2 * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
4 * Author: Mike Lavender, mike@steroidmicros.com
6 * Copyright (c) 2005, Intec Automation Inc.
8 * Some parts are based on lart.c by Abraham Van Der Merwe
10 * Cleaned up and generalized based on mtd_dataflash.c
12 * This code is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
18 #include <linux/init.h>
19 #include <linux/err.h>
20 #include <linux/errno.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/interrupt.h>
24 #include <linux/mutex.h>
25 #include <linux/math64.h>
26 #include <linux/slab.h>
27 #include <linux/sched.h>
28 #include <linux/mod_devicetable.h>
30 #include <linux/mtd/cfi.h>
31 #include <linux/mtd/mtd.h>
32 #include <linux/mtd/partitions.h>
34 #include <linux/spi/spi.h>
35 #include <linux/spi/flash.h>
38 #define OPCODE_WREN 0x06 /* Write enable */
39 #define OPCODE_RDSR 0x05 /* Read status register */
40 #define OPCODE_WRSR 0x01 /* Write status register 1 byte */
41 #define OPCODE_NORM_READ 0x03 /* Read data bytes (low frequency) */
42 #define OPCODE_FAST_READ 0x0b /* Read data bytes (high frequency) */
43 #define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */
44 #define OPCODE_BE_4K 0x20 /* Erase 4KiB block */
45 #define OPCODE_BE_32K 0x52 /* Erase 32KiB block */
46 #define OPCODE_CHIP_ERASE 0xc7 /* Erase whole flash chip */
47 #define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */
48 #define OPCODE_RDID 0x9f /* Read JEDEC ID */
50 /* Used for SST flashes only. */
51 #define OPCODE_BP 0x02 /* Byte program */
52 #define OPCODE_WRDI 0x04 /* Write disable */
53 #define OPCODE_AAI_WP 0xad /* Auto address increment word program */
55 /* Used for Macronix flashes only. */
56 #define OPCODE_EN4B 0xb7 /* Enter 4-byte mode */
57 #define OPCODE_EX4B 0xe9 /* Exit 4-byte mode */
59 /* Used for Spansion flashes only. */
60 #define OPCODE_BRWR 0x17 /* Bank register write */
62 /* Status Register bits. */
63 #define SR_WIP 1 /* Write in progress */
64 #define SR_WEL 2 /* Write enable latch */
65 /* meaning of other SR_* bits may differ between vendors */
66 #define SR_BP0 4 /* Block protect 0 */
67 #define SR_BP1 8 /* Block protect 1 */
68 #define SR_BP2 0x10 /* Block protect 2 */
69 #define SR_SRWD 0x80 /* SR write protect */
71 /* Define max times to check status register before we give up. */
72 #define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */
73 #define MAX_CMD_SIZE 5
75 #ifdef CONFIG_M25PXX_USE_FAST_READ
76 #define OPCODE_READ OPCODE_FAST_READ
77 #define FAST_READ_DUMMY_BYTE 1
79 #define OPCODE_READ OPCODE_NORM_READ
80 #define FAST_READ_DUMMY_BYTE 0
83 #define JEDEC_MFR(_jedec_id) ((_jedec_id) >> 16)
85 /****************************************************************************/
88 struct spi_device
*spi
;
97 static inline struct m25p
*mtd_to_m25p(struct mtd_info
*mtd
)
99 return container_of(mtd
, struct m25p
, mtd
);
102 /****************************************************************************/
105 * Internal helper functions
109 * Read the status register, returning its value in the location
110 * Return the status register value.
111 * Returns negative if error occurred.
113 static int read_sr(struct m25p
*flash
)
116 u8 code
= OPCODE_RDSR
;
119 retval
= spi_write_then_read(flash
->spi
, &code
, 1, &val
, 1);
122 dev_err(&flash
->spi
->dev
, "error %d reading SR\n",
131 * Write status register 1 byte
132 * Returns negative if error occurred.
