid5_congested(mddev
, bits
);
3441 /* We want read requests to align with chunks where possible,
3442 * but write requests don't need to.
3444 static int raid5_mergeable_bvec(struct request_queue
*q
,
3445 struct bvec_merge_data
*bvm
,
3446 struct bio_vec
*biovec
)
3448 mddev_t
*mddev
= q
->queuedata
;
3449 sector_t sector
= bvm
->bi_sector
+ get_start_sect(bvm
->bi_bdev
);
3451 unsigned int chunk_sectors
= mddev
->chunk_sectors
;
3452 unsigned int bio_sectors
= bvm
->bi_size
>> 9;
3454 if ((bvm
->bi_rw
& 1) == WRITE
)
3455 return biovec
->bv_len
; /* always allow writes to be mergeable */
3457 if (mddev
->new_chunk_sectors
< mddev
->chunk_sectors
)
3458 chunk_sectors
= mddev
->new_chunk_sectors
;
3459 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1)) + bio_sectors
)) << 9;
3460 if (max
< 0) max
= 0;
3461 if (max
<= biovec
->bv_len
&& bio_sectors
== 0)
3462 return biovec
->bv_len
;
3468 static int in_chunk_boundary(mddev_t
*mddev
, struct bio
*bio
)
3470 sector_t sector
= bio
->bi_sector
+ get_start_sect(bio
->bi_bdev
);
3471 unsigned int chunk_sectors
= mddev
->chunk_sectors
;
3472 unsigned int bio_sectors
= bio
->bi_size
>> 9;
3474 if (mddev
->new_chunk_sectors
< mddev
->chunk_sectors
)
3475 chunk_sectors
= mddev
->new_chunk_sectors
;
3476 return chunk_sectors
>=
3477 ((sector
& (chunk_sectors
- 1)) + bio_sectors
);
3481 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3482 * later sampled by raid5d.
3484 static void add_bio_to_retry(struct bio
*bi
,raid5_conf_t
*conf
)
3486 unsigned long flags
;
3488 spin_lock_irqsave(&conf
->device_lock
, flags
);
3490 bi
->bi_next
= conf
->retry_read_aligned_list
;
3491 conf
->retry_read_aligned_list
= bi
;
3493 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3494 md_wakeup_thread(conf
->mddev
->thread
);
3498 static struct bio
*remove_bio_from_retry(raid5_conf_t
*conf
)
3502 bi
= conf
->retry_read_aligned
;
3504 conf
->retry_read_aligned
= NULL
;
3507 bi
= conf
->retry_read_aligned_list
;
3509 conf
->retry_read_aligned_list
= bi
->bi_next
;
3512 * this sets the active strip count to 1 and the processed
3513 * strip count to zero (upper 8 bits)
3515 bi
->bi_phys_segments
= 1; /* biased count of active stripes */
3523 * The "raid5_align_endio" should check if the read succeeded and if it
3524 * did, call bio_endio on the original bio (having bio_put the new bio
3526 * If the read failed..
3528 static void raid5_align_endio(struct bio
*bi
, int error
)
3530 struct bio
* raid_bi
= bi
->bi_private
;
3533 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
3538 rdev
= (void*)raid_bi
->bi_next
;
3539 raid_bi
->bi_next
= NULL
;
3540 mddev
= rdev
->mddev
;
3541 conf
= mddev
->private;
3543 rdev_dec_pending(rdev
, conf
->mddev
);
3545 if (!error
&& uptodate
) {
3546 bio_endio(raid_bi
, 0);
3547 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
3548 wake_up(&conf
->wait_for_stripe
);
3553 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3555 add_bio_to_retry(raid_bi
, conf
);
3558 static int bio_fits_rdev(struct bio
*bi
)
3560 struct request_queue
*q
= bdev_get_queue(bi
->bi_bdev
);
3562 if ((bi
->bi_size
>>9) > queue_max_sectors(q
))
3564 blk_recount_segments(q
, bi
);
3565 if (bi
->bi_phys_segments
> queue_max_segments(q
))
3568 if (q
->merge_bvec_fn
)
3569 /* it's too hard to apply the merge_bvec_fn at this stage,
3578 static int chunk_aligned_read(mddev_t
*mddev
, struct bio
* raid_bio
)
3580 raid5_conf_t
*conf
= mddev
->private;
3582 struct bio
* align_bi
;
3585 if (!in_chunk_boundary(mddev
, raid_bio
)) {
3586 pr_debug("chunk_aligned_read : non aligned\n");
3590 * use bio_clone_mddev to make a copy of the bio
3592 align_bi
= bio_clone_mddev(raid_bio
, GFP_NOIO
, mddev
);
3596 * set bi_end_io to a new function, and set bi_private to the
3599 align_bi
->bi_end_io
= raid5_align_endio
;
3600 align_bi
->bi_private
= raid_bio
;
3604 align_bi
->bi_sector
= raid5_compute_sector(conf
, raid_bio
->bi_sector
,
3609 rdev
= rcu_dereference(conf
->disks
[dd_idx
].rdev
);
3610 if (rdev
&& test_bit(In_sync
, &rdev
->flags
)) {
3614 atomic_inc(&rdev
->nr_pending
);
3616 raid_bio
->bi_next
= (void*)rdev
;
3617 align_bi
->bi_bdev
= rdev
->bdev
;
3618 align_bi
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
3619 align_bi
->bi_sector
+= rdev
->data_offset
;
3621 if (!bio_fits_rdev(align_bi
) ||
3622 is_badblock(rdev
, align_bi
->bi_sector
, align_bi
->bi_size
>>9,
3623 &first_bad
, &bad_sectors
)) {
3624 /* too big in some way, or has a known bad block */
3626 rdev_dec_pending(rdev
, mddev
);
3630 spin_lock_irq(&conf
->device_lock
);
3631 wait_event_lock_irq(conf
->wait_for_stripe
,
3633 conf
->device_lock
, /* nothing */);
3634 atomic_inc(&conf
->active_aligned_reads
);
3635 spin_unlock_irq(&conf
->device_lock
);
3637 generic_make_request(align_bi
);
3646 /* __get_priority_stripe - get the next stripe to process
3648 * Full stripe writes are allowed to pass preread active stripes up until
3649 * the bypass_threshold is exceeded. In general the bypass_count
3650 * increments when the handle_list is handled before the hold_list; however, it
3651 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3652 * stripe with in flight i/o. The bypass_count will be reset when the
3653 * head of the hold_list has changed, i.e. the head was promoted to the
3656 static struct stripe_head
*__get_priority_stripe(raid5_conf_t
*conf
)
3658 struct stripe_head
*sh
;
3660 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3662 list_empty(&conf
->handle_list
) ? "empty" : "busy",
3663 list_empty(&conf
->hold_list
) ? "empty" : "busy",
3664 atomic_read(&conf
->pending_full_writes
), conf
->bypass_count
);
3666 if (!list_empty(&conf
->handle_list
)) {
3667 sh
= list_entry(conf
->handle_list
.next
, typeof(*sh
), lru
);
3669 if (list_empty(&conf
->hold_list
))
3670 conf
->bypass_count
= 0;
3671 else if (!test_bit(STRIPE_IO_STARTED
, &sh
->state
)) {
3672 if (conf
->hold_list
.next
== conf
->last_hold
)
3673 conf
->bypass_count
++;
3675 conf
->last_hold
= conf
->hold_list
.next
;
3676 conf
->bypass_count
-= conf
->bypass_threshold
;
3677 if (conf
->bypass_count
< 0)
3678 conf
->bypass_count
= 0;
3681 } else if (!list_empty(&conf
->hold_list
) &&
3682 ((conf
->bypass_threshold
&&
3683 conf
->bypass_count
> conf
->bypass_threshold
) ||
3684 atomic_read(&conf
->pending_full_writes
) == 0)) {
3685 sh
= list_entry(conf
->hold_list
.next
,
3687 conf
->bypass_count
-= conf
->bypass_threshold
;
3688 if (conf
->bypass_count
< 0)
3689 conf
->bypass_count
= 0;
3693 list_del_init(&sh
->lru
);
3694 atomic_inc(&sh
->count
);
3695 BUG_ON(atomic_read(&sh
->count
) != 1);
3699 static int make_request(mddev_t
*mddev
, struct bio
* bi
)
3701 raid5_conf_t
*conf
= mddev
->private;
3703 sector_t new_sector
;
3704 sector_t logical_sector
, last_sector
;
3705 struct stripe_head
*sh
;
3706 const int rw
= bio_data_dir(bi
);
3710 if (unlikely(bi
->bi_rw
& REQ_FLUSH
)) {
3711 md_flush_request(mddev
, bi
);
3715 md_write_start(mddev
, bi
);
3718 mddev
->reshape_position
== MaxSector
&&
3719 chunk_aligned_read(mddev
,bi
))
3722 logical_sector
= bi
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
3723 last_sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
3725 bi
->bi_phys_segments
= 1; /* over-loaded to count active stripes */
3727 plugged
= mddev_check_plugged(mddev
);
3728 for (;logical_sector
< last_sector
; logical_sector
+= STRIPE_SECTORS
) {
3730 int disks
, data_disks
;
3735 disks
= conf
->raid_disks
;
3736 prepare_to_wait(&conf
->wait_for_overlap
, &w
, TASK_UNINTERRUPTIBLE
);
3737 if (unlikely(conf
->reshape_progress
!= MaxSector
)) {
3738 /* spinlock is needed as reshape_progress may be
3739 * 64bit on a 32bit platform, and so it might be
3740 * possible to see a half-updated value
3741 * Of course reshape_progress could change after
3742 * the lock is dropped, so once we get a reference
3743 * to the stripe that we think it is, we will have
3746 spin_lock_irq(&conf
->device_lock
);
3747 if (mddev
->delta_disks
< 0
3748 ? logical_sector
< conf
->reshape_progress
3749 : logical_sector
>= conf
->reshape_progress
) {
3750 disks
= conf
->previous_raid_disks
;
3753 if (mddev
->delta_disks
< 0
3754 ? logical_sector
< conf
->reshape_safe
3755 : logical_sector
>= conf
->reshape_safe
) {
3756 spin_unlock_irq(&conf
->device_lock
);
3761 spin_unlock_irq(&conf
->device_lock
);
3763 data_disks
= disks
- conf
->max_degraded
;
3765 new_sector
= raid5_compute_sector(conf
, logical_sector
,
3768 pr_debug("raid456: make_request, sector %llu logical %llu\n",
3769 (unsigned long long)new_sector
,
3770 (unsigned long long)logical_sector
);
3772 sh
= get_active_stripe(conf
, new_sector
, previous
,
3773 (bi
->bi_rw
&RWA_MASK
), 0);
3775 if (unlikely(previous
)) {
3776 /* expansion might have moved on while waiting for a
3777 * stripe, so we must do the range check again.
