2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
14 * Copyright (C) 1999-2003, 2005 Hewlett Packard Co
15 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
22 #include <linux/config.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/sched.h>
26 #include <linux/interrupt.h>
27 #include <linux/smp_lock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/seq_file.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
33 #include <linux/sysctl.h>
34 #include <linux/list.h>
35 #include <linux/file.h>
36 #include <linux/poll.h>
37 #include <linux/vfs.h>
38 #include <linux/pagemap.h>
39 #include <linux/mount.h>
40 #include <linux/version.h>
41 #include <linux/bitops.h>
43 #include <asm/errno.h>
44 #include <asm/intrinsics.h>
46 #include <asm/perfmon.h>
47 #include <asm/processor.h>
48 #include <asm/signal.h>
49 #include <asm/system.h>
50 #include <asm/uaccess.h>
51 #include <asm/delay.h>
55 * perfmon context state
57 #define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
58 #define PFM_CTX_LOADED 2 /* context is loaded onto a task */
59 #define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
60 #define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
62 #define PFM_INVALID_ACTIVATION (~0UL)
65 * depth of message queue
67 #define PFM_MAX_MSGS 32
68 #define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
71 * type of a PMU register (bitmask).
73 * bit0 : register implemented
76 * bit4 : pmc has pmc.pm
77 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
78 * bit6-7 : register type
81 #define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
82 #define PFM_REG_IMPL 0x1 /* register implemented */
83 #define PFM_REG_END 0x2 /* end marker */
84 #define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
85 #define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
86 #define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
87 #define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
88 #define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
90 #define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
91 #define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
93 #define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
95 /* i assumed unsigned */
96 #define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
97 #define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
99 /* XXX: these assume that register i is implemented */
100 #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
101 #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
102 #define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
103 #define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
105 #define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
106 #define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
107 #define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
108 #define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
110 #define PFM_NUM_IBRS IA64_NUM_DBG_REGS
111 #define PFM_NUM_DBRS IA64_NUM_DBG_REGS
113 #define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
114 #define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
115 #define PFM_CTX_TASK(h) (h)->ctx_task
117 #define PMU_PMC_OI 5 /* position of pmc.oi bit */
119 /* XXX: does not support more than 64 PMDs */
120 #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
121 #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
123 #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
125 #define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
126 #define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
127 #define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
128 #define PFM_CODE_RR 0 /* requesting code range restriction */
129 #define PFM_DATA_RR 1 /* requestion data range restriction */
131 #define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
132 #define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
133 #define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
135 #define RDEP(x) (1UL<<(x))
138 * context protection macros
140 * - we need to protect against CPU concurrency (spin_lock)
141 * - we need to protect against PMU overflow interrupts (local_irq_disable)
143 * - we need to protect against PMU overflow interrupts (local_irq_disable)
145 * spin_lock_irqsave()/spin_lock_irqrestore():
146 * in SMP: local_irq_disable + spin_lock
147 * in UP : local_irq_disable
149 * spin_lock()/spin_lock():
150 * in UP : removed automatically
151 * in SMP: protect against context accesses from other CPU. interrupts
152 * are not masked. This is useful for the PMU interrupt handler
153 * because we know we will not get PMU concurrency in that code.
155 #define PROTECT_CTX(c, f) \
157 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, current->pid)); \
158 spin_lock_irqsave(&(c)->ctx_lock, f); \
159 DPRINT(("spinlocked ctx %p by [%d]\n", c, current->pid)); \
162 #define UNPROTECT_CTX(c, f) \
164 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, current->pid)); \
165 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
168 #define PROTECT_CTX_NOPRINT(c, f) \
170 spin_lock_irqsave(&(c)->ctx_lock, f); \
174 #define UNPROTECT_CTX_NOPRINT(c, f) \
176 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
180 #define PROTECT_CTX_NOIRQ(c) \
182 spin_lock(&(c)->ctx_lock); \
185 #define UNPROTECT_CTX_NOIRQ(c) \
187 spin_unlock(&(c)->ctx_lock); \
193 #define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
194 #define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
195 #define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
197 #else /* !CONFIG_SMP */
198 #define SET_ACTIVATION(t) do {} while(0)
199 #define GET_ACTIVATION(t) do {} while(0)
200 #define INC_ACTIVATION(t) do {} while(0)
201 #endif /* CONFIG_SMP */
203 #define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
204 #define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
205 #define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
207 #define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
208 #define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
210 #define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
213 * cmp0 must be the value of pmc0
215 #define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
217 #define PFMFS_MAGIC 0xa0b4d889
222 #define PFM_DEBUGGING 1
226 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
229 #define DPRINT_ovfl(a) \
231 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
236 * 64-bit software counter structure
238 * the next_reset_type is applied to the next call to pfm_reset_regs()
241 unsigned long val
; /* virtual 64bit counter value */
242 unsigned long lval
; /* last reset value */
243 unsigned long long_reset
; /* reset value on sampling overflow */
244 unsigned long short_reset
; /* reset value on overflow */
245 unsigned long reset_pmds
[4]; /* which other pmds to reset when this counter overflows */
246 unsigned long smpl_pmds
[4]; /* which pmds are accessed when counter overflow */
247 unsigned long seed
; /* seed for random-number generator */
248 unsigned long mask
; /* mask for random-number generator */
249 unsigned int flags
; /* notify/do not notify */
250 unsigned long eventid
; /* overflow event identifier */
257 unsigned int block
:1; /* when 1, task will blocked on user notifications */
258 unsigned int system
:1; /* do system wide monitoring */
259 unsigned int using_dbreg
:1; /* using range restrictions (debug registers) */
260 unsigned int is_sampling
:1; /* true if using a custom format */
261 unsigned int excl_idle
:1; /* exclude idle task in system wide session */
262 unsigned int going_zombie
:1; /* context is zombie (MASKED+blocking) */
263 unsigned int trap_reason
:2; /* reason for going into pfm_handle_work() */
264 unsigned int no_msg
:1; /* no message sent on overflow */
265 unsigned int can_restart
:1; /* allowed to issue a PFM_RESTART */
266 unsigned int reserved
:22;
267 } pfm_context_flags_t
;
269 #define PFM_TRAP_REASON_NONE 0x0 /* default value */
270 #define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
271 #define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
275 * perfmon context: encapsulates all the state of a monitoring session
278 typedef struct pfm_context
{
279 spinlock_t ctx_lock
; /* context protection */
281 pfm_context_flags_t ctx_flags
; /* bitmask of flags (block reason incl.) */
282 unsigned int ctx_state
; /* state: active/inactive (no bitfield) */
284 struct task_struct
*ctx_task
; /* task to which context is attached */
286 unsigned long ctx_ovfl_regs
[4]; /* which registers overflowed (notification) */
288 struct semaphore ctx_restart_sem
; /* use for blocking notification mode */
290 unsigned long ctx_used_pmds
[4]; /* bitmask of PMD used */
291 unsigned long ctx_all_pmds
[4]; /* bitmask of all accessible PMDs */
292 unsigned long ctx_reload_pmds
[4]; /* bitmask of force reload PMD on ctxsw in */
294 unsigned long ctx_all_pmcs
[4]; /* bitmask of all accessible PMCs */
295 unsigned long ctx_reload_pmcs
[4]; /* bitmask of force reload PMC on ctxsw in */
296 unsigned long ctx_used_monitors
[4]; /* bitmask of monitor PMC being used */
298 unsigned long ctx_pmcs
[IA64_NUM_PMC_REGS
]; /* saved copies of PMC values */
300 unsigned int ctx_used_ibrs
[1]; /* bitmask of used IBR (speedup ctxsw in) */
301 unsigned int ctx_used_dbrs
[1]; /* bitmask of used DBR (speedup ctxsw in) */
302 unsigned long ctx_dbrs
[IA64_NUM_DBG_REGS
]; /* DBR values (cache) when not loaded */
303 unsigned long ctx_ibrs
[IA64_NUM_DBG_REGS
]; /* IBR values (cache) when not loaded */
305 pfm_counter_t ctx_pmds
[IA64_NUM_PMD_REGS
]; /* software state for PMDS */
307 u64 ctx_saved_psr_up
; /* only contains psr.up value */
309 unsigned long ctx_last_activation
; /* context last activation number for last_cpu */
310 unsigned int ctx_last_cpu
; /* CPU id of current or last CPU used (SMP only) */
311 unsigned int ctx_cpu
; /* cpu to which perfmon is applied (system wide) */
313 int ctx_fd
; /* file descriptor used my this context */
314 pfm_ovfl_arg_t ctx_ovfl_arg
; /* argument to custom buffer format handler */
316 pfm_buffer_fmt_t
*ctx_buf_fmt
; /* buffer format callbacks */
317 void *ctx_smpl_hdr
; /* points to sampling buffer header kernel vaddr */
318 unsigned long ctx_smpl_size
; /* size of sampling buffer */
319 void *ctx_smpl_vaddr
; /* user level virtual address of smpl buffer */
321 wait_queue_head_t ctx_msgq_wait
;
322 pfm_msg_t ctx_msgq
[PFM_MAX_MSGS
];
325 struct fasync_struct
*ctx_async_queue
;
327 wait_queue_head_t ctx_zombieq
; /* termination cleanup wait queue */
331 * magic number used to verify that structure is really
334 #define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
336 #define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
339 #define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
340 #define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
342 #define SET_LAST_CPU(ctx, v) do {} while(0)
343 #define GET_LAST_CPU(ctx) do {} while(0)
347 #define ctx_fl_block ctx_flags.block
348 #define ctx_fl_system ctx_flags.system
349 #define ctx_fl_using_dbreg ctx_flags.using_dbreg
350 #define ctx_fl_is_sampling ctx_flags.is_sampling
351 #define ctx_fl_excl_idle ctx_flags.excl_idle
352 #define ctx_fl_going_zombie ctx_flags.going_zombie
353 #define ctx_fl_trap_reason ctx_flags.trap_reason
354 #define ctx_fl_no_msg ctx_flags.no_msg
355 #define ctx_fl_can_restart ctx_flags.can_restart
357 #define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
358 #define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
361 * global information about all sessions
362 * mostly used to synchronize between system wide and per-process
365 spinlock_t pfs_lock
; /* lock the structure */
367 unsigned int pfs_task_sessions
; /* number of per task sessions */
368 unsigned int pfs_sys_sessions
; /* number of per system wide sessions */
369 unsigned int pfs_sys_use_dbregs
; /* incremented when a system wide session uses debug regs */
370 unsigned int pfs_ptrace_use_dbregs
; /* incremented when a process uses debug regs */
371 struct task_struct
*pfs_sys_session
[NR_CPUS
]; /* point to task owning a system-wide session */
375 * information about a PMC or PMD.
