2 * linux/fs/ext3/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
25 #include <linux/module.h>
27 #include <linux/time.h>
28 #include <linux/ext3_jbd.h>
29 #include <linux/jbd.h>
30 #include <linux/highuid.h>
31 #include <linux/pagemap.h>
32 #include <linux/quotaops.h>
33 #include <linux/string.h>
34 #include <linux/buffer_head.h>
35 #include <linux/writeback.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include <linux/fiemap.h>
40 #include <linux/namei.h>
41 #include <trace/events/ext3.h>
45 static int ext3_writepage_trans_blocks(struct inode
*inode
);
46 static int ext3_block_truncate_page(struct inode
*inode
, loff_t from
);
49 * Test whether an inode is a fast symlink.
51 static int ext3_inode_is_fast_symlink(struct inode
*inode
)
53 int ea_blocks
= EXT3_I(inode
)->i_file_acl
?
54 (inode
->i_sb
->s_blocksize
>> 9) : 0;
56 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
60 * The ext3 forget function must perform a revoke if we are freeing data
61 * which has been journaled. Metadata (eg. indirect blocks) must be
62 * revoked in all cases.
64 * "bh" may be NULL: a metadata block may have been freed from memory
65 * but there may still be a record of it in the journal, and that record
66 * still needs to be revoked.
68 int ext3_forget(handle_t
*handle
, int is_metadata
, struct inode
*inode
,
69 struct buffer_head
*bh
, ext3_fsblk_t blocknr
)
75 trace_ext3_forget(inode
, is_metadata
, blocknr
);
76 BUFFER_TRACE(bh
, "enter");
78 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
80 bh
, is_metadata
, inode
->i_mode
,
81 test_opt(inode
->i_sb
, DATA_FLAGS
));
83 /* Never use the revoke function if we are doing full data
84 * journaling: there is no need to, and a V1 superblock won't
85 * support it. Otherwise, only skip the revoke on un-journaled
88 if (test_opt(inode
->i_sb
, DATA_FLAGS
) == EXT3_MOUNT_JOURNAL_DATA
||
89 (!is_metadata
&& !ext3_should_journal_data(inode
))) {
91 BUFFER_TRACE(bh
, "call journal_forget");
92 return ext3_journal_forget(handle
, bh
);
98 * data!=journal && (is_metadata || should_journal_data(inode))
100 BUFFER_TRACE(bh
, "call ext3_journal_revoke");
101 err
= ext3_journal_revoke(handle
, blocknr
, bh
);
103 ext3_abort(inode
->i_sb
, __func__
,
104 "error %d when attempting revoke", err
);
105 BUFFER_TRACE(bh
, "exit");
110 * Work out how many blocks we need to proceed with the next chunk of a
111 * truncate transaction.
113 static unsigned long blocks_for_truncate(struct inode
*inode
)
115 unsigned long needed
;
117 needed
= inode
->i_blocks
>> (inode
->i_sb
->s_blocksize_bits
- 9);
119 /* Give ourselves just enough room to cope with inodes in which
120 * i_blocks is corrupt: we've seen disk corruptions in the past
121 * which resulted in random data in an inode which looked enough
122 * like a regular file for ext3 to try to delete it. Things
123 * will go a bit crazy if that happens, but at least we should
124 * try not to panic the whole kernel. */
128 /* But we need to bound the transaction so we don't overflow the
130 if (needed
> EXT3_MAX_TRANS_DATA
)
131 needed
= EXT3_MAX_TRANS_DATA
;
133 return EXT3_DATA_TRANS_BLOCKS(inode
->i_sb
) + needed
;
137 * Truncate transactions can be complex and absolutely huge. So we need to
138 * be able to restart the transaction at a conventient checkpoint to make
139 * sure we don't overflow the journal.
141 * start_transaction gets us a new handle for a truncate transaction,
142 * and extend_transaction tries to extend the existing one a bit. If
143 * extend fails, we need to propagate the failure up and restart the
144 * transaction in the top-level truncate loop. --sct
146 static handle_t
*start_transaction(struct inode
*inode
)
150 result
= ext3_journal_start(inode
, blocks_for_truncate(inode
));
154 ext3_std_error(inode
->i_sb
, PTR_ERR(result
));
159 * Try to extend this transaction for the purposes of truncation.
161 * Returns 0 if we managed to create more room. If we can't create more
162 * room, and the transaction must be restarted we return 1.
164 static int try_to_extend_transaction(handle_t
*handle
, struct inode
*inode
)
166 if (handle
->h_buffer_credits
> EXT3_RESERVE_TRANS_BLOCKS
)
168 if (!ext3_journal_extend(handle
, blocks_for_truncate(inode
)))
174 * Restart the transaction associated with *handle. This does a commit,
175 * so before we call here everything must be consistently dirtied against
178 static int truncate_restart_transaction(handle_t
*handle
, struct inode
*inode
)
182 jbd_debug(2, "restarting handle %p\n", handle
);
184 * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
185 * At this moment, get_block can be called only for blocks inside
186 * i_size since page cache has been already dropped and writes are
187 * blocked by i_mutex. So we can safely drop the truncate_mutex.
189 mutex_unlock(&EXT3_I(inode
)->truncate_mutex
);
190 ret
= ext3_journal_restart(handle
, blocks_for_truncate(inode
));
191 mutex_lock(&EXT3_I(inode
)->truncate_mutex
);
196 * Called at inode eviction from icache
198 void ext3_evict_inode (struct inode
*inode
)
200 struct ext3_inode_info
*ei
= EXT3_I(inode
);
201 struct ext3_block_alloc_info
*rsv
;
205 trace_ext3_evict_inode(inode
);
206 if (!inode
->i_nlink
&& !is_bad_inode(inode
)) {
207 dquot_initialize(inode
);
212 * When journalling data dirty buffers are tracked only in the journal.
213 * So although mm thinks everything is clean and ready for reaping the
214 * inode might still have some pages to write in the running
215 * transaction or waiting to be checkpointed. Thus calling
216 * journal_invalidatepage() (via truncate_inode_pages()) to discard
217 * these buffers can cause data loss. Also even if we did not discard
218 * these buffers, we would have no way to find them after the inode
219 * is reaped and thus user could see stale data if he tries to read
220 * them before the transaction is checkpointed. So be careful and
221 * force everything to disk here... We use ei->i_datasync_tid to
222 * store the newest transaction containing inode's data.
224 * Note that directories do not have this problem because they don't
227 if (inode
->i_nlink
&& ext3_should_journal_data(inode
) &&
228 (S_ISLNK(inode
->i_mode
) || S_ISREG(inode
->i_mode
))) {
229 tid_t commit_tid
= atomic_read(&ei
->i_datasync_tid
);
230 journal_t
*journal
= EXT3_SB(inode
->i_sb
)->s_journal
;
232 log_start_commit(journal
, commit_tid
);
233 log_wait_commit(journal
, commit_tid
);
234 filemap_write_and_wait(&inode
->i_data
);
236 truncate_inode_pages(&inode
->i_data
, 0);
238 ext3_discard_reservation(inode
);
239 rsv
= ei
->i_block_alloc_info
;
240 ei
->i_block_alloc_info
= NULL
;
247 handle
= start_transaction(inode
);
248 if (IS_ERR(handle
)) {
250 * If we're going to skip the normal cleanup, we still need to
251 * make sure that the in-core orphan linked list is properly
254 ext3_orphan_del(NULL
, inode
);
262 ext3_truncate(inode
);
264 * Kill off the orphan record created when the inode lost the last
265 * link. Note that ext3_orphan_del() has to be able to cope with the
266 * deletion of a non-existent orphan - ext3_truncate() could
267 * have removed the record.
269 ext3_orphan_del(handle
, inode
);
270 ei
->i_dtime
= get_seconds();
273 * One subtle ordering requirement: if anything has gone wrong
274 * (transaction abort, IO errors, whatever), then we can still
275 * do these next steps (the fs will already have been marked as
276 * having errors), but we can't free the inode if the mark_dirty
279 if (ext3_mark_inode_dirty(handle
, inode
)) {
280 /* If that failed, just dquot_drop() and be done with that */
282 end_writeback(inode
);
284 ext3_xattr_delete_inode(handle
, inode
);
285 dquot_free_inode(inode
);
287 end_writeback(inode
);
288 ext3_free_inode(handle
, inode
);
290 ext3_journal_stop(handle
);
293 end_writeback(inode
);
300 struct buffer_head
*bh
;
303 static inline void add_chain(Indirect
*p
, struct buffer_head
*bh
, __le32
*v
)
305 p
->key
= *(p
->p
= v
);
309 static int verify_chain(Indirect
*from
, Indirect
*to
)
311 while (from
<= to
&& from
->key
== *from
->p
)
317 * ext3_block_to_path - parse the block number into array of offsets
318 * @inode: inode in question (we are only interested in its superblock)
319 * @i_block: block number to be parsed
320 * @offsets: array to store the offsets in
321 * @boundary: set this non-zero if the referred-to block is likely to be
322 * followed (on disk) by an indirect block.
324 * To store the locations of file's data ext3 uses a data structure common
325 * for UNIX filesystems - tree of pointers anchored in the inode, with
326 * data blocks at leaves and indirect blocks in intermediate nodes.
327 * This function translates the block number into path in that tree -
328 * return value is the path length and @offsets[n] is the offset of
329 * pointer to (n+1)th node in the nth one. If @block is out of range
330 * (negative or too large) warning is printed and zero returned.
332 * Note: function doesn't find node addresses, so no IO is needed. All
333 * we need to know is the capacity of indirect blocks (taken from the
338 * Portability note: the last comparison (check that we fit into triple
339 * indirect block) is spelled differently, because otherwise on an
340 * architecture with 32-bit longs and 8Kb pages we might get into trouble
341 * if our filesystem had 8Kb blocks. We might use long long, but that would
342 * kill us on x86. Oh, well, at least the sign propagation does not matter -
343 * i_block would have to be negative in the very beginning, so we would not
347 static int ext3_block_to_path(struct inode
*inode
,
348 long i_block
, int offsets
[4], int *boundary
)
350 int ptrs
= EXT3_ADDR_PER_BLOCK(inode
->i_sb
);
351 int ptrs_bits
= EXT3_ADDR_PER_BLOCK_BITS(inode
->i_sb
);
352 const long direct_blocks
= EXT3_NDIR_BLOCKS
,
353 indirect_blocks
= ptrs
,
354 double_blocks
= (1 << (ptrs_bits
* 2));
359 ext3_warning (inode
->i_sb
, "ext3_block_to_path", "block < 0");
360 } else if (i_block
< direct_blocks
) {
361 offsets
[n
++] = i_block
;
362 final
= direct_blocks
;
363 } else if ( (i_block
-= direct_blocks
) < indirect_blocks
) {
364 offsets
[n
++] = EXT3_IND_BLOCK
;
365 offsets
[n
++] = i_block
;
367 } else if ((i_block
-= indirect_blocks
) < double_blocks
) {
368 offsets
[n
++] = EXT3_DIND_BLOCK
;
369 offsets
[n
++] = i_block
>> ptrs_bits
;
370 offsets
[n
++] = i_block
& (ptrs
- 1);
372 } else if (((i_block
-= double_blocks
) >> (ptrs_bits
* 2)) < ptrs
) {
373 offsets
[n
++] = EXT3_TIND_BLOCK
;
374 offsets
[n
++] = i_block
>> (ptrs_bits
* 2);
375 offsets
[n
++] = (i_block
>> ptrs_bits
) & (ptrs
- 1);
376 offsets
[n
++] = i_block
& (ptrs
- 1);
379 ext3_warning(inode
->i_sb
, "ext3_block_to_path", "block > big");
382 *boundary
= final
- 1 - (i_block
& (ptrs
- 1));
387 * ext3_get_branch - read the chain of indirect blocks leading to data
388 * @inode: inode in question
389 * @depth: depth of the chain (1 - direct pointer, etc.)
390 * @offsets: offsets of pointers in inode/indirect blocks
391 * @chain: place to store the result
392 * @err: here we store the error value
394 * Function fills the array of triples <key, p, bh> and returns %NULL
395 * if everything went OK or the pointer to the last filled triple
396 * (incomplete one) otherwise. Upon the return chain[i].key contains
397 * the number of (i+1)-th block in the chain (as it is stored in memory,
398 * i.e. little-endian 32-bit), chain[i].p contains the address of that
399 * number (it points into struct inode for i==0 and into the bh->b_data
400 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
401 * block for i>0 and NULL for i==0. In other words, it holds the block
402 * numbers of the chain, addresses they were taken from (and where we can
403 * verify that chain did not change) and buffer_heads hosting these
406 * Function stops when it stumbles upon zero pointer (absent block)
407 * (pointer to last triple returned, *@err == 0)
408 * or when it gets an IO error reading an indirect block
409 * (ditto, *@err == -EIO)
410 * or when it notices that chain had been changed while it was reading
411 * (ditto, *@err == -EAGAIN)
412 * or when it reads all @depth-1 indirect blocks successfully and finds
413 * the whole chain, all way to the data (returns %NULL, *err == 0).
415 static Indirect
*ext3_get_branch(struct inode
*inode
, int depth
, int *offsets
,
416 Indirect chain
[4], int *err
)
418 struct super_block
*sb
= inode
->i_sb
;
420 struct buffer_head
*bh
;
423 /* i_data is not going away, no lock needed */
424 add_chain (chain
, NULL
, EXT3_I(inode
)->i_data
+ *offsets
);
428 bh
= sb_bread(sb
, le32_to_cpu(p
->key
));
431 /* Reader: pointers */
432 if (!verify_chain(chain
, p
))
434 add_chain(++p
, bh
, (__le32
*)bh
->b_data
+ *++offsets
);
452 * ext3_find_near - find a place for allocation with sufficient locality
454 * @ind: descriptor of indirect block.
456 * This function returns the preferred place for block allocation.
457 * It is used when heuristic for sequential allocation fails.
459 * + if there is a block to the left of our position - allocate near it.
460 * + if pointer will live in indirect block - allocate near that block.