3778 * Expansion could still move past after this
3779 * test, but as we are holding a reference to
3780 * 'sh', we know that if that happens,
3781 * STRIPE_EXPANDING will get set and the expansion
3782 * won't proceed until we finish with the stripe.
3785 spin_lock_irq(&conf
->device_lock
);
3786 if (mddev
->delta_disks
< 0
3787 ? logical_sector
>= conf
->reshape_progress
3788 : logical_sector
< conf
->reshape_progress
)
3789 /* mismatch, need to try again */
3791 spin_unlock_irq(&conf
->device_lock
);
3800 logical_sector
>= mddev
->suspend_lo
&&
3801 logical_sector
< mddev
->suspend_hi
) {
3803 /* As the suspend_* range is controlled by
3804 * userspace, we want an interruptible
3807 flush_signals(current
);
3808 prepare_to_wait(&conf
->wait_for_overlap
,
3809 &w
, TASK_INTERRUPTIBLE
);
3810 if (logical_sector
>= mddev
->suspend_lo
&&
3811 logical_sector
< mddev
->suspend_hi
)
3816 if (test_bit(STRIPE_EXPANDING
, &sh
->state
) ||
3817 !add_stripe_bio(sh
, bi
, dd_idx
, rw
)) {
3818 /* Stripe is busy expanding or
3819 * add failed due to overlap. Flush everything
3822 md_wakeup_thread(mddev
->thread
);
3827 finish_wait(&conf
->wait_for_overlap
, &w
);
3828 set_bit(STRIPE_HANDLE
, &sh
->state
);
3829 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3830 if ((bi
->bi_rw
& REQ_SYNC
) &&
3831 !test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3832 atomic_inc(&conf
->preread_active_stripes
);
3835 /* cannot get stripe for read-ahead, just give-up */
3836 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
3837 finish_wait(&conf
->wait_for_overlap
, &w
);
3843 md_wakeup_thread(mddev
->thread
);
3845 spin_lock_irq(&conf
->device_lock
);
3846 remaining
= raid5_dec_bi_phys_segments(bi
);
3847 spin_unlock_irq(&conf
->device_lock
);
3848 if (remaining
== 0) {
3851 md_write_end(mddev
);
3859 static sector_t
raid5_size(mddev_t
*mddev
, sector_t sectors
, int raid_disks
);
3861 static sector_t
reshape_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
)
3863 /* reshaping is quite different to recovery/resync so it is
3864 * handled quite separately ... here.
3866 * On each call to sync_request, we gather one chunk worth of
3867 * destination stripes and flag them as expanding.
3868 * Then we find all the source stripes and request reads.
3869 * As the reads complete, handle_stripe will copy the data
3870 * into the destination stripe and release that stripe.
3872 raid5_conf_t
*conf
= mddev
->private;
3873 struct stripe_head
*sh
;
3874 sector_t first_sector
, last_sector
;
3875 int raid_disks
= conf
->previous_raid_disks
;
3876 int data_disks
= raid_disks
- conf
->max_degraded
;
3877 int new_data_disks
= conf
->raid_disks
- conf
->max_degraded
;
3880 sector_t writepos
, readpos
, safepos
;
3881 sector_t stripe_addr
;
3882 int reshape_sectors
;
3883 struct list_head stripes
;
3885 if (sector_nr
== 0) {
3886 /* If restarting in the middle, skip the initial sectors */
3887 if (mddev
->delta_disks
< 0 &&
3888 conf
->reshape_progress
< raid5_size(mddev
, 0, 0)) {
3889 sector_nr
= raid5_size(mddev
, 0, 0)
3890 - conf
->reshape_progress
;
3891 } else if (mddev
->delta_disks
>= 0 &&
3892 conf
->reshape_progress
> 0)
3893 sector_nr
= conf
->reshape_progress
;
3894 sector_div(sector_nr
, new_data_disks
);
3896 mddev
->curr_resync_completed
= sector_nr
;
3897 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
3903 /* We need to process a full chunk at a time.
3904 * If old and new chunk sizes differ, we need to process the
3907 if (mddev
->new_chunk_sectors
> mddev
->chunk_sectors
)
3908 reshape_sectors
= mddev
->new_chunk_sectors
;
3910 reshape_sectors
= mddev
->chunk_sectors
;
3912 /* we update the metadata when there is more than 3Meg
3913 * in the block range (that is rather arbitrary, should
3914 * probably be time based) or when the data about to be
3915 * copied would over-write the source of the data at
3916 * the front of the range.
3917 * i.e. one new_stripe along from reshape_progress new_maps
3918 * to after where reshape_safe old_maps to
3920 writepos
= conf
->reshape_progress
;
3921 sector_div(writepos
, new_data_disks
);
3922 readpos
= conf
->reshape_progress
;
3923 sector_div(readpos
, data_disks
);
3924 safepos
= conf
->reshape_safe
;
3925 sector_div(safepos
, data_disks
);
3926 if (mddev
->delta_disks
< 0) {
3927 writepos
-= min_t(sector_t
, reshape_sectors
, writepos
);
3928 readpos
+= reshape_sectors
;
3929 safepos
+= reshape_sectors
;
3931 writepos
+= reshape_sectors
;
3932 readpos
-= min_t(sector_t
, reshape_sectors
, readpos
);
3933 safepos
-= min_t(sector_t
, reshape_sectors
, safepos
);
3936 /* 'writepos' is the most advanced device address we might write.
3937 * 'readpos' is the least advanced device address we might read.
3938 * 'safepos' is the least address recorded in the metadata as having
3940 * If 'readpos' is behind 'writepos', then there is no way that we can
3941 * ensure safety in the face of a crash - that must be done by userspace
3942 * making a backup of the data. So in that case there is no particular
3943 * rush to update metadata.
3944 * Otherwise if 'safepos' is behind 'writepos', then we really need to
3945 * update the metadata to advance 'safepos' to match 'readpos' so that
3946 * we can be safe in the event of a crash.
3947 * So we insist on updating metadata if safepos is behind writepos and
3948 * readpos is beyond writepos.
3949 * In any case, update the metadata every 10 seconds.
3950 * Maybe that number should be configurable, but I'm not sure it is
3951 * worth it.... maybe it could be a multiple of safemode_delay???
3953 if ((mddev
->delta_disks
< 0
3954 ? (safepos
> writepos
&& readpos
< writepos
)
3955 : (safepos
< writepos
&& readpos
> writepos
)) ||
3956 time_after(jiffies
, conf
->reshape_checkpoint
+ 10*HZ
)) {
3957 /* Cannot proceed until we've updated the superblock... */
3958 wait_event(conf
->wait_for_overlap
,
3959 atomic_read(&conf
->reshape_stripes
)==0);
3960 mddev
->reshape_position
= conf
->reshape_progress
;
3961 mddev
->curr_resync_completed
= sector_nr
;
3962 conf
->reshape_checkpoint
= jiffies
;
3963 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
3964 md_wakeup_thread(mddev
->thread
);
3965 wait_event(mddev
->sb_wait
, mddev
->flags
== 0 ||
3966 kthread_should_stop());
3967 spin_lock_irq(&conf
->device_lock
);
3968 conf
->reshape_safe
= mddev
->reshape_position
;
3969 spin_unlock_irq(&conf
->device_lock
);
3970 wake_up(&conf
->wait_for_overlap
);
3971 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
3974 if (mddev
->delta_disks
< 0) {
3975 BUG_ON(conf
->reshape_progress
== 0);
3976 stripe_addr
= writepos
;
3977 BUG_ON((mddev
->dev_sectors
&
3978 ~((sector_t
)reshape_sectors
- 1))
3979 - reshape_sectors
- stripe_addr
3982 BUG_ON(writepos
!= sector_nr
+ reshape_sectors
);
3983 stripe_addr
= sector_nr
;
3985 INIT_LIST_HEAD(&stripes
);
3986 for (i
= 0; i
< reshape_sectors
; i
+= STRIPE_SECTORS
) {
3988 int skipped_disk
= 0;
3989 sh
= get_active_stripe(conf
, stripe_addr
+i
, 0, 0, 1);
3990 set_bit(STRIPE_EXPANDING
, &sh
->state
);
3991 atomic_inc(&conf
->reshape_stripes
);
3992 /* If any of this stripe is beyond the end of the old
3993 * array, then we need to zero those blocks
3995 for (j
=sh
->disks
; j
--;) {
3997 if (j
== sh
->pd_idx
)
3999 if (conf
->level
== 6 &&
4002 s
= compute_blocknr(sh
, j
, 0);
4003 if (s
< raid5_size(mddev
, 0, 0)) {
4007 memset(page_address(sh
->dev
[j
].page
), 0, STRIPE_SIZE
);
4008 set_bit(R5_Expanded
, &sh
->dev
[j
].flags
);
4009 set_bit(R5_UPTODATE
, &sh
->dev
[j
].flags
);
4011 if (!skipped_disk
) {
4012 set_bit(STRIPE_EXPAND_READY
, &sh
->state
);
4013 set_bit(STRIPE_HANDLE
, &sh
->state
);
4015 list_add(&sh
->lru
, &stripes
);
4017 spin_lock_irq(&conf
->device_lock
);
4018 if (mddev
->delta_disks
< 0)
4019 conf
->reshape_progress
-= reshape_sectors
* new_data_disks
;
4021 conf
->reshape_progress
+= reshape_sectors
* new_data_disks
;
4022 spin_unlock_irq(&conf
->device_lock
);
4023 /* Ok, those stripe are ready. We can start scheduling
4024 * reads on the source stripes.