134 static int write_sr(struct m25p
*flash
, u8 val
)
136 flash
->command
[0] = OPCODE_WRSR
;
137 flash
->command
[1] = val
;
139 return spi_write(flash
->spi
, flash
->command
, 2);
143 * Set write enable latch with Write Enable command.
144 * Returns negative if error occurred.
146 static inline int write_enable(struct m25p
*flash
)
148 u8 code
= OPCODE_WREN
;
150 return spi_write_then_read(flash
->spi
, &code
, 1, NULL
, 0);
154 * Send write disble instruction to the chip.
156 static inline int write_disable(struct m25p
*flash
)
158 u8 code
= OPCODE_WRDI
;
160 return spi_write_then_read(flash
->spi
, &code
, 1, NULL
, 0);
164 * Enable/disable 4-byte addressing mode.
166 static inline int set_4byte(struct m25p
*flash
, u32 jedec_id
, int enable
)
168 switch (JEDEC_MFR(jedec_id
)) {
169 case CFI_MFR_MACRONIX
:
170 flash
->command
[0] = enable
? OPCODE_EN4B
: OPCODE_EX4B
;
171 return spi_write(flash
->spi
, flash
->command
, 1);
174 flash
->command
[0] = OPCODE_BRWR
;
175 flash
->command
[1] = enable
<< 7;
176 return spi_write(flash
->spi
, flash
->command
, 2);
181 * Service routine to read status register until ready, or timeout occurs.
182 * Returns non-zero if error.
184 static int wait_till_ready(struct m25p
*flash
)
186 unsigned long deadline
;
189 deadline
= jiffies
+ MAX_READY_WAIT_JIFFIES
;
192 if ((sr
= read_sr(flash
)) < 0)
194 else if (!(sr
& SR_WIP
))
199 } while (!time_after_eq(jiffies
, deadline
));
205 * Erase the whole flash memory
207 * Returns 0 if successful, non-zero otherwise.
209 static int erase_chip(struct m25p
*flash
)
211 pr_debug("%s: %s %lldKiB\n", dev_name(&flash
->spi
->dev
), __func__
,
212 (long long)(flash
->mtd
.size
>> 10));
214 /* Wait until finished previous write command. */
215 if (wait_till_ready(flash
))
218 /* Send write enable, then erase commands. */
221 /* Set up command buffer. */
222 flash
->command
[0] = OPCODE_CHIP_ERASE
;
224 spi_write(flash
->spi
, flash
->command
, 1);
229 static void m25p_addr2cmd(struct m25p
*flash
, unsigned int addr
, u8
*cmd
)
231 /* opcode is in cmd[0] */
232 cmd
[1] = addr
>> (flash
->addr_width
* 8 - 8);
233 cmd
[2] = addr
>> (flash
->addr_width
* 8 - 16);
234 cmd
[3] = addr
>> (flash
->addr_width
* 8 - 24);
235 cmd
[4] = addr
>> (flash
->addr_width
* 8 - 32);
238 static int m25p_cmdsz(struct m25p
*flash
)
240 return 1 + flash
->addr_width
;
244 * Erase one sector of flash memory at offset ``offset'' which is any
245 * address within the sector which should be erased.
247 * Returns 0 if successful, non-zero otherwise.
249 static int erase_sector(struct m25p
*flash
, u32 offset
)
251 pr_debug("%s: %s %dKiB at 0x%08x\n", dev_name(&flash
->spi
->dev
),
252 __func__
, flash
->mtd
.erasesize
/ 1024, offset
);
254 /* Wait until finished previous write command. */
255 if (wait_till_ready(flash
))
258 /* Send write enable, then erase commands. */
261 /* Set up command buffer. */
262 flash
->command
[0] = flash
->erase_opcode
;
263 m25p_addr2cmd(flash
, offset
, flash
->command
);
265 spi_write(flash
->spi
, flash
->command
, m25p_cmdsz(flash
));
270 /****************************************************************************/
277 * Erase an address range on the flash chip. The address range may extend
278 * one or more erase sectors. Return an error is there is a problem erasing.