461 * + if pointer will live in inode - allocate in the same
464 * In the latter case we colour the starting block by the callers PID to
465 * prevent it from clashing with concurrent allocations for a different inode
466 * in the same block group. The PID is used here so that functionally related
467 * files will be close-by on-disk.
469 * Caller must make sure that @ind is valid and will stay that way.
471 static ext3_fsblk_t
ext3_find_near(struct inode
*inode
, Indirect
*ind
)
473 struct ext3_inode_info
*ei
= EXT3_I(inode
);
474 __le32
*start
= ind
->bh
? (__le32
*) ind
->bh
->b_data
: ei
->i_data
;
476 ext3_fsblk_t bg_start
;
477 ext3_grpblk_t colour
;
479 /* Try to find previous block */
480 for (p
= ind
->p
- 1; p
>= start
; p
--) {
482 return le32_to_cpu(*p
);
485 /* No such thing, so let's try location of indirect block */
487 return ind
->bh
->b_blocknr
;
490 * It is going to be referred to from the inode itself? OK, just put it
491 * into the same cylinder group then.
493 bg_start
= ext3_group_first_block_no(inode
->i_sb
, ei
->i_block_group
);
494 colour
= (current
->pid
% 16) *
495 (EXT3_BLOCKS_PER_GROUP(inode
->i_sb
) / 16);
496 return bg_start
+ colour
;
500 * ext3_find_goal - find a preferred place for allocation.
502 * @block: block we want
503 * @partial: pointer to the last triple within a chain
505 * Normally this function find the preferred place for block allocation,
509 static ext3_fsblk_t
ext3_find_goal(struct inode
*inode
, long block
,
512 struct ext3_block_alloc_info
*block_i
;
514 block_i
= EXT3_I(inode
)->i_block_alloc_info
;
517 * try the heuristic for sequential allocation,
518 * failing that at least try to get decent locality.
520 if (block_i
&& (block
== block_i
->last_alloc_logical_block
+ 1)
521 && (block_i
->last_alloc_physical_block
!= 0)) {
522 return block_i
->last_alloc_physical_block
+ 1;
525 return ext3_find_near(inode
, partial
);
529 * ext3_blks_to_allocate - Look up the block map and count the number
530 * of direct blocks need to be allocated for the given branch.
532 * @branch: chain of indirect blocks
533 * @k: number of blocks need for indirect blocks
534 * @blks: number of data blocks to be mapped.
535 * @blocks_to_boundary: the offset in the indirect block
537 * return the total number of blocks to be allocate, including the
538 * direct and indirect blocks.
540 static int ext3_blks_to_allocate(Indirect
*branch
, int k
, unsigned long blks
,
541 int blocks_to_boundary
)
543 unsigned long count
= 0;
546 * Simple case, [t,d]Indirect block(s) has not allocated yet
547 * then it's clear blocks on that path have not allocated
550 /* right now we don't handle cross boundary allocation */
551 if (blks
< blocks_to_boundary
+ 1)
554 count
+= blocks_to_boundary
+ 1;
559 while (count
< blks
&& count
<= blocks_to_boundary
&&
560 le32_to_cpu(*(branch
[0].p
+ count
)) == 0) {
567 * ext3_alloc_blocks - multiple allocate blocks needed for a branch
568 * @handle: handle for this transaction
570 * @goal: preferred place for allocation
571 * @indirect_blks: the number of blocks need to allocate for indirect
573 * @blks: number of blocks need to allocated for direct blocks
574 * @new_blocks: on return it will store the new block numbers for
575 * the indirect blocks(if needed) and the first direct block,
576 * @err: here we store the error value
578 * return the number of direct blocks allocated
580 static int ext3_alloc_blocks(handle_t
*handle
, struct inode
*inode
,
581 ext3_fsblk_t goal
, int indirect_blks
, int blks
,
582 ext3_fsblk_t new_blocks
[4], int *err
)
585 unsigned long count
= 0;
587 ext3_fsblk_t current_block
= 0;
591 * Here we try to allocate the requested multiple blocks at once,
592 * on a best-effort basis.
593 * To build a branch, we should allocate blocks for
594 * the indirect blocks(if not allocated yet), and at least
595 * the first direct block of this branch. That's the
596 * minimum number of blocks need to allocate(required)
598 target
= blks
+ indirect_blks
;
602 /* allocating blocks for indirect blocks and direct blocks */
603 current_block
= ext3_new_blocks(handle
,inode
,goal
,&count
,err
);
608 /* allocate blocks for indirect blocks */
609 while (index
< indirect_blks
&& count
) {
610 new_blocks
[index
++] = current_block
++;
618 /* save the new block number for the first direct block */
619 new_blocks
[index
] = current_block
;
621 /* total number of blocks allocated for direct blocks */
626 for (i
= 0; i
<index
; i
++)
627 ext3_free_blocks(handle
, inode
, new_blocks
[i
], 1);
632 * ext3_alloc_branch - allocate and set up a chain of blocks.
633 * @handle: handle for this transaction
635 * @indirect_blks: number of allocated indirect blocks
636 * @blks: number of allocated direct blocks
637 * @goal: preferred place for allocation
638 * @offsets: offsets (in the blocks) to store the pointers to next.
639 * @branch: place to store the chain in.
641 * This function allocates blocks, zeroes out all but the last one,
642 * links them into chain and (if we are synchronous) writes them to disk.
643 * In other words, it prepares a branch that can be spliced onto the
644 * inode. It stores the information about that chain in the branch[], in
645 * the same format as ext3_get_branch() would do. We are calling it after
646 * we had read the existing part of chain and partial points to the last
647 * triple of that (one with zero ->key). Upon the exit we have the same
648 * picture as after the successful ext3_get_block(), except that in one
649 * place chain is disconnected - *branch->p is still zero (we did not
650 * set the last link), but branch->key contains the number that should
651 * be placed into *branch->p to fill that gap.
653 * If allocation fails we free all blocks we've allocated (and forget
654 * their buffer_heads) and return the error value the from failed
655 * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
656 * as described above and return 0.
658 static int ext3_alloc_branch(handle_t
*handle
, struct inode
*inode
,
659 int indirect_blks
, int *blks
, ext3_fsblk_t goal
,
660 int *offsets
, Indirect
*branch
)
662 int blocksize
= inode
->i_sb
->s_blocksize
;
665 struct buffer_head
*bh
;
667 ext3_fsblk_t new_blocks
[4];
668 ext3_fsblk_t current_block
;
670 num
= ext3_alloc_blocks(handle
, inode
, goal
, indirect_blks
,
671 *blks
, new_blocks
, &err
);
675 branch
[0].key
= cpu_to_le32(new_blocks
[0]);
677 * metadata blocks and data blocks are allocated.
679 for (n
= 1; n
<= indirect_blks
; n
++) {
681 * Get buffer_head for parent block, zero it out
682 * and set the pointer to new one, then send
685 bh
= sb_getblk(inode
->i_sb
, new_blocks
[n
-1]);
688 BUFFER_TRACE(bh
, "call get_create_access");
689 err
= ext3_journal_get_create_access(handle
, bh
);
696 memset(bh
->b_data
, 0, blocksize
);
697 branch
[n
].p
= (__le32
*) bh
->b_data
+ offsets
[n
];
698 branch
[n
].key
= cpu_to_le32(new_blocks
[n
]);
699 *branch
[n
].p
= branch
[n
].key
;
700 if ( n
== indirect_blks
) {
701 current_block
= new_blocks
[n
];
703 * End of chain, update the last new metablock of
704 * the chain to point to the new allocated
705 * data blocks numbers
707 for (i
=1; i
< num
; i
++)
708 *(branch
[n
].p
+ i
) = cpu_to_le32(++current_block
);
710 BUFFER_TRACE(bh
, "marking uptodate");
711 set_buffer_uptodate(bh
);
714 BUFFER_TRACE(bh
, "call ext3_journal_dirty_metadata");
715 err
= ext3_journal_dirty_metadata(handle
, bh
);
722 /* Allocation failed, free what we already allocated */
723 for (i
= 1; i
<= n
; i
++) {
724 BUFFER_TRACE(branch
[i
].bh
, "call journal_forget");
725 ext3_journal_forget(handle
, branch
[i
].bh
);
727 for (i
= 0; i
<indirect_blks
; i
++)
728 ext3_free_blocks(handle
, inode
, new_blocks
[i
], 1);
730 ext3_free_blocks(handle
, inode
, new_blocks
[i
], num
);
736 * ext3_splice_branch - splice the allocated branch onto inode.
737 * @handle: handle for this transaction
739 * @block: (logical) number of block we are adding
740 * @where: location of missing link
741 * @num: number of indirect blocks we are adding
742 * @blks: number of direct blocks we are adding
744 * This function fills the missing link and does all housekeeping needed in
745 * inode (->i_blocks, etc.). In case of success we end up with the full
746 * chain to new block and return 0.
748 static int ext3_splice_branch(handle_t
*handle
, struct inode
*inode
,
749 long block
, Indirect
*where
, int num
, int blks
)
753 struct ext3_block_alloc_info
*block_i
;
754 ext3_fsblk_t current_block
;
755 struct ext3_inode_info
*ei
= EXT3_I(inode
);
757 block_i
= ei
->i_block_alloc_info
;
759 * If we're splicing into a [td]indirect block (as opposed to the
760 * inode) then we need to get write access to the [td]indirect block
764 BUFFER_TRACE(where
->bh
, "get_write_access");
765 err
= ext3_journal_get_write_access(handle
, where
->bh
);
771 *where
->p
= where
->key
;
774 * Update the host buffer_head or inode to point to more just allocated
775 * direct blocks blocks
777 if (num
== 0 && blks
> 1) {
778 current_block
= le32_to_cpu(where
->key
) + 1;
779 for (i
= 1; i
< blks
; i
++)
780 *(where
->p
+ i
) = cpu_to_le32(current_block
++);
784 * update the most recently allocated logical & physical block
785 * in i_block_alloc_info, to assist find the proper goal block for next
789 block_i
->last_alloc_logical_block
= block
+ blks
- 1;
790 block_i
->last_alloc_physical_block
=
791 le32_to_cpu(where
[num
].key
) + blks
- 1;
794 /* We are done with atomic stuff, now do the rest of housekeeping */
796 inode
->i_ctime
= CURRENT_TIME_SEC
;
797 ext3_mark_inode_dirty(handle
, inode
);
798 /* ext3_mark_inode_dirty already updated i_sync_tid */
799 atomic_set(&ei
->i_datasync_tid
, handle
->h_transaction
->t_tid
);
801 /* had we spliced it onto indirect block? */
804 * If we spliced it onto an indirect block, we haven't
805 * altered the inode. Note however that if it is being spliced
806 * onto an indirect block at the very end of the file (the
807 * file is growing) then we *will* alter the inode to reflect
808 * the new i_size. But that is not done here - it is done in
809 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
811 jbd_debug(5, "splicing indirect only\n");
812 BUFFER_TRACE(where
->bh
, "call ext3_journal_dirty_metadata");
813 err
= ext3_journal_dirty_metadata(handle
, where
->bh
);
818 * OK, we spliced it into the inode itself on a direct block.
819 * Inode was dirtied above.
821 jbd_debug(5, "splicing direct\n");
826 for (i
= 1; i
<= num
; i
++) {
827 BUFFER_TRACE(where
[i
].bh
, "call journal_forget");
828 ext3_journal_forget(handle
, where
[i
].bh
);
829 ext3_free_blocks(handle
,inode
,le32_to_cpu(where
[i
-1].key
),1);
831 ext3_free_blocks(handle
, inode
, le32_to_cpu(where
[num
].key
), blks
);
837 * Allocation strategy is simple: if we have to allocate something, we will
838 * have to go the whole way to leaf. So let's do it before attaching anything
839 * to tree, set linkage between the newborn blocks, write them if sync is
840 * required, recheck the path, free and repeat if check fails, otherwise
841 * set the last missing link (that will protect us from any truncate-generated
842 * removals - all blocks on the path are immune now) and possibly force the
843 * write on the parent block.
844 * That has a nice additional property: no special recovery from the failed
845 * allocations is needed - we simply release blocks and do not touch anything
846 * reachable from inode.
848 * `handle' can be NULL if create == 0.
850 * The BKL may not be held on entry here. Be sure to take it early.
851 * return > 0, # of blocks mapped or allocated.
852 * return = 0, if plain lookup failed.
853 * return < 0, error case.
855 int ext3_get_blocks_handle(handle_t
*handle
, struct inode
*inode
,
856 sector_t iblock
, unsigned long maxblocks
,
857 struct buffer_head
*bh_result
,
866 int blocks_to_boundary
= 0;
868 struct ext3_inode_info
*ei
= EXT3_I(inode
);
870 ext3_fsblk_t first_block
= 0;
873 trace_ext3_get_blocks_enter(inode
, iblock
, maxblocks
, create
);
874 J_ASSERT(handle
!= NULL
|| create
== 0);
875 depth
= ext3_block_to_path(inode
,iblock
,offsets
,&blocks_to_boundary
);
880 partial
= ext3_get_branch(inode
, depth
, offsets
, chain
, &err
);
882 /* Simplest case - block found, no allocation needed */
884 first_block
= le32_to_cpu(chain
[depth
- 1].key
);
885 clear_buffer_new(bh_result
);
888 while (count
< maxblocks
&& count
<= blocks_to_boundary
) {
891 if (!verify_chain(chain
, chain
+ depth
- 1)) {
893 * Indirect block might be removed by
894 * truncate while we were reading it.
895 * Handling of that case: forget what we've
896 * got now. Flag the err as EAGAIN, so it
903 blk
= le32_to_cpu(*(chain
[depth
-1].p
+ count
));
905 if (blk
== first_block
+ count
)
914 /* Next simple case - plain lookup or failed read of indirect block */
915 if (!create
|| err
== -EIO
)
919 * Block out ext3_truncate while we alter the tree
921 mutex_lock(&ei
->truncate_mutex
);
924 * If the indirect block is missing while we are reading
925 * the chain(ext3_get_branch() returns -EAGAIN err), or
926 * if the chain has been changed after we grab the semaphore,
927 * (either because another process truncated this branch, or
928 * another get_block allocated this branch) re-grab the chain to see if
929 * the request block has been allocated or not.