4025 * The source stripes are determined by mapping the first and last
4026 * block on the destination stripes.
4029 raid5_compute_sector(conf
, stripe_addr
*(new_data_disks
),
4032 raid5_compute_sector(conf
, ((stripe_addr
+reshape_sectors
)
4033 * new_data_disks
- 1),
4035 if (last_sector
>= mddev
->dev_sectors
)
4036 last_sector
= mddev
->dev_sectors
- 1;
4037 while (first_sector
<= last_sector
) {
4038 sh
= get_active_stripe(conf
, first_sector
, 1, 0, 1);
4039 set_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
4040 set_bit(STRIPE_HANDLE
, &sh
->state
);
4042 first_sector
+= STRIPE_SECTORS
;
4044 /* Now that the sources are clearly marked, we can release
4045 * the destination stripes
4047 while (!list_empty(&stripes
)) {
4048 sh
= list_entry(stripes
.next
, struct stripe_head
, lru
);
4049 list_del_init(&sh
->lru
);
4052 /* If this takes us to the resync_max point where we have to pause,
4053 * then we need to write out the superblock.
4055 sector_nr
+= reshape_sectors
;
4056 if ((sector_nr
- mddev
->curr_resync_completed
) * 2
4057 >= mddev
->resync_max
- mddev
->curr_resync_completed
) {
4058 /* Cannot proceed until we've updated the superblock... */
4059 wait_event(conf
->wait_for_overlap
,
4060 atomic_read(&conf
->reshape_stripes
) == 0);
4061 mddev
->reshape_position
= conf
->reshape_progress
;
4062 mddev
->curr_resync_completed
= sector_nr
;
4063 conf
->reshape_checkpoint
= jiffies
;
4064 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
4065 md_wakeup_thread(mddev
->thread
);
4066 wait_event(mddev
->sb_wait
,
4067 !test_bit(MD_CHANGE_DEVS
, &mddev
->flags
)
4068 || kthread_should_stop());
4069 spin_lock_irq(&conf
->device_lock
);
4070 conf
->reshape_safe
= mddev
->reshape_position
;
4071 spin_unlock_irq(&conf
->device_lock
);
4072 wake_up(&conf
->wait_for_overlap
);
4073 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
4075 return reshape_sectors
;
4078 /* FIXME go_faster isn't used */
4079 static inline sector_t
sync_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
4081 raid5_conf_t
*conf
= mddev
->private;
4082 struct stripe_head
*sh
;
4083 sector_t max_sector
= mddev
->dev_sectors
;
4084 sector_t sync_blocks
;
4085 int still_degraded
= 0;
4088 if (sector_nr
>= max_sector
) {
4089 /* just being told to finish up .. nothing much to do */
4091 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
4096 if (mddev
->curr_resync
< max_sector
) /* aborted */
4097 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
4099 else /* completed sync */
4101 bitmap_close_sync(mddev
->bitmap
);
4106 /* Allow raid5_quiesce to complete */
4107 wait_event(conf
->wait_for_overlap
, conf
->quiesce
!= 2);
4109 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
4110 return reshape_request(mddev
, sector_nr
, skipped
);
4112 /* No need to check resync_max as we never do more than one
4113 * stripe, and as resync_max will always be on a chunk boundary,
4114 * if the check in md_do_sync didn't fire, there is no chance
4115 * of overstepping resync_max here
4118 /* if there is too many failed drives and we are trying
4119 * to resync, then assert that we are finished, because there is
4120 * nothing we can do.
4122 if (mddev
->degraded
>= conf
->max_degraded
&&
4123 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
4124 sector_t rv
= mddev
->dev_sectors
- sector_nr
;
4128 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
4129 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
4130 !conf
->fullsync
&& sync_blocks
>= STRIPE_SECTORS
) {
4131 /* we can skip this block, and probably more */
4132 sync_blocks
/= STRIPE_SECTORS
;
4134 return sync_blocks
* STRIPE_SECTORS
; /* keep things rounded to whole stripes */
4138 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
4140 sh
= get_active_stripe(conf
, sector_nr
, 0, 1, 0);
4142 sh
= get_active_stripe(conf
, sector_nr
, 0, 0, 0);
4143 /* make sure we don't swamp the stripe cache if someone else
4144 * is trying to get access
4146 schedule_timeout_uninterruptible(1);
4148 /* Need to check if array will still be degraded after recovery/resync
4149 * We don't need to check the 'failed' flag as when that gets set,
4152 for (i
= 0; i
< conf
->raid_disks
; i
++)
4153 if (conf
->disks
[i
].rdev
== NULL
)
4156 bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, still_degraded
);
4158 set_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
);
4163 return STRIPE_SECTORS
;
4166 static int retry_aligned_read(raid5_conf_t
*conf
, struct bio
*raid_bio
)
4168 /* We may not be able to submit a whole bio at once as there
4169 * may not be enough stripe_heads available.
4170 * We cannot pre-allocate enough stripe_heads as we may need
4171 * more than exist in the cache (if we allow ever large chunks).
4172 * So we do one stripe head at a time and record in
4173 * ->bi_hw_segments how many have been done.
4175 * We *know* that this entire raid_bio is in one chunk, so
4176 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4178 struct stripe_head
*sh
;
4180 sector_t sector
, logical_sector
, last_sector
;
4185 logical_sector
= raid_bio
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
4186 sector
= raid5_compute_sector(conf
, logical_sector
,
4188 last_sector
= raid_bio
->bi_sector
+ (raid_bio
->bi_size
>>9);
4190 for (; logical_sector
< last_sector
;
4191 logical_sector
+= STRIPE_SECTORS
,
4192 sector
+= STRIPE_SECTORS
,
4195 if (scnt
< raid5_bi_hw_segments(raid_bio
))
4196 /* already done this stripe */
4199 sh
= get_active_stripe(conf
, sector
, 0, 1, 0);
4202 /* failed to get a stripe - must wait */
4203 raid5_set_bi_hw_segments(raid_bio
, scnt
);
4204 conf
->retry_read_aligned
= raid_bio
;
4208 set_bit(R5_ReadError
, &sh
->dev
[dd_idx
].flags
);
4209 if (!add_stripe_bio(sh
, raid_bio
, dd_idx
, 0)) {
4211 raid5_set_bi_hw_segments(raid_bio
, scnt
);
4212 conf
->retry_read_aligned
= raid_bio
;
4220 spin_lock_irq(&conf
->device_lock
);
4221 remaining
= raid5_dec_bi_phys_segments(raid_bio
);
4222 spin_unlock_irq(&conf
->device_lock
);
4224 bio_endio(raid_bio
, 0);
4225 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
4226 wake_up(&conf
->wait_for_stripe
);
4232 * This is our raid5 kernel thread.
4234 * We scan the hash table for stripes which can be handled now.
4235 * During the scan, completed stripes are saved for us by the interrupt
4236 * handler, so that they will not have to wait for our next wakeup.