376 * dep_pmd[]: a bitmask of dependent PMD registers
377 * dep_pmc[]: a bitmask of dependent PMC registers
379 typedef int (*pfm_reg_check_t
)(struct task_struct
*task
, pfm_context_t
*ctx
, unsigned int cnum
, unsigned long *val
, struct pt_regs
*regs
);
383 unsigned long default_value
; /* power-on default value */
384 unsigned long reserved_mask
; /* bitmask of reserved bits */
385 pfm_reg_check_t read_check
;
386 pfm_reg_check_t write_check
;
387 unsigned long dep_pmd
[4];
388 unsigned long dep_pmc
[4];
391 /* assume cnum is a valid monitor */
392 #define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
395 * This structure is initialized at boot time and contains
396 * a description of the PMU main characteristics.
398 * If the probe function is defined, detection is based
399 * on its return value:
400 * - 0 means recognized PMU
401 * - anything else means not supported
402 * When the probe function is not defined, then the pmu_family field
403 * is used and it must match the host CPU family such that:
404 * - cpu->family & config->pmu_family != 0
407 unsigned long ovfl_val
; /* overflow value for counters */
409 pfm_reg_desc_t
*pmc_desc
; /* detailed PMC register dependencies descriptions */
410 pfm_reg_desc_t
*pmd_desc
; /* detailed PMD register dependencies descriptions */
412 unsigned int num_pmcs
; /* number of PMCS: computed at init time */
413 unsigned int num_pmds
; /* number of PMDS: computed at init time */
414 unsigned long impl_pmcs
[4]; /* bitmask of implemented PMCS */
415 unsigned long impl_pmds
[4]; /* bitmask of implemented PMDS */
417 char *pmu_name
; /* PMU family name */
418 unsigned int pmu_family
; /* cpuid family pattern used to identify pmu */
419 unsigned int flags
; /* pmu specific flags */
420 unsigned int num_ibrs
; /* number of IBRS: computed at init time */
421 unsigned int num_dbrs
; /* number of DBRS: computed at init time */
422 unsigned int num_counters
; /* PMC/PMD counting pairs : computed at init time */
423 int (*probe
)(void); /* customized probe routine */
424 unsigned int use_rr_dbregs
:1; /* set if debug registers used for range restriction */
429 #define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
432 * debug register related type definitions
435 unsigned long ibr_mask
:56;
436 unsigned long ibr_plm
:4;
437 unsigned long ibr_ig
:3;
438 unsigned long ibr_x
:1;
442 unsigned long dbr_mask
:56;
443 unsigned long dbr_plm
:4;
444 unsigned long dbr_ig
:2;
445 unsigned long dbr_w
:1;
446 unsigned long dbr_r
:1;
457 * perfmon command descriptions
460 int (*cmd_func
)(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
463 unsigned int cmd_narg
;
465 int (*cmd_getsize
)(void *arg
, size_t *sz
);
468 #define PFM_CMD_FD 0x01 /* command requires a file descriptor */
469 #define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
470 #define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
471 #define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
474 #define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
475 #define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
476 #define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
477 #define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
478 #define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
480 #define PFM_CMD_ARG_MANY -1 /* cannot be zero */
483 int debug
; /* turn on/off debugging via syslog */
484 int debug_ovfl
; /* turn on/off debug printk in overflow handler */
485 int fastctxsw
; /* turn on/off fast (unsecure) ctxsw */
486 int expert_mode
; /* turn on/off value checking */
491 unsigned long pfm_spurious_ovfl_intr_count
; /* keep track of spurious ovfl interrupts */
492 unsigned long pfm_replay_ovfl_intr_count
; /* keep track of replayed ovfl interrupts */
493 unsigned long pfm_ovfl_intr_count
; /* keep track of ovfl interrupts */
494 unsigned long pfm_ovfl_intr_cycles
; /* cycles spent processing ovfl interrupts */
495 unsigned long pfm_ovfl_intr_cycles_min
; /* min cycles spent processing ovfl interrupts */
496 unsigned long pfm_ovfl_intr_cycles_max
; /* max cycles spent processing ovfl interrupts */
497 unsigned long pfm_smpl_handler_calls
;
498 unsigned long pfm_smpl_handler_cycles
;
499 char pad
[SMP_CACHE_BYTES
] ____cacheline_aligned
;
503 * perfmon internal variables
505 static pfm_stats_t pfm_stats
[NR_CPUS
];
506 static pfm_session_t pfm_sessions
; /* global sessions information */
508 static struct proc_dir_entry
*perfmon_dir
;
509 static pfm_uuid_t pfm_null_uuid
= {0,};
511 static spinlock_t pfm_buffer_fmt_lock
;
512 static LIST_HEAD(pfm_buffer_fmt_list
);
514 static pmu_config_t
*pmu_conf
;
516 /* sysctl() controls */
517 static pfm_sysctl_t pfm_sysctl
;
520 static ctl_table pfm_ctl_table
[]={
521 {1, "debug", &pfm_sysctl
.debug
, sizeof(int), 0666, NULL
, &proc_dointvec
, NULL
,},
522 {2, "debug_ovfl", &pfm_sysctl
.debug_ovfl
, sizeof(int), 0666, NULL
, &proc_dointvec
, NULL
,},
523 {3, "fastctxsw", &pfm_sysctl
.fastctxsw
, sizeof(int), 0600, NULL
, &proc_dointvec
, NULL
,},
524 {4, "expert_mode", &pfm_sysctl
.expert_mode
, sizeof(int), 0600, NULL
, &proc_dointvec
, NULL
,},
527 static ctl_table pfm_sysctl_dir
[] = {
528 {1, "perfmon", NULL
, 0, 0755, pfm_ctl_table
, },
531 static ctl_table pfm_sysctl_root
[] = {
532 {1, "kernel", NULL
, 0, 0755, pfm_sysctl_dir
, },
535 static struct ctl_table_header
*pfm_sysctl_header
;
537 static int pfm_context_unload(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
538 static int pfm_flush(struct file
*filp
);
540 #define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
541 #define pfm_get_cpu_data(a,b) per_cpu(a, b)
544 pfm_put_task(struct task_struct
*task
)
546 if (task
!= current
) put_task_struct(task
);
550 pfm_set_task_notify(struct task_struct
*task
)
552 struct thread_info
*info
;
554 info
= (struct thread_info
*) ((char *) task
+ IA64_TASK_SIZE
);
555 set_bit(TIF_NOTIFY_RESUME
, &info
->flags
);
559 pfm_clear_task_notify(void)
561 clear_thread_flag(TIF_NOTIFY_RESUME
);
565 pfm_reserve_page(unsigned long a
)
567 SetPageReserved(vmalloc_to_page((void *)a
));
570 pfm_unreserve_page(unsigned long a
)
572 ClearPageReserved(vmalloc_to_page((void*)a
));
575 static inline unsigned long
576 pfm_protect_ctx_ctxsw(pfm_context_t
*x
)
578 spin_lock(&(x
)->ctx_lock
);
582 static inline unsigned long
583 pfm_unprotect_ctx_ctxsw(pfm_context_t
*x
, unsigned long f
)
585 spin_unlock(&(x
)->ctx_lock
);
588 static inline unsigned int
589 pfm_do_munmap(struct mm_struct
*mm
, unsigned long addr
, size_t len
, int acct
)
591 return do_munmap(mm
, addr
, len
);
594 static inline unsigned long
595 pfm_get_unmapped_area(struct file
*file
, unsigned long addr
, unsigned long len
, unsigned long pgoff
, unsigned long flags
, unsigned long exec
)
597 return get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
