The discovered bit in PGCCSR register indicates if the device has been
[linux-2.6/next.git] / fs / xfs / xfs_file.c
blobcbbac5cc9c26a44a82d12019d975a2c6cd7c05c0
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_bit.h"
21 #include "xfs_log.h"
22 #include "xfs_inum.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_trans.h"
26 #include "xfs_mount.h"
27 #include "xfs_bmap_btree.h"
28 #include "xfs_alloc.h"
29 #include "xfs_dinode.h"
30 #include "xfs_inode.h"
31 #include "xfs_inode_item.h"
32 #include "xfs_bmap.h"
33 #include "xfs_error.h"
34 #include "xfs_vnodeops.h"
35 #include "xfs_da_btree.h"
36 #include "xfs_ioctl.h"
37 #include "xfs_trace.h"
39 #include <linux/dcache.h>
40 #include <linux/falloc.h>
42 static const struct vm_operations_struct xfs_file_vm_ops;
45 * Locking primitives for read and write IO paths to ensure we consistently use
46 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
48 static inline void
49 xfs_rw_ilock(
50 struct xfs_inode *ip,
51 int type)
53 if (type & XFS_IOLOCK_EXCL)
54 mutex_lock(&VFS_I(ip)->i_mutex);
55 xfs_ilock(ip, type);
58 static inline void
59 xfs_rw_iunlock(
60 struct xfs_inode *ip,
61 int type)
63 xfs_iunlock(ip, type);
64 if (type & XFS_IOLOCK_EXCL)
65 mutex_unlock(&VFS_I(ip)->i_mutex);
68 static inline void
69 xfs_rw_ilock_demote(
70 struct xfs_inode *ip,
71 int type)
73 xfs_ilock_demote(ip, type);
74 if (type & XFS_IOLOCK_EXCL)
75 mutex_unlock(&VFS_I(ip)->i_mutex);
79 * xfs_iozero
81 * xfs_iozero clears the specified range of buffer supplied,
82 * and marks all the affected blocks as valid and modified. If
83 * an affected block is not allocated, it will be allocated. If
84 * an affected block is not completely overwritten, and is not
85 * valid before the operation, it will be read from disk before
86 * being partially zeroed.
88 STATIC int
89 xfs_iozero(
90 struct xfs_inode *ip, /* inode */
91 loff_t pos, /* offset in file */
92 size_t count) /* size of data to zero */
94 struct page *page;
95 struct address_space *mapping;
96 int status;
98 mapping = VFS_I(ip)->i_mapping;
99 do {
100 unsigned offset, bytes;
101 void *fsdata;
103 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
104 bytes = PAGE_CACHE_SIZE - offset;
105 if (bytes > count)
106 bytes = count;
108 status = pagecache_write_begin(NULL, mapping, pos, bytes,
109 AOP_FLAG_UNINTERRUPTIBLE,
110 &page, &fsdata);
111 if (status)
112 break;
114 zero_user(page, offset, bytes);
116 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
117 page, fsdata);
118 WARN_ON(status <= 0); /* can't return less than zero! */
119 pos += bytes;
120 count -= bytes;
121 status = 0;
122 } while (count);
124 return (-status);
127 STATIC int
128 xfs_file_fsync(
129 struct file *file,
130 loff_t start,
131 loff_t end,
132 int datasync)
134 struct inode *inode = file->f_mapping->host;
135 struct xfs_inode *ip = XFS_I(inode);
136 struct xfs_mount *mp = ip->i_mount;
137 struct xfs_trans *tp;
138 int error = 0;
139 int log_flushed = 0;
141 trace_xfs_file_fsync(ip);
143 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
144 if (error)
145 return error;
147 if (XFS_FORCED_SHUTDOWN(mp))
148 return -XFS_ERROR(EIO);
150 xfs_iflags_clear(ip, XFS_ITRUNCATED);
152 xfs_ilock(ip, XFS_IOLOCK_SHARED);
153 xfs_ioend_wait(ip);
154 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
156 if (mp->m_flags & XFS_MOUNT_BARRIER) {
158 * If we have an RT and/or log subvolume we need to make sure
159 * to flush the write cache the device used for file data
160 * first. This is to ensure newly written file data make
161 * it to disk before logging the new inode size in case of
162 * an extending write.