4238 static void raid5d(mddev_t
*mddev
)
4240 struct stripe_head
*sh
;
4241 raid5_conf_t
*conf
= mddev
->private;
4243 struct blk_plug plug
;
4245 pr_debug("+++ raid5d active\n");
4247 md_check_recovery(mddev
);
4249 blk_start_plug(&plug
);
4251 spin_lock_irq(&conf
->device_lock
);
4255 if (atomic_read(&mddev
->plug_cnt
) == 0 &&
4256 !list_empty(&conf
->bitmap_list
)) {
4257 /* Now is a good time to flush some bitmap updates */
4259 spin_unlock_irq(&conf
->device_lock
);
4260 bitmap_unplug(mddev
->bitmap
);
4261 spin_lock_irq(&conf
->device_lock
);
4262 conf
->seq_write
= conf
->seq_flush
;
4263 activate_bit_delay(conf
);
4265 if (atomic_read(&mddev
->plug_cnt
) == 0)
4266 raid5_activate_delayed(conf
);
4268 while ((bio
= remove_bio_from_retry(conf
))) {
4270 spin_unlock_irq(&conf
->device_lock
);
4271 ok
= retry_aligned_read(conf
, bio
);
4272 spin_lock_irq(&conf
->device_lock
);
4278 sh
= __get_priority_stripe(conf
);
4282 spin_unlock_irq(&conf
->device_lock
);
4289 if (mddev
->flags
& ~(1<<MD_CHANGE_PENDING
))
4290 md_check_recovery(mddev
);
4292 spin_lock_irq(&conf
->device_lock
);
4294 pr_debug("%d stripes handled\n", handled
);
4296 spin_unlock_irq(&conf
->device_lock
);
4298 async_tx_issue_pending_all();
4299 blk_finish_plug(&plug
);
4301 pr_debug("--- raid5d inactive\n");
4305 raid5_show_stripe_cache_size(mddev_t
*mddev
, char *page
)
4307 raid5_conf_t
*conf
= mddev
->private;
4309 return sprintf(page
, "%d\n", conf
->max_nr_stripes
);
4315 raid5_set_cache_size(mddev_t
*mddev
, int size
)
4317 raid5_conf_t
*conf
= mddev
->private;
4320 if (size
<= 16 || size
> 32768)
4322 while (size
< conf
->max_nr_stripes
) {
4323 if (drop_one_stripe(conf
))
4324 conf
->max_nr_stripes
--;
4328 err
= md_allow_write(mddev
);
4331 while (size
> conf
->max_nr_stripes
) {
4332 if (grow_one_stripe(conf
))
4333 conf
->max_nr_stripes
++;
4338 EXPORT_SYMBOL(raid5_set_cache_size
);
4341 raid5_store_stripe_cache_size(mddev_t
*mddev
, const char *page
, size_t len
)
4343 raid5_conf_t
*conf
= mddev
->private;
4347 if (len
>= PAGE_SIZE
)
4352 if (strict_strtoul(page
, 10, &new))
4354 err
= raid5_set_cache_size(mddev
, new);
4360 static struct md_sysfs_entry
4361 raid5_stripecache_size
= __ATTR(stripe_cache_size
, S_IRUGO
| S_IWUSR
,
4362 raid5_show_stripe_cache_size
,
4363 raid5_store_stripe_cache_size
);
4366 raid5_show_preread_threshold(mddev_t
*mddev
, char *page
)
4368 raid5_conf_t
*conf
= mddev
->private;
4370 return sprintf(page
, "%d\n", conf
->bypass_threshold
);
4376 raid5_store_preread_threshold(mddev_t
*mddev
, const char *page
, size_t len
)
4378 raid5_conf_t
*conf
= mddev
->private;
4380 if (len
>= PAGE_SIZE
)
4385 if (strict_strtoul(page
, 10, &new))
4387 if (new > conf
->max_nr_stripes
)
4389 conf
->bypass_threshold
= new;
4393 static struct md_sysfs_entry
4394 raid5_preread_bypass_threshold
= __ATTR(preread_bypass_threshold
,
4396 raid5_show_preread_threshold
,
4397 raid5_store_preread_threshold
);
4400 stripe_cache_active_show(mddev_t
*mddev
, char *page
)
4402 raid5_conf_t
*conf
= mddev
->private;
4404 return sprintf(page
, "%d\n", atomic_read(&conf
->active_stripes
));
4409 static struct md_sysfs_entry
4410 raid5_stripecache_active
= __ATTR_RO(stripe_cache_active
);
4412 static struct attribute
*raid5_attrs
[] = {
4413 &raid5_stripecache_size
.attr
,
4414 &raid5_stripecache_active
.attr
,
4415 &raid5_preread_bypass_threshold
.attr
,
4418 static struct attribute_group raid5_attrs_group
= {
4420 .attrs
= raid5_attrs
,
4424 raid5_size(mddev_t
*mddev
, sector_t sectors
, int raid_disks
)
4426 raid5_conf_t
*conf
= mddev
->private;
4429 sectors
= mddev
->dev_sectors
;
4431 /* size is defined by the smallest of previous and new size */
4432 raid_disks
= min(conf
->raid_disks
, conf
->previous_raid_disks
);
4434 sectors
&= ~((sector_t
)mddev
->chunk_sectors
- 1);
4435 sectors
&= ~((sector_t
)mddev
->new_chunk_sectors
- 1);
4436 return sectors
* (raid_disks
- conf
->max_degraded
);
4439 static void raid5_free_percpu(raid5_conf_t
*conf
)
4441 struct raid5_percpu
*percpu
;
4448 for_each_possible_cpu(cpu
) {
4449 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
4450 safe_put_page(percpu
->spare_page
);
4451 kfree(percpu
->scribble
);
4453 #ifdef CONFIG_HOTPLUG_CPU
4454 unregister_cpu_notifier(&conf
->cpu_notify
);
4458 free_percpu(conf
->percpu
);
4461 static void free_conf(raid5_conf_t
*conf
)
4463 shrink_stripes(conf
);
4464 raid5_free_percpu(conf
);
4466 kfree(conf
->stripe_hashtbl
);
4470 #ifdef CONFIG_HOTPLUG_CPU
4471 static int raid456_cpu_notify(struct notifier_block
*nfb
, unsigned long action
,
4474 raid5_conf_t
*conf
= container_of(nfb
, raid5_conf_t
, cpu_notify
);
4475 long cpu
= (long)hcpu
;
4476 struct raid5_percpu
*percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
4479 case CPU_UP_PREPARE
:
4480 case CPU_UP_PREPARE_FROZEN
:
4481 if (conf
->level
== 6 && !percpu
->spare_page
)
4482 percpu
->spare_page
= alloc_page(GFP_KERNEL
);
4483 if (!percpu
->scribble
)
4484 percpu
->scribble
= kmalloc(conf
->scribble_len
, GFP_KERNEL
);
4486 if (!percpu
->scribble
||
4487 (conf
->level
== 6 && !percpu
->spare_page
)) {
4488 safe_put_page(percpu
->spare_page
);
4489 kfree(percpu
->scribble
);
4490 pr_err("%s: failed memory allocation for cpu%ld\n",
4492 return notifier_from_errno(-ENOMEM
);
4496 case CPU_DEAD_FROZEN
:
4497 safe_put_page(percpu
->spare_page
);
4498 kfree(percpu
->scribble
);
4499 percpu
->spare_page
= NULL
;
4500 percpu
->scribble
= NULL
;
4509 static int raid5_alloc_percpu(raid5_conf_t
*conf
)
4512 struct page
*spare_page
;
4513 struct raid5_percpu __percpu
*allcpus
;
4517 allcpus
= alloc_percpu(struct raid5_percpu
);
4520 conf
->percpu
= allcpus
;
4524 for_each_present_cpu(cpu
) {
4525 if (conf
->level
== 6) {
4526 spare_page
= alloc_page(GFP_KERNEL
);
4531 per_cpu_ptr(conf
->percpu
, cpu
)->spare_page
= spare_page
;
4533 scribble
= kmalloc(conf
->scribble_len
, GFP_KERNEL
);
4538 per_cpu_ptr(conf
->percpu
, cpu
)->scribble
= scribble
;
4540 #ifdef CONFIG_HOTPLUG_CPU
4541 conf
->cpu_notify
.notifier_call
= raid456_cpu_notify
;
4542 conf
->cpu_notify
.priority
= 0;
4544 err
= register_cpu_notifier(&conf
->cpu_notify
);
4551 static raid5_conf_t
*setup_conf(mddev_t
*mddev
)
4554 int raid_disk
, memory
, max_disks
;
4556 struct disk_info
*disk
;
4558 if (mddev
->new_level
!= 5
4559 && mddev
->new_level
!= 4
4560 && mddev
->new_level
!= 6) {
4561 printk(KERN_ERR
"md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4562 mdname(mddev
), mddev
->new_level
);
4563 return ERR_PTR(-EIO
);
4565 if ((mddev
->new_level
== 5
4566 && !algorithm_valid_raid5(mddev
->new_layout
)) ||
4567 (mddev
->new_level
== 6
4568 && !algorithm_valid_raid6(mddev
->new_layout
))) {
4569 printk(KERN_ERR
"md/raid:%s: layout %d not supported\n",
4570 mdname(mddev
), mddev
->new_layout
);
4571 return ERR_PTR(-EIO
);
4573 if (mddev
->new_level
== 6 && mddev
->raid_disks
< 4) {
4574 printk(KERN_ERR
"md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4575 mdname(mddev
), mddev
->raid_disks
);
4576 return ERR_PTR(-EINVAL
);
4579 if (!mddev
->new_chunk_sectors
||
4580 (mddev