601 static struct super_block
*
602 pfmfs_get_sb(struct file_system_type
*fs_type
, int flags
, const char *dev_name
, void *data
)
604 return get_sb_pseudo(fs_type
, "pfm:", NULL
, PFMFS_MAGIC
);
607 static struct file_system_type pfm_fs_type
= {
609 .get_sb
= pfmfs_get_sb
,
610 .kill_sb
= kill_anon_super
,
613 DEFINE_PER_CPU(unsigned long, pfm_syst_info
);
614 DEFINE_PER_CPU(struct task_struct
*, pmu_owner
);
615 DEFINE_PER_CPU(pfm_context_t
*, pmu_ctx
);
616 DEFINE_PER_CPU(unsigned long, pmu_activation_number
);
619 /* forward declaration */
620 static struct file_operations pfm_file_ops
;
623 * forward declarations
626 static void pfm_lazy_save_regs (struct task_struct
*ta
);
629 void dump_pmu_state(const char *);
630 static int pfm_write_ibr_dbr(int mode
, pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
632 #include "perfmon_itanium.h"
633 #include "perfmon_mckinley.h"
634 #include "perfmon_generic.h"
636 static pmu_config_t
*pmu_confs
[]={
639 &pmu_conf_gen
, /* must be last */
644 static int pfm_end_notify_user(pfm_context_t
*ctx
);
647 pfm_clear_psr_pp(void)
649 ia64_rsm(IA64_PSR_PP
);
656 ia64_ssm(IA64_PSR_PP
);
661 pfm_clear_psr_up(void)
663 ia64_rsm(IA64_PSR_UP
);
670 ia64_ssm(IA64_PSR_UP
);
674 static inline unsigned long
678 tmp
= ia64_getreg(_IA64_REG_PSR
);
684 pfm_set_psr_l(unsigned long val
)
686 ia64_setreg(_IA64_REG_PSR_L
, val
);
698 pfm_unfreeze_pmu(void)
705 pfm_restore_ibrs(unsigned long *ibrs
, unsigned int nibrs
)
709 for (i
=0; i
< nibrs
; i
++) {
710 ia64_set_ibr(i
, ibrs
[i
]);
711 ia64_dv_serialize_instruction();
717 pfm_restore_dbrs(unsigned long *dbrs
, unsigned int ndbrs
)
721 for (i
=0; i
< ndbrs
; i
++) {
722 ia64_set_dbr(i
, dbrs
[i
]);
723 ia64_dv_serialize_data();
729 * PMD[i] must be a counter. no check is made
731 static inline unsigned long
732 pfm_read_soft_counter(pfm_context_t
*ctx
, int i
)
734 return ctx
->ctx_pmds
[i
].val
+ (ia64_get_pmd(i
) & pmu_conf
->ovfl_val
);
738 * PMD[i] must be a counter. no check is made
741 pfm_write_soft_counter(pfm_context_t
*ctx
, int i
, unsigned long val
)
743 unsigned long ovfl_val
= pmu_conf
->ovfl_val
;
745 ctx
->ctx_pmds
[i
].val
= val
& ~ovfl_val
;
747 * writing to unimplemented part is ignore, so we do not need to
750 ia64_set_pmd(i
, val
& ovfl_val
);
754 pfm_get_new_msg(pfm_context_t
*ctx
)
758 next
= (ctx
->ctx_msgq_tail
+1) % PFM_MAX_MSGS
;
760 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
));
761 if (next
== ctx
->ctx_msgq_head
) return NULL
;
763 idx
= ctx
->ctx_msgq_tail
;
764 ctx
->ctx_msgq_tail
= next
;
766 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
, idx
));
768 return ctx
->ctx_msgq
+idx
;
772 pfm_get_next_msg(pfm_context_t
*ctx
)
776 DPRINT(("ctx=%p head=%d tail=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
));
778 if (PFM_CTXQ_EMPTY(ctx
)) return NULL
;
783 msg
= ctx
->ctx_msgq
+ctx
->ctx_msgq_head
;
788 ctx
->ctx_msgq_head
= (ctx
->ctx_msgq_head
+1) % PFM_MAX_MSGS
;
790 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
, msg
->pfm_gen_msg
.msg_type
));
796 pfm_reset_msgq(pfm_context_t
*ctx
)
798 ctx
->ctx_msgq_head
= ctx
->ctx_msgq_tail
= 0;
799 DPRINT(("ctx=%p msgq reset\n", ctx
));
803 pfm_rvmalloc(unsigned long size
)
808 size
= PAGE_ALIGN(size
);
811 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
812 memset(mem
, 0, size
);
813 addr
= (unsigned long)mem
;
815 pfm_reserve_page(addr
);
824 pfm_rvfree(void *mem
, unsigned long size
)
829 DPRINT(("freeing physical buffer @%p size=%lu\n", mem
, size
));
830 addr
= (unsigned long) mem
;
831 while ((long) size
> 0) {
832 pfm_unreserve_page(addr
);
841 static pfm_context_t
*
842 pfm_context_alloc(void)
847 * allocate context descriptor
848 * must be able to free with interrupts disabled
850 ctx
= kmalloc(sizeof(pfm_context_t
), GFP_KERNEL
);
852 memset(ctx
, 0, sizeof(pfm_context_t
));
853 DPRINT(("alloc ctx @%p\n", ctx
));
859 pfm_context_free(pfm_context_t
*ctx
)
862 DPRINT(("free ctx @%p\n", ctx
));
868 pfm_mask_monitoring(struct task_struct
*task
)
870 pfm_context_t
*ctx
= PFM_GET_CTX(task
);
871 struct thread_struct
*th
= &task
->thread
;
872 unsigned long mask
, val
, ovfl_mask
;
875 DPRINT_ovfl(("masking monitoring for [%d]\n", task
->pid
));
877 ovfl_mask
= pmu_conf
->ovfl_val
;
879 * monitoring can only be masked as a result of a valid
880 * counter overflow. In UP, it means that the PMU still
881 * has an owner. Note that the owner can be different
882 * from the current task. However the PMU state belongs
884 * In SMP, a valid overflow only happens when task is
885 * current. Therefore if we come here, we know that
886 * the PMU state belongs to the current task, therefore
887 * we can access the live registers.
889 * So in both cases, the live register contains the owner's
890 * state. We can ONLY touch the PMU registers and NOT the PSR.
892 * As a consequence to this call, the thread->pmds[] array
893 * contains stale information which must be ignored
894 * when context is reloaded AND monitoring is active (see
897 mask
= ctx
->ctx_used_pmds
[0];
898 for (i
= 0; mask
; i
++, mask
>>=1) {
899 /* skip non used pmds */
900 if ((mask
& 0x1) == 0) continue;
901 val
= ia64_get_pmd(i
);
903 if (PMD_IS_COUNTING(i
)) {
905 * we rebuild the full 64 bit value of the counter
907 ctx
->ctx_pmds
[i
].val
+= (val
& ovfl_mask
);
909 ctx
->ctx_pmds
[i
].val
= val
;
911 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
913 ctx
->ctx_pmds
[i
].val
,
917 * mask monitoring by setting the privilege level to 0
918 * we cannot use psr.pp/psr.up for this, it is controlled by
921 * if task is current, modify actual registers, otherwise modify
922 * thread save state, i.e., what will be restored in pfm_load_regs()
924 mask
= ctx
->ctx_used_monitors
[0] >> PMU_FIRST_COUNTER
;
925 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>=1) {
926 if ((mask
& 0x1) == 0UL) continue;
927 ia64_set_pmc(i
, th
->pmcs
[i
] & ~0xfUL
);
928 th
->pmcs
[i
] &= ~0xfUL
;
929 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i
, th
->pmcs
[i
]));
932 * make all of this visible
938 * must always be done with task == current
940 * context must be in MASKED state when calling
943 pfm_restore_monitoring(struct task_struct
*task
)
945 pfm_context_t
*ctx
= PFM_GET_CTX(task
);
946 struct thread_struct
*th
= &task
->thread
;
947 unsigned long mask
, ovfl_mask
;
948 unsigned long psr
, val
;
951 is_system
= ctx
->ctx_fl_system
;
952 ovfl_mask
= pmu_conf
->ovfl_val
;
954 if (task
!= current
) {
955 printk(KERN_ERR
"perfmon.%d: invalid task[%d] current[%d]\n", __LINE__
, task
->pid
, current
->pid
);
958 if (ctx
->ctx_state
!= PFM_CTX_MASKED
) {
959 printk(KERN_ERR
"perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__
,
960 task
->pid
, current
->pid
, ctx
->ctx_state
);
965 * monitoring is masked via the PMC.