931 * Since we already block the truncate/other get_block
932 * at this point, we will have the current copy of the chain when we
933 * splice the branch into the tree.
935 if (err
== -EAGAIN
|| !verify_chain(chain
, partial
)) {
936 while (partial
> chain
) {
940 partial
= ext3_get_branch(inode
, depth
, offsets
, chain
, &err
);
943 mutex_unlock(&ei
->truncate_mutex
);
946 clear_buffer_new(bh_result
);
952 * Okay, we need to do block allocation. Lazily initialize the block
953 * allocation info here if necessary
955 if (S_ISREG(inode
->i_mode
) && (!ei
->i_block_alloc_info
))
956 ext3_init_block_alloc_info(inode
);
958 goal
= ext3_find_goal(inode
, iblock
, partial
);
960 /* the number of blocks need to allocate for [d,t]indirect blocks */
961 indirect_blks
= (chain
+ depth
) - partial
- 1;
964 * Next look up the indirect map to count the totoal number of
965 * direct blocks to allocate for this branch.
967 count
= ext3_blks_to_allocate(partial
, indirect_blks
,
968 maxblocks
, blocks_to_boundary
);
969 err
= ext3_alloc_branch(handle
, inode
, indirect_blks
, &count
, goal
,
970 offsets
+ (partial
- chain
), partial
);
973 * The ext3_splice_branch call will free and forget any buffers
974 * on the new chain if there is a failure, but that risks using
975 * up transaction credits, especially for bitmaps where the
976 * credits cannot be returned. Can we handle this somehow? We
977 * may need to return -EAGAIN upwards in the worst case. --sct
980 err
= ext3_splice_branch(handle
, inode
, iblock
,
981 partial
, indirect_blks
, count
);
982 mutex_unlock(&ei
->truncate_mutex
);
986 set_buffer_new(bh_result
);
988 map_bh(bh_result
, inode
->i_sb
, le32_to_cpu(chain
[depth
-1].key
));
989 if (count
> blocks_to_boundary
)
990 set_buffer_boundary(bh_result
);
992 /* Clean up and exit */
993 partial
= chain
+ depth
- 1; /* the whole chain */
995 while (partial
> chain
) {
996 BUFFER_TRACE(partial
->bh
, "call brelse");
1000 BUFFER_TRACE(bh_result
, "returned");
1002 trace_ext3_get_blocks_exit(inode
, iblock
,
1003 depth
? le32_to_cpu(chain
[depth
-1].key
) : 0,
1008 /* Maximum number of blocks we map for direct IO at once. */
1009 #define DIO_MAX_BLOCKS 4096
1011 * Number of credits we need for writing DIO_MAX_BLOCKS:
1012 * We need sb + group descriptor + bitmap + inode -> 4
1013 * For B blocks with A block pointers per block we need:
1014 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
1015 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
1017 #define DIO_CREDITS 25
1019 static int ext3_get_block(struct inode
*inode
, sector_t iblock
,
1020 struct buffer_head
*bh_result
, int create
)
1022 handle_t
*handle
= ext3_journal_current_handle();
1023 int ret
= 0, started
= 0;
1024 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
1026 if (create
&& !handle
) { /* Direct IO write... */
1027 if (max_blocks
> DIO_MAX_BLOCKS
)
1028 max_blocks
= DIO_MAX_BLOCKS
;
1029 handle
= ext3_journal_start(inode
, DIO_CREDITS
+
1030 EXT3_MAXQUOTAS_TRANS_BLOCKS(inode
->i_sb
));
1031 if (IS_ERR(handle
)) {
1032 ret
= PTR_ERR(handle
);
1038 ret
= ext3_get_blocks_handle(handle
, inode
, iblock
,
1039 max_blocks
, bh_result
, create
);
1041 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
1045 ext3_journal_stop(handle
);
1050 int ext3_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
1053 return generic_block_fiemap(inode
, fieinfo
, start
, len
,
1058 * `handle' can be NULL if create is zero
1060 struct buffer_head
*ext3_getblk(handle_t
*handle
, struct inode
*inode
,
1061 long block
, int create
, int *errp
)
1063 struct buffer_head dummy
;
1066 J_ASSERT(handle
!= NULL
|| create
== 0);
1069 dummy
.b_blocknr
= -1000;
1070 buffer_trace_init(&dummy
.b_history
);
1071 err
= ext3_get_blocks_handle(handle
, inode
, block
, 1,
1074 * ext3_get_blocks_handle() returns number of blocks
1075 * mapped. 0 in case of a HOLE.
1083 if (!err
&& buffer_mapped(&dummy
)) {
1084 struct buffer_head
*bh
;
1085 bh
= sb_getblk(inode
->i_sb
, dummy
.b_blocknr
);
1090 if (buffer_new(&dummy
)) {
1091 J_ASSERT(create
!= 0);
1092 J_ASSERT(handle
!= NULL
);
1095 * Now that we do not always journal data, we should
1096 * keep in mind whether this should always journal the
1097 * new buffer as metadata. For now, regular file
1098 * writes use ext3_get_block instead, so it's not a
1102 BUFFER_TRACE(bh
, "call get_create_access");
1103 fatal
= ext3_journal_get_create_access(handle
, bh
);
1104 if (!fatal
&& !buffer_uptodate(bh
)) {
1105 memset(bh
->b_data
,0,inode
->i_sb
->s_blocksize
);
1106 set_buffer_uptodate(bh
);
1109 BUFFER_TRACE(bh
, "call ext3_journal_dirty_metadata");
1110 err
= ext3_journal_dirty_metadata(handle
, bh
);
1114 BUFFER_TRACE(bh
, "not a new buffer");
1127 struct buffer_head
*ext3_bread(handle_t
*handle
, struct inode
*inode
,
1128 int block
, int create
, int *err
)
1130 struct buffer_head
* bh
;
1132 bh
= ext3_getblk(handle
, inode
, block
, create
, err
);
1135 if (buffer_uptodate(bh
))
1137 ll_rw_block(READ
| REQ_META
| REQ_PRIO
, 1, &bh
);
1139 if (buffer_uptodate(bh
))
1146 static int walk_page_buffers( handle_t
*handle
,
1147 struct buffer_head
*head
,
1151 int (*fn
)( handle_t
*handle
,
1152 struct buffer_head
*bh
))
1154 struct buffer_head
*bh
;
1155 unsigned block_start
, block_end
;
1156 unsigned blocksize
= head
->b_size
;
1158 struct buffer_head
*next
;
1160 for ( bh
= head
, block_start
= 0;
1161 ret
== 0 && (bh
!= head
|| !block_start
);
1162 block_start
= block_end
, bh
= next
)
1164 next
= bh
->b_this_page
;
1165 block_end
= block_start
+ blocksize
;
1166 if (block_end
<= from
|| block_start
>= to
) {
1167 if (partial
&& !buffer_uptodate(bh
))
1171 err
= (*fn
)(handle
, bh
);
1179 * To preserve ordering, it is essential that the hole instantiation and
1180 * the data write be encapsulated in a single transaction. We cannot
1181 * close off a transaction and start a new one between the ext3_get_block()
1182 * and the commit_write(). So doing the journal_start at the start of
1183 * prepare_write() is the right place.
1185 * Also, this function can nest inside ext3_writepage() ->
1186 * block_write_full_page(). In that case, we *know* that ext3_writepage()
1187 * has generated enough buffer credits to do the whole page. So we won't
1188 * block on the journal in that case, which is good, because the caller may
1191 * By accident, ext3 can be reentered when a transaction is open via
1192 * quota file writes. If we were to commit the transaction while thus
1193 * reentered, there can be a deadlock - we would be holding a quota
1194 * lock, and the commit would never complete if another thread had a
1195 * transaction open and was blocking on the quota lock - a ranking
1198 * So what we do is to rely on the fact that journal_stop/journal_start
1199 * will _not_ run commit under these circumstances because handle->h_ref
1200 * is elevated. We'll still have enough credits for the tiny quotafile
1203 static int do_journal_get_write_access(handle_t
*handle
,
1204 struct buffer_head
*bh
)
1206 int dirty
= buffer_dirty(bh
);
1209 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1212 * __block_prepare_write() could have dirtied some buffers. Clean
1213 * the dirty bit as jbd2_journal_get_write_access() could complain
1214 * otherwise about fs integrity issues. Setting of the dirty bit
1215 * by __block_prepare_write() isn't a real problem here as we clear
1216 * the bit before releasing a page lock and thus writeback cannot
1217 * ever write the buffer.
1220 clear_buffer_dirty(bh
);
1221 ret
= ext3_journal_get_write_access(handle
, bh
);
1223 ret
= ext3_journal_dirty_metadata(handle
, bh
);
1228 * Truncate blocks that were not used by write. We have to truncate the
1229 * pagecache as well so that corresponding buffers get properly unmapped.
1231 static void ext3_truncate_failed_write(struct inode
*inode
)
1233 truncate_inode_pages(inode
->i_mapping
, inode
->i_size
);
1234 ext3_truncate(inode
);
1238 * Truncate blocks that were not used by direct IO write. We have to zero out
1239 * the last file block as well because direct IO might have written to it.
1241 static void ext3_truncate_failed_direct_write(struct inode
*inode
)
1243 ext3_block_truncate_page(inode
, inode
->i_size
);
1244 ext3_truncate(inode
);
1247 static int ext3_write_begin(struct file
*file
, struct address_space
*mapping
,
1248 loff_t pos
, unsigned len
, unsigned flags
,
1249 struct page
**pagep
, void **fsdata
)
1251 struct inode
*inode
= mapping
->host
;
1258 /* Reserve one block more for addition to orphan list in case
1259 * we allocate blocks but write fails for some reason */
1260 int needed_blocks
= ext3_writepage_trans_blocks(inode
) + 1;
1262 trace_ext3_write_begin(inode
, pos
, len
, flags
);
1264 index
= pos
>> PAGE_CACHE_SHIFT
;
1265 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1269 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
1274 handle
= ext3_journal_start(inode
, needed_blocks
);
1275 if (IS_ERR(handle
)) {
1277 page_cache_release(page
);
1278 ret
= PTR_ERR(handle
);
1281 ret
= __block_write_begin(page
, pos
, len
, ext3_get_block
);
1283 goto write_begin_failed
;
1285 if (ext3_should_journal_data(inode
)) {
1286 ret
= walk_page_buffers(handle
, page_buffers(page
),
1287 from
, to
, NULL
, do_journal_get_write_access
);
1292 * block_write_begin may have instantiated a few blocks
1293 * outside i_size. Trim these off again. Don't need
1294 * i_size_read because we hold i_mutex.
1296 * Add inode to orphan list in case we crash before truncate
1297 * finishes. Do this only if ext3_can_truncate() agrees so
1298 * that orphan processing code is happy.
1300 if (pos
+ len
> inode
->i_size
&& ext3_can_truncate(inode
))
1301 ext3_orphan_add(handle
, inode
);
1302 ext3_journal_stop(handle
);
1304 page_cache_release(page
);
1305 if (pos
+ len
> inode
->i_size
)
1306 ext3_truncate_failed_write(inode
);
1308 if (ret
== -ENOSPC
&& ext3_should_retry_alloc(inode
->i_sb
, &retries
))
1315 int ext3_journal_dirty_data(handle_t
*handle
, struct buffer_head
*bh
)
1317 int err
= journal_dirty_data(handle
, bh
);
1319 ext3_journal_abort_handle(__func__
, __func__
,
1324 /* For ordered writepage and write_end functions */
1325 static int journal_dirty_data_fn(handle_t
*handle
, struct buffer_head
*bh
)
1328 * Write could have mapped the buffer but it didn't copy the data in
1329 * yet. So avoid filing such buffer into a transaction.
1331 if (buffer_mapped(bh
) && buffer_uptodate(bh
))
1332 return ext3_journal_dirty_data(handle
, bh
);
1336 /* For write_end() in data=journal mode */
1337 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
1339 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1341 set_buffer_uptodate(bh
);
1342 return ext3_journal_dirty_metadata(handle
, bh
);
1346 * This is nasty and subtle: ext3_write_begin() could have allocated blocks
1347 * for the whole page but later we failed to copy the data in. Update inode
1348 * size according to what we managed to copy. The rest is going to be
1349 * truncated in write_end function.
1351 static void update_file_sizes(struct inode
*inode
, loff_t pos
, unsigned copied
)
1353 /* What matters to us is i_disksize. We don't write i_size anywhere */
1354 if (pos
+ copied
> inode
->i_size
)
1355 i_size_write(inode
, pos
+ copied
);
1356 if (pos
+ copied
> EXT3_I(inode
)->i_disksize
) {
1357 EXT3_I(inode
)->i_disksize
= pos
+ copied
;
1358 mark_inode_dirty(inode
);
1363 * We need to pick up the new inode size which generic_commit_write gave us
1364 * `file' can be NULL - eg, when called from page_symlink().
1366 * ext3 never places buffers on inode->i_mapping->private_list. metadata
1367 * buffers are managed internally.
1369 static int ext3_ordered_write_end(struct file
*file
,
1370 struct address_space
*mapping
,
1371 loff_t pos
, unsigned len
, unsigned copied
,
1372 struct page
*page
, void *fsdata
)
1374 handle_t
*handle
= ext3_journal_current_handle();
1375 struct inode
*inode
= file
->f_mapping
->host
;
1379 trace_ext3_ordered_write_end(inode
, pos
, len
, copied
);
1380 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
1382 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1384 ret
= walk_page_buffers(handle
, page_buffers(page
),
1385 from
, to
, NULL
, journal_dirty_data_fn
);
1388 update_file_sizes(inode
, pos
, copied
);
1390 * There may be allocated blocks outside of i_size because
1391 * we failed to copy some data. Prepare for truncate.