->new_chunk_sectors
<< 9) % PAGE_SIZE
||
4581 !is_power_of_2(mddev
->new_chunk_sectors
)) {
4582 printk(KERN_ERR
"md/raid:%s: invalid chunk size %d\n",
4583 mdname(mddev
), mddev
->new_chunk_sectors
<< 9);
4584 return ERR_PTR(-EINVAL
);
4587 conf
= kzalloc(sizeof(raid5_conf_t
), GFP_KERNEL
);
4590 spin_lock_init(&conf
->device_lock
);
4591 init_waitqueue_head(&conf
->wait_for_stripe
);
4592 init_waitqueue_head(&conf
->wait_for_overlap
);
4593 INIT_LIST_HEAD(&conf
->handle_list
);
4594 INIT_LIST_HEAD(&conf
->hold_list
);
4595 INIT_LIST_HEAD(&conf
->delayed_list
);
4596 INIT_LIST_HEAD(&conf
->bitmap_list
);
4597 INIT_LIST_HEAD(&conf
->inactive_list
);
4598 atomic_set(&conf
->active_stripes
, 0);
4599 atomic_set(&conf
->preread_active_stripes
, 0);
4600 atomic_set(&conf
->active_aligned_reads
, 0);
4601 conf
->bypass_threshold
= BYPASS_THRESHOLD
;
4603 conf
->raid_disks
= mddev
->raid_disks
;
4604 if (mddev
->reshape_position
== MaxSector
)
4605 conf
->previous_raid_disks
= mddev
->raid_disks
;
4607 conf
->previous_raid_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
4608 max_disks
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
4609 conf
->scribble_len
= scribble_len(max_disks
);
4611 conf
->disks
= kzalloc(max_disks
* sizeof(struct disk_info
),
4616 conf
->mddev
= mddev
;
4618 if ((conf
->stripe_hashtbl
= kzalloc(PAGE_SIZE
, GFP_KERNEL
)) == NULL
)
4621 conf
->level
= mddev
->new_level
;
4622 if (raid5_alloc_percpu(conf
) != 0)
4625 pr_debug("raid456: run(%s) called.\n", mdname(mddev
));
4627 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
4628 raid_disk
= rdev
->raid_disk
;
4629 if (raid_disk
>= max_disks
4632 disk
= conf
->disks
+ raid_disk
;
4636 if (test_bit(In_sync
, &rdev
->flags
)) {
4637 char b
[BDEVNAME_SIZE
];
4638 printk(KERN_INFO
"md/raid:%s: device %s operational as raid"
4640 mdname(mddev
), bdevname(rdev
->bdev
, b
), raid_disk
);
4641 } else if (rdev
->saved_raid_disk
!= raid_disk
)
4642 /* Cannot rely on bitmap to complete recovery */
4646 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
4647 conf
->level
= mddev
->new_level
;
4648 if (conf
->level
== 6)
4649 conf
->max_degraded
= 2;
4651 conf
->max_degraded
= 1;
4652 conf
->algorithm
= mddev
->new_layout
;
4653 conf
->max_nr_stripes
= NR_STRIPES
;
4654 conf
->reshape_progress
= mddev
->reshape_position
;
4655 if (conf
->reshape_progress
!= MaxSector
) {
4656 conf
->prev_chunk_sectors
= mddev
->chunk_sectors
;
4657 conf
->prev_algo
= mddev
->layout
;
4660 memory
= conf
->max_nr_stripes
* (sizeof(struct stripe_head
) +
4661 max_disks
* ((sizeof(struct bio
) + PAGE_SIZE
))) / 1024;
4662 if (grow_stripes(conf
, conf
->max_nr_stripes
)) {
4664 "md/raid:%s: couldn't allocate %dkB for buffers\n",
4665 mdname(mddev
), memory
);
4668 printk(KERN_INFO
"md/raid:%s: allocated %dkB\n",
4669 mdname(mddev
), memory
);
4671 conf
->thread
= md_register_thread(raid5d
, mddev
, NULL
);
4672 if (!conf
->thread
) {
4674 "md/raid:%s: couldn't allocate thread.\n",
4684 return ERR_PTR(-EIO
);
4686 return ERR_PTR(-ENOMEM
);
4690 static int only_parity(int raid_disk
, int algo
, int raid_disks
, int max_degraded
)
4693 case ALGORITHM_PARITY_0
:
4694 if (raid_disk
< max_degraded
)
4697 case ALGORITHM_PARITY_N
:
4698 if (raid_disk
>= raid_disks
- max_degraded
)
4701 case ALGORITHM_PARITY_0_6
:
4702 if (raid_disk
== 0 ||
4703 raid_disk
== raid_disks
- 1)
4706 case ALGORITHM_LEFT_ASYMMETRIC_6
:
4707 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
4708 case ALGORITHM_LEFT_SYMMETRIC_6
:
4709 case ALGORITHM_RIGHT_SYMMETRIC_6
:
4710 if (raid_disk
== raid_disks
- 1)
4716 static int run(mddev_t
*mddev
)
4719 int working_disks
= 0;
4720 int dirty_parity_disks
= 0;
4722 sector_t reshape_offset
= 0;
4724 if (mddev
->recovery_cp
!= MaxSector
)
4725 printk(KERN_NOTICE
"md/raid:%s: not clean"
4726 " -- starting background reconstruction\n",
4728 if (mddev
->reshape_position
!= MaxSector
) {
4729 /* Check that we can continue the reshape.
4730 * Currently only disks can change, it must
4731 * increase, and we must be past the point where
4732 * a stripe over-writes itself
4734 sector_t here_new
, here_old
;
4736 int max_degraded
= (mddev
->level
== 6 ? 2 : 1);
4738 if (mddev
->new_level
!= mddev
->level
) {
4739 printk(KERN_ERR
"md/raid:%s: unsupported reshape "
4740 "required - aborting.\n",
4744 old_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
4745 /* reshape_position must be on a new-stripe boundary, and one
4746 * further up in new geometry must map after here in old
4749 here_new
= mddev
->reshape_position
;
4750 if (sector_div(here_new
, mddev
->new_chunk_sectors
*
4751 (mddev
->raid_disks
- max_degraded
))) {
4752 printk(KERN_ERR
"md/raid:%s: reshape_position not "
4753 "on a stripe boundary\n", mdname(mddev
));
4756 reshape_offset
= here_new
* mddev
->new_chunk_sectors
;
4757 /* here_new is the stripe we will write to */
4758 here_old
= mddev
->reshape_position
;
4759 sector_div(here_old
, mddev
->chunk_sectors
*
4760 (old_disks
-max_degraded
));
4761 /* here_old is the first stripe that we might need to read
4763 if (mddev
->delta_disks
== 0) {
4764 /* We cannot be sure it is safe to start an in-place
4765 * reshape. It is only safe if user-space if monitoring
4766 * and taking constant backups.
4767 * mdadm always starts a situation like this in
4768 * readonly mode so it can take control before
4769 * allowing any writes. So just check for that.
4771 if ((here_new
* mddev
->new_chunk_sectors
!=
4772 here_old
* mddev
->chunk_sectors
) ||
4774 printk(KERN_ERR
"md/raid:%s: in-place reshape must be started"
4775 " in read-only mode - aborting\n",
4779 } else if (mddev
->delta_disks
< 0
4780 ? (here_new
* mddev
->new_chunk_sectors
<=
4781 here_old
* mddev
->chunk_sectors
)
4782 : (here_new
* mddev
->new_chunk_sectors
>=
4783 here_old
* mddev
->chunk_sectors
)) {
4784 /* Reading from the same stripe as writing to - bad */
4785 printk(KERN_ERR
"md/raid:%s: reshape_position too early for "
4786 "auto-recovery - aborting.\n",
4790 printk(KERN_INFO
"md/raid:%s: reshape will continue\n",
4792 /* OK, we should be able to continue; */
4794 BUG_ON(mddev
->level
!= mddev
->new_level
);
4795 BUG_ON(mddev
->layout
!= mddev
->new_layout
);
4796 BUG_ON(mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
);
4797 BUG_ON(mddev
->delta_disks
!= 0);
4800 if (mddev
->private == NULL
)
4801 conf
= setup_conf(mddev
);
4803 conf
= mddev
->private;
4806 return PTR_ERR(conf
);
4808 mddev
->thread
= conf
->thread
;
4809 conf
->thread
= NULL
;
4810 mddev
->private = conf
;
4813 * 0 for a fully functional array, 1 or 2 for a degraded array.
4815 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
4816 if (rdev
->raid_disk
< 0)
4818 if (test_bit(In_sync
, &rdev
->flags
)) {
4822 /* This disc is not fully in-sync. However if it
4823 * just stored parity (beyond the recovery_offset),
4824 * when we don't need to be concerned about the
4825 * array being dirty.
4826 * When reshape goes 'backwards', we never have
4827 * partially completed devices, so we only need
4828 * to worry about reshape going forwards.