280 static int m25p80_erase(struct mtd_info
*mtd
, struct erase_info
*instr
)
282 struct m25p
*flash
= mtd_to_m25p(mtd
);
286 pr_debug("%s: %s at 0x%llx, len %lld\n", dev_name(&flash
->spi
->dev
),
287 __func__
, (long long)instr
->addr
,
288 (long long)instr
->len
);
291 if (instr
->addr
+ instr
->len
> flash
->mtd
.size
)
293 div_u64_rem(instr
->len
, mtd
->erasesize
, &rem
);
300 mutex_lock(&flash
->lock
);
302 /* whole-chip erase? */
303 if (len
== flash
->mtd
.size
) {
304 if (erase_chip(flash
)) {
305 instr
->state
= MTD_ERASE_FAILED
;
306 mutex_unlock(&flash
->lock
);
310 /* REVISIT in some cases we could speed up erasing large regions
311 * by using OPCODE_SE instead of OPCODE_BE_4K. We may have set up
312 * to use "small sector erase", but that's not always optimal.
315 /* "sector"-at-a-time erase */
318 if (erase_sector(flash
, addr
)) {
319 instr
->state
= MTD_ERASE_FAILED
;
320 mutex_unlock(&flash
->lock
);
324 addr
+= mtd
->erasesize
;
325 len
-= mtd
->erasesize
;
329 mutex_unlock(&flash
->lock
);
331 instr
->state
= MTD_ERASE_DONE
;
332 mtd_erase_callback(instr
);
338 * Read an address range from the flash chip. The address range
339 * may be any size provided it is within the physical boundaries.
341 static int m25p80_read(struct mtd_info
*mtd
, loff_t from
, size_t len
,
342 size_t *retlen
, u_char
*buf
)
344 struct m25p
*flash
= mtd_to_m25p(mtd
);
345 struct spi_transfer t
[2];
346 struct spi_message m
;
348 pr_debug("%s: %s from 0x%08x, len %zd\n", dev_name(&flash
->spi
->dev
),
349 __func__
, (u32
)from
, len
);
355 if (from
+ len
> flash
->mtd
.size
)
358 spi_message_init(&m
);
359 memset(t
, 0, (sizeof t
));
362 * OPCODE_FAST_READ (if available) is faster.
363 * Should add 1 byte DUMMY_BYTE.
365 t
[0].tx_buf
= flash
->command
;
366 t
[0].len
= m25p_cmdsz(flash
) + FAST_READ_DUMMY_BYTE
;
367 spi_message_add_tail(&t
[0], &m
);
371 spi_message_add_tail(&t
[1], &m
);
373 /* Byte count starts at zero. */
376 mutex_lock(&flash
->lock
);
378 /* Wait till previous write/erase is done. */
379 if (wait_till_ready(flash
)) {
380 /* REVISIT status return?? */
381 mutex_unlock(&flash
->lock
);
385 /* FIXME switch to OPCODE_FAST_READ. It's required for higher
386 * clocks; and at this writing, every chip this driver handles
387 * supports that opcode.
390 /* Set up the write data buffer. */
391 flash
->command
[0] = OPCODE_READ
;
392 m25p_addr2cmd(flash
, from
, flash
->command
);
394 spi_sync(flash
->spi
, &m
);
396 *retlen
= m
.actual_length
- m25p_cmdsz(flash
) - FAST_READ_DUMMY_BYTE
;
398 mutex_unlock(&flash
->lock
);
404 * Write an address range to the flash chip. Data must be written in
405 * FLASH_PAGESIZE chunks. The address range may be any size provided
406 * it is within the physical boundaries.