164 if (XFS_IS_REALTIME_INODE(ip))
165 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
166 else if (mp->m_logdev_targp != mp->m_ddev_targp)
167 xfs_blkdev_issue_flush(mp->m_ddev_targp);
171 * We always need to make sure that the required inode state is safe on
172 * disk. The inode might be clean but we still might need to force the
173 * log because of committed transactions that haven't hit the disk yet.
174 * Likewise, there could be unflushed non-transactional changes to the
175 * inode core that have to go to disk and this requires us to issue
176 * a synchronous transaction to capture these changes correctly.
178 * This code relies on the assumption that if the i_update_core field
179 * of the inode is clear and the inode is unpinned then it is clean
180 * and no action is required.
182 xfs_ilock(ip, XFS_ILOCK_SHARED);
185 * First check if the VFS inode is marked dirty. All the dirtying
186 * of non-transactional updates no goes through mark_inode_dirty*,
187 * which allows us to distinguish beteeen pure timestamp updates
188 * and i_size updates which need to be caught for fdatasync.
189 * After that also theck for the dirty state in the XFS inode, which
190 * might gets cleared when the inode gets written out via the AIL
191 * or xfs_iflush_cluster.
193 if (((inode->i_state & I_DIRTY_DATASYNC) ||
194 ((inode->i_state & I_DIRTY_SYNC) && !datasync)) &&
195 ip->i_update_core) {
197 * Kick off a transaction to log the inode core to get the
198 * updates. The sync transaction will also force the log.
200 xfs_iunlock(ip, XFS_ILOCK_SHARED);
201 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
202 error = xfs_trans_reserve(tp, 0,
203 XFS_FSYNC_TS_LOG_RES(mp), 0, 0, 0);
204 if (error) {
205 xfs_trans_cancel(tp, 0);
206 return -error;
208 xfs_ilock(ip, XFS_ILOCK_EXCL);
211 * Note - it's possible that we might have pushed ourselves out
212 * of the way during trans_reserve which would flush the inode.
213 * But there's no guarantee that the inode buffer has actually
214 * gone out yet (it's delwri). Plus the buffer could be pinned
215 * anyway if it's part of an inode in another recent
216 * transaction. So we play it safe and fire off the
217 * transaction anyway.
219 xfs_trans_ijoin(tp, ip);
220 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
221 xfs_trans_set_sync(tp);
222 error = _xfs_trans_commit(tp, 0, &log_flushed);
224 xfs_iunlock(ip, XFS_ILOCK_EXCL);
225 } else {
227 * Timestamps/size haven't changed since last inode flush or
228 * inode transaction commit. That means either nothing got
229 * written or a transaction committed which caught the updates.
230 * If the latter happened and the transaction hasn't hit the
231 * disk yet, the inode will be still be pinned. If it is,
232 * force the log.
234 if (xfs_ipincount(ip)) {
235 error = _xfs_log_force_lsn(mp,
236 ip->i_itemp->ili_last_lsn,
237 XFS_LOG_SYNC, &log_flushed);
239 xfs_iunlock(ip, XFS_ILOCK_SHARED);
243 * If we only have a single device, and the log force about was
244 * a no-op we might have to flush the data device cache here.
245 * This can only happen for fdatasync/O_DSYNC if we were overwriting
246 * an already allocated file and thus do not have any metadata to
247 * commit.
249 if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
250 mp->m_logdev_targp == mp->m_ddev_targp &&
251 !XFS_IS_REALTIME_INODE(ip) &&
252 !log_flushed)
253 xfs_blkdev_issue_flush(mp->m_ddev_targp);
255 return -error;
258 STATIC ssize_t
259 xfs_file_aio_read(
260 struct kiocb *iocb,
261 const struct iovec *iovp,
262 unsigned long nr_segs,
263 loff_t pos)
265 struct file *file = iocb->ki_filp;
266 struct inode *inode = file->f_mapping->host;
267 struct xfs_inode *ip = XFS_I(inode);
268 struct xfs_mount *mp = ip->i_mount;
269 size_t size = 0;
270 ssize_t ret = 0;
271 int ioflags = 0;
272 xfs_fsize_t n;
273 unsigned long seg;
275 XFS_STATS_INC(xs_read_calls);
277 BUG_ON(iocb->ki_pos != pos);
279 if (unlikely(file->f_flags & O_DIRECT))
280 ioflags |= IO_ISDIRECT;
281 if (file->f_mode & FMODE_NOCMTIME)
282 ioflags |= IO_INVIS;
284 /* START copy & waste from filemap.c */
285 for (seg = 0; seg < nr_segs; seg++) {
286 const struct iovec *iv = &iovp[seg];
289 * If any segment has a negative length, or the cumulative
290 * length ever wraps negative then return -EINVAL.