4830 /* Hack because v0.91 doesn't store recovery_offset properly. */
4831 if (mddev
->major_version
== 0 &&
4832 mddev
->minor_version
> 90)
4833 rdev
->recovery_offset
= reshape_offset
;
4835 if (rdev
->recovery_offset
< reshape_offset
) {
4836 /* We need to check old and new layout */
4837 if (!only_parity(rdev
->raid_disk
,
4840 conf
->max_degraded
))
4843 if (!only_parity(rdev
->raid_disk
,
4845 conf
->previous_raid_disks
,
4846 conf
->max_degraded
))
4848 dirty_parity_disks
++;
4851 mddev
->degraded
= (max(conf
->raid_disks
, conf
->previous_raid_disks
)
4854 if (has_failed(conf
)) {
4855 printk(KERN_ERR
"md/raid:%s: not enough operational devices"
4856 " (%d/%d failed)\n",
4857 mdname(mddev
), mddev
->degraded
, conf
->raid_disks
);
4861 /* device size must be a multiple of chunk size */
4862 mddev
->dev_sectors
&= ~(mddev
->chunk_sectors
- 1);
4863 mddev
->resync_max_sectors
= mddev
->dev_sectors
;
4865 if (mddev
->degraded
> dirty_parity_disks
&&
4866 mddev
->recovery_cp
!= MaxSector
) {
4867 if (mddev
->ok_start_degraded
)
4869 "md/raid:%s: starting dirty degraded array"
4870 " - data corruption possible.\n",
4874 "md/raid:%s: cannot start dirty degraded array.\n",
4880 if (mddev
->degraded
== 0)
4881 printk(KERN_INFO
"md/raid:%s: raid level %d active with %d out of %d"
4882 " devices, algorithm %d\n", mdname(mddev
), conf
->level
,
4883 mddev
->raid_disks
-mddev
->degraded
, mddev
->raid_disks
,
4886 printk(KERN_ALERT
"md/raid:%s: raid level %d active with %d"
4887 " out of %d devices, algorithm %d\n",
4888 mdname(mddev
), conf
->level
,
4889 mddev
->raid_disks
- mddev
->degraded
,
4890 mddev
->raid_disks
, mddev
->new_layout
);
4892 print_raid5_conf(conf
);
4894 if (conf
->reshape_progress
!= MaxSector
) {
4895 conf
->reshape_safe
= conf
->reshape_progress
;
4896 atomic_set(&conf
->reshape_stripes
, 0);
4897 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
4898 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
4899 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
4900 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
4901 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
4906 /* Ok, everything is just fine now */
4907 if (mddev
->to_remove
== &raid5_attrs_group
)
4908 mddev
->to_remove
= NULL
;
4909 else if (mddev
->kobj
.sd
&&
4910 sysfs_create_group(&mddev
->kobj
, &raid5_attrs_group
))
4912 "raid5: failed to create sysfs attributes for %s\n",
4914 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
4918 /* read-ahead size must cover two whole stripes, which
4919 * is 2 * (datadisks) * chunksize where 'n' is the
4920 * number of raid devices
4922 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
4923 int stripe
= data_disks
*
4924 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
4925 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
4926 mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
4928 blk_queue_merge_bvec(mddev
->queue
, raid5_mergeable_bvec
);
4930 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
4931 mddev
->queue
->backing_dev_info
.congested_fn
= raid5_congested
;
4933 chunk_size
= mddev
->chunk_sectors
<< 9;
4934 blk_queue_io_min(mddev
->queue
, chunk_size
);
4935 blk_queue_io_opt(mddev
->queue
, chunk_size
*
4936 (conf
->raid_disks
- conf
->max_degraded
));
4938 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
4939 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
4940 rdev
->data_offset
<< 9);
4945 md_unregister_thread(mddev
->thread
);
4946 mddev
->thread
= NULL
;
4948 print_raid5_conf(conf
);
4951 mddev
->private = NULL
;
4952 printk(KERN_ALERT
"md/raid:%s: failed to run raid set.\n", mdname(mddev
));
4956 static int stop(mddev_t
*mddev
)
4958 raid5_conf_t
*conf
= mddev
->private;
4960 md_unregister_thread(mddev
->thread
);
4961 mddev
->thread
= NULL
;
4963 mddev
->queue
->backing_dev_info
.congested_fn
= NULL
;
4965 mddev
->private = NULL
;
4966 mddev
->to_remove
= &raid5_attrs_group
;
4971 static void print_sh(struct seq_file
*seq
, struct stripe_head
*sh
)
4975 seq_printf(seq
, "sh %llu, pd_idx %d, state %ld.\n",
4976 (unsigned long long)sh
->sector
, sh
->pd_idx
, sh
->state
);
4977 seq_printf(seq
, "sh %llu, count %d.\n",
4978 (unsigned long long)sh
->sector
, atomic_read(&sh
->count
));
4979 seq_printf(seq
, "sh %llu, ", (unsigned long long)sh
->sector
);
4980 for (i
= 0; i
< sh
->disks
; i
++) {
4981 seq_printf(seq
, "(cache%d: %p %ld) ",
4982 i
, sh
->dev
[i
].page
, sh
->dev
[i
].flags
);
4984 seq_printf(seq
, "\n");
4987 static void printall(struct seq_file
*seq
, raid5_conf_t
*conf
)
4989 struct stripe_head
*sh
;
4990 struct hlist_node
*hn
;
4993 spin_lock_irq(&conf
->device_lock
);
4994 for (i
= 0; i
< NR_HASH
; i
++) {
4995 hlist_for_each_entry(sh
, hn
, &conf
->stripe_hashtbl
[i
], hash
) {
4996 if (sh
->raid_conf
!= conf
)
5001 spin_unlock_irq(&conf
->device_lock
);
5005 static void status(struct seq_file
*seq
, mddev_t
*mddev
)
5007 raid5_conf_t
*conf
= mddev
->private;
5010 seq_printf(seq
, " level %d, %dk chunk, algorithm %d", mddev
->level
,
5011 mddev
->chunk_sectors
/ 2, mddev
->layout
);
5012 seq_printf (seq
, " [%d/%d] [", conf
->raid_disks
, conf
->raid_disks
- mddev
->degraded
);
5013 for (i
= 0; i
< conf
->raid_disks
; i
++)
5014 seq_printf (seq
, "%s",
5015 conf
->disks
[i
].rdev
&&
5016 test_bit(In_sync
, &conf
->disks
[i
].rdev
->flags
) ? "U" : "_");
5017 seq_printf (seq
, "]");
5019 seq_printf (seq
, "\n");
5020 printall(seq
, conf
);
5024 static void print_raid5_conf (raid5_conf_t
*conf
)
5027 struct disk_info
*tmp
;
5029 printk(KERN_DEBUG
"RAID conf printout:\n");
5031 printk("(conf==NULL)\n");
5034 printk(KERN_DEBUG
" --- level:%d rd:%d wd:%d\n", conf
->level
,
5036 conf
->raid_disks
- conf
->mddev
->degraded
);
5038 for (i
= 0; i
< conf
->raid_disks
; i
++) {
5039 char b
[BDEVNAME_SIZE
];
5040 tmp
= conf
->disks
+ i
;
5042 printk(KERN_DEBUG
" disk %d, o:%d, dev:%s\n",
5043 i
, !test_bit(Faulty
, &tmp
->rdev
->flags
),
5044 bdevname(tmp
->rdev
->bdev
, b
));
5048 static int raid5_spare_active(mddev_t
*mddev
)
5051 raid5_conf_t
*conf
= mddev
->private;
5052 struct disk_info
*tmp
;
5054 unsigned long flags
;
5056 for (i
= 0; i
< conf
->raid_disks
; i
++) {
5057 tmp
= conf
->disks
+ i
;
5059 && tmp
->rdev
->recovery_offset
== MaxSector
5060 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
5061 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
5063 sysfs_notify_dirent_safe(tmp
->rdev
->sysfs_state
);
5066 spin_lock_irqsave(&conf
->device_lock
, flags
);
5067 mddev
->degraded
-= count
;
5068 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
5069 print_raid5_conf(conf
);
5073 static int raid5_remove_disk(mddev_t
*mddev
, int number
)
5075 raid5_conf_t
*conf
= mddev
->private;
5078 struct disk_info
*p
= conf
->disks
+ number
;
5080 print_raid5_conf(conf
);
5083 if (number
>= conf
->raid_disks
&&
5084 conf
->reshape_progress
== MaxSector
)
5085 clear_bit(In_sync
, &rdev
->flags
);
5087 if (test_bit(In_sync
, &rdev
->flags
) ||
5088 atomic_read(&rdev
->nr_pending
)) {
5092 /* Only remove non-faulty devices if recovery
5095 if (!test_bit(Faulty
, &rdev
->flags
) &&
5096 mddev
->recovery_disabled
!= conf
->recovery_disabled
&&
5097 !has_failed(conf
) &&
5098 number
< conf
->raid_disks
) {
5104 if (atomic_read(&rdev
->nr_pending
)) {
5105 /* lost the race, try later */
5112 print_raid5_conf(conf
);
5116 static int raid5_add_disk(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
5118 raid5_conf_t
*conf
= mddev
->private;
5121 struct disk_info
*p
;
5123 int last
= conf
->raid_disks
- 1;
5125 if (mddev
->recovery_disabled
== conf
->recovery_disabled
)
5128 if (has_failed(conf
))
5129 /* no point adding a device */
5132 if (rdev
->raid_disk
>= 0)
5133 first
= last
= rdev
->raid_disk
;
5136 * find the disk ... but prefer rdev->saved_raid_disk
5139 if (rdev
->saved_raid_disk
>= 0 &&
5140 rdev
->saved_raid_disk
>= first
&&
5141 conf
->disks
[rdev
->saved_raid_disk
].rdev
== NULL
)
5142 disk
= rdev
->saved_raid_disk
;
5145 for ( ; disk
<= last
; disk
++)
5146 if ((p
=conf
->disks
+ disk
)->rdev
== NULL
) {
5147 clear_bit(In_sync
, &rdev
->flags
);
5148 rdev
->raid_disk
= disk
;
5150 if (rdev
->saved_raid_disk
!= disk
)
5152 rcu_assign_pointer(p
->rdev
, rdev
);
5155 print_raid5_conf(conf
);
5159 static int raid5_resize(mddev_t
*mddev
, sector_t sectors
)
5161 /* no resync is happening, and there is enough space
5162 * on all devices, so we can resize.
5163 * We need to make sure resync covers any new space.
5164 * If the array is shrinking we should possibly wait until
5165 * any io in the removed space completes, but it hardly seems
5168 sectors
&= ~((sector_t
)mddev
->chunk_sectors
- 1);
5169 md_set_array_sectors(mddev
, raid5_size(mddev
, sectors
,
5170 mddev
->raid_disks
));
5171 if (mddev
->array_sectors
>
5172 raid5_size(mddev
, sectors
, mddev
->raid_disks
))
5174 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
5175 revalidate_disk(mddev
->gendisk
);
5176 if (sectors
> mddev
->dev_sectors
&&
5177 mddev
->recovery_cp
> mddev
->dev_sectors
) {
5178 mddev
->recovery_cp
= mddev
->dev_sectors
;
5179 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
5181 mddev
->dev_sectors
= sectors
;
5182 mddev
->resync_max_sectors
= sectors
;
5186 static int check_stripe_cache(mddev_t
*mddev
)
5188 /* Can only proceed if there are plenty of stripe_heads.
5189 * We need a minimum of one full stripe,, and for sensible progress
5190 * it is best to have about 4 times that.
5191 * If we require 4 times, then the default 256 4K stripe_heads will
5192 * allow for chunk sizes up to 256K, which is probably OK.
5193 * If the chunk size is greater, user-space should request more
5194 * stripe_heads first.