966 * As we restore their value, we do not want each counter to
967 * restart right away. We stop monitoring using the PSR,
968 * restore the PMC (and PMD) and then re-establish the psr
969 * as it was. Note that there can be no pending overflow at
970 * this point, because monitoring was MASKED.
972 * system-wide session are pinned and self-monitoring
974 if (is_system
&& (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP
)) {
976 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) & ~IA64_DCR_PP
);
982 * first, we restore the PMD
984 mask
= ctx
->ctx_used_pmds
[0];
985 for (i
= 0; mask
; i
++, mask
>>=1) {
986 /* skip non used pmds */
987 if ((mask
& 0x1) == 0) continue;
989 if (PMD_IS_COUNTING(i
)) {
991 * we split the 64bit value according to
994 val
= ctx
->ctx_pmds
[i
].val
& ovfl_mask
;
995 ctx
->ctx_pmds
[i
].val
&= ~ovfl_mask
;
997 val
= ctx
->ctx_pmds
[i
].val
;
999 ia64_set_pmd(i
, val
);
1001 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1003 ctx
->ctx_pmds
[i
].val
,
1009 mask
= ctx
->ctx_used_monitors
[0] >> PMU_FIRST_COUNTER
;
1010 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>=1) {
1011 if ((mask
& 0x1) == 0UL) continue;
1012 th
->pmcs
[i
] = ctx
->ctx_pmcs
[i
];
1013 ia64_set_pmc(i
, th
->pmcs
[i
]);
1014 DPRINT(("[%d] pmc[%d]=0x%lx\n", task
->pid
, i
, th
->pmcs
[i
]));
1019 * must restore DBR/IBR because could be modified while masked
1020 * XXX: need to optimize
1022 if (ctx
->ctx_fl_using_dbreg
) {
1023 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
1024 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
1030 if (is_system
&& (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP
)) {
1032 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) | IA64_DCR_PP
);
1039 pfm_save_pmds(unsigned long *pmds
, unsigned long mask
)
1045 for (i
=0; mask
; i
++, mask
>>=1) {
1046 if (mask
& 0x1) pmds
[i
] = ia64_get_pmd(i
);
1051 * reload from thread state (used for ctxw only)
1054 pfm_restore_pmds(unsigned long *pmds
, unsigned long mask
)
1057 unsigned long val
, ovfl_val
= pmu_conf
->ovfl_val
;
1059 for (i
=0; mask
; i
++, mask
>>=1) {
1060 if ((mask
& 0x1) == 0) continue;
1061 val
= PMD_IS_COUNTING(i
) ? pmds
[i
] & ovfl_val
: pmds
[i
];
1062 ia64_set_pmd(i
, val
);
1068 * propagate PMD from context to thread-state
1071 pfm_copy_pmds(struct task_struct
*task
, pfm_context_t
*ctx
)
1073 struct thread_struct
*thread
= &task
->thread
;
1074 unsigned long ovfl_val
= pmu_conf
->ovfl_val
;
1075 unsigned long mask
= ctx
->ctx_all_pmds
[0];
1079 DPRINT(("mask=0x%lx\n", mask
));
1081 for (i
=0; mask
; i
++, mask
>>=1) {
1083 val
= ctx
->ctx_pmds
[i
].val
;
1086 * We break up the 64 bit value into 2 pieces
1087 * the lower bits go to the machine state in the
1088 * thread (will be reloaded on ctxsw in).
1089 * The upper part stays in the soft-counter.
1091 if (PMD_IS_COUNTING(i
)) {
1092 ctx
->ctx_pmds
[i
].val
= val
& ~ovfl_val
;
1095 thread
->pmds
[i
] = val
;
1097 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1100 ctx
->ctx_pmds
[i
].val
));
1105 * propagate PMC from context to thread-state
1108 pfm_copy_pmcs(struct task_struct
*task
, pfm_context_t
*ctx
)
1110 struct thread_struct
*thread
= &task
->thread
;
1111 unsigned long mask
= ctx
->ctx_all_pmcs
[0];
1114 DPRINT(("mask=0x%lx\n", mask
));
1116 for (i
=0; mask
; i
++, mask
>>=1) {
1117 /* masking 0 with ovfl_val yields 0 */
1118 thread
->pmcs
[i
] = ctx
->ctx_pmcs
[i
];
1119 DPRINT(("pmc[%d]=0x%lx\n", i
, thread
->pmcs
[i
]));
1126 pfm_restore_pmcs(unsigned long *pmcs
, unsigned long mask
)
1130 for (i
=0; mask
; i
++, mask
>>=1) {
1131 if ((mask
& 0x1) == 0) continue;
1132 ia64_set_pmc(i
, pmcs
[i
]);
1138 pfm_uuid_cmp(pfm_uuid_t a
, pfm_uuid_t b
)
1140 return memcmp(a
, b
, sizeof(pfm_uuid_t
));
1144 pfm_buf_fmt_exit(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, void *buf
, struct pt_regs
*regs
)
1147 if (fmt
->fmt_exit
) ret
= (*fmt
->fmt_exit
)(task
, buf
, regs
);
1152 pfm_buf_fmt_getsize(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, unsigned int flags
, int cpu
, void *arg
, unsigned long *size
)
1155 if (fmt
->fmt_getsize
) ret
= (*fmt
->fmt_getsize
)(task
, flags
, cpu
, arg
, size
);
1161 pfm_buf_fmt_validate(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, unsigned int flags
,
1165 if (fmt
->fmt_validate
) ret
= (*fmt
->fmt_validate
)(task
, flags
, cpu
, arg
);
1170 pfm_buf_fmt_init(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, void *buf
, unsigned int flags
,
1174 if (fmt
->fmt_init
) ret
= (*fmt
->fmt_init
)(task
, buf
, flags
, cpu
, arg
);
1179 pfm_buf_fmt_restart(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, pfm_ovfl_ctrl_t
*ctrl
, void *buf
, struct pt_regs
*regs
)
1182 if (fmt
->fmt_restart
) ret
= (*fmt
->fmt_restart
)(task
, ctrl
, buf
, regs
);
1187 pfm_buf_fmt_restart_active(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, pfm_ovfl_ctrl_t
*ctrl
, void *buf
, struct pt_regs
*regs
)
1190 if (fmt
->fmt_restart_active
) ret
= (*fmt
->fmt_restart_active
)(task
, ctrl
, buf
, regs
);
1194 static pfm_buffer_fmt_t
*
1195 __pfm_find_buffer_fmt(pfm_uuid_t uuid
)
1197 struct list_head
* pos
;
1198 pfm_buffer_fmt_t
* entry
;
1200 list_for_each(pos
, &pfm_buffer_fmt_list
) {
1201 entry
= list_entry(pos
, pfm_buffer_fmt_t
, fmt_list
);
1202 if (pfm_uuid_cmp(uuid
, entry
->fmt_uuid
) == 0)
1209 * find a buffer format based on its uuid
1211 static pfm_buffer_fmt_t
*
1212 pfm_find_buffer_fmt(pfm_uuid_t uuid
)
1214 pfm_buffer_fmt_t
* fmt
;
1215 spin_lock(&pfm_buffer_fmt_lock
);
1216 fmt
= __pfm_find_buffer_fmt(uuid
);
1217 spin_unlock(&pfm_buffer_fmt_lock
);
1222 pfm_register_buffer_fmt(pfm_buffer_fmt_t
*fmt
)
1226 /* some sanity checks */
1227 if (fmt
== NULL
|| fmt
->fmt_name
== NULL
) return -EINVAL
;
1229 /* we need at least a handler */
1230 if (fmt
->fmt_handler
== NULL
) return -EINVAL
;
1233 * XXX: need check validity of fmt_arg_size
1236 spin_lock(&pfm_buffer_fmt_lock
);
1238 if (__pfm_find_buffer_fmt(fmt
->fmt_uuid
)) {
1239 printk(KERN_ERR
"perfmon: duplicate sampling format: %s\n", fmt
->fmt_name
);
1243 list_add(&fmt
->fmt_list
, &pfm_buffer_fmt_list
);
1244 printk(KERN_INFO
"perfmon: added sampling format %s\n", fmt
->fmt_name
);
1247 spin_unlock(&pfm_buffer_fmt_lock
);
1250 EXPORT_SYMBOL(pfm_register_buffer_fmt
);
1253 pfm_unregister_buffer_fmt(pfm_uuid_t uuid
)
1255 pfm_buffer_fmt_t
*fmt
;
1258 spin_lock(&pfm_buffer_fmt_lock
);
1260 fmt
= __pfm_find_buffer_fmt(uuid
);
1262 printk(KERN_ERR
"perfmon: cannot unregister format, not found\n");
1266 list_del_init(&fmt
->fmt_list
);
1267 printk(KERN_INFO
"perfmon: removed sampling format: %s\n", fmt
->fmt_name
);
1270 spin_unlock(&pfm_buffer_fmt_lock
);
1274 EXPORT_SYMBOL(pfm_unregister_buffer_fmt
);
1277 pfm_reserve_session(struct task_struct
*task
, int is_syswide
, unsigned int cpu
)
1279 unsigned long flags
;
1281 * validy checks on cpu_mask have been done upstream
1285 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1286 pfm_sessions
.pfs_sys_sessions
,
1287 pfm_sessions
.pfs_task_sessions
,
1288 pfm_sessions
.pfs_sys_use_dbregs
,
1294 * cannot mix system wide and per-task sessions
1296 if (pfm_sessions
.pfs_task_sessions
> 0UL) {