292 size += iv->iov_len;
293 if (unlikely((ssize_t)(size|iv->iov_len) < 0))
294 return XFS_ERROR(-EINVAL);
296 /* END copy & waste from filemap.c */
298 if (unlikely(ioflags & IO_ISDIRECT)) {
299 xfs_buftarg_t *target =
300 XFS_IS_REALTIME_INODE(ip) ?
301 mp->m_rtdev_targp : mp->m_ddev_targp;
302 if ((iocb->ki_pos & target->bt_smask) ||
303 (size & target->bt_smask)) {
304 if (iocb->ki_pos == ip->i_size)
305 return 0;
306 return -XFS_ERROR(EINVAL);
310 n = XFS_MAXIOFFSET(mp) - iocb->ki_pos;
311 if (n <= 0 || size == 0)
312 return 0;
314 if (n < size)
315 size = n;
317 if (XFS_FORCED_SHUTDOWN(mp))
318 return -EIO;
321 * Locking is a bit tricky here. If we take an exclusive lock
322 * for direct IO, we effectively serialise all new concurrent
323 * read IO to this file and block it behind IO that is currently in
324 * progress because IO in progress holds the IO lock shared. We only
325 * need to hold the lock exclusive to blow away the page cache, so
326 * only take lock exclusively if the page cache needs invalidation.
327 * This allows the normal direct IO case of no page cache pages to
328 * proceeed concurrently without serialisation.
330 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
331 if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) {
332 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
333 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
335 if (inode->i_mapping->nrpages) {
336 ret = -xfs_flushinval_pages(ip,
337 (iocb->ki_pos & PAGE_CACHE_MASK),
338 -1, FI_REMAPF_LOCKED);
339 if (ret) {
340 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
341 return ret;
344 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
347 trace_xfs_file_read(ip, size, iocb->ki_pos, ioflags);
349 ret = generic_file_aio_read(iocb, iovp, nr_segs, iocb->ki_pos);
350 if (ret > 0)
351 XFS_STATS_ADD(xs_read_bytes, ret);
353 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
354 return ret;
357 STATIC ssize_t
358 xfs_file_splice_read(
359 struct file *infilp,
360 loff_t *ppos,
361 struct pipe_inode_info *pipe,
362 size_t count,
363 unsigned int flags)
365 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
366 int ioflags = 0;
367 ssize_t ret;
369 XFS_STATS_INC(xs_read_calls);
371 if (infilp->f_mode & FMODE_NOCMTIME)
372 ioflags |= IO_INVIS;
374 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
375 return -EIO;
377 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
379 trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
381 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
382 if (ret > 0)
383 XFS_STATS_ADD(xs_read_bytes, ret);
385 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
386 return ret;
389 STATIC void
390 xfs_aio_write_isize_update(
391 struct inode *inode,
392 loff_t *ppos,
393 ssize_t bytes_written)
395 struct xfs_inode *ip = XFS_I(inode);
396 xfs_fsize_t isize = i_size_read(inode);
398 if (bytes_written > 0)
399 XFS_STATS_ADD(xs_write_bytes, bytes_written);
401 if (unlikely(bytes_written < 0 && bytes_written != -EFAULT &&
402 *ppos > isize))
403 *ppos = isize;
405 if (*ppos > ip->i_size) {
406 xfs_rw_ilock(ip, XFS_ILOCK_EXCL);
407 if (*ppos > ip->i_size)
408 ip->i_size = *ppos;
409 xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
414 * If this was a direct or synchronous I/O that failed (such as ENOSPC) then
415 * part of the I/O may have been written to disk before the error occurred. In
416 * this case the on-disk file size may have been adjusted beyond the in-memory
417 * file size and now needs to be truncated back.
419 STATIC void
420 xfs_aio_write_newsize_update(
421 struct xfs_inode *ip,
422 xfs_fsize_t new_size)
424 if (new_size == ip->i_new_size) {
425 xfs_rw_ilock(ip, XFS_ILOCK_EXCL);
426 if (new_size == ip->i_new_size)
427 ip->i_new_size = 0;
428 if (ip->i_d.di_size > ip->i_size)
429 ip->i_d.di_size = ip->i_size;
430 xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
435 * xfs_file_splice_write() does not use xfs_rw_ilock() because
436 * generic_file_splice_write() takes the i_mutex itself. This, in theory,
437 * couuld cause lock inversions between the aio_write path and the splice path
438 * if someone is doing concurrent splice(2) based writes and write(2) based
439 * writes to the same inode. The only real way to fix this is to re-implement
440 * the generic code here with correct locking orders.