5196 raid5_conf_t
*conf
= mddev
->private;
5197 if (((mddev
->chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
5198 > conf
->max_nr_stripes
||
5199 ((mddev
->new_chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
5200 > conf
->max_nr_stripes
) {
5201 printk(KERN_WARNING
"md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5203 ((max(mddev
->chunk_sectors
, mddev
->new_chunk_sectors
) << 9)
5210 static int check_reshape(mddev_t
*mddev
)
5212 raid5_conf_t
*conf
= mddev
->private;
5214 if (mddev
->delta_disks
== 0 &&
5215 mddev
->new_layout
== mddev
->layout
&&
5216 mddev
->new_chunk_sectors
== mddev
->chunk_sectors
)
5217 return 0; /* nothing to do */
5219 /* Cannot grow a bitmap yet */
5221 if (has_failed(conf
))
5223 if (mddev
->delta_disks
< 0) {
5224 /* We might be able to shrink, but the devices must
5225 * be made bigger first.
5226 * For raid6, 4 is the minimum size.
5227 * Otherwise 2 is the minimum
5230 if (mddev
->level
== 6)
5232 if (mddev
->raid_disks
+ mddev
->delta_disks
< min
)
5236 if (!check_stripe_cache(mddev
))
5239 return resize_stripes(conf
, conf
->raid_disks
+ mddev
->delta_disks
);
5242 static int raid5_start_reshape(mddev_t
*mddev
)
5244 raid5_conf_t
*conf
= mddev
->private;
5247 unsigned long flags
;
5249 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
5252 if (!check_stripe_cache(mddev
))
5255 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
5256 if (!test_bit(In_sync
, &rdev
->flags
)
5257 && !test_bit(Faulty
, &rdev
->flags
))
5260 if (spares
- mddev
->degraded
< mddev
->delta_disks
- conf
->max_degraded
)
5261 /* Not enough devices even to make a degraded array
5266 /* Refuse to reduce size of the array. Any reductions in
5267 * array size must be through explicit setting of array_size
5270 if (raid5_size(mddev
, 0, conf
->raid_disks
+ mddev
->delta_disks
)
5271 < mddev
->array_sectors
) {
5272 printk(KERN_ERR
"md/raid:%s: array size must be reduced "
5273 "before number of disks\n", mdname(mddev
));
5277 atomic_set(&conf
->reshape_stripes
, 0);
5278 spin_lock_irq(&conf
->device_lock
);
5279 conf
->previous_raid_disks
= conf
->raid_disks
;
5280 conf
->raid_disks
+= mddev
->delta_disks
;
5281 conf
->prev_chunk_sectors
= conf
->chunk_sectors
;
5282 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
5283 conf
->prev_algo
= conf
->algorithm
;
5284 conf
->algorithm
= mddev
->new_layout
;
5285 if (mddev
->delta_disks
< 0)
5286 conf
->reshape_progress
= raid5_size(mddev
, 0, 0);
5288 conf
->reshape_progress
= 0;
5289 conf
->reshape_safe
= conf
->reshape_progress
;
5291 spin_unlock_irq(&conf
->device_lock
);
5293 /* Add some new drives, as many as will fit.
5294 * We know there are enough to make the newly sized array work.
5295 * Don't add devices if we are reducing the number of
5296 * devices in the array. This is because it is not possible
5297 * to correctly record the "partially reconstructed" state of
5298 * such devices during the reshape and confusion could result.
5300 if (mddev
->delta_disks
>= 0) {
5301 int added_devices
= 0;
5302 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
5303 if (rdev
->raid_disk
< 0 &&
5304 !test_bit(Faulty
, &rdev
->flags
)) {
5305 if (raid5_add_disk(mddev
, rdev
) == 0) {
5307 >= conf
->previous_raid_disks
) {
5308 set_bit(In_sync
, &rdev
->flags
);
5311 rdev
->recovery_offset
= 0;
5313 if (sysfs_link_rdev(mddev
, rdev
))
5314 /* Failure here is OK */;
5316 } else if (rdev
->raid_disk
>= conf
->previous_raid_disks
5317 && !test_bit(Faulty
, &rdev
->flags
)) {
5318 /* This is a spare that was manually added */
5319 set_bit(In_sync
, &rdev
->flags
);
5323 /* When a reshape changes the number of devices,
5324 * ->degraded is measured against the larger of the
5325 * pre and post number of devices.
5327 spin_lock_irqsave(&conf
->device_lock
, flags
);
5328 mddev
->degraded
+= (conf
->raid_disks
- conf
->previous_raid_disks
)
5330 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
5332 mddev
->raid_disks
= conf
->raid_disks
;
5333 mddev
->reshape_position
= conf
->reshape_progress
;
5334 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
5336 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
5337 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
5338 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
5339 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
5340 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
5342 if (!mddev
->sync_thread
) {
5343 mddev
->recovery
= 0;
5344 spin_lock_irq(&conf
->device_lock
);
5345 mddev
->raid_disks
= conf
->raid_disks
= conf
->previous_raid_disks
;
5346 conf
->reshape_progress
= MaxSector
;
5347 spin_unlock_irq(&conf
->device_lock
);
5350 conf
->reshape_checkpoint
= jiffies
;
5351 md_wakeup_thread(mddev
->sync_thread
);
5352 md_new_event(mddev
);
5356 /* This is called from the reshape thread and should make any
5357 * changes needed in 'conf'
5359 static void end_reshape(raid5_conf_t
*conf
)
5362 if (!test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
)) {
5364 spin_lock_irq(&conf
->device_lock
);
5365 conf
->previous_raid_disks
= conf
->raid_disks
;
5366 conf
->reshape_progress
= MaxSector
;
5367 spin_unlock_irq(&conf
->device_lock
);
5368 wake_up(&conf
->wait_for_overlap
);
5370 /* read-ahead size must cover two whole stripes, which is
5371 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5373 if (conf
->mddev
->queue
) {
5374 int data_disks
= conf
->raid_disks
- conf
->max_degraded
;
5375 int stripe
= data_disks
* ((conf
->chunk_sectors
<< 9)
5377 if (conf
->mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
5378 conf
->mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
5383 /* This is called from the raid5d thread with mddev_lock held.
5384 * It makes config changes to the device.
5386 static void raid5_finish_reshape(mddev_t
*mddev
)
5388 raid5_conf_t
*conf
= mddev
->private;
5390 if (!test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
)) {
5392 if (mddev
->delta_disks
> 0) {
5393 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
5394 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
5395 revalidate_disk(mddev
->gendisk
);
5398 mddev
->degraded
= conf
->raid_disks
;
5399 for (d
= 0; d
< conf
->raid_disks
; d
++)
5400 if (conf
->disks
[d
].rdev
&&
5402 &conf
->disks
[d
].rdev
->flags
))
5404 for (d
= conf
->raid_disks
;
5405 d
< conf
->raid_disks
- mddev
->delta_disks
;
5407 mdk_rdev_t
*rdev
= conf
->disks
[d
].rdev
;
5408 if (rdev
&& raid5_remove_disk(mddev
, d
) == 0) {
5409 sysfs_unlink_rdev(mddev
, rdev
);
5410 rdev
->raid_disk
= -1;
5414 mddev
->layout
= conf
->algorithm
;
5415 mddev
->chunk_sectors
= conf
->chunk_sectors
;
5416 mddev
->reshape_position
= MaxSector
;
5417 mddev
->delta_disks
= 0;
5421 static void raid5_quiesce(mddev_t
*mddev
, int state
)
5423 raid5_conf_t
*conf
= mddev
->private;
5426 case 2: /* resume for a suspend */
5427 wake_up(&conf
->wait_for_overlap
);
5430 case 1: /* stop all writes */
5431 spin_lock_irq(&conf
->device_lock
);
5432 /* '2' tells resync/reshape to pause so that all
5433 * active stripes can drain
5436 wait_event_lock_irq(conf
->wait_for_stripe
,
5437 atomic_read(&conf
->active_stripes
) == 0 &&
5438 atomic_read(&conf
->active_aligned_reads
) == 0,
5439 conf
->device_lock
, /* nothing */);
5441 spin_unlock_irq(&conf
->device_lock
);
5442 /* allow reshape to continue */
5443 wake_up(&conf
->wait_for_overlap
);
5446 case 0: /* re-enable writes */
5447 spin_lock_irq(&conf
->device_lock
);
5449 wake_up(&conf
->wait_for_stripe
);
5450 wake_up(&conf
->wait_for_overlap
);
5451 spin_unlock_irq(&conf
->device_lock
);
5457 static void *raid45_takeover_raid0(mddev_t
*mddev
, int level
)
5459 struct raid0_private_data
*raid0_priv
= mddev
->private;
5462 /* for raid0 takeover only one zone is supported */
5463 if (raid0_priv
->nr_strip_zones
> 1) {
5464 printk(KERN_ERR
"md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5466 return ERR_PTR(-EINVAL
);
5469 sectors
= raid0_priv
->strip_zone
[0].zone_end
;
5470 sector_div(sectors
, raid0_priv
->strip_zone
[0].nb_dev
);
5471 mddev
->dev_sectors
= sectors
;
5472 mddev
->new_level
= level
;
5473 mddev
->new_layout
= ALGORITHM_PARITY_N
;
5474 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
5475 mddev
->raid_disks
+= 1;
5476 mddev
->delta_disks
= 1;
5477 /* make sure it will be not marked as dirty */
5478 mddev
->recovery_cp
= MaxSector
;
5480 return setup_conf(mddev
);
5484 static void *raid5_takeover_raid1(mddev_t
*mddev
)
5488 if (mddev
->raid_disks
!= 2 ||
5489 mddev
->degraded
> 1)
5490 return ERR_PTR(-EINVAL
);
5492 /* Should check if there are write-behind devices? */
5494 chunksect
= 64*2; /* 64K by default */
5496 /* The array must be an exact multiple of chunksize */
5497 while (chunksect
&& (mddev
->array_sectors
& (chunksect
-1)))
5500 if ((chunksect
<<9) < STRIPE_SIZE
)
5501 /* array size does not allow a suitable chunk size */
5502 return ERR_PTR(-EINVAL
);
5504 mddev
->new_level
= 5;
5505 mddev
->new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
5506 mddev
->new_chunk_sectors
= chunksect
;
5508 return setup_conf(mddev
);
5511 static void *raid5_takeover_raid6(mddev_t
*mddev
)
5515 switch (mddev
->layout
) {
5516 case ALGORITHM_LEFT_ASYMMETRIC_6
:
5517 new_layout
= ALGORITHM_LEFT_ASYMMETRIC
;
5519 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
5520 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC
;
5522 case ALGORITHM_LEFT_SYMMETRIC_6
:
5523 new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
5525 case ALGORITHM_RIGHT_SYMMETRIC_6
:
5526 new_layout
= ALGORITHM_RIGHT_SYMMETRIC
;
5528 case ALGORITHM_PARITY_0_6
:
5529 new_layout
= ALGORITHM_PARITY_0
;
5531 case ALGORITHM_PARITY_N
:
5532 new_layout
= ALGORITHM_PARITY_N
;
5535 return ERR_PTR(-EINVAL
);
5537 mddev
->new_level
= 5;
5538 mddev
->new_layout
= new_layout
;
5539 mddev
->delta_disks
= -1;
5540 mddev
->raid_disks
-= 1;
5541 return setup_conf(mddev
);
5545 static int raid5_check_reshape(mddev_t
*mddev
)
5547 /* For a 2-drive array, the layout and chunk size can be changed
5548 * immediately as not restriping is needed.