408 static int m25p80_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
409 size_t *retlen
, const u_char
*buf
)
411 struct m25p
*flash
= mtd_to_m25p(mtd
);
412 u32 page_offset
, page_size
;
413 struct spi_transfer t
[2];
414 struct spi_message m
;
416 pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash
->spi
->dev
),
417 __func__
, (u32
)to
, len
);
425 if (to
+ len
> flash
->mtd
.size
)
428 spi_message_init(&m
);
429 memset(t
, 0, (sizeof t
));
431 t
[0].tx_buf
= flash
->command
;
432 t
[0].len
= m25p_cmdsz(flash
);
433 spi_message_add_tail(&t
[0], &m
);
436 spi_message_add_tail(&t
[1], &m
);
438 mutex_lock(&flash
->lock
);
440 /* Wait until finished previous write command. */
441 if (wait_till_ready(flash
)) {
442 mutex_unlock(&flash
->lock
);
448 /* Set up the opcode in the write buffer. */
449 flash
->command
[0] = OPCODE_PP
;
450 m25p_addr2cmd(flash
, to
, flash
->command
);
452 page_offset
= to
& (flash
->page_size
- 1);
454 /* do all the bytes fit onto one page? */
455 if (page_offset
+ len
<= flash
->page_size
) {
458 spi_sync(flash
->spi
, &m
);
460 *retlen
= m
.actual_length
- m25p_cmdsz(flash
);
464 /* the size of data remaining on the first page */
465 page_size
= flash
->page_size
- page_offset
;
467 t
[1].len
= page_size
;
468 spi_sync(flash
->spi
, &m
);
470 *retlen
= m
.actual_length
- m25p_cmdsz(flash
);
472 /* write everything in flash->page_size chunks */
473 for (i
= page_size
; i
< len
; i
+= page_size
) {
475 if (page_size
> flash
->page_size
)
476 page_size
= flash
->page_size
;
478 /* write the next page to flash */
479 m25p_addr2cmd(flash
, to
+ i
, flash
->command
);
481 t
[1].tx_buf
= buf
+ i
;
482 t
[1].len
= page_size
;
484 wait_till_ready(flash
);
488 spi_sync(flash
->spi
, &m
);
490 *retlen
+= m
.actual_length
- m25p_cmdsz(flash
);
494 mutex_unlock(&flash
->lock
);
499 static int sst_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
500 size_t *retlen
, const u_char
*buf
)
502 struct m25p
*flash
= mtd_to_m25p(mtd
);
503 struct spi_transfer t
[2];
504 struct spi_message m
;
508 pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash
->spi
->dev
),
509 __func__
, (u32
)to
, len
);
517 if (to
+ len
> flash
->mtd
.size
)
520 spi_message_init(&m
);
521 memset(t
, 0, (sizeof t
));
523 t
[0].tx_buf
= flash
->command
;
524 t
[0].len
= m25p_cmdsz(flash
);
525 spi_message_add_tail(&t
[0], &m
);
528 spi_message_add_tail(&t
[1], &m
);
530 mutex_lock(&flash
->lock
);
532 /* Wait until finished previous write command. */
533 ret
= wait_till_ready(flash
);
540 /* Start write from odd address. */
542 flash
->command
[0] = OPCODE_BP
;
543 m25p_addr2cmd(flash
, to
, flash
->command
);
545 /* write one byte. */
547 spi_sync(flash
->spi
, &m
);
548 ret
= wait_till_ready(flash
);
551 *retlen
+= m
.actual_length
- m25p_cmdsz(flash
);
555 flash
->command
[0] = OPCODE_AAI_WP
;
556 m25p_addr2cmd(flash
, to
, flash
->command
);
558 /* Write out most of the data here. */
559 cmd_sz
= m25p_cmdsz(flash
);
560 for (; actual
< len
- 1; actual
+= 2) {
562 /* write two bytes. */
564 t
[1].tx_buf
= buf
+ actual
;
566 spi_sync(flash
->spi
, &m
);
567 ret
= wait_till_ready(flash
);
570 *retlen
+= m
.actual_length
- cmd_sz
;
574 write_disable(flash
);
575 ret
= wait_till_ready(flash
);
579 /* Write out trailing byte if it exists. */
582 flash
->command
[0] = OPCODE_BP
;
583 m25p_addr2cmd(flash
, to
, flash
->command
);
584 t
[0].len
= m25p_cmdsz(flash
);
586 t
[1].tx_buf
= buf
+ actual
;
588 spi_sync(flash
->spi
, &m
);
589 ret
= wait_till_ready(flash
);
592 *retlen
+= m
.actual_length
- m25p_cmdsz(flash
);
593 write_disable(flash
);
597 mutex_unlock(&flash
->lock
);
601 /****************************************************************************/
604 * SPI device driver setup and teardown
608 /* JEDEC id zero means "no ID" (most older chips); otherwise it has
609 * a high byte of zero plus three data bytes: the manufacturer id,
610 * then a two byte device id.