1393 if (pos
+ len
> inode
->i_size
&& ext3_can_truncate(inode
))
1394 ext3_orphan_add(handle
, inode
);
1395 ret2
= ext3_journal_stop(handle
);
1399 page_cache_release(page
);
1401 if (pos
+ len
> inode
->i_size
)
1402 ext3_truncate_failed_write(inode
);
1403 return ret
? ret
: copied
;
1406 static int ext3_writeback_write_end(struct file
*file
,
1407 struct address_space
*mapping
,
1408 loff_t pos
, unsigned len
, unsigned copied
,
1409 struct page
*page
, void *fsdata
)
1411 handle_t
*handle
= ext3_journal_current_handle();
1412 struct inode
*inode
= file
->f_mapping
->host
;
1415 trace_ext3_writeback_write_end(inode
, pos
, len
, copied
);
1416 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
1417 update_file_sizes(inode
, pos
, copied
);
1419 * There may be allocated blocks outside of i_size because
1420 * we failed to copy some data. Prepare for truncate.
1422 if (pos
+ len
> inode
->i_size
&& ext3_can_truncate(inode
))
1423 ext3_orphan_add(handle
, inode
);
1424 ret
= ext3_journal_stop(handle
);
1426 page_cache_release(page
);
1428 if (pos
+ len
> inode
->i_size
)
1429 ext3_truncate_failed_write(inode
);
1430 return ret
? ret
: copied
;
1433 static int ext3_journalled_write_end(struct file
*file
,
1434 struct address_space
*mapping
,
1435 loff_t pos
, unsigned len
, unsigned copied
,
1436 struct page
*page
, void *fsdata
)
1438 handle_t
*handle
= ext3_journal_current_handle();
1439 struct inode
*inode
= mapping
->host
;
1440 struct ext3_inode_info
*ei
= EXT3_I(inode
);
1445 trace_ext3_journalled_write_end(inode
, pos
, len
, copied
);
1446 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1450 if (!PageUptodate(page
))
1452 page_zero_new_buffers(page
, from
+ copied
, to
);
1456 ret
= walk_page_buffers(handle
, page_buffers(page
), from
,
1457 to
, &partial
, write_end_fn
);
1459 SetPageUptodate(page
);
1461 if (pos
+ copied
> inode
->i_size
)
1462 i_size_write(inode
, pos
+ copied
);
1464 * There may be allocated blocks outside of i_size because
1465 * we failed to copy some data. Prepare for truncate.
1467 if (pos
+ len
> inode
->i_size
&& ext3_can_truncate(inode
))
1468 ext3_orphan_add(handle
, inode
);
1469 ext3_set_inode_state(inode
, EXT3_STATE_JDATA
);
1470 atomic_set(&ei
->i_datasync_tid
, handle
->h_transaction
->t_tid
);
1471 if (inode
->i_size
> ei
->i_disksize
) {
1472 ei
->i_disksize
= inode
->i_size
;
1473 ret2
= ext3_mark_inode_dirty(handle
, inode
);
1478 ret2
= ext3_journal_stop(handle
);
1482 page_cache_release(page
);
1484 if (pos
+ len
> inode
->i_size
)
1485 ext3_truncate_failed_write(inode
);
1486 return ret
? ret
: copied
;
1490 * bmap() is special. It gets used by applications such as lilo and by
1491 * the swapper to find the on-disk block of a specific piece of data.
1493 * Naturally, this is dangerous if the block concerned is still in the
1494 * journal. If somebody makes a swapfile on an ext3 data-journaling
1495 * filesystem and enables swap, then they may get a nasty shock when the
1496 * data getting swapped to that swapfile suddenly gets overwritten by
1497 * the original zero's written out previously to the journal and
1498 * awaiting writeback in the kernel's buffer cache.
1500 * So, if we see any bmap calls here on a modified, data-journaled file,
1501 * take extra steps to flush any blocks which might be in the cache.
1503 static sector_t
ext3_bmap(struct address_space
*mapping
, sector_t block
)
1505 struct inode
*inode
= mapping
->host
;
1509 if (ext3_test_inode_state(inode
, EXT3_STATE_JDATA
)) {
1511 * This is a REALLY heavyweight approach, but the use of
1512 * bmap on dirty files is expected to be extremely rare:
1513 * only if we run lilo or swapon on a freshly made file
1514 * do we expect this to happen.
1516 * (bmap requires CAP_SYS_RAWIO so this does not
1517 * represent an unprivileged user DOS attack --- we'd be
1518 * in trouble if mortal users could trigger this path at
1521 * NB. EXT3_STATE_JDATA is not set on files other than
1522 * regular files. If somebody wants to bmap a directory
1523 * or symlink and gets confused because the buffer
1524 * hasn't yet been flushed to disk, they deserve
1525 * everything they get.
1528 ext3_clear_inode_state(inode
, EXT3_STATE_JDATA
);
1529 journal
= EXT3_JOURNAL(inode
);
1530 journal_lock_updates(journal
);
1531 err
= journal_flush(journal
);
1532 journal_unlock_updates(journal
);
1538 return generic_block_bmap(mapping
,block
,ext3_get_block
);
1541 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
1547 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
1553 static int buffer_unmapped(handle_t
*handle
, struct buffer_head
*bh
)
1555 return !buffer_mapped(bh
);
1559 * Note that we always start a transaction even if we're not journalling
1560 * data. This is to preserve ordering: any hole instantiation within
1561 * __block_write_full_page -> ext3_get_block() should be journalled
1562 * along with the data so we don't crash and then get metadata which
1563 * refers to old data.
1565 * In all journalling modes block_write_full_page() will start the I/O.
1569 * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1574 * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1576 * Same applies to ext3_get_block(). We will deadlock on various things like
1577 * lock_journal and i_truncate_mutex.
1579 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1582 * 16May01: If we're reentered then journal_current_handle() will be
1583 * non-zero. We simply *return*.
1585 * 1 July 2001: @@@ FIXME:
1586 * In journalled data mode, a data buffer may be metadata against the
1587 * current transaction. But the same file is part of a shared mapping
1588 * and someone does a writepage() on it.
1590 * We will move the buffer onto the async_data list, but *after* it has
1591 * been dirtied. So there's a small window where we have dirty data on
1594 * Note that this only applies to the last partial page in the file. The
1595 * bit which block_write_full_page() uses prepare/commit for. (That's
1596 * broken code anyway: it's wrong for msync()).
1598 * It's a rare case: affects the final partial page, for journalled data
1599 * where the file is subject to bith write() and writepage() in the same
1600 * transction. To fix it we'll need a custom block_write_full_page().
1601 * We'll probably need that anyway for journalling writepage() output.
1603 * We don't honour synchronous mounts for writepage(). That would be
1604 * disastrous. Any write() or metadata operation will sync the fs for
1607 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1608 * we don't need to open a transaction here.
1610 static int ext3_ordered_writepage(struct page
*page
,
1611 struct writeback_control
*wbc
)
1613 struct inode
*inode
= page
->mapping
->host
;
1614 struct buffer_head
*page_bufs
;
1615 handle_t
*handle
= NULL
;
1619 J_ASSERT(PageLocked(page
));
1620 WARN_ON_ONCE(IS_RDONLY(inode
));
1623 * We give up here if we're reentered, because it might be for a
1624 * different filesystem.
1626 if (ext3_journal_current_handle())
1629 trace_ext3_ordered_writepage(page
);
1630 if (!page_has_buffers(page
)) {
1631 create_empty_buffers(page
, inode
->i_sb
->s_blocksize
,
1632 (1 << BH_Dirty
)|(1 << BH_Uptodate
));
1633 page_bufs
= page_buffers(page
);
1635 page_bufs
= page_buffers(page
);
1636 if (!walk_page_buffers(NULL
, page_bufs
, 0, PAGE_CACHE_SIZE
,
1637 NULL
, buffer_unmapped
)) {
1638 /* Provide NULL get_block() to catch bugs if buffers
1639 * weren't really mapped */
1640 return block_write_full_page(page
, NULL
, wbc
);
1643 handle
= ext3_journal_start(inode
, ext3_writepage_trans_blocks(inode
));
1645 if (IS_ERR(handle
)) {
1646 ret
= PTR_ERR(handle
);
1650 walk_page_buffers(handle
, page_bufs
, 0,
1651 PAGE_CACHE_SIZE
, NULL
, bget_one
);
1653 ret
= block_write_full_page(page
, ext3_get_block
, wbc
);
1656 * The page can become unlocked at any point now, and
1657 * truncate can then come in and change things. So we
1658 * can't touch *page from now on. But *page_bufs is
1659 * safe due to elevated refcount.
1663 * And attach them to the current transaction. But only if
1664 * block_write_full_page() succeeded. Otherwise they are unmapped,
1665 * and generally junk.
1668 err
= walk_page_buffers(handle
, page_bufs
, 0, PAGE_CACHE_SIZE
,
1669 NULL
, journal_dirty_data_fn
);
1673 walk_page_buffers(handle
, page_bufs
, 0,
1674 PAGE_CACHE_SIZE
, NULL
, bput_one
);
1675 err
= ext3_journal_stop(handle
);
1681 redirty_page_for_writepage(wbc
, page
);
1686 static int ext3_writeback_writepage(struct page
*page
,
1687 struct writeback_control
*wbc
)
1689 struct inode
*inode
= page
->mapping
->host
;
1690 handle_t
*handle
= NULL
;
1694 J_ASSERT(PageLocked(page
));
1695 WARN_ON_ONCE(IS_RDONLY(inode
));
1697 if (ext3_journal_current_handle())
1700 trace_ext3_writeback_writepage(page
);
1701 if (page_has_buffers(page
)) {
1702 if (!walk_page_buffers(NULL
, page_buffers(page
), 0,
1703 PAGE_CACHE_SIZE
, NULL
, buffer_unmapped
)) {
1704 /* Provide NULL get_block() to catch bugs if buffers
1705 * weren't really mapped */
1706 return block_write_full_page(page
, NULL
, wbc
);
1710 handle
= ext3_journal_start(inode
, ext3_writepage_trans_blocks(inode
));
1711 if (IS_ERR(handle
)) {
1712 ret
= PTR_ERR(handle
);
1716 ret
= block_write_full_page(page
, ext3_get_block
, wbc
);
1718 err
= ext3_journal_stop(handle
);
1724 redirty_page_for_writepage(wbc
, page
);
1729 static int ext3_journalled_writepage(struct page
*page
,
1730 struct writeback_control
*wbc
)
1732 struct inode
*inode
= page
->mapping
->host
;
1733 handle_t
*handle
= NULL
;
1737 J_ASSERT(PageLocked(page
));
1738 WARN_ON_ONCE(IS_RDONLY(inode
));
1740 if (ext3_journal_current_handle())
1743 trace_ext3_journalled_writepage(page
);
1744 handle
= ext3_journal_start(inode
, ext3_writepage_trans_blocks(inode
));
1745 if (IS_ERR(handle
)) {
1746 ret
= PTR_ERR(handle
);
1750 if (!page_has_buffers(page
) || PageChecked(page
)) {
1752 * It's mmapped pagecache. Add buffers and journal it. There
1753 * doesn't seem much point in redirtying the page here.
1755 ClearPageChecked(page
);
1756 ret
= __block_write_begin(page
, 0, PAGE_CACHE_SIZE
,
1759 ext3_journal_stop(handle
);
1762 ret
= walk_page_buffers(handle
, page_buffers(page
), 0,
1763 PAGE_CACHE_SIZE
, NULL
, do_journal_get_write_access
);
1765 err
= walk_page_buffers(handle
, page_buffers(page
), 0,
1766 PAGE_CACHE_SIZE
, NULL
, write_end_fn
);
1769 ext3_set_inode_state(inode
, EXT3_STATE_JDATA
);
1770 atomic_set(&EXT3_I(inode
)->i_datasync_tid
,
1771 handle
->h_transaction
->t_tid
);
1775 * It may be a page full of checkpoint-mode buffers. We don't
1776 * really know unless we go poke around in the buffer_heads.
1777 * But block_write_full_page will do the right thing.
1779 ret
= block_write_full_page(page
, ext3_get_block
, wbc
);
1781 err
= ext3_journal_stop(handle
);
1788 redirty_page_for_writepage(wbc
, page
);
1794 static int ext3_readpage(struct file
*file
, struct page
*page
)
1796 trace_ext3_readpage(page
);
1797 return mpage_readpage(page
, ext3_get_block
);
1801 ext3_readpages(struct file
*file
, struct address_space
*mapping
,
1802 struct list_head
*pages
, unsigned nr_pages
)
1804 return mpage_readpages(mapping
, pages
, nr_pages
, ext3_get_block
);
1807 static void ext3_invalidatepage(struct page
*page
, unsigned long offset
)
1809 journal_t
*journal
= EXT3_JOURNAL(page
->mapping
->host
);
1811 trace_ext3_invalidatepage(page
, offset
);
1814 * If it's a full truncate we just forget about the pending dirtying
1817 ClearPageChecked(page
);
1819 journal_invalidatepage(journal
, page
, offset
);
1822 static int ext3_releasepage(struct page
*page
, gfp_t wait
)
1824 journal_t
*journal
= EXT3_JOURNAL(page
->mapping
->host
);
1826 trace_ext3_releasepage(page
);
1827 WARN_ON(PageChecked(page
));
1828 if (!page_has_buffers(page
))
1830 return journal_try_to_free_buffers(journal
, page
, wait
);
1834 * If the O_DIRECT write will extend the file then add this inode to the
1835 * orphan list. So recovery will truncate it back to the original size
1836 * if the machine crashes during the write.
1838 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1839 * crashes then stale disk data _may_ be exposed inside the file. But current
1840 * VFS code falls back into buffered path in that case so we are safe.
1842 static ssize_t
ext3_direct_IO(int rw
, struct kiocb
*iocb
,
1843 const struct iovec
*iov
, loff_t offset
,
1844 unsigned long nr_segs
)
1846 struct file
*file
= iocb
->ki_filp
;
1847 struct inode
*inode
= file
->f_mapping
->host
;
1848 struct ext3_inode_info
*ei
= EXT3_I(inode
);
1852 size_t count
= iov_length(iov
, nr_segs
);
1855 trace_ext3_direct_IO_enter(inode
, offset
, iov_length(iov
, nr_segs
), rw
);
1858 loff_t final_size
= offset
+ count
;
1860 if (final_size
> inode
->i_size
) {
1861 /* Credits for sb + inode write */
1862 handle
= ext3_journal_start(inode
, 2);
1863 if (IS_ERR(handle
)) {
1864 ret
= PTR_ERR(handle
);
1867 ret
= ext3_orphan_add(handle
, inode
);
1869 ext3_journal_stop(handle
);
1873 ei
->i_disksize
= inode
->i_size
;
1874 ext3_journal_stop(handle
);
1879 ret
= blockdev_direct_IO(rw
, iocb
, inode
, iov
, offset
, nr_segs
,
1882 * In case of error extending write may have instantiated a few
1883 * blocks outside i_size. Trim these off again.