442 STATIC ssize_t
443 xfs_file_splice_write(
444 struct pipe_inode_info *pipe,
445 struct file *outfilp,
446 loff_t *ppos,
447 size_t count,
448 unsigned int flags)
450 struct inode *inode = outfilp->f_mapping->host;
451 struct xfs_inode *ip = XFS_I(inode);
452 xfs_fsize_t new_size;
453 int ioflags = 0;
454 ssize_t ret;
456 XFS_STATS_INC(xs_write_calls);
458 if (outfilp->f_mode & FMODE_NOCMTIME)
459 ioflags |= IO_INVIS;
461 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
462 return -EIO;
464 xfs_ilock(ip, XFS_IOLOCK_EXCL);
466 new_size = *ppos + count;
468 xfs_ilock(ip, XFS_ILOCK_EXCL);
469 if (new_size > ip->i_size)
470 ip->i_new_size = new_size;
471 xfs_iunlock(ip, XFS_ILOCK_EXCL);
473 trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
475 ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
477 xfs_aio_write_isize_update(inode, ppos, ret);
478 xfs_aio_write_newsize_update(ip, new_size);
479 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
480 return ret;
484 * This routine is called to handle zeroing any space in the last
485 * block of the file that is beyond the EOF. We do this since the
486 * size is being increased without writing anything to that block
487 * and we don't want anyone to read the garbage on the disk.
489 STATIC int /* error (positive) */
490 xfs_zero_last_block(
491 xfs_inode_t *ip,
492 xfs_fsize_t offset,
493 xfs_fsize_t isize)
495 xfs_fileoff_t last_fsb;
496 xfs_mount_t *mp = ip->i_mount;
497 int nimaps;
498 int zero_offset;
499 int zero_len;
500 int error = 0;
501 xfs_bmbt_irec_t imap;
503 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
505 zero_offset = XFS_B_FSB_OFFSET(mp, isize);
506 if (zero_offset == 0) {
508 * There are no extra bytes in the last block on disk to
509 * zero, so return.
511 return 0;
514 last_fsb = XFS_B_TO_FSBT(mp, isize);
515 nimaps = 1;
516 error = xfs_bmapi(NULL, ip, last_fsb, 1, 0, NULL, 0, &imap,
517 &nimaps, NULL);
518 if (error) {
519 return error;
521 ASSERT(nimaps > 0);
523 * If the block underlying isize is just a hole, then there
524 * is nothing to zero.
526 if (imap.br_startblock == HOLESTARTBLOCK) {
527 return 0;
530 * Zero the part of the last block beyond the EOF, and write it
531 * out sync. We need to drop the ilock while we do this so we
532 * don't deadlock when the buffer cache calls back to us.
534 xfs_iunlock(ip, XFS_ILOCK_EXCL);
536 zero_len = mp->m_sb.sb_blocksize - zero_offset;
537 if (isize + zero_len > offset)
538 zero_len = offset - isize;
539 error = xfs_iozero(ip, isize, zero_len);
541 xfs_ilock(ip, XFS_ILOCK_EXCL);
542 ASSERT(error >= 0);
543 return error;
547 * Zero any on disk space between the current EOF and the new,
548 * larger EOF. This handles the normal case of zeroing the remainder
549 * of the last block in the file and the unusual case of zeroing blocks
550 * out beyond the size of the file. This second case only happens
551 * with fixed size extents and when the system crashes before the inode
552 * size was updated but after blocks were allocated. If fill is set,
553 * then any holes in the range are filled and zeroed. If not, the holes
554 * are left alone as holes.
557 int /* error (positive) */
558 xfs_zero_eof(
559 xfs_inode_t *ip,
560 xfs_off_t offset, /* starting I/O offset */
561 xfs_fsize_t isize) /* current inode size */
563 xfs_mount_t *mp = ip->i_mount;
564 xfs_fileoff_t start_zero_fsb;
565 xfs_fileoff_t end_zero_fsb;
566 xfs_fileoff_t zero_count_fsb;
567 xfs_fileoff_t last_fsb;
568 xfs_fileoff_t zero_off;
569 xfs_fsize_t zero_len;
570 int nimaps;
571 int error = 0;
572 xfs_bmbt_irec_t imap;
574 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
575 ASSERT(offset > isize);
578 * First handle zeroing the block on which isize resides.