615 /* The size listed here is what works with OPCODE_SE, which isn't
616 * necessarily called a "sector" by the vendor.
618 unsigned sector_size
;
625 #define SECT_4K 0x01 /* OPCODE_BE_4K works uniformly */
626 #define M25P_NO_ERASE 0x02 /* No erase command needed */
629 #define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
630 ((kernel_ulong_t)&(struct flash_info) { \
631 .jedec_id = (_jedec_id), \
632 .ext_id = (_ext_id), \
633 .sector_size = (_sector_size), \
634 .n_sectors = (_n_sectors), \
639 #define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width) \
640 ((kernel_ulong_t)&(struct flash_info) { \
641 .sector_size = (_sector_size), \
642 .n_sectors = (_n_sectors), \
643 .page_size = (_page_size), \
644 .addr_width = (_addr_width), \
645 .flags = M25P_NO_ERASE, \
648 /* NOTE: double check command sets and memory organization when you add
649 * more flash chips. This current list focusses on newer chips, which
650 * have been converging on command sets which including JEDEC ID.
652 static const struct spi_device_id m25p_ids
[] = {
653 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
654 { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K
) },
655 { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K
) },
657 { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K
) },
658 { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K
) },
660 { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K
) },
661 { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K
) },
662 { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K
) },
663 { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K
) },
666 { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K
) },
667 { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
668 { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
670 /* Intel/Numonyx -- xxxs33b */
671 { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
672 { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
673 { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
676 { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K
) },
677 { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
678 { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K
) },
679 { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) },
680 { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) },
681 { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
682 { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
683 { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
684 { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
686 /* Spansion -- single (large) sector size only, at least
687 * for the chips listed here (without boot sectors).
689 { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
690 { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
691 { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
692 { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
693 { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SECT_4K
) },
694 { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
695 { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
696 { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, 0) },
697 { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, 0) },
698 { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
699 { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
700 { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
701 { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) },
702 { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) },
703 { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K
) },
704 { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K
) },
706 /* SST -- large erase sizes are "overlays", "sectors" are 4K */
707 { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K
) },
708 { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K
) },
709 { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K
) },
710 { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K
) },
711 { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K
) },
712 { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K
) },
713 { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K
) },
714 { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K
) },
716 /* ST Microelectronics -- newer production may have feature updates */
717 { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
718 { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
719 { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
720 { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
721 { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
722 { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
723 { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
724 { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
725 { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
727 { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
728 { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
729 { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
730 { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
731 { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
732 { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
733 { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
734 { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
735 { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
737 { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
738 { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
739 { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
741 { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
742 { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K
) },
744 { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K
) },
745 { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K
) },
746 { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K
) },
747 { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
749 /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
750 { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K
) },
751 { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K
) },
752 { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K
) },
753 { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K
) },
754 { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K
) },
755 { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K
) },
756 { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K
) },
757 { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K
) },
758 { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K
) },
760 /* Catalyst / On Semiconductor -- non-JEDEC */
761 { "cat25c11", CAT25_INFO( 16, 8, 16, 1) },
762 { "cat25c03", CAT25_INFO( 32, 8, 16, 2) },
763 { "cat25c09", CAT25_INFO( 128, 8, 32, 2) },
764 { "cat25c17", CAT25_INFO( 256, 8, 32, 2) },
765 { "cat25128", CAT25_INFO(2048, 8, 64, 2) },
768 MODULE_DEVICE_TABLE(spi
, m25p_ids
);
770 static const struct spi_device_id
*__devinit
jedec_probe(struct spi_device
*spi
)
773 u8 code
= OPCODE_RDID
;
777 struct flash_info
*info
;
779 /* JEDEC also defines an optional "extended device information"
780 * string for after vendor-specific data, after the three bytes
781 * we use here. Supporting some chips might require using it.