1885 if (unlikely((rw
& WRITE
) && ret
< 0)) {
1886 loff_t isize
= i_size_read(inode
);
1887 loff_t end
= offset
+ iov_length(iov
, nr_segs
);
1890 ext3_truncate_failed_direct_write(inode
);
1892 if (ret
== -ENOSPC
&& ext3_should_retry_alloc(inode
->i_sb
, &retries
))
1898 /* Credits for sb + inode write */
1899 handle
= ext3_journal_start(inode
, 2);
1900 if (IS_ERR(handle
)) {
1901 /* This is really bad luck. We've written the data
1902 * but cannot extend i_size. Truncate allocated blocks
1903 * and pretend the write failed... */
1904 ext3_truncate_failed_direct_write(inode
);
1905 ret
= PTR_ERR(handle
);
1909 ext3_orphan_del(handle
, inode
);
1911 loff_t end
= offset
+ ret
;
1912 if (end
> inode
->i_size
) {
1913 ei
->i_disksize
= end
;
1914 i_size_write(inode
, end
);
1916 * We're going to return a positive `ret'
1917 * here due to non-zero-length I/O, so there's
1918 * no way of reporting error returns from
1919 * ext3_mark_inode_dirty() to userspace. So
1922 ext3_mark_inode_dirty(handle
, inode
);
1925 err
= ext3_journal_stop(handle
);
1930 trace_ext3_direct_IO_exit(inode
, offset
,
1931 iov_length(iov
, nr_segs
), rw
, ret
);
1936 * Pages can be marked dirty completely asynchronously from ext3's journalling
1937 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
1938 * much here because ->set_page_dirty is called under VFS locks. The page is
1939 * not necessarily locked.
1941 * We cannot just dirty the page and leave attached buffers clean, because the
1942 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
1943 * or jbddirty because all the journalling code will explode.
1945 * So what we do is to mark the page "pending dirty" and next time writepage
1946 * is called, propagate that into the buffers appropriately.
1948 static int ext3_journalled_set_page_dirty(struct page
*page
)
1950 SetPageChecked(page
);
1951 return __set_page_dirty_nobuffers(page
);
1954 static const struct address_space_operations ext3_ordered_aops
= {
1955 .readpage
= ext3_readpage
,
1956 .readpages
= ext3_readpages
,
1957 .writepage
= ext3_ordered_writepage
,
1958 .write_begin
= ext3_write_begin
,
1959 .write_end
= ext3_ordered_write_end
,
1961 .invalidatepage
= ext3_invalidatepage
,
1962 .releasepage
= ext3_releasepage
,
1963 .direct_IO
= ext3_direct_IO
,
1964 .migratepage
= buffer_migrate_page
,
1965 .is_partially_uptodate
= block_is_partially_uptodate
,
1966 .error_remove_page
= generic_error_remove_page
,
1969 static const struct address_space_operations ext3_writeback_aops
= {
1970 .readpage
= ext3_readpage
,
1971 .readpages
= ext3_readpages
,
1972 .writepage
= ext3_writeback_writepage
,
1973 .write_begin
= ext3_write_begin
,
1974 .write_end
= ext3_writeback_write_end
,
1976 .invalidatepage
= ext3_invalidatepage
,
1977 .releasepage
= ext3_releasepage
,
1978 .direct_IO
= ext3_direct_IO
,
1979 .migratepage
= buffer_migrate_page
,
1980 .is_partially_uptodate
= block_is_partially_uptodate
,
1981 .error_remove_page
= generic_error_remove_page
,
1984 static const struct address_space_operations ext3_journalled_aops
= {
1985 .readpage
= ext3_readpage
,
1986 .readpages
= ext3_readpages
,
1987 .writepage
= ext3_journalled_writepage
,
1988 .write_begin
= ext3_write_begin
,
1989 .write_end
= ext3_journalled_write_end
,
1990 .set_page_dirty
= ext3_journalled_set_page_dirty
,
1992 .invalidatepage
= ext3_invalidatepage
,
1993 .releasepage
= ext3_releasepage
,
1994 .is_partially_uptodate
= block_is_partially_uptodate
,
1995 .error_remove_page
= generic_error_remove_page
,
1998 void ext3_set_aops(struct inode
*inode
)
2000 if (ext3_should_order_data(inode
))
2001 inode
->i_mapping
->a_ops
= &ext3_ordered_aops
;
2002 else if (ext3_should_writeback_data(inode
))
2003 inode
->i_mapping
->a_ops
= &ext3_writeback_aops
;
2005 inode
->i_mapping
->a_ops
= &ext3_journalled_aops
;
2009 * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
2010 * up to the end of the block which corresponds to `from'.
2011 * This required during truncate. We need to physically zero the tail end
2012 * of that block so it doesn't yield old data if the file is later grown.
2014 static int ext3_block_truncate_page(struct inode
*inode
, loff_t from
)
2016 ext3_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
2017 unsigned offset
= from
& (PAGE_CACHE_SIZE
- 1);
2018 unsigned blocksize
, iblock
, length
, pos
;
2020 handle_t
*handle
= NULL
;
2021 struct buffer_head
*bh
;
2024 /* Truncated on block boundary - nothing to do */
2025 blocksize
= inode
->i_sb
->s_blocksize
;
2026 if ((from
& (blocksize
- 1)) == 0)
2029 page
= grab_cache_page(inode
->i_mapping
, index
);
2032 length
= blocksize
- (offset
& (blocksize
- 1));
2033 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
2035 if (!page_has_buffers(page
))
2036 create_empty_buffers(page
, blocksize
, 0);
2038 /* Find the buffer that contains "offset" */
2039 bh
= page_buffers(page
);
2041 while (offset
>= pos
) {
2042 bh
= bh
->b_this_page
;
2048 if (buffer_freed(bh
)) {
2049 BUFFER_TRACE(bh
, "freed: skip");
2053 if (!buffer_mapped(bh
)) {
2054 BUFFER_TRACE(bh
, "unmapped");
2055 ext3_get_block(inode
, iblock
, bh
, 0);
2056 /* unmapped? It's a hole - nothing to do */
2057 if (!buffer_mapped(bh
)) {
2058 BUFFER_TRACE(bh
, "still unmapped");
2063 /* Ok, it's mapped. Make sure it's up-to-date */
2064 if (PageUptodate(page
))
2065 set_buffer_uptodate(bh
);
2067 if (!buffer_uptodate(bh
)) {
2069 ll_rw_block(READ
, 1, &bh
);
2071 /* Uhhuh. Read error. Complain and punt. */
2072 if (!buffer_uptodate(bh
))
2076 /* data=writeback mode doesn't need transaction to zero-out data */
2077 if (!ext3_should_writeback_data(inode
)) {
2078 /* We journal at most one block */
2079 handle
= ext3_journal_start(inode
, 1);
2080 if (IS_ERR(handle
)) {
2081 clear_highpage(page
);
2082 flush_dcache_page(page
);
2083 err
= PTR_ERR(handle
);
2088 if (ext3_should_journal_data(inode
)) {
2089 BUFFER_TRACE(bh
, "get write access");
2090 err
= ext3_journal_get_write_access(handle
, bh
);
2095 zero_user(page
, offset
, length
);
2096 BUFFER_TRACE(bh
, "zeroed end of block");
2099 if (ext3_should_journal_data(inode
)) {
2100 err
= ext3_journal_dirty_metadata(handle
, bh
);
2102 if (ext3_should_order_data(inode
))
2103 err
= ext3_journal_dirty_data(handle
, bh
);
2104 mark_buffer_dirty(bh
);
2108 ext3_journal_stop(handle
);
2112 page_cache_release(page
);
2117 * Probably it should be a library function... search for first non-zero word
2118 * or memcmp with zero_page, whatever is better for particular architecture.
2121 static inline int all_zeroes(__le32
*p
, __le32
*q
)
2130 * ext3_find_shared - find the indirect blocks for partial truncation.
2131 * @inode: inode in question
2132 * @depth: depth of the affected branch
2133 * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
2134 * @chain: place to store the pointers to partial indirect blocks
2135 * @top: place to the (detached) top of branch
2137 * This is a helper function used by ext3_truncate().
2139 * When we do truncate() we may have to clean the ends of several
2140 * indirect blocks but leave the blocks themselves alive. Block is
2141 * partially truncated if some data below the new i_size is referred
2142 * from it (and it is on the path to the first completely truncated
2143 * data block, indeed). We have to free the top of that path along
2144 * with everything to the right of the path. Since no allocation
2145 * past the truncation point is possible until ext3_truncate()
2146 * finishes, we may safely do the latter, but top of branch may
2147 * require special attention - pageout below the truncation point
2148 * might try to populate it.
2150 * We atomically detach the top of branch from the tree, store the
2151 * block number of its root in *@top, pointers to buffer_heads of
2152 * partially truncated blocks - in @chain[].bh and pointers to
2153 * their last elements that should not be removed - in
2154 * @chain[].p. Return value is the pointer to last filled element
2157 * The work left to caller to do the actual freeing of subtrees:
2158 * a) free the subtree starting from *@top
2159 * b) free the subtrees whose roots are stored in
2160 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2161 * c) free the subtrees growing from the inode past the @chain[0].
2162 * (no partially truncated stuff there). */
2164 static Indirect
*ext3_find_shared(struct inode
*inode
, int depth
,
2165 int offsets
[4], Indirect chain
[4], __le32
*top
)
2167 Indirect
*partial
, *p
;
2171 /* Make k index the deepest non-null offset + 1 */
2172 for (k
= depth
; k
> 1 && !offsets
[k
-1]; k
--)
2174 partial
= ext3_get_branch(inode
, k
, offsets
, chain
, &err
);
2175 /* Writer: pointers */
2177 partial
= chain
+ k
-1;
2179 * If the branch acquired continuation since we've looked at it -
2180 * fine, it should all survive and (new) top doesn't belong to us.
2182 if (!partial
->key
&& *partial
->p
)
2185 for (p
=partial
; p
>chain
&& all_zeroes((__le32
*)p
->bh
->b_data
,p
->p
); p
--)
2188 * OK, we've found the last block that must survive. The rest of our
2189 * branch should be detached before unlocking. However, if that rest
2190 * of branch is all ours and does not grow immediately from the inode
2191 * it's easier to cheat and just decrement partial->p.
2193 if (p
== chain
+ k
- 1 && p
> chain
) {
2197 /* Nope, don't do this in ext3. Must leave the tree intact */
2204 while(partial
> p
) {
2205 brelse(partial
->bh
);
2213 * Zero a number of block pointers in either an inode or an indirect block.
2214 * If we restart the transaction we must again get write access to the
2215 * indirect block for further modification.
2217 * We release `count' blocks on disk, but (last - first) may be greater
2218 * than `count' because there can be holes in there.
2220 static void ext3_clear_blocks(handle_t
*handle
, struct inode
*inode
,
2221 struct buffer_head
*bh
, ext3_fsblk_t block_to_free
,
2222 unsigned long count
, __le32
*first
, __le32
*last
)
2225 if (try_to_extend_transaction(handle
, inode
)) {
2227 BUFFER_TRACE(bh
, "call ext3_journal_dirty_metadata");
2228 if (ext3_journal_dirty_metadata(handle
, bh
))
2231 ext3_mark_inode_dirty(handle
, inode
);
2232 truncate_restart_transaction(handle
, inode
);
2234 BUFFER_TRACE(bh
, "retaking write access");
2235 if (ext3_journal_get_write_access(handle
, bh
))
2241 * Any buffers which are on the journal will be in memory. We find
2242 * them on the hash table so journal_revoke() will run journal_forget()
2243 * on them. We've already detached each block from the file, so
2244 * bforget() in journal_forget() should be safe.
2246 * AKPM: turn on bforget in journal_forget()!!!
2248 for (p
= first
; p
< last
; p
++) {
2249 u32 nr
= le32_to_cpu(*p
);
2251 struct buffer_head
*bh
;
2254 bh
= sb_find_get_block(inode
->i_sb
, nr
);
2255 ext3_forget(handle
, 0, inode
, bh
, nr
);
2259 ext3_free_blocks(handle
, inode
, block_to_free
, count
);
2263 * ext3_free_data - free a list of data blocks
2264 * @handle: handle for this transaction
2265 * @inode: inode we are dealing with
2266 * @this_bh: indirect buffer_head which contains *@first and *@last
2267 * @first: array of block numbers
2268 * @last: points immediately past the end of array
2270 * We are freeing all blocks referred from that array (numbers are stored as
2271 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2273 * We accumulate contiguous runs of blocks to free. Conveniently, if these
2274 * blocks are contiguous then releasing them at one time will only affect one
2275 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2276 * actually use a lot of journal space.
2278 * @this_bh will be %NULL if @first and @last point into the inode's direct
2281 static void ext3_free_data(handle_t
*handle
, struct inode
*inode
,
2282 struct buffer_head
*this_bh
,
2283 __le32
*first
, __le32
*last
)
2285 ext3_fsblk_t block_to_free
= 0; /* Starting block # of a run */
2286 unsigned long count
= 0; /* Number of blocks in the run */
2287 __le32
*block_to_free_p
= NULL
; /* Pointer into inode/ind
2290 ext3_fsblk_t nr
; /* Current block # */
2291 __le32
*p
; /* Pointer into inode/ind
2292 for current block */
2295 if (this_bh
) { /* For indirect block */
2296 BUFFER_TRACE(this_bh
, "get_write_access");
2297 err
= ext3_journal_get_write_access(handle
, this_bh
);
2298 /* Important: if we can't update the indirect pointers
2299 * to the blocks, we can't free them. */
2304 for (p
= first
; p
< last
; p
++) {
2305 nr
= le32_to_cpu(*p
);
2307 /* accumulate blocks to free if they're contiguous */
2310 block_to_free_p
= p
;
2312 } else if (nr
== block_to_free
+ count
) {
2315 ext3_clear_blocks(handle
, inode
, this_bh
,
2317 count
, block_to_free_p
, p
);
2319 block_to_free_p
= p
;
2326 ext3_clear_blocks(handle
, inode
, this_bh
, block_to_free
,
2327 count
, block_to_free_p
, p
);
2330 BUFFER_TRACE(this_bh
, "call ext3_journal_dirty_metadata");
2333 * The buffer head should have an attached journal head at this
2334 * point. However, if the data is corrupted and an indirect
2335 * block pointed to itself, it would have been detached when
2336 * the block was cleared. Check for this instead of OOPSing.