1297 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1298 pfm_sessions
.pfs_task_sessions
));
1302 if (pfm_sessions
.pfs_sys_session
[cpu
]) goto error_conflict
;
1304 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu
, smp_processor_id()));
1306 pfm_sessions
.pfs_sys_session
[cpu
] = task
;
1308 pfm_sessions
.pfs_sys_sessions
++ ;
1311 if (pfm_sessions
.pfs_sys_sessions
) goto abort
;
1312 pfm_sessions
.pfs_task_sessions
++;
1315 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1316 pfm_sessions
.pfs_sys_sessions
,
1317 pfm_sessions
.pfs_task_sessions
,
1318 pfm_sessions
.pfs_sys_use_dbregs
,
1327 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1328 pfm_sessions
.pfs_sys_session
[cpu
]->pid
,
1329 smp_processor_id()));
1338 pfm_unreserve_session(pfm_context_t
*ctx
, int is_syswide
, unsigned int cpu
)
1340 unsigned long flags
;
1342 * validy checks on cpu_mask have been done upstream
1346 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1347 pfm_sessions
.pfs_sys_sessions
,
1348 pfm_sessions
.pfs_task_sessions
,
1349 pfm_sessions
.pfs_sys_use_dbregs
,
1355 pfm_sessions
.pfs_sys_session
[cpu
] = NULL
;
1357 * would not work with perfmon+more than one bit in cpu_mask
1359 if (ctx
&& ctx
->ctx_fl_using_dbreg
) {
1360 if (pfm_sessions
.pfs_sys_use_dbregs
== 0) {
1361 printk(KERN_ERR
"perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx
);
1363 pfm_sessions
.pfs_sys_use_dbregs
--;
1366 pfm_sessions
.pfs_sys_sessions
--;
1368 pfm_sessions
.pfs_task_sessions
--;
1370 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1371 pfm_sessions
.pfs_sys_sessions
,
1372 pfm_sessions
.pfs_task_sessions
,
1373 pfm_sessions
.pfs_sys_use_dbregs
,
1383 * removes virtual mapping of the sampling buffer.
1384 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1385 * a PROTECT_CTX() section.
1388 pfm_remove_smpl_mapping(struct task_struct
*task
, void *vaddr
, unsigned long size
)
1393 if (task
->mm
== NULL
|| size
== 0UL || vaddr
== NULL
) {
1394 printk(KERN_ERR
"perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task
->pid
, task
->mm
);
1398 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr
, size
));
1401 * does the actual unmapping
1403 down_write(&task
->mm
->mmap_sem
);
1405 DPRINT(("down_write done smpl_vaddr=%p size=%lu\n", vaddr
, size
));
1407 r
= pfm_do_munmap(task
->mm
, (unsigned long)vaddr
, size
, 0);
1409 up_write(&task
->mm
->mmap_sem
);
1411 printk(KERN_ERR
"perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task
->pid
, vaddr
, size
);
1414 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr
, size
, r
));
1420 * free actual physical storage used by sampling buffer
1424 pfm_free_smpl_buffer(pfm_context_t
*ctx
)
1426 pfm_buffer_fmt_t
*fmt
;
1428 if (ctx
->ctx_smpl_hdr
== NULL
) goto invalid_free
;
1431 * we won't use the buffer format anymore
1433 fmt
= ctx
->ctx_buf_fmt
;
1435 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1438 ctx
->ctx_smpl_vaddr
));
1440 pfm_buf_fmt_exit(fmt
, current
, NULL
, NULL
);
1445 pfm_rvfree(ctx
->ctx_smpl_hdr
, ctx
->ctx_smpl_size
);
1447 ctx
->ctx_smpl_hdr
= NULL
;
1448 ctx
->ctx_smpl_size
= 0UL;
1453 printk(KERN_ERR
"perfmon: pfm_free_smpl_buffer [%d] no buffer\n", current
->pid
);
1459 pfm_exit_smpl_buffer(pfm_buffer_fmt_t
*fmt
)
1461 if (fmt
== NULL
) return;
1463 pfm_buf_fmt_exit(fmt
, current
, NULL
, NULL
);
1468 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1469 * no real gain from having the whole whorehouse mounted. So we don't need
1470 * any operations on the root directory. However, we need a non-trivial
1471 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1473 static struct vfsmount
*pfmfs_mnt
;
1478 int err
= register_filesystem(&pfm_fs_type
);
1480 pfmfs_mnt
= kern_mount(&pfm_fs_type
);
1481 err
= PTR_ERR(pfmfs_mnt
);
1482 if (IS_ERR(pfmfs_mnt
))
1483 unregister_filesystem(&pfm_fs_type
);
1493 unregister_filesystem(&pfm_fs_type
);
1498 pfm_read(struct file
*filp
, char __user
*buf
, size_t size
, loff_t
*ppos
)
1503 unsigned long flags
;
1504 DECLARE_WAITQUEUE(wait
, current
);
1505 if (PFM_IS_FILE(filp
) == 0) {
1506 printk(KERN_ERR
"perfmon: pfm_poll: bad magic [%d]\n", current
->pid
);
1510 ctx
= (pfm_context_t
*)filp
->private_data
;
1512 printk(KERN_ERR
"perfmon: pfm_read: NULL ctx [%d]\n", current
->pid
);
1517 * check even when there is no message
1519 if (size
< sizeof(pfm_msg_t
)) {
1520 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx
, sizeof(pfm_msg_t
)));
1524 PROTECT_CTX(ctx
, flags
);
1527 * put ourselves on the wait queue
1529 add_wait_queue(&ctx
->ctx_msgq_wait
, &wait
);
1537 set_current_state(TASK_INTERRUPTIBLE
);
1539 DPRINT(("head=%d tail=%d\n", ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
));
1542 if(PFM_CTXQ_EMPTY(ctx
) == 0) break;
1544 UNPROTECT_CTX(ctx
, flags
);
1547 * check non-blocking read
1550 if(filp
->f_flags
& O_NONBLOCK
) break;
1553 * check pending signals
1555 if(signal_pending(current
)) {
1560 * no message, so wait
1564 PROTECT_CTX(ctx
, flags
);
1566 DPRINT(("[%d] back to running ret=%ld\n", current
->pid
, ret
));
1567 set_current_state(TASK_RUNNING
);
1568 remove_wait_queue(&ctx
->ctx_msgq_wait
, &wait
);
1570 if (ret
< 0) goto abort
;
1573 msg
= pfm_get_next_msg(ctx
);
1575 printk(KERN_ERR
"perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx
, current
->pid
);
1579 DPRINT(("[%d] fd=%d type=%d\n", current
->pid
, msg
->pfm_gen_msg
.msg_ctx_fd
, msg
->pfm_gen_msg
.msg_type
));
1582 if(copy_to_user(buf
, msg
, sizeof(pfm_msg_t
)) == 0) ret
= sizeof(pfm_msg_t
);
1585 UNPROTECT_CTX(ctx
, flags
);
1591 pfm_write(struct file
*file
, const char __user
*ubuf
,
1592 size_t size
, loff_t
*ppos
)
1594 DPRINT(("pfm_write called\n"));
1599 pfm_poll(struct file
*filp
, poll_table
* wait
)
1602 unsigned long flags
;
1603 unsigned int mask
= 0;
1605 if (PFM_IS_FILE(filp
) == 0) {
1606 printk(KERN_ERR
"perfmon: pfm_poll: bad magic [%d]\n", current
->pid
);
1610 ctx
= (pfm_context_t
*)filp
->private_data
;
1612 printk(KERN_ERR
"perfmon: pfm_poll: NULL ctx [%d]\n", current
->pid
);
1617 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx
->ctx_fd
));
1619 poll_wait(filp
, &ctx
->ctx_msgq_wait
, wait
);
1621 PROTECT_CTX(ctx
, flags
);
1623 if (PFM_CTXQ_EMPTY(ctx
) == 0)
1624 mask
= POLLIN
| POLLRDNORM
;
1626 UNPROTECT_CTX(ctx
, flags
);
1628 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx
->ctx_fd
, mask
));
1634 pfm_ioctl(struct inode
*inode
, struct file
*file
, unsigned int cmd
, unsigned long arg
)
1636 DPRINT(("pfm_ioctl called\n"));
1641 * interrupt cannot be masked when coming here
1644 pfm_do_fasync(int fd
, struct file
*filp
, pfm_context_t
*ctx
, int on
)
1648 ret
= fasync_helper (fd
, filp
, on
, &ctx
->ctx_async_queue
);
1650 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1654 ctx
->ctx_async_queue
, ret
));
1660 pfm_fasync(int fd
, struct file
*filp
, int on
)
1665 if (PFM_IS_FILE(filp
) == 0) {
1666 printk(KERN_ERR
"perfmon: pfm_fasync bad magic [%d]\n", current
->pid
);
1670 ctx
= (pfm_context_t
*)filp
->private_data
;
1672 printk(KERN_ERR
"perfmon: pfm_fasync NULL ctx [%d]\n", current
->pid
);
1676 * we cannot mask interrupts during this call because this may
1677 * may go to sleep if memory is not readily avalaible.