783 tmp
= spi_write_then_read(spi
, &code
, 1, id
, 5);
785 pr_debug("%s: error %d reading JEDEC ID\n",
786 dev_name(&spi
->dev
), tmp
);
795 ext_jedec
= id
[3] << 8 | id
[4];
797 for (tmp
= 0; tmp
< ARRAY_SIZE(m25p_ids
) - 1; tmp
++) {
798 info
= (void *)m25p_ids
[tmp
].driver_data
;
799 if (info
->jedec_id
== jedec
) {
800 if (info
->ext_id
!= 0 && info
->ext_id
!= ext_jedec
)
802 return &m25p_ids
[tmp
];
805 dev_err(&spi
->dev
, "unrecognized JEDEC id %06x\n", jedec
);
806 return ERR_PTR(-ENODEV
);
811 * board specific setup should have ensured the SPI clock used here
812 * matches what the READ command supports, at least until this driver
813 * understands FAST_READ (for clocks over 25 MHz).
815 static int __devinit
m25p_probe(struct spi_device
*spi
)
817 const struct spi_device_id
*id
= spi_get_device_id(spi
);
818 struct flash_platform_data
*data
;
820 struct flash_info
*info
;
822 struct mtd_part_parser_data ppdata
;
824 /* Platform data helps sort out which chip type we have, as
825 * well as how this board partitions it. If we don't have
826 * a chip ID, try the JEDEC id commands; they'll work for most
827 * newer chips, even if we don't recognize the particular chip.
829 data
= spi
->dev
.platform_data
;
830 if (data
&& data
->type
) {
831 const struct spi_device_id
*plat_id
;
833 for (i
= 0; i
< ARRAY_SIZE(m25p_ids
) - 1; i
++) {
834 plat_id
= &m25p_ids
[i
];
835 if (strcmp(data
->type
, plat_id
->name
))
840 if (i
< ARRAY_SIZE(m25p_ids
) - 1)
843 dev_warn(&spi
->dev
, "unrecognized id %s\n", data
->type
);
846 info
= (void *)id
->driver_data
;
848 if (info
->jedec_id
) {
849 const struct spi_device_id
*jid
;
851 jid
= jedec_probe(spi
);
854 } else if (jid
!= id
) {
856 * JEDEC knows better, so overwrite platform ID. We
857 * can't trust partitions any longer, but we'll let
858 * mtd apply them anyway, since some partitions may be
859 * marked read-only, and we don't want to lose that
860 * information, even if it's not 100% accurate.
862 dev_warn(&spi
->dev
, "found %s, expected %s\n",
863 jid
->name
, id
->name
);
865 info
= (void *)jid
->driver_data
;
869 flash
= kzalloc(sizeof *flash
, GFP_KERNEL
);
872 flash
->command
= kmalloc(MAX_CMD_SIZE
+ FAST_READ_DUMMY_BYTE
, GFP_KERNEL
);
873 if (!flash
->command
) {
879 mutex_init(&flash
->lock
);
880 dev_set_drvdata(&spi
->dev
, flash
);
883 * Atmel, SST and Intel/Numonyx serial flash tend to power
884 * up with the software protection bits set
887 if (JEDEC_MFR(info
->jedec_id
) == CFI_MFR_ATMEL
||
888 JEDEC_MFR(info
->jedec_id
) == CFI_MFR_INTEL
||
889 JEDEC_MFR(info
->jedec_id
) == CFI_MFR_SST
) {
894 if (data
&& data
->name
)
895 flash
->mtd
.name
= data
->name
;
897 flash
->mtd
.name
= dev_name(&spi
->dev
);
899 flash
->mtd
.type
= MTD_NORFLASH
;
900 flash
->mtd
.writesize
= 1;
901 flash
->mtd
.flags
= MTD_CAP_NORFLASH
;
902 flash
->mtd
.size
= info
->sector_size
* info
->n_sectors
;
903 flash
->mtd
.erase
= m25p80_erase
;
904 flash
->mtd
.read