2339 ext3_journal_dirty_metadata(handle
, this_bh
);
2341 ext3_error(inode
->i_sb
, "ext3_free_data",
2342 "circular indirect block detected, "
2343 "inode=%lu, block=%llu",
2345 (unsigned long long)this_bh
->b_blocknr
);
2350 * ext3_free_branches - free an array of branches
2351 * @handle: JBD handle for this transaction
2352 * @inode: inode we are dealing with
2353 * @parent_bh: the buffer_head which contains *@first and *@last
2354 * @first: array of block numbers
2355 * @last: pointer immediately past the end of array
2356 * @depth: depth of the branches to free
2358 * We are freeing all blocks referred from these branches (numbers are
2359 * stored as little-endian 32-bit) and updating @inode->i_blocks
2362 static void ext3_free_branches(handle_t
*handle
, struct inode
*inode
,
2363 struct buffer_head
*parent_bh
,
2364 __le32
*first
, __le32
*last
, int depth
)
2369 if (is_handle_aborted(handle
))
2373 struct buffer_head
*bh
;
2374 int addr_per_block
= EXT3_ADDR_PER_BLOCK(inode
->i_sb
);
2376 while (--p
>= first
) {
2377 nr
= le32_to_cpu(*p
);
2379 continue; /* A hole */
2381 /* Go read the buffer for the next level down */
2382 bh
= sb_bread(inode
->i_sb
, nr
);
2385 * A read failure? Report error and clear slot
2389 ext3_error(inode
->i_sb
, "ext3_free_branches",
2390 "Read failure, inode=%lu, block="E3FSBLK
,
2395 /* This zaps the entire block. Bottom up. */
2396 BUFFER_TRACE(bh
, "free child branches");
2397 ext3_free_branches(handle
, inode
, bh
,
2398 (__le32
*)bh
->b_data
,
2399 (__le32
*)bh
->b_data
+ addr_per_block
,
2403 * Everything below this this pointer has been
2404 * released. Now let this top-of-subtree go.
2406 * We want the freeing of this indirect block to be
2407 * atomic in the journal with the updating of the
2408 * bitmap block which owns it. So make some room in
2411 * We zero the parent pointer *after* freeing its
2412 * pointee in the bitmaps, so if extend_transaction()
2413 * for some reason fails to put the bitmap changes and
2414 * the release into the same transaction, recovery
2415 * will merely complain about releasing a free block,
2416 * rather than leaking blocks.
2418 if (is_handle_aborted(handle
))
2420 if (try_to_extend_transaction(handle
, inode
)) {
2421 ext3_mark_inode_dirty(handle
, inode
);
2422 truncate_restart_transaction(handle
, inode
);
2426 * We've probably journalled the indirect block several
2427 * times during the truncate. But it's no longer
2428 * needed and we now drop it from the transaction via
2431 * That's easy if it's exclusively part of this
2432 * transaction. But if it's part of the committing
2433 * transaction then journal_forget() will simply
2434 * brelse() it. That means that if the underlying
2435 * block is reallocated in ext3_get_block(),
2436 * unmap_underlying_metadata() will find this block
2437 * and will try to get rid of it. damn, damn. Thus
2438 * we don't allow a block to be reallocated until
2439 * a transaction freeing it has fully committed.
2441 * We also have to make sure journal replay after a
2442 * crash does not overwrite non-journaled data blocks
2443 * with old metadata when the block got reallocated for
2444 * data. Thus we have to store a revoke record for a
2445 * block in the same transaction in which we free the
2448 ext3_forget(handle
, 1, inode
, bh
, bh
->b_blocknr
);
2450 ext3_free_blocks(handle
, inode
, nr
, 1);
2454 * The block which we have just freed is
2455 * pointed to by an indirect block: journal it
2457 BUFFER_TRACE(parent_bh
, "get_write_access");
2458 if (!ext3_journal_get_write_access(handle
,
2461 BUFFER_TRACE(parent_bh
,
2462 "call ext3_journal_dirty_metadata");
2463 ext3_journal_dirty_metadata(handle
,
2469 /* We have reached the bottom of the tree. */
2470 BUFFER_TRACE(parent_bh
, "free data blocks");
2471 ext3_free_data(handle
, inode
, parent_bh
, first
, last
);
2475 int ext3_can_truncate(struct inode
*inode
)
2477 if (S_ISREG(inode
->i_mode
))
2479 if (S_ISDIR(inode
->i_mode
))
2481 if (S_ISLNK(inode
->i_mode
))
2482 return !ext3_inode_is_fast_symlink(inode
);
2489 * We block out ext3_get_block() block instantiations across the entire
2490 * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2491 * simultaneously on behalf of the same inode.
2493 * As we work through the truncate and commmit bits of it to the journal there
2494 * is one core, guiding principle: the file's tree must always be consistent on
2495 * disk. We must be able to restart the truncate after a crash.
2497 * The file's tree may be transiently inconsistent in memory (although it
2498 * probably isn't), but whenever we close off and commit a journal transaction,
2499 * the contents of (the filesystem + the journal) must be consistent and
2500 * restartable. It's pretty simple, really: bottom up, right to left (although
2501 * left-to-right works OK too).
2503 * Note that at recovery time, journal replay occurs *before* the restart of
2504 * truncate against the orphan inode list.
2506 * The committed inode has the new, desired i_size (which is the same as
2507 * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
2508 * that this inode's truncate did not complete and it will again call
2509 * ext3_truncate() to have another go. So there will be instantiated blocks
2510 * to the right of the truncation point in a crashed ext3 filesystem. But
2511 * that's fine - as long as they are linked from the inode, the post-crash
2512 * ext3_truncate() run will find them and release them.
2514 void ext3_truncate(struct inode
*inode
)
2517 struct ext3_inode_info
*ei
= EXT3_I(inode
);
2518 __le32
*i_data
= ei
->i_data
;
2519 int addr_per_block
= EXT3_ADDR_PER_BLOCK(inode
->i_sb
);
2526 unsigned blocksize
= inode
->i_sb
->s_blocksize
;
2528 trace_ext3_truncate_enter(inode
);
2530 if (!ext3_can_truncate(inode
))
2533 if (inode
->i_size
== 0 && ext3_should_writeback_data(inode
))
2534 ext3_set_inode_state(inode
, EXT3_STATE_FLUSH_ON_CLOSE
);
2536 handle
= start_transaction(inode
);
2540 last_block
= (inode
->i_size
+ blocksize
-1)
2541 >> EXT3_BLOCK_SIZE_BITS(inode
->i_sb
);
2542 n
= ext3_block_to_path(inode
, last_block
, offsets
, NULL
);
2544 goto out_stop
; /* error */
2547 * OK. This truncate is going to happen. We add the inode to the
2548 * orphan list, so that if this truncate spans multiple transactions,
2549 * and we crash, we will resume the truncate when the filesystem
2550 * recovers. It also marks the inode dirty, to catch the new size.
2552 * Implication: the file must always be in a sane, consistent
2553 * truncatable state while each transaction commits.
2555 if (ext3_orphan_add(handle
, inode
))
2559 * The orphan list entry will now protect us from any crash which
2560 * occurs before the truncate completes, so it is now safe to propagate
2561 * the new, shorter inode size (held for now in i_size) into the
2562 * on-disk inode. We do this via i_disksize, which is the value which
2563 * ext3 *really* writes onto the disk inode.
2565 ei
->i_disksize
= inode
->i_size
;
2568 * From here we block out all ext3_get_block() callers who want to
2569 * modify the block allocation tree.
2571 mutex_lock(&ei
->truncate_mutex
);
2573 if (n
== 1) { /* direct blocks */
2574 ext3_free_data(handle
, inode
, NULL
, i_data
+offsets
[0],
2575 i_data
+ EXT3_NDIR_BLOCKS
);
2579 partial
= ext3_find_shared(inode
, n
, offsets
, chain
, &nr
);
2580 /* Kill the top of shared branch (not detached) */
2582 if (partial
== chain
) {
2583 /* Shared branch grows from the inode */
2584 ext3_free_branches(handle
, inode
, NULL
,
2585 &nr
, &nr
+1, (chain
+n
-1) - partial
);
2588 * We mark the inode dirty prior to restart,
2589 * and prior to stop. No need for it here.
2592 /* Shared branch grows from an indirect block */
2593 ext3_free_branches(handle
, inode
, partial
->bh
,
2595 partial
->p
+1, (chain
+n
-1) - partial
);
2598 /* Clear the ends of indirect blocks on the shared branch */
2599 while (partial
> chain
) {
2600 ext3_free_branches(handle
, inode
, partial
->bh
, partial
->p
+ 1,
2601 (__le32
*)partial
->bh
->b_data
+addr_per_block
,
2602 (chain
+n
-1) - partial
);
2603 BUFFER_TRACE(partial
->bh
, "call brelse");
2604 brelse (partial
->bh
);
2608 /* Kill the remaining (whole) subtrees */
2609 switch (offsets
[0]) {
2611 nr
= i_data
[EXT3_IND_BLOCK
];
2613 ext3_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 1);
2614 i_data
[EXT3_IND_BLOCK
] = 0;
2616 case EXT3_IND_BLOCK
:
2617 nr
= i_data
[EXT3_DIND_BLOCK
];
2619 ext3_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 2);
2620 i_data
[EXT3_DIND_BLOCK
] = 0;
2622 case EXT3_DIND_BLOCK
:
2623 nr
= i_data
[EXT3_TIND_BLOCK
];
2625 ext3_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 3);
2626 i_data
[EXT3_TIND_BLOCK
] = 0;
2628 case EXT3_TIND_BLOCK
:
2632 ext3_discard_reservation(inode
);
2634 mutex_unlock(&ei
->truncate_mutex
);
2635 inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME_SEC
;
2636 ext3_mark_inode_dirty(handle
, inode
);
2639 * In a multi-transaction truncate, we only make the final transaction
2646 * If this was a simple ftruncate(), and the file will remain alive
2647 * then we need to clear up the orphan record which we created above.
2648 * However, if this was a real unlink then we were called by
2649 * ext3_evict_inode(), and we allow that function to clean up the
2650 * orphan info for us.
2653 ext3_orphan_del(handle
, inode
);
2655 ext3_journal_stop(handle
);
2656 trace_ext3_truncate_exit(inode
);
2660 * Delete the inode from orphan list so that it doesn't stay there
2661 * forever and trigger assertion on umount.
2664 ext3_orphan_del(NULL
, inode
);
2665 trace_ext3_truncate_exit(inode
);
2668 static ext3_fsblk_t
ext3_get_inode_block(struct super_block
*sb
,
2669 unsigned long ino
, struct ext3_iloc
*iloc
)
2671 unsigned long block_group
;
2672 unsigned long offset
;
2674 struct ext3_group_desc
*gdp
;
2676 if (!ext3_valid_inum(sb
, ino
)) {
2678 * This error is already checked for in namei.c unless we are
2679 * looking at an NFS filehandle, in which case no error
2685 block_group
= (ino
- 1) / EXT3_INODES_PER_GROUP(sb
);
2686 gdp
= ext3_get_group_desc(sb
, block_group
, NULL
);
2690 * Figure out the offset within the block group inode table
2692 offset
= ((ino
- 1) % EXT3_INODES_PER_GROUP(sb
)) *
2693 EXT3_INODE_SIZE(sb
);
2694 block
= le32_to_cpu(gdp
->bg_inode_table
) +
2695 (offset
>> EXT3_BLOCK_SIZE_BITS(sb
));
2697 iloc
->block_group
= block_group
;
2698 iloc
->offset
= offset
& (EXT3_BLOCK_SIZE(sb
) - 1);
2703 * ext3_get_inode_loc returns with an extra refcount against the inode's
2704 * underlying buffer_head on success. If 'in_mem' is true, we have all
2705 * data in memory that is needed to recreate the on-disk version of this
2708 static int __ext3_get_inode_loc(struct inode
*inode
,
2709 struct ext3_iloc
*iloc
, int in_mem
)
2712 struct buffer_head
*bh
;
2714 block
= ext3_get_inode_block(inode
->i_sb
, inode
->i_ino
, iloc
);
2718 bh
= sb_getblk(inode
->i_sb
, block
);
2720 ext3_error (inode
->i_sb
, "ext3_get_inode_loc",
2721 "unable to read inode block - "
2722 "inode=%lu, block="E3FSBLK
,
2723 inode
->i_ino
, block
);
2726 if (!buffer_uptodate(bh
)) {
2730 * If the buffer has the write error flag, we have failed
2731 * to write out another inode in the same block. In this
2732 * case, we don't have to read the block because we may
2733 * read the old inode data successfully.