579 * We only zero a part of that block so it is handled specially.
581 error = xfs_zero_last_block(ip, offset, isize);
582 if (error) {
583 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
584 return error;
588 * Calculate the range between the new size and the old
589 * where blocks needing to be zeroed may exist. To get the
590 * block where the last byte in the file currently resides,
591 * we need to subtract one from the size and truncate back
592 * to a block boundary. We subtract 1 in case the size is
593 * exactly on a block boundary.
595 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
596 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
597 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
598 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
599 if (last_fsb == end_zero_fsb) {
601 * The size was only incremented on its last block.
602 * We took care of that above, so just return.
604 return 0;
607 ASSERT(start_zero_fsb <= end_zero_fsb);
608 while (start_zero_fsb <= end_zero_fsb) {
609 nimaps = 1;
610 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
611 error = xfs_bmapi(NULL, ip, start_zero_fsb, zero_count_fsb,
612 0, NULL, 0, &imap, &nimaps, NULL);
613 if (error) {
614 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
615 return error;
617 ASSERT(nimaps > 0);
619 if (imap.br_state == XFS_EXT_UNWRITTEN ||
620 imap.br_startblock == HOLESTARTBLOCK) {
622 * This loop handles initializing pages that were
623 * partially initialized by the code below this
624 * loop. It basically zeroes the part of the page
625 * that sits on a hole and sets the page as P_HOLE
626 * and calls remapf if it is a mapped file.
628 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
629 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
630 continue;
634 * There are blocks we need to zero.
635 * Drop the inode lock while we're doing the I/O.
636 * We'll still have the iolock to protect us.
638 xfs_iunlock(ip, XFS_ILOCK_EXCL);
640 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
641 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
643 if ((zero_off + zero_len) > offset)
644 zero_len = offset - zero_off;
646 error = xfs_iozero(ip, zero_off, zero_len);
647 if (error) {
648 goto out_lock;
651 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
652 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
654 xfs_ilock(ip, XFS_ILOCK_EXCL);
657 return 0;
659 out_lock:
660 xfs_ilock(ip, XFS_ILOCK_EXCL);
661 ASSERT(error >= 0);
662 return error;
666 * Common pre-write limit and setup checks.
668 * Returns with iolock held according to @iolock.
670 STATIC ssize_t
671 xfs_file_aio_write_checks(
672 struct file *file,
673 loff_t *pos,
674 size_t *count,
675 xfs_fsize_t *new_sizep,
676 int *iolock)
678 struct inode *inode = file->f_mapping->host;
679 struct xfs_inode *ip = XFS_I(inode);
680 xfs_fsize_t new_size;
681 int error = 0;
683 *new_sizep = 0;
684 restart:
685 error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
686 if (error) {
687 xfs_rw_iunlock(ip, XFS_ILOCK_EXCL | *iolock);
688 *iolock = 0;
689 return error;
692 if (likely(!(file->f_mode & FMODE_NOCMTIME)))
693 file_update_time(file);
696 * If the offset is beyond the size of the file, we need to zero any
697 * blocks that fall between the existing EOF and the start of this
698 * write. There is no need to issue zeroing if another in-flght IO ends
699 * at or before this one If zeronig is needed and we are currently
700 * holding the iolock shared, we need to update it to exclusive which
701 * involves dropping all locks and relocking to maintain correct locking
702 * order. If we do this, restart the function to ensure all checks and
703 * values are still valid.
705 if ((ip->i_new_size && *pos > ip->i_new_size) ||
706 (!ip->i_new_size && *pos > ip->i_size)) {
707 if (*iolock == XFS_IOLOCK_SHARED) {
708 xfs_rw_iunlock(ip, XFS_ILOCK_EXCL | *iolock);
709 *iolock = XFS_IOLOCK_EXCL;
710 xfs_rw_ilock(ip, XFS_ILOCK_EXCL | *iolock);
711 goto restart;
713 error = -xfs_zero_eof(ip, *pos, ip->i_size);
717 * If this IO extends beyond EOF, we may need to update ip->i_new_size.
718 * We have already zeroed space beyond EOF (if necessary). Only update
719 * ip->i_new_size if this IO ends beyond any other in-flight writes.