1679 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1680 * done in caller. Serialization of this function is ensured by caller.
1682 ret
= pfm_do_fasync(fd
, filp
, ctx
, on
);
1685 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1688 ctx
->ctx_async_queue
, ret
));
1695 * this function is exclusively called from pfm_close().
1696 * The context is not protected at that time, nor are interrupts
1697 * on the remote CPU. That's necessary to avoid deadlocks.
1700 pfm_syswide_force_stop(void *info
)
1702 pfm_context_t
*ctx
= (pfm_context_t
*)info
;
1703 struct pt_regs
*regs
= ia64_task_regs(current
);
1704 struct task_struct
*owner
;
1705 unsigned long flags
;
1708 if (ctx
->ctx_cpu
!= smp_processor_id()) {
1709 printk(KERN_ERR
"perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1711 smp_processor_id());
1714 owner
= GET_PMU_OWNER();
1715 if (owner
!= ctx
->ctx_task
) {
1716 printk(KERN_ERR
"perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1718 owner
->pid
, ctx
->ctx_task
->pid
);
1721 if (GET_PMU_CTX() != ctx
) {
1722 printk(KERN_ERR
"perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1724 GET_PMU_CTX(), ctx
);
1728 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), ctx
->ctx_task
->pid
));
1730 * the context is already protected in pfm_close(), we simply
1731 * need to mask interrupts to avoid a PMU interrupt race on
1734 local_irq_save(flags
);
1736 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
1738 DPRINT(("context_unload returned %d\n", ret
));
1742 * unmask interrupts, PMU interrupts are now spurious here
1744 local_irq_restore(flags
);
1748 pfm_syswide_cleanup_other_cpu(pfm_context_t
*ctx
)
1752 DPRINT(("calling CPU%d for cleanup\n", ctx
->ctx_cpu
));
1753 ret
= smp_call_function_single(ctx
->ctx_cpu
, pfm_syswide_force_stop
, ctx
, 0, 1);
1754 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx
->ctx_cpu
, ret
));
1756 #endif /* CONFIG_SMP */
1759 * called for each close(). Partially free resources.
1760 * When caller is self-monitoring, the context is unloaded.
1763 pfm_flush(struct file
*filp
)
1766 struct task_struct
*task
;
1767 struct pt_regs
*regs
;
1768 unsigned long flags
;
1769 unsigned long smpl_buf_size
= 0UL;
1770 void *smpl_buf_vaddr
= NULL
;
1771 int state
, is_system
;
1773 if (PFM_IS_FILE(filp
) == 0) {
1774 DPRINT(("bad magic for\n"));
1778 ctx
= (pfm_context_t
*)filp
->private_data
;
1780 printk(KERN_ERR
"perfmon: pfm_flush: NULL ctx [%d]\n", current
->pid
);
1785 * remove our file from the async queue, if we use this mode.
1786 * This can be done without the context being protected. We come
1787 * here when the context has become unreacheable by other tasks.
1789 * We may still have active monitoring at this point and we may
1790 * end up in pfm_overflow_handler(). However, fasync_helper()
1791 * operates with interrupts disabled and it cleans up the
1792 * queue. If the PMU handler is called prior to entering
1793 * fasync_helper() then it will send a signal. If it is
1794 * invoked after, it will find an empty queue and no
1795 * signal will be sent. In both case, we are safe
1797 if (filp
->f_flags
& FASYNC
) {
1798 DPRINT(("cleaning up async_queue=%p\n", ctx
->ctx_async_queue
));
1799 pfm_do_fasync (-1, filp
, ctx
, 0);
1802 PROTECT_CTX(ctx
, flags
);
1804 state
= ctx
->ctx_state
;
1805 is_system
= ctx
->ctx_fl_system
;
1807 task
= PFM_CTX_TASK(ctx
);
1808 regs
= ia64_task_regs(task
);
1810 DPRINT(("ctx_state=%d is_current=%d\n",
1812 task
== current
? 1 : 0));
1815 * if state == UNLOADED, then task is NULL
1819 * we must stop and unload because we are losing access to the context.
1821 if (task
== current
) {
1824 * the task IS the owner but it migrated to another CPU: that's bad
1825 * but we must handle this cleanly. Unfortunately, the kernel does
1826 * not provide a mechanism to block migration (while the context is loaded).
1828 * We need to release the resource on the ORIGINAL cpu.
1830 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
1832 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
1834 * keep context protected but unmask interrupt for IPI
1836 local_irq_restore(flags
);
1838 pfm_syswide_cleanup_other_cpu(ctx
);
1841 * restore interrupt masking
1843 local_irq_save(flags
);
1846 * context is unloaded at this point
1849 #endif /* CONFIG_SMP */
1852 DPRINT(("forcing unload\n"));
1854 * stop and unload, returning with state UNLOADED
1855 * and session unreserved.
1857 pfm_context_unload(ctx
, NULL
, 0, regs
);
1859 DPRINT(("ctx_state=%d\n", ctx
->ctx_state
));
1864 * remove virtual mapping, if any, for the calling task.
1865 * cannot reset ctx field until last user is calling close().
1867 * ctx_smpl_vaddr must never be cleared because it is needed
1868 * by every task with access to the context
1870 * When called from do_exit(), the mm context is gone already, therefore
1871 * mm is NULL, i.e., the VMA is already gone and we do not have to
1874 if (ctx
->ctx_smpl_vaddr
&& current
->mm
) {
1875 smpl_buf_vaddr
= ctx
->ctx_smpl_vaddr
;
1876 smpl_buf_size
= ctx
->ctx_smpl_size
;
1879 UNPROTECT_CTX(ctx
, flags
);
1882 * if there was a mapping, then we systematically remove it
1883 * at this point. Cannot be done inside critical section
1884 * because some VM function reenables interrupts.
1887 if (smpl_buf_vaddr
) pfm_remove_smpl_mapping(current
, smpl_buf_vaddr
, smpl_buf_size
);
1892 * called either on explicit close() or from exit_files().
1893 * Only the LAST user of the file gets to this point, i.e., it is
1896 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1897 * (fput()),i.e, last task to access the file. Nobody else can access the
1898 * file at this point.
1900 * When called from exit_files(), the VMA has been freed because exit_mm()
1901 * is executed before exit_files().
1903 * When called from exit_files(), the current task is not yet ZOMBIE but we
1904 * flush the PMU state to the context.
1907 pfm_close(struct inode
*inode
, struct file
*filp
)
1910 struct task_struct
*task
;
1911 struct pt_regs
*regs
;
1912 DECLARE_WAITQUEUE(wait
, current
);
1913 unsigned long flags
;
1914 unsigned long smpl_buf_size
= 0UL;
1915 void *smpl_buf_addr
= NULL
;
1916 int free_possible
= 1;
1917 int state
, is_system
;
1919 DPRINT(("pfm_close called private=%p\n", filp
->private_data
));
1921 if (PFM_IS_FILE(filp
) == 0) {
1922 DPRINT(("bad magic\n"));
1926 ctx
= (pfm_context_t
*)filp
->private_data
;
1928 printk(KERN_ERR
"perfmon: pfm_close: NULL ctx [%d]\n", current
->pid
);
1932 PROTECT_CTX(ctx
, flags
);
1934 state
= ctx
->ctx_state
;
1935 is_system
= ctx
->ctx_fl_system
;
1937 task
= PFM_CTX_TASK(ctx
);
1938 regs
= ia64_task_regs(task
);
1940 DPRINT(("ctx_state=%d is_current=%d\n",
1942 task
== current
? 1 : 0));
1945 * if task == current, then pfm_flush() unloaded the context
1947 if (state
== PFM_CTX_UNLOADED
) goto doit
;
1950 * context is loaded/masked and task != current, we need to
1951 * either force an unload or go zombie
1955 * The task is currently blocked or will block after an overflow.