2735 if (buffer_write_io_error(bh
) && !buffer_uptodate(bh
))
2736 set_buffer_uptodate(bh
);
2738 if (buffer_uptodate(bh
)) {
2739 /* someone brought it uptodate while we waited */
2745 * If we have all information of the inode in memory and this
2746 * is the only valid inode in the block, we need not read the
2750 struct buffer_head
*bitmap_bh
;
2751 struct ext3_group_desc
*desc
;
2752 int inodes_per_buffer
;
2753 int inode_offset
, i
;
2757 block_group
= (inode
->i_ino
- 1) /
2758 EXT3_INODES_PER_GROUP(inode
->i_sb
);
2759 inodes_per_buffer
= bh
->b_size
/
2760 EXT3_INODE_SIZE(inode
->i_sb
);
2761 inode_offset
= ((inode
->i_ino
- 1) %
2762 EXT3_INODES_PER_GROUP(inode
->i_sb
));
2763 start
= inode_offset
& ~(inodes_per_buffer
- 1);
2765 /* Is the inode bitmap in cache? */
2766 desc
= ext3_get_group_desc(inode
->i_sb
,
2771 bitmap_bh
= sb_getblk(inode
->i_sb
,
2772 le32_to_cpu(desc
->bg_inode_bitmap
));
2777 * If the inode bitmap isn't in cache then the
2778 * optimisation may end up performing two reads instead
2779 * of one, so skip it.
2781 if (!buffer_uptodate(bitmap_bh
)) {
2785 for (i
= start
; i
< start
+ inodes_per_buffer
; i
++) {
2786 if (i
== inode_offset
)
2788 if (ext3_test_bit(i
, bitmap_bh
->b_data
))
2792 if (i
== start
+ inodes_per_buffer
) {
2793 /* all other inodes are free, so skip I/O */
2794 memset(bh
->b_data
, 0, bh
->b_size
);
2795 set_buffer_uptodate(bh
);
2803 * There are other valid inodes in the buffer, this inode
2804 * has in-inode xattrs, or we don't have this inode in memory.
2805 * Read the block from disk.
2807 trace_ext3_load_inode(inode
);
2809 bh
->b_end_io
= end_buffer_read_sync
;
2810 submit_bh(READ
| REQ_META
| REQ_PRIO
, bh
);
2812 if (!buffer_uptodate(bh
)) {
2813 ext3_error(inode
->i_sb
, "ext3_get_inode_loc",
2814 "unable to read inode block - "
2815 "inode=%lu, block="E3FSBLK
,
2816 inode
->i_ino
, block
);
2826 int ext3_get_inode_loc(struct inode
*inode
, struct ext3_iloc
*iloc
)
2828 /* We have all inode data except xattrs in memory here. */
2829 return __ext3_get_inode_loc(inode
, iloc
,
2830 !ext3_test_inode_state(inode
, EXT3_STATE_XATTR
));
2833 void ext3_set_inode_flags(struct inode
*inode
)
2835 unsigned int flags
= EXT3_I(inode
)->i_flags
;
2837 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
2838 if (flags
& EXT3_SYNC_FL
)
2839 inode
->i_flags
|= S_SYNC
;
2840 if (flags
& EXT3_APPEND_FL
)
2841 inode
->i_flags
|= S_APPEND
;
2842 if (flags
& EXT3_IMMUTABLE_FL
)
2843 inode
->i_flags
|= S_IMMUTABLE
;
2844 if (flags
& EXT3_NOATIME_FL
)
2845 inode
->i_flags
|= S_NOATIME
;
2846 if (flags
& EXT3_DIRSYNC_FL
)
2847 inode
->i_flags
|= S_DIRSYNC
;
2850 /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
2851 void ext3_get_inode_flags(struct ext3_inode_info
*ei
)
2853 unsigned int flags
= ei
->vfs_inode
.i_flags
;
2855 ei
->i_flags
&= ~(EXT3_SYNC_FL
|EXT3_APPEND_FL
|
2856 EXT3_IMMUTABLE_FL
|EXT3_NOATIME_FL
|EXT3_DIRSYNC_FL
);
2858 ei
->i_flags
|= EXT3_SYNC_FL
;
2859 if (flags
& S_APPEND
)
2860 ei
->i_flags
|= EXT3_APPEND_FL
;
2861 if (flags
& S_IMMUTABLE
)
2862 ei
->i_flags
|= EXT3_IMMUTABLE_FL
;
2863 if (flags
& S_NOATIME
)
2864 ei
->i_flags
|= EXT3_NOATIME_FL
;
2865 if (flags
& S_DIRSYNC
)
2866 ei
->i_flags
|= EXT3_DIRSYNC_FL
;
2869 struct inode
*ext3_iget(struct super_block
*sb
, unsigned long ino
)
2871 struct ext3_iloc iloc
;
2872 struct ext3_inode
*raw_inode
;
2873 struct ext3_inode_info
*ei
;
2874 struct buffer_head
*bh
;
2875 struct inode
*inode
;
2876 journal_t
*journal
= EXT3_SB(sb
)->s_journal
;
2877 transaction_t
*transaction
;
2881 inode
= iget_locked(sb
, ino
);
2883 return ERR_PTR(-ENOMEM
);
2884 if (!(inode
->i_state
& I_NEW
))
2888 ei
->i_block_alloc_info
= NULL
;
2890 ret
= __ext3_get_inode_loc(inode
, &iloc
, 0);
2894 raw_inode
= ext3_raw_inode(&iloc
);
2895 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
2896 inode
->i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
2897 inode
->i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
2898 if(!(test_opt (inode
->i_sb
, NO_UID32
))) {
2899 inode
->i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
2900 inode
->i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
2902 inode
->i_nlink
= le16_to_cpu(raw_inode
->i_links_count
);
2903 inode
->i_size
= le32_to_cpu(raw_inode
->i_size
);
2904 inode
->i_atime
.tv_sec
= (signed)le32_to_cpu(raw_inode
->i_atime
);
2905 inode
->i_ctime
.tv_sec
= (signed)le32_to_cpu(raw_inode
->i_ctime
);
2906 inode
->i_mtime
.tv_sec
= (signed)le32_to_cpu(raw_inode
->i_mtime
);
2907 inode
->i_atime
.tv_nsec
= inode
->i_ctime
.tv_nsec
= inode
->i_mtime
.tv_nsec
= 0;
2909 ei
->i_state_flags
= 0;
2910 ei
->i_dir_start_lookup
= 0;
2911 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
2912 /* We now have enough fields to check if the inode was active or not.
2913 * This is needed because nfsd might try to access dead inodes
2914 * the test is that same one that e2fsck uses
2915 * NeilBrown 1999oct15
2917 if (inode
->i_nlink
== 0) {
2918 if (inode
->i_mode
== 0 ||
2919 !(EXT3_SB(inode
->i_sb
)->s_mount_state
& EXT3_ORPHAN_FS
)) {
2920 /* this inode is deleted */
2925 /* The only unlinked inodes we let through here have
2926 * valid i_mode and are being read by the orphan
2927 * recovery code: that's fine, we're about to complete
2928 * the process of deleting those. */
2930 inode
->i_blocks
= le32_to_cpu(raw_inode
->i_blocks
);
2931 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
2932 #ifdef EXT3_FRAGMENTS
2933 ei
->i_faddr
= le32_to_cpu(raw_inode
->i_faddr
);
2934 ei
->i_frag_no
= raw_inode
->i_frag
;
2935 ei
->i_frag_size
= raw_inode
->i_fsize
;
2937 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl
);
2938 if (!S_ISREG(inode
->i_mode
)) {
2939 ei
->i_dir_acl
= le32_to_cpu(raw_inode
->i_dir_acl
);
2942 ((__u64
)le32_to_cpu(raw_inode
->i_size_high
)) << 32;
2944 ei
->i_disksize
= inode
->i_size
;
2945 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
2946 ei
->i_block_group
= iloc
.block_group
;
2948 * NOTE! The in-memory inode i_data array is in little-endian order
2949 * even on big-endian machines: we do NOT byteswap the block numbers!
2951 for (block
= 0; block
< EXT3_N_BLOCKS
; block
++)
2952 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
2953 INIT_LIST_HEAD(&ei
->i_orphan
);
2956 * Set transaction id's of transactions that have to be committed
2957 * to finish f[data]sync. We set them to currently running transaction
2958 * as we cannot be sure that the inode or some of its metadata isn't
2959 * part of the transaction - the inode could have been reclaimed and
2960 * now it is reread from disk.
2965 spin_lock(&journal
->j_state_lock
);
2966 if (journal
->j_running_transaction
)
2967 transaction
= journal
->j_running_transaction
;
2969 transaction
= journal
->j_committing_transaction
;
2971 tid
= transaction
->t_tid
;
2973 tid
= journal
->j_commit_sequence
;
2974 spin_unlock(&journal
->j_state_lock
);
2975 atomic_set(&ei
->i_sync_tid
, tid
);
2976 atomic_set(&ei
->i_datasync_tid
, tid
);
2979 if (inode
->i_ino
>= EXT3_FIRST_INO(inode
->i_sb
) + 1 &&
2980 EXT3_INODE_SIZE(inode
->i_sb
) > EXT3_GOOD_OLD_INODE_SIZE
) {
2982 * When mke2fs creates big inodes it does not zero out
2983 * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
2984 * so ignore those first few inodes.
2986 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
2987 if (EXT3_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
2988 EXT3_INODE_SIZE(inode
->i_sb
)) {
2993 if (ei
->i_extra_isize
== 0) {
2994 /* The extra space is currently unused. Use it. */
2995 ei
->i_extra_isize
= sizeof(struct ext3_inode
) -
2996 EXT3_GOOD_OLD_INODE_SIZE
;
2998 __le32
*magic
= (void *)raw_inode
+
2999 EXT3_GOOD_OLD_INODE_SIZE
+
3001 if (*magic
== cpu_to_le32(EXT3_XATTR_MAGIC
))
3002 ext3_set_inode_state(inode
, EXT3_STATE_XATTR
);
3005 ei
->i_extra_isize
= 0;
3007 if (S_ISREG(inode
->i_mode
)) {
3008 inode
->i_op
= &ext3_file_inode_operations
;
3009 inode
->i_fop
= &ext3_file_operations
;
3010 ext3_set_aops(inode
);
3011 } else if (S_ISDIR(inode
->i_mode
)) {
3012 inode
->i_op
= &ext3_dir_inode_operations
;
3013 inode
->i_fop
= &ext3_dir_operations
;
3014 } else if (S_ISLNK(inode
->i_mode
)) {
3015 if (ext3_inode_is_fast_symlink(inode
)) {
3016 inode
->i_op
= &ext3_fast_symlink_inode_operations
;
3017 nd_terminate_link(ei
->i_data
, inode
->i_size
,
3018 sizeof(ei
->i_data
) - 1);
3020 inode
->i_op
= &ext3_symlink_inode_operations
;
3021 ext3_set_aops(inode
);
3024 inode
->i_op
= &ext3_special_inode_operations
;
3025 if (raw_inode
->i_block
[0])
3026 init_special_inode(inode
, inode
->i_mode
,
3027 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
3029 init_special_inode(inode
, inode
->i_mode
,
3030 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
3033 ext3_set_inode_flags(inode
);
3034 unlock_new_inode(inode
);
3039 return ERR_PTR(ret
);
3043 * Post the struct inode info into an on-disk inode location in the
3044 * buffer-cache. This gobbles the caller's reference to the
3045 * buffer_head in the inode location struct.
3047 * The caller must have write access to iloc->bh.
3049 static int ext3_do_update_inode(handle_t
*handle
,
3050 struct inode
*inode
,
3051 struct ext3_iloc
*iloc
)
3053 struct ext3_inode
*raw_inode
= ext3_raw_inode(iloc
);
3054 struct ext3_inode_info
*ei
= EXT3_I(inode
);
3055 struct buffer_head
*bh
= iloc
->bh
;
3056 int err
= 0, rc
, block
;
3059 /* we can't allow multiple procs in here at once, its a bit racey */
3062 /* For fields not not tracking in the in-memory inode,
3063 * initialise them to zero for new inodes. */
3064 if (ext3_test_inode_state(inode
, EXT3_STATE_NEW
))
3065 memset(raw_inode
, 0, EXT3_SB(inode
->i_sb
)->s_inode_size
);
3067 ext3_get_inode_flags(ei
);
3068 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
3069 if(!(test_opt(inode
->i_sb
, NO_UID32
))) {
3070 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(inode
->i_uid
));
3071 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(inode
->i_gid
));
3073 * Fix up interoperability with old kernels. Otherwise, old inodes get
3074 * re-used with the upper 16 bits of the uid/gid intact
3077 raw_inode
->i_uid_high
=
3078 cpu_to_le16(high_16_bits(inode
->i_uid
));
3079 raw_inode
->i_gid_high
=
3080 cpu_to_le16(high_16_bits(inode
->i_gid
));
3082 raw_inode
->i_uid_high
= 0;
3083 raw_inode
->i_gid_high
= 0;
3086 raw_inode
->i_uid_low
=
3087 cpu_to_le16(fs_high2lowuid(inode
->i_uid
));
3088 raw_inode
->i_gid_low
=
3089 cpu_to_le16(fs_high2lowgid(inode
->i_gid
));
3090 raw_inode
->i_uid_high
= 0;
3091 raw_inode
->i_gid_high
= 0;
3093 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
3094 raw_inode
->i_size
= cpu_to_le32(ei
->i_disksize
);
3095 raw_inode
->i_atime
= cpu_to_le32(inode
->i_atime
.tv_sec
);
3096 raw_inode
->i_ctime
= cpu_to_le32(inode
->i_ctime
.tv_sec
);
3097 raw_inode
->i_mtime
= cpu_to_le32(inode
->i_mtime
.tv_sec
);
3098 raw_inode
->i_blocks
= cpu_to_le32(inode
->i_blocks
);
3099 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
3100 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
);
3101 #ifdef EXT3_FRAGMENTS
3102 raw_inode
->i_faddr
= cpu_to_le32(ei
->i_faddr
);
3103 raw_inode
->i_frag
= ei
->i_frag_no
;
3104 raw_inode
->i_fsize
= ei
->i_frag_size
;
3106 raw_inode
->i_file_acl
= cpu_to_le32(ei
->i_file_acl
);
3107 if (!S_ISREG(inode
->i_mode
)) {
3108 raw_inode
->i_dir_acl
= cpu_to_le32(ei
->i_dir_acl
);
3110 raw_inode
->i_size_high
=
3111 cpu_to_le32(ei
->i_disksize
>> 32);
3112 if (ei
->i_disksize
> 0x7fffffffULL
) {
3113 struct super_block
*sb
= inode
->i_sb
;
3114 if (!EXT3_HAS_RO_COMPAT_FEATURE(sb
,
3115 EXT3_FEATURE_RO_COMPAT_LARGE_FILE
) ||
3116 EXT3_SB(sb
)->s_es
->s_rev_level
==
3117 cpu_to_le32(EXT3_GOOD_OLD_REV
)) {
3118 /* If this is the first large file
3119 * created, add a flag to the superblock.