721 new_size = *pos + *count;
722 if (new_size > ip->i_size) {
723 if (new_size > ip->i_new_size)
724 ip->i_new_size = new_size;
725 *new_sizep = new_size;
728 xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
729 if (error)
730 return error;
733 * If we're writing the file then make sure to clear the setuid and
734 * setgid bits if the process is not being run by root. This keeps
735 * people from modifying setuid and setgid binaries.
737 return file_remove_suid(file);
742 * xfs_file_dio_aio_write - handle direct IO writes
744 * Lock the inode appropriately to prepare for and issue a direct IO write.
745 * By separating it from the buffered write path we remove all the tricky to
746 * follow locking changes and looping.
748 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
749 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
750 * pages are flushed out.
752 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
753 * allowing them to be done in parallel with reads and other direct IO writes.
754 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
755 * needs to do sub-block zeroing and that requires serialisation against other
756 * direct IOs to the same block. In this case we need to serialise the
757 * submission of the unaligned IOs so that we don't get racing block zeroing in
758 * the dio layer. To avoid the problem with aio, we also need to wait for
759 * outstanding IOs to complete so that unwritten extent conversion is completed
760 * before we try to map the overlapping block. This is currently implemented by
761 * hitting it with a big hammer (i.e. xfs_ioend_wait()).
763 * Returns with locks held indicated by @iolock and errors indicated by
764 * negative return values.
766 STATIC ssize_t
767 xfs_file_dio_aio_write(
768 struct kiocb *iocb,
769 const struct iovec *iovp,
770 unsigned long nr_segs,
771 loff_t pos,
772 size_t ocount,
773 xfs_fsize_t *new_size,
774 int *iolock)
776 struct file *file = iocb->ki_filp;
777 struct address_space *mapping = file->f_mapping;
778 struct inode *inode = mapping->host;
779 struct xfs_inode *ip = XFS_I(inode);
780 struct xfs_mount *mp = ip->i_mount;
781 ssize_t ret = 0;
782 size_t count = ocount;
783 int unaligned_io = 0;
784 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
785 mp->m_rtdev_targp : mp->m_ddev_targp;
787 *iolock = 0;
788 if ((pos & target->bt_smask) || (count & target->bt_smask))
789 return -XFS_ERROR(EINVAL);
791 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
792 unaligned_io = 1;
795 * We don't need to take an exclusive lock unless there page cache needs
796 * to be invalidated or unaligned IO is being executed. We don't need to
797 * consider the EOF extension case here because
798 * xfs_file_aio_write_checks() will relock the inode as necessary for
799 * EOF zeroing cases and fill out the new inode size as appropriate.
801 if (unaligned_io || mapping->nrpages)
802 *iolock = XFS_IOLOCK_EXCL;
803 else
804 *iolock = XFS_IOLOCK_SHARED;
805 xfs_rw_ilock(ip, XFS_ILOCK_EXCL | *iolock);
807 ret = xfs_file_aio_write_checks(file, &pos, &count, new_size, iolock);
808 if (ret)
809 return ret;
811 if (mapping->nrpages) {
812 WARN_ON(*iolock != XFS_IOLOCK_EXCL);
813 ret = -xfs_flushinval_pages(ip, (pos & PAGE_CACHE_MASK), -1,
814 FI_REMAPF_LOCKED);
815 if (ret)
816 return ret;
820 * If we are doing unaligned IO, wait for all other IO to drain,
821 * otherwise demote the lock if we had to flush cached pages
823 if (unaligned_io)
824 xfs_ioend_wait(ip);
825 else if (*iolock == XFS_IOLOCK_EXCL) {
826 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
827 *iolock = XFS_IOLOCK_SHARED;
830 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
831 ret = generic_file_direct_write(iocb, iovp,
832 &nr_segs, pos, &iocb->ki_pos, count, ocount);
834 /* No fallback to buffered IO on errors for XFS. */
835 ASSERT(ret < 0 || ret == count);
836 return ret;
839 STATIC ssize_t
840 xfs_file_buffered_aio_write(
841 struct kiocb *iocb,
842 const struct iovec *iovp,
843 unsigned long nr_segs,
844 loff_t pos,
845 size_t ocount,
846 xfs_fsize_t *new_size,
847 int *iolock)
849 struct file *file = iocb->ki_filp;
850 struct address_space *mapping = file->f_mapping;
851 struct inode *inode = mapping->host;
852 struct xfs_inode *ip = XFS_I(inode);