1956 * we must force it to wakeup to get out of the
1957 * MASKED state and transition to the unloaded state by itself.
1959 * This situation is only possible for per-task mode
1961 if (state
== PFM_CTX_MASKED
&& CTX_OVFL_NOBLOCK(ctx
) == 0) {
1964 * set a "partial" zombie state to be checked
1965 * upon return from down() in pfm_handle_work().
1967 * We cannot use the ZOMBIE state, because it is checked
1968 * by pfm_load_regs() which is called upon wakeup from down().
1969 * In such case, it would free the context and then we would
1970 * return to pfm_handle_work() which would access the
1971 * stale context. Instead, we set a flag invisible to pfm_load_regs()
1972 * but visible to pfm_handle_work().
1974 * For some window of time, we have a zombie context with
1975 * ctx_state = MASKED and not ZOMBIE
1977 ctx
->ctx_fl_going_zombie
= 1;
1980 * force task to wake up from MASKED state
1982 up(&ctx
->ctx_restart_sem
);
1984 DPRINT(("waking up ctx_state=%d\n", state
));
1987 * put ourself to sleep waiting for the other
1988 * task to report completion
1990 * the context is protected by mutex, therefore there
1991 * is no risk of being notified of completion before
1992 * begin actually on the waitq.
1994 set_current_state(TASK_INTERRUPTIBLE
);
1995 add_wait_queue(&ctx
->ctx_zombieq
, &wait
);
1997 UNPROTECT_CTX(ctx
, flags
);
2000 * XXX: check for signals :
2001 * - ok for explicit close
2002 * - not ok when coming from exit_files()
2007 PROTECT_CTX(ctx
, flags
);
2010 remove_wait_queue(&ctx
->ctx_zombieq
, &wait
);
2011 set_current_state(TASK_RUNNING
);
2014 * context is unloaded at this point
2016 DPRINT(("after zombie wakeup ctx_state=%d for\n", state
));
2018 else if (task
!= current
) {
2021 * switch context to zombie state
2023 ctx
->ctx_state
= PFM_CTX_ZOMBIE
;
2025 DPRINT(("zombie ctx for [%d]\n", task
->pid
));
2027 * cannot free the context on the spot. deferred until
2028 * the task notices the ZOMBIE state
2032 pfm_context_unload(ctx
, NULL
, 0, regs
);
2037 /* reload state, may have changed during opening of critical section */
2038 state
= ctx
->ctx_state
;
2041 * the context is still attached to a task (possibly current)
2042 * we cannot destroy it right now
2046 * we must free the sampling buffer right here because
2047 * we cannot rely on it being cleaned up later by the
2048 * monitored task. It is not possible to free vmalloc'ed
2049 * memory in pfm_load_regs(). Instead, we remove the buffer
2050 * now. should there be subsequent PMU overflow originally
2051 * meant for sampling, the will be converted to spurious
2052 * and that's fine because the monitoring tools is gone anyway.
2054 if (ctx
->ctx_smpl_hdr
) {
2055 smpl_buf_addr
= ctx
->ctx_smpl_hdr
;
2056 smpl_buf_size
= ctx
->ctx_smpl_size
;
2057 /* no more sampling */
2058 ctx
->ctx_smpl_hdr
= NULL
;
2059 ctx
->ctx_fl_is_sampling
= 0;
2062 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2068 if (smpl_buf_addr
) pfm_exit_smpl_buffer(ctx
->ctx_buf_fmt
);
2071 * UNLOADED that the session has already been unreserved.
2073 if (state
== PFM_CTX_ZOMBIE
) {
2074 pfm_unreserve_session(ctx
, ctx
->ctx_fl_system
, ctx
->ctx_cpu
);
2078 * disconnect file descriptor from context must be done
2081 filp
->private_data
= NULL
;
2084 * if we free on the spot, the context is now completely unreacheable
2085 * from the callers side. The monitored task side is also cut, so we
2088 * If we have a deferred free, only the caller side is disconnected.
2090 UNPROTECT_CTX(ctx
, flags
);
2093 * All memory free operations (especially for vmalloc'ed memory)
2094 * MUST be done with interrupts ENABLED.
2096 if (smpl_buf_addr
) pfm_rvfree(smpl_buf_addr
, smpl_buf_size
);
2099 * return the memory used by the context
2101 if (free_possible
) pfm_context_free(ctx
);
2107 pfm_no_open(struct inode
*irrelevant
, struct file
*dontcare
)
2109 DPRINT(("pfm_no_open called\n"));
2115 static struct file_operations pfm_file_ops
= {
2116 .llseek
= no_llseek
,
2121 .open
= pfm_no_open
, /* special open code to disallow open via /proc */
2122 .fasync
= pfm_fasync
,
2123 .release
= pfm_close
,
2128 pfmfs_delete_dentry(struct dentry
*dentry
)
2133 static struct dentry_operations pfmfs_dentry_operations
= {
2134 .d_delete
= pfmfs_delete_dentry
,
2139 pfm_alloc_fd(struct file
**cfile
)
2142 struct file
*file
= NULL
;
2143 struct inode
* inode
;
2147 fd
= get_unused_fd();
2148 if (fd
< 0) return -ENFILE
;
2152 file
= get_empty_filp();
2153 if (!file
) goto out
;
2156 * allocate a new inode
2158 inode
= new_inode(pfmfs_mnt
->mnt_sb
);
2159 if (!inode
) goto out
;
2161 DPRINT(("new inode ino=%ld @%p\n", inode
->i_ino
, inode
));
2163 inode
->i_mode
= S_IFCHR
|S_IRUGO
;
2164 inode
->i_uid
= current
->fsuid
;
2165 inode
->i_gid
= current
->fsgid
;
2167 sprintf(name
, "[%lu]", inode
->i_ino
);
2169 this.len
= strlen(name
);
2170 this.hash
= inode
->i_ino
;
2175 * allocate a new dcache entry
2177 file
->f_dentry
= d_alloc(pfmfs_mnt
->mnt_sb
->s_root
, &this);
2178 if (!file
->f_dentry
) goto out
;
2180 file
->f_dentry
->d_op
= &pfmfs_dentry_operations
;
2182 d_add(file
->f_dentry
, inode
);
2183 file
->f_vfsmnt
= mntget(pfmfs_mnt
);
2184 file
->f_mapping
= inode
->i_mapping
;
2186 file
->f_op
= &pfm_file_ops
;
2187 file
->f_mode
= FMODE_READ
;
2188 file
->f_flags
= O_RDONLY
;
2192 * may have to delay until context is attached?
2194 fd_install(fd
, file
);
2197 * the file structure we will use
2203 if (file
) put_filp(file
);
2209 pfm_free_fd(int fd
, struct file
*file
)
2211 struct files_struct
*files
= current
->files
;
2214 * there ie no fd_uninstall(), so we do it here
2216 spin_lock(&files
->file_lock
);
2217 files
->fd
[fd
] = NULL
;
2218 spin_unlock(&files
->file_lock
);
2220 if (file
) put_filp(file
);
2225 pfm_remap_buffer(struct vm_area_struct
*vma
, unsigned long buf
, unsigned long addr
, unsigned long size
)
2227 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf
, addr
, size
));
2230 unsigned long pfn
= ia64_tpa(buf
) >> PAGE_SHIFT
;
2233 if (remap_pfn_range(vma
, addr
, pfn
, PAGE_SIZE
, PAGE_READONLY
))
2244 * allocate a sampling buffer and remaps it into the user address space of the task
2247 pfm_smpl_buffer_alloc(struct task_struct
*task
, pfm_context_t
*ctx
, unsigned long rsize
, void **user_vaddr
)
2249 struct mm_struct
*mm
= task
->mm
;
2250 struct vm_area_struct
*vma
= NULL
;
2256 * the fixed header + requested size and align to page boundary
2258 size
= PAGE_ALIGN(rsize
);
2260 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize
, size
));
2263 * check requested size to avoid Denial-of-service attacks
2264 * XXX: may have to refine this test
2265 * Check against address space limit.
2267 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2270 if (size
> task
->signal
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
)
2274 * We do the easy to undo allocations first.