3122 err
= ext3_journal_get_write_access(handle
,
3123 EXT3_SB(sb
)->s_sbh
);
3127 ext3_update_dynamic_rev(sb
);
3128 EXT3_SET_RO_COMPAT_FEATURE(sb
,
3129 EXT3_FEATURE_RO_COMPAT_LARGE_FILE
);
3131 err
= ext3_journal_dirty_metadata(handle
,
3132 EXT3_SB(sb
)->s_sbh
);
3133 /* get our lock and start over */
3138 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
3139 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
3140 if (old_valid_dev(inode
->i_rdev
)) {
3141 raw_inode
->i_block
[0] =
3142 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
3143 raw_inode
->i_block
[1] = 0;
3145 raw_inode
->i_block
[0] = 0;
3146 raw_inode
->i_block
[1] =
3147 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
3148 raw_inode
->i_block
[2] = 0;
3150 } else for (block
= 0; block
< EXT3_N_BLOCKS
; block
++)
3151 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
3153 if (ei
->i_extra_isize
)
3154 raw_inode
->i_extra_isize
= cpu_to_le16(ei
->i_extra_isize
);
3156 BUFFER_TRACE(bh
, "call ext3_journal_dirty_metadata");
3158 rc
= ext3_journal_dirty_metadata(handle
, bh
);
3161 ext3_clear_inode_state(inode
, EXT3_STATE_NEW
);
3163 atomic_set(&ei
->i_sync_tid
, handle
->h_transaction
->t_tid
);
3166 ext3_std_error(inode
->i_sb
, err
);
3171 * ext3_write_inode()
3173 * We are called from a few places:
3175 * - Within generic_file_write() for O_SYNC files.
3176 * Here, there will be no transaction running. We wait for any running
3177 * trasnaction to commit.
3179 * - Within sys_sync(), kupdate and such.
3180 * We wait on commit, if tol to.
3182 * - Within prune_icache() (PF_MEMALLOC == true)
3183 * Here we simply return. We can't afford to block kswapd on the
3186 * In all cases it is actually safe for us to return without doing anything,
3187 * because the inode has been copied into a raw inode buffer in
3188 * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
3191 * Note that we are absolutely dependent upon all inode dirtiers doing the
3192 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3193 * which we are interested.
3195 * It would be a bug for them to not do this. The code:
3197 * mark_inode_dirty(inode)
3199 * inode->i_size = expr;
3201 * is in error because a kswapd-driven write_inode() could occur while
3202 * `stuff()' is running, and the new i_size will be lost. Plus the inode
3203 * will no longer be on the superblock's dirty inode list.
3205 int ext3_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
3207 if (current
->flags
& PF_MEMALLOC
)
3210 if (ext3_journal_current_handle()) {
3211 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3216 if (wbc
->sync_mode
!= WB_SYNC_ALL
)
3219 return ext3_force_commit(inode
->i_sb
);
3225 * Called from notify_change.
3227 * We want to trap VFS attempts to truncate the file as soon as
3228 * possible. In particular, we want to make sure that when the VFS
3229 * shrinks i_size, we put the inode on the orphan list and modify
3230 * i_disksize immediately, so that during the subsequent flushing of
3231 * dirty pages and freeing of disk blocks, we can guarantee that any
3232 * commit will leave the blocks being flushed in an unused state on
3233 * disk. (On recovery, the inode will get truncated and the blocks will
3234 * be freed, so we have a strong guarantee that no future commit will
3235 * leave these blocks visible to the user.)
3237 * Called with inode->sem down.
3239 int ext3_setattr(struct dentry
*dentry
, struct iattr
*attr
)
3241 struct inode
*inode
= dentry
->d_inode
;
3243 const unsigned int ia_valid
= attr
->ia_valid
;
3245 error
= inode_change_ok(inode
, attr
);
3249 if (is_quota_modification(inode
, attr
))
3250 dquot_initialize(inode
);
3251 if ((ia_valid
& ATTR_UID
&& attr
->ia_uid
!= inode
->i_uid
) ||
3252 (ia_valid
& ATTR_GID
&& attr
->ia_gid
!= inode
->i_gid
)) {
3255 /* (user+group)*(old+new) structure, inode write (sb,
3256 * inode block, ? - but truncate inode update has it) */
3257 handle
= ext3_journal_start(inode
, EXT3_MAXQUOTAS_INIT_BLOCKS(inode
->i_sb
)+
3258 EXT3_MAXQUOTAS_DEL_BLOCKS(inode
->i_sb
)+3);
3259 if (IS_ERR(handle
)) {
3260 error
= PTR_ERR(handle
);
3263 error
= dquot_transfer(inode
, attr
);
3265 ext3_journal_stop(handle
);
3268 /* Update corresponding info in inode so that everything is in
3269 * one transaction */
3270 if (attr
->ia_valid
& ATTR_UID
)
3271 inode
->i_uid
= attr
->ia_uid
;
3272 if (attr
->ia_valid
& ATTR_GID
)
3273 inode
->i_gid
= attr
->ia_gid
;
3274 error
= ext3_mark_inode_dirty(handle
, inode
);
3275 ext3_journal_stop(handle
);
3278 if (attr
->ia_valid
& ATTR_SIZE
)
3279 inode_dio_wait(inode
);
3281 if (S_ISREG(inode
->i_mode
) &&
3282 attr
->ia_valid
& ATTR_SIZE
&& attr
->ia_size
< inode
->i_size
) {
3285 handle
= ext3_journal_start(inode
, 3);
3286 if (IS_ERR(handle
)) {
3287 error
= PTR_ERR(handle
);
3291 error
= ext3_orphan_add(handle
, inode
);
3293 ext3_journal_stop(handle
);
3296 EXT3_I(inode
)->i_disksize
= attr
->ia_size
;
3297 error
= ext3_mark_inode_dirty(handle
, inode
);
3298 ext3_journal_stop(handle
);
3300 /* Some hard fs error must have happened. Bail out. */
3301 ext3_orphan_del(NULL
, inode
);
3304 rc
= ext3_block_truncate_page(inode
, attr
->ia_size
);
3306 /* Cleanup orphan list and exit */
3307 handle
= ext3_journal_start(inode
, 3);
3308 if (IS_ERR(handle
)) {
3309 ext3_orphan_del(NULL
, inode
);
3312 ext3_orphan_del(handle
, inode
);
3313 ext3_journal_stop(handle
);
3318 if ((attr
->ia_valid
& ATTR_SIZE
) &&
3319 attr
->ia_size
!= i_size_read(inode
)) {
3320 truncate_setsize(inode
, attr
->ia_size
);
3321 ext3_truncate(inode
);
3324 setattr_copy(inode
, attr
);
3325 mark_inode_dirty(inode
);
3327 if (ia_valid
& ATTR_MODE
)
3328 rc
= ext3_acl_chmod(inode
);
3331 ext3_std_error(inode
->i_sb
, error
);
3339 * How many blocks doth make a writepage()?
3341 * With N blocks per page, it may be:
3346 * N+5 bitmap blocks (from the above)
3347 * N+5 group descriptor summary blocks
3350 * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3352 * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3354 * With ordered or writeback data it's the same, less the N data blocks.
3356 * If the inode's direct blocks can hold an integral number of pages then a
3357 * page cannot straddle two indirect blocks, and we can only touch one indirect
3358 * and dindirect block, and the "5" above becomes "3".
3360 * This still overestimates under most circumstances. If we were to pass the
3361 * start and end offsets in here as well we could do block_to_path() on each
3362 * block and work out the exact number of indirects which are touched. Pah.
3365 static int ext3_writepage_trans_blocks(struct inode
*inode
)
3367 int bpp
= ext3_journal_blocks_per_page(inode
);
3368 int indirects
= (EXT3_NDIR_BLOCKS
% bpp
) ? 5 : 3;
3371 if (ext3_should_journal_data(inode
))
3372 ret
= 3 * (bpp
+ indirects
) + 2;
3374 ret
= 2 * (bpp
+ indirects
) + indirects
+ 2;
3377 /* We know that structure was already allocated during dquot_initialize so
3378 * we will be updating only the data blocks + inodes */
3379 ret
+= EXT3_MAXQUOTAS_TRANS_BLOCKS(inode
->i_sb
);
3386 * The caller must have previously called ext3_reserve_inode_write().
3387 * Give this, we know that the caller already has write access to iloc->bh.
3389 int ext3_mark_iloc_dirty(handle_t
*handle
,
3390 struct inode
*inode
, struct ext3_iloc
*iloc
)
3394 /* the do_update_inode consumes one bh->b_count */
3397 /* ext3_do_update_inode() does journal_dirty_metadata */
3398 err
= ext3_do_update_inode(handle
, inode
, iloc
);
3404 * On success, We end up with an outstanding reference count against
3405 * iloc->bh. This _must_ be cleaned up later.
3409 ext3_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
3410 struct ext3_iloc
*iloc
)
3414 err
= ext3_get_inode_loc(inode
, iloc
);
3416 BUFFER_TRACE(iloc
->bh
, "get_write_access");
3417 err
= ext3_journal_get_write_access(handle
, iloc
->bh
);
3424 ext3_std_error(inode
->i_sb
, err
);
3429 * What we do here is to mark the in-core inode as clean with respect to inode
3430 * dirtiness (it may still be data-dirty).
3431 * This means that the in-core inode may be reaped by prune_icache
3432 * without having to perform any I/O. This is a very good thing,
3433 * because *any* task may call prune_icache - even ones which
3434 * have a transaction open against a different journal.
3436 * Is this cheating? Not really. Sure, we haven't written the
3437 * inode out, but prune_icache isn't a user-visible syncing function.
3438 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3439 * we start and wait on commits.
3441 * Is this efficient/effective? Well, we're being nice to the system
3442 * by cleaning up our inodes proactively so they can be reaped
3443 * without I/O. But we are potentially leaving up to five seconds'
3444 * worth of inodes floating about which prune_icache wants us to
3445 * write out. One way to fix that would be to get prune_icache()
3446 * to do a write_super() to free up some memory. It has the desired
3449 int ext3_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
3451 struct ext3_iloc iloc
;
3455 trace_ext3_mark_inode_dirty(inode
, _RET_IP_
);
3456 err
= ext3_reserve_inode_write(handle
, inode
, &iloc
);
3458 err
= ext3_mark_iloc_dirty(handle
, inode
, &iloc
);
3463 * ext3_dirty_inode() is called from __mark_inode_dirty()
3465 * We're really interested in the case where a file is being extended.
3466 * i_size has been changed by generic_commit_write() and we thus need
3467 * to include the updated inode in the current transaction.
3469 * Also, dquot_alloc_space() will always dirty the inode when blocks
3470 * are allocated to the file.
3472 * If the inode is marked synchronous, we don't honour that here - doing
3473 * so would cause a commit on atime updates, which we don't bother doing.
3474 * We handle synchronous inodes at the highest possible level.
3476 void ext3_dirty_inode(struct inode
*inode
, int flags
)
3478 handle_t
*current_handle
= ext3_journal_current_handle();
3481 handle
= ext3_journal_start(inode
, 2);
3484 if (current_handle
&&
3485 current_handle
->h_transaction
!= handle
->h_transaction
) {
3486 /* This task has a transaction open against a different fs */
3487 printk(KERN_EMERG
"%s: transactions do not match!\n",
3490 jbd_debug(5, "marking dirty. outer handle=%p\n",
3492 ext3_mark_inode_dirty(handle
, inode
);
3494 ext3_journal_stop(handle
);
3501 * Bind an inode's backing buffer_head into this transaction, to prevent
3502 * it from being flushed to disk early. Unlike
3503 * ext3_reserve_inode_write, this leaves behind no bh reference and
3504 * returns no iloc structure, so the caller needs to repeat the iloc
3505 * lookup to mark the inode dirty later.
3507 static int ext3_pin_inode(handle_t
*handle
, struct inode
*inode
)
3509 struct ext3_iloc iloc
;
3513 err
= ext3_get_inode_loc(inode
, &iloc
);
3515 BUFFER_TRACE(iloc
.bh
, "get_write_access");
3516 err
= journal_get_write_access(handle
, iloc
.bh
);
3518 err
= ext3_journal_dirty_metadata(handle
,
3523 ext3_std_error(inode
->i_sb
, err
);
3528 int ext3_change_inode_journal_flag(struct inode
*inode
, int val
)
3535 * We have to be very careful here: changing a data block's
3536 * journaling status dynamically is dangerous. If we write a
3537 * data block to the journal, change the status and then delete
3538 * that block, we risk forgetting to revoke the old log record
3539 * from the journal and so a subsequent replay can corrupt data.
3540 * So, first we make sure that the journal is empty and that
3541 * nobody is changing anything.
3544 journal
= EXT3_JOURNAL(inode
);
3545 if (is_journal_aborted(journal
))
3548 journal_lock_updates(journal
);
3549 journal_flush(journal
);
3552 * OK, there are no updates running now, and all cached data is
3553 * synced to disk. We are now in a completely consistent state
3554 * which doesn't have anything in the journal, and we know that
3555 * no filesystem updates are running, so it is safe to modify
3556 * the inode's in-core data-journaling state flag now.
3560 EXT3_I(inode
)->i_flags
|= EXT3_JOURNAL_DATA_FL
;
3562 EXT3_I(inode
)->i_flags
&= ~EXT3_JOURNAL_DATA_FL
;
3563 ext3_set_aops(inode
);
3565 journal_unlock_updates(journal
);
3567 /* Finally we can mark the inode as dirty. */
3569 handle
= ext3_journal_start(inode
, 1);
3571 return PTR_ERR(handle
);
3573 err
= ext3_mark_inode_dirty(handle
, inode
);
3575 ext3_journal_stop(handle
);
3576 ext3_std_error(inode
->i_sb
, err
);