= m25p80_read
;
906 /* sst flash chips use AAI word program */
907 if (JEDEC_MFR(info
->jedec_id
) == CFI_MFR_SST
)
908 flash
->mtd
.write
= sst_write
;
910 flash
->mtd
.write
= m25p80_write
;
912 /* prefer "small sector" erase if possible */
913 if (info
->flags
& SECT_4K
) {
914 flash
->erase_opcode
= OPCODE_BE_4K
;
915 flash
->mtd
.erasesize
= 4096;
917 flash
->erase_opcode
= OPCODE_SE
;
918 flash
->mtd
.erasesize
= info
->sector_size
;
921 if (info
->flags
& M25P_NO_ERASE
)
922 flash
->mtd
.flags
|= MTD_NO_ERASE
;
924 ppdata
.of_node
= spi
->dev
.of_node
;
925 flash
->mtd
.dev
.parent
= &spi
->dev
;
926 flash
->page_size
= info
->page_size
;
928 if (info
->addr_width
)
929 flash
->addr_width
= info
->addr_width
;
931 /* enable 4-byte addressing if the device exceeds 16MiB */
932 if (flash
->mtd
.size
> 0x1000000) {
933 flash
->addr_width
= 4;
934 set_4byte(flash
, info
->jedec_id
, 1);
936 flash
->addr_width
= 3;
939 dev_info(&spi
->dev
, "%s (%lld Kbytes)\n", id
->name
,
940 (long long)flash
->mtd
.size
>> 10);
942 pr_debug("mtd .name = %s, .size = 0x%llx (%lldMiB) "
943 ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
945 (long long)flash
->mtd
.size
, (long long)(flash
->mtd
.size
>> 20),
946 flash
->mtd
.erasesize
, flash
->mtd
.erasesize
/ 1024,
947 flash
->mtd
.numeraseregions
);
949 if (flash
->mtd
.numeraseregions
)
950 for (i
= 0; i
< flash
->mtd
.numeraseregions
; i
++)
951 pr_debug("mtd.eraseregions[%d] = { .offset = 0x%llx, "
952 ".erasesize = 0x%.8x (%uKiB), "
953 ".numblocks = %d }\n",
954 i
, (long long)flash
->mtd
.eraseregions
[i
].offset
,
955 flash
->mtd
.eraseregions
[i
].erasesize
,
956 flash
->mtd
.eraseregions
[i
].erasesize
/ 1024,
957 flash
->mtd
.eraseregions
[i
].numblocks
);
960 /* partitions should match sector boundaries; and it may be good to
961 * use readonly partitions for writeprotected sectors (BP2..BP0).
963 return mtd_device_parse_register(&flash
->mtd
, NULL
, &ppdata
,
964 data
? data
->parts
: NULL
,
965 data
? data
->nr_parts
: 0);
969 static int __devexit
m25p_remove(struct spi_device
*spi
)
971 struct m25p
*flash
= dev_get_drvdata(&spi
->dev
);
974 /* Clean up MTD stuff. */
975 status
= mtd_device_unregister(&flash
->mtd
);
977 kfree(flash
->command
);
984 static struct spi_driver m25p80_driver
= {
987 .bus
= &spi_bus_type
,
988 .owner
= THIS_MODULE
,
990 .id_table
= m25p_ids
,
992 .remove
= __devexit_p(m25p_remove
),
994 /* REVISIT: many of these chips have deep power-down modes, which
995 * should clearly be entered on suspend() to minimize power use.
996 * And also when they're otherwise idle...
1001 static int __init
m25p80_init(void)
1003 return spi_register_driver(&m25p80_driver
);
1007 static void __exit
m25p80_exit(void)
1009 spi_unregister_driver(&m25p80_driver
);
1013 module_init(m25p80_init
);
1014 module_exit(m25p80_exit
);
1016 MODULE_LICENSE("GPL");
1017 MODULE_AUTHOR("Mike Lavender");
1018 MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");