853 ssize_t ret;
854 int enospc = 0;
855 size_t count = ocount;
857 *iolock = XFS_IOLOCK_EXCL;
858 xfs_rw_ilock(ip, XFS_ILOCK_EXCL | *iolock);
860 ret = xfs_file_aio_write_checks(file, &pos, &count, new_size, iolock);
861 if (ret)
862 return ret;
864 /* We can write back this queue in page reclaim */
865 current->backing_dev_info = mapping->backing_dev_info;
867 write_retry:
868 trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
869 ret = generic_file_buffered_write(iocb, iovp, nr_segs,
870 pos, &iocb->ki_pos, count, ret);
872 * if we just got an ENOSPC, flush the inode now we aren't holding any
873 * page locks and retry *once*
875 if (ret == -ENOSPC && !enospc) {
876 ret = -xfs_flush_pages(ip, 0, -1, 0, FI_NONE);
877 if (ret)
878 return ret;
879 enospc = 1;
880 goto write_retry;
882 current->backing_dev_info = NULL;
883 return ret;
886 STATIC ssize_t
887 xfs_file_aio_write(
888 struct kiocb *iocb,
889 const struct iovec *iovp,
890 unsigned long nr_segs,
891 loff_t pos)
893 struct file *file = iocb->ki_filp;
894 struct address_space *mapping = file->f_mapping;
895 struct inode *inode = mapping->host;
896 struct xfs_inode *ip = XFS_I(inode);
897 ssize_t ret;
898 int iolock;
899 size_t ocount = 0;
900 xfs_fsize_t new_size = 0;
902 XFS_STATS_INC(xs_write_calls);
904 BUG_ON(iocb->ki_pos != pos);
906 ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
907 if (ret)
908 return ret;
910 if (ocount == 0)
911 return 0;
913 xfs_wait_for_freeze(ip->i_mount, SB_FREEZE_WRITE);
915 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
916 return -EIO;
918 if (unlikely(file->f_flags & O_DIRECT))
919 ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos,
920 ocount, &new_size, &iolock);
921 else
922 ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos,
923 ocount, &new_size, &iolock);
925 xfs_aio_write_isize_update(inode, &iocb->ki_pos, ret);
927 if (ret <= 0)
928 goto out_unlock;
930 /* Handle various SYNC-type writes */
931 if ((file->f_flags & O_DSYNC) || IS_SYNC(inode)) {
932 loff_t end = pos + ret - 1;
933 int error;
935 xfs_rw_iunlock(ip, iolock);
936 error = xfs_file_fsync(file, pos, end,
937 (file->f_flags & __O_SYNC) ? 0 : 1);
938 xfs_rw_ilock(ip, iolock);
939 if (error)
940 ret = error;
943 out_unlock:
944 xfs_aio_write_newsize_update(ip, new_size);
945 xfs_rw_iunlock(ip, iolock);
946 return ret;
949 STATIC long
950 xfs_file_fallocate(
951 struct file *file,
952 int mode,
953 loff_t offset,
954 loff_t len)
956 struct inode *inode = file->f_path.dentry->d_inode;
957 long error;
958 loff_t new_size = 0;
959 xfs_flock64_t bf;
960 xfs_inode_t *ip = XFS_I(inode);
961 int cmd = XFS_IOC_RESVSP;
962 int attr_flags = XFS_ATTR_NOLOCK;
964 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
965 return -EOPNOTSUPP;
967 bf.l_whence = 0;
968 bf.l_start = offset;
969 bf.l_len = len;
971 xfs_ilock(ip, XFS_IOLOCK_EXCL);
973 if (mode & FALLOC_FL_PUNCH_HOLE)
974 cmd = XFS_IOC_UNRESVSP;
976 /* check the new inode size is valid before allocating */
977 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
978 offset + len > i_size_read(inode)) {
979 new_size = offset + len;
980 error = inode_newsize_ok(inode, new_size);
981 if (error)
982 goto out_unlock;
985 if (file->f_flags & O_DSYNC)
986 attr_flags |= XFS_ATTR_SYNC;
988 error = -xfs_change_file_space(ip, cmd, &bf, 0, attr_flags);
989 if (error)
990 goto out_unlock;
992 /* Change file size if needed */
993 if (new_size) {
994 struct iattr iattr;
996 iattr.ia_valid = ATTR_SIZE;
997 iattr.ia_size = new_size;
998 error = -xfs_setattr_size(ip, &iattr, XFS_ATTR_NOLOCK);
1001 out_unlock:
1002 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1003 return error;
1007 STATIC int
1008 xfs_file_open(
1009 struct inode *inode,
1010 struct file *file)
1012 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1013 return -EFBIG;
1014 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1015 return -EIO;
1016 return 0;
1019 STATIC int
1020 xfs_dir_open(
1021 struct inode *inode,
1022 struct file *file)
1024 struct xfs_inode *ip = XFS_I(inode);
1025 int mode;
1026 int error;
1028 error = xfs_file_open(inode, file);
1029 if (error)
1030 return error;
1033 * If there are any blocks, read-ahead block 0 as we're almost
1034 * certain to have the next operation be a read there.