5549 * For larger arrays we record the new value - after validation
5550 * to be used by a reshape pass.
5552 raid5_conf_t
*conf
= mddev
->private;
5553 int new_chunk
= mddev
->new_chunk_sectors
;
5555 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid5(mddev
->new_layout
))
5557 if (new_chunk
> 0) {
5558 if (!is_power_of_2(new_chunk
))
5560 if (new_chunk
< (PAGE_SIZE
>>9))
5562 if (mddev
->array_sectors
& (new_chunk
-1))
5563 /* not factor of array size */
5567 /* They look valid */
5569 if (mddev
->raid_disks
== 2) {
5570 /* can make the change immediately */
5571 if (mddev
->new_layout
>= 0) {
5572 conf
->algorithm
= mddev
->new_layout
;
5573 mddev
->layout
= mddev
->new_layout
;
5575 if (new_chunk
> 0) {
5576 conf
->chunk_sectors
= new_chunk
;
5577 mddev
->chunk_sectors
= new_chunk
;
5579 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
5580 md_wakeup_thread(mddev
->thread
);
5582 return check_reshape(mddev
);
5585 static int raid6_check_reshape(mddev_t
*mddev
)
5587 int new_chunk
= mddev
->new_chunk_sectors
;
5589 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid6(mddev
->new_layout
))
5591 if (new_chunk
> 0) {
5592 if (!is_power_of_2(new_chunk
))
5594 if (new_chunk
< (PAGE_SIZE
>> 9))
5596 if (mddev
->array_sectors
& (new_chunk
-1))
5597 /* not factor of array size */
5601 /* They look valid */
5602 return check_reshape(mddev
);
5605 static void *raid5_takeover(mddev_t
*mddev
)
5607 /* raid5 can take over:
5608 * raid0 - if there is only one strip zone - make it a raid4 layout
5609 * raid1 - if there are two drives. We need to know the chunk size
5610 * raid4 - trivial - just use a raid4 layout.
5611 * raid6 - Providing it is a *_6 layout
5613 if (mddev
->level
== 0)
5614 return raid45_takeover_raid0(mddev
, 5);
5615 if (mddev
->level
== 1)
5616 return raid5_takeover_raid1(mddev
);
5617 if (mddev
->level
== 4) {
5618 mddev
->new_layout
= ALGORITHM_PARITY_N
;
5619 mddev
->new_level
= 5;
5620 return setup_conf(mddev
);
5622 if (mddev
->level
== 6)
5623 return raid5_takeover_raid6(mddev
);
5625 return ERR_PTR(-EINVAL
);
5628 static void *raid4_takeover(mddev_t
*mddev
)
5630 /* raid4 can take over:
5631 * raid0 - if there is only one strip zone
5632 * raid5 - if layout is right
5634 if (mddev
->level
== 0)
5635 return raid45_takeover_raid0(mddev
, 4);
5636 if (mddev
->level
== 5 &&
5637 mddev
->layout
== ALGORITHM_PARITY_N
) {
5638 mddev
->new_layout
= 0;
5639 mddev
->new_level
= 4;
5640 return setup_conf(mddev
);
5642 return ERR_PTR(-EINVAL
);
5645 static struct mdk_personality raid5_personality
;
5647 static void *raid6_takeover(mddev_t
*mddev
)
5649 /* Currently can only take over a raid5. We map the
5650 * personality to an equivalent raid6 personality
5651 * with the Q block at the end.
5655 if (mddev
->pers
!= &raid5_personality
)
5656 return ERR_PTR(-EINVAL
);
5657 if (mddev
->degraded
> 1)
5658 return ERR_PTR(-EINVAL
);
5659 if (mddev
->raid_disks
> 253)
5660 return ERR_PTR(-EINVAL
);
5661 if (mddev
->raid_disks
< 3)
5662 return ERR_PTR(-EINVAL
);
5664 switch (mddev
->layout
) {
5665 case ALGORITHM_LEFT_ASYMMETRIC
:
5666 new_layout
= ALGORITHM_LEFT_ASYMMETRIC_6
;
5668 case ALGORITHM_RIGHT_ASYMMETRIC
:
5669 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC_6
;
5671 case ALGORITHM_LEFT_SYMMETRIC
:
5672 new_layout
= ALGORITHM_LEFT_SYMMETRIC_6
;
5674 case ALGORITHM_RIGHT_SYMMETRIC
:
5675 new_layout
= ALGORITHM_RIGHT_SYMMETRIC_6
;
5677 case ALGORITHM_PARITY_0
:
5678 new_layout
= ALGORITHM_PARITY_0_6
;
5680 case ALGORITHM_PARITY_N
:
5681 new_layout
= ALGORITHM_PARITY_N
;
5684 return ERR_PTR(-EINVAL
);
5686 mddev
->new_level
= 6;
5687 mddev
->new_layout
= new_layout
;
5688 mddev
->delta_disks
= 1;
5689 mddev
->raid_disks
+= 1;
5690 return setup_conf(mddev
);
5694 static struct mdk_personality raid6_personality
=
5698 .owner
= THIS_MODULE
,
5699 .make_request
= make_request
,
5703 .error_handler
= error
,
5704 .hot_add_disk
= raid5_add_disk
,
5705 .hot_remove_disk
= raid5_remove_disk
,
5706 .spare_active
= raid5_spare_active
,
5707 .sync_request
= sync_request
,
5708 .resize
= raid5_resize
,
5710 .check_reshape
= raid6_check_reshape
,
5711 .start_reshape
= raid5_start_reshape
,
5712 .finish_reshape
= raid5_finish_reshape
,
5713 .quiesce
= raid5_quiesce
,
5714 .takeover
= raid6_takeover
,
5716 static struct mdk_personality raid5_personality
=
5720 .owner
= THIS_MODULE
,
5721 .make_request
= make_request
,
5725 .error_handler
= error
,
5726 .hot_add_disk
= raid5_add_disk
,
5727 .hot_remove_disk
= raid5_remove_disk
,
5728 .spare_active
= raid5_spare_active
,
5729 .sync_request
= sync_request
,
5730 .resize
= raid5_resize
,
5732 .check_reshape
= raid5_check_reshape
,
5733 .start_reshape
= raid5_start_reshape
,
5734 .finish_reshape
= raid5_finish_reshape
,
5735 .quiesce
= raid5_quiesce
,
5736 .takeover
= raid5_takeover
,
5739 static struct mdk_personality raid4_personality
=
5743 .owner
= THIS_MODULE
,
5744 .make_request
= make_request
,
5748 .error_handler
= error
,
5749 .hot_add_disk
= raid5_add_disk
,
5750 .hot_remove_disk
= raid5_remove_disk
,
5751 .spare_active
= raid5_spare_active
,
5752 .sync_request
= sync_request
,
5753 .resize
= raid5_resize
,
5755 .check_reshape
= raid5_check_reshape
,
5756 .start_reshape
= raid5_start_reshape
,
5757 .finish_reshape
= raid5_finish_reshape
,
5758 .quiesce
= raid5_quiesce
,
5759 .takeover
= raid4_takeover
,
5762 static int __init
raid5_init(void)
5764 register_md_personality(&raid6_personality
);
5765 register_md_personality(&raid5_personality
);
5766 register_md_personality(&raid4_personality
);
5770 static void raid5_exit(void)
5772 unregister_md_personality(&raid6_personality
);
5773 unregister_md_personality(&raid5_personality
);
5774 unregister_md_personality(&raid4_personality
);
5777 module_init(raid5_init
);
5778 module_exit(raid5_exit
);
5779 MODULE_LICENSE("GPL");
5780 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
5781 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5782 MODULE_ALIAS("md-raid5");
5783 MODULE_ALIAS("md-raid4");
5784 MODULE_ALIAS("md-level-5");
5785 MODULE_ALIAS("md-level-4");
5786 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5787 MODULE_ALIAS("md-raid6");
5788 MODULE_ALIAS("md-level-6");
5790 /* This used to be two separate modules, they were: */
5791 MODULE_ALIAS("raid5");
5792 MODULE_ALIAS("raid6");