1036 mode = xfs_ilock_map_shared(ip);
1037 if (ip->i_d.di_nextents > 0)
1038 xfs_da_reada_buf(NULL, ip, 0, XFS_DATA_FORK);
1039 xfs_iunlock(ip, mode);
1040 return 0;
1043 STATIC int
1044 xfs_file_release(
1045 struct inode *inode,
1046 struct file *filp)
1048 return -xfs_release(XFS_I(inode));
1051 STATIC int
1052 xfs_file_readdir(
1053 struct file *filp,
1054 void *dirent,
1055 filldir_t filldir)
1057 struct inode *inode = filp->f_path.dentry->d_inode;
1058 xfs_inode_t *ip = XFS_I(inode);
1059 int error;
1060 size_t bufsize;
1063 * The Linux API doesn't pass down the total size of the buffer
1064 * we read into down to the filesystem. With the filldir concept
1065 * it's not needed for correct information, but the XFS dir2 leaf
1066 * code wants an estimate of the buffer size to calculate it's
1067 * readahead window and size the buffers used for mapping to
1068 * physical blocks.
1070 * Try to give it an estimate that's good enough, maybe at some
1071 * point we can change the ->readdir prototype to include the
1072 * buffer size. For now we use the current glibc buffer size.
1074 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
1076 error = xfs_readdir(ip, dirent, bufsize,
1077 (xfs_off_t *)&filp->f_pos, filldir);
1078 if (error)
1079 return -error;
1080 return 0;
1083 STATIC int
1084 xfs_file_mmap(
1085 struct file *filp,
1086 struct vm_area_struct *vma)
1088 vma->vm_ops = &xfs_file_vm_ops;
1089 vma->vm_flags |= VM_CAN_NONLINEAR;
1091 file_accessed(filp);
1092 return 0;
1096 * mmap()d file has taken write protection fault and is being made
1097 * writable. We can set the page state up correctly for a writable
1098 * page, which means we can do correct delalloc accounting (ENOSPC
1099 * checking!) and unwritten extent mapping.
1101 STATIC int
1102 xfs_vm_page_mkwrite(
1103 struct vm_area_struct *vma,
1104 struct vm_fault *vmf)
1106 return block_page_mkwrite(vma, vmf, xfs_get_blocks);
1109 const struct file_operations xfs_file_operations = {
1110 .llseek = generic_file_llseek,
1111 .read = do_sync_read,
1112 .write = do_sync_write,
1113 .aio_read = xfs_file_aio_read,
1114 .aio_write = xfs_file_aio_write,
1115 .splice_read = xfs_file_splice_read,
1116 .splice_write = xfs_file_splice_write,
1117 .unlocked_ioctl = xfs_file_ioctl,
1118 #ifdef CONFIG_COMPAT
1119 .compat_ioctl = xfs_file_compat_ioctl,
1120 #endif
1121 .mmap = xfs_file_mmap,
1122 .open = xfs_file_open,
1123 .release = xfs_file_release,
1124 .fsync = xfs_file_fsync,
1125 .fallocate = xfs_file_fallocate,
1128 const struct file_operations xfs_dir_file_operations = {
1129 .open = xfs_dir_open,
1130 .read = generic_read_dir,
1131 .readdir = xfs_file_readdir,
1132 .llseek = generic_file_llseek,
1133 .unlocked_ioctl = xfs_file_ioctl,
1134 #ifdef CONFIG_COMPAT
1135 .compat_ioctl = xfs_file_compat_ioctl,
1136 #endif
1137 .fsync = xfs_file_fsync,
1140 static const struct vm_operations_struct xfs_file_vm_ops = {
1141 .fault = filemap_fault,
1142 .page_mkwrite = xfs_vm_page_mkwrite,