2276 * pfm_rvmalloc(), clears the buffer, so there is no leak
2278 smpl_buf
= pfm_rvmalloc(size
);
2279 if (smpl_buf
== NULL
) {
2280 DPRINT(("Can't allocate sampling buffer\n"));
2284 DPRINT(("smpl_buf @%p\n", smpl_buf
));
2287 vma
= kmem_cache_alloc(vm_area_cachep
, SLAB_KERNEL
);
2289 DPRINT(("Cannot allocate vma\n"));
2292 memset(vma
, 0, sizeof(*vma
));
2295 * partially initialize the vma for the sampling buffer
2298 vma
->vm_flags
= VM_READ
| VM_MAYREAD
|VM_RESERVED
;
2299 vma
->vm_page_prot
= PAGE_READONLY
; /* XXX may need to change */
2302 * Now we have everything we need and we can initialize
2303 * and connect all the data structures
2306 ctx
->ctx_smpl_hdr
= smpl_buf
;
2307 ctx
->ctx_smpl_size
= size
; /* aligned size */
2310 * Let's do the difficult operations next.
2312 * now we atomically find some area in the address space and
2313 * remap the buffer in it.
2315 down_write(&task
->mm
->mmap_sem
);
2317 /* find some free area in address space, must have mmap sem held */
2318 vma
->vm_start
= pfm_get_unmapped_area(NULL
, 0, size
, 0, MAP_PRIVATE
|MAP_ANONYMOUS
, 0);
2319 if (vma
->vm_start
== 0UL) {
2320 DPRINT(("Cannot find unmapped area for size %ld\n", size
));
2321 up_write(&task
->mm
->mmap_sem
);
2324 vma
->vm_end
= vma
->vm_start
+ size
;
2325 vma
->vm_pgoff
= vma
->vm_start
>> PAGE_SHIFT
;
2327 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size
, ctx
->ctx_smpl_hdr
, vma
->vm_start
));
2329 /* can only be applied to current task, need to have the mm semaphore held when called */
2330 if (pfm_remap_buffer(vma
, (unsigned long)smpl_buf
, vma
->vm_start
, size
)) {
2331 DPRINT(("Can't remap buffer\n"));
2332 up_write(&task
->mm
->mmap_sem
);
2337 * now insert the vma in the vm list for the process, must be
2338 * done with mmap lock held
2340 insert_vm_struct(mm
, vma
);
2342 mm
->total_vm
+= size
>> PAGE_SHIFT
;
2343 vm_stat_account(vma
);
2344 up_write(&task
->mm
->mmap_sem
);
2347 * keep track of user level virtual address
2349 ctx
->ctx_smpl_vaddr
= (void *)vma
->vm_start
;
2350 *(unsigned long *)user_vaddr
= vma
->vm_start
;
2355 kmem_cache_free(vm_area_cachep
, vma
);
2357 pfm_rvfree(smpl_buf
, size
);
2363 * XXX: do something better here
2366 pfm_bad_permissions(struct task_struct
*task
)
2368 /* inspired by ptrace_attach() */
2369 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2378 return ((current
->uid
!= task
->euid
)
2379 || (current
->uid
!= task
->suid
)
2380 || (current
->uid
!= task
->uid
)
2381 || (current
->gid
!= task
->egid
)
2382 || (current
->gid
!= task
->sgid
)
2383 || (current
->gid
!= task
->gid
)) && !capable(CAP_SYS_PTRACE
);
2387 pfarg_is_sane(struct task_struct
*task
, pfarg_context_t
*pfx
)
2393 ctx_flags
= pfx
->ctx_flags
;
2395 if (ctx_flags
& PFM_FL_SYSTEM_WIDE
) {
2398 * cannot block in this mode
2400 if (ctx_flags
& PFM_FL_NOTIFY_BLOCK
) {
2401 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2406 /* probably more to add here */
2412 pfm_setup_buffer_fmt(struct task_struct
*task
, pfm_context_t
*ctx
, unsigned int ctx_flags
,
2413 unsigned int cpu
, pfarg_context_t
*arg
)
2415 pfm_buffer_fmt_t
*fmt
= NULL
;
2416 unsigned long size
= 0UL;
2418 void *fmt_arg
= NULL
;
2420 #define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2422 /* invoke and lock buffer format, if found */
2423 fmt
= pfm_find_buffer_fmt(arg
->ctx_smpl_buf_id
);
2425 DPRINT(("[%d] cannot find buffer format\n", task
->pid
));
2430 * buffer argument MUST be contiguous to pfarg_context_t
2432 if (fmt
->fmt_arg_size
) fmt_arg
= PFM_CTXARG_BUF_ARG(arg
);
2434 ret
= pfm_buf_fmt_validate(fmt
, task
, ctx_flags
, cpu
, fmt_arg
);
2436 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task
->pid
, ctx_flags
, cpu
, fmt_arg
, ret
));
2438 if (ret
) goto error
;
2440 /* link buffer format and context */
2441 ctx
->ctx_buf_fmt
= fmt
;
2444 * check if buffer format wants to use perfmon buffer allocation/mapping service
2446 ret
= pfm_buf_fmt_getsize(fmt
, task
, ctx_flags
, cpu
, fmt_arg
, &size
);
2447 if (ret
) goto error
;
2451 * buffer is always remapped into the caller's address space
2453 ret
= pfm_smpl_buffer_alloc(current
, ctx
, size
, &uaddr
);
2454 if (ret
) goto error
;
2456 /* keep track of user address of buffer */
2457 arg
->ctx_smpl_vaddr
= uaddr
;
2459 ret
= pfm_buf_fmt_init(fmt
, task
, ctx
->ctx_smpl_hdr
, ctx_flags
, cpu
, fmt_arg
);
2466 pfm_reset_pmu_state(pfm_context_t
*ctx
)
2471 * install reset values for PMC.
2473 for (i
=1; PMC_IS_LAST(i
) == 0; i
++) {
2474 if (PMC_IS_IMPL(i
) == 0) continue;
2475 ctx
->ctx_pmcs
[i
] = PMC_DFL_VAL(i
);
2476 DPRINT(("pmc[%d]=0x%lx\n", i
, ctx
->ctx_pmcs
[i
]));
2479 * PMD registers are set to 0UL when the context in memset()
2483 * On context switched restore, we must restore ALL pmc and ALL pmd even
2484 * when they are not actively used by the task. In UP, the incoming process
2485 * may otherwise pick up left over PMC, PMD state from the previous process.
2486 * As opposed to PMD, stale PMC can cause harm to the incoming
2487 * process because they may change what is being measured.
2488 * Therefore, we must systematically reinstall the entire
2489 * PMC state. In SMP, the same thing is possible on the
2490 * same CPU but also on between 2 CPUs.
2492 * The problem with PMD is information leaking especially
2493 * to user level when psr.sp=0
2495 * There is unfortunately no easy way to avoid this problem
2496 * on either UP or SMP. This definitively slows down the
2497 * pfm_load_regs() function.
2501 * bitmask of all PMCs accessible to this context
2503 * PMC0 is treated differently.
2505 ctx
->ctx_all_pmcs
[0] = pmu_conf
->impl_pmcs
[0] & ~0x1;
2508 * bitmask of all PMDs that are accesible to this context
2510 ctx
->ctx_all_pmds
[0] = pmu_conf
->impl_pmds
[0];
2512 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx
->ctx_fd
, ctx
->ctx_all_pmcs
[0],ctx
->ctx_all_pmds
[0]));
2515 * useful in case of re-enable after disable
2517 ctx
->ctx_used_ibrs
[0] = 0UL;
2518 ctx
->ctx_used_dbrs
[0] = 0UL;
2522 pfm_ctx_getsize(void *arg
, size_t *sz
)
2524 pfarg_context_t
*req
= (pfarg_context_t
*)arg
;
2525 pfm_buffer_fmt_t
*fmt
;
2529 if (!pfm_uuid_cmp(req
->ctx_smpl_buf_id
, pfm_null_uuid
)) return 0;
2531 fmt
= pfm_find_buffer_fmt(req
->ctx_smpl_buf_id
);
2533 DPRINT(("cannot find buffer format\n"));
2536 /* get just enough to copy in user parameters */
2537 *sz
= fmt
->fmt_arg_size
;
2538 DPRINT(("arg_size=%lu\n", *sz
));
2546 * cannot attach if :
2548 * - task not owned by caller
2549 * - task incompatible with context mode
2552 pfm_task_incompatible(pfm_context_t
*ctx
, struct task_struct
*task
)
2555 * no kernel task or task not owner by caller
2557 if (task
->mm
== NULL
) {
2558 DPRINT(("task [%d] has not memory context (kernel thread)\n", task
->pid
));
2561 if (pfm_bad_permissions(task
)) {
2562 DPRINT(("no permission to attach to [%d]\n", task
->pid
));
2566 * cannot block in self-monitoring mode
2568 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && task
== current
) {
2569 DPRINT(("cannot load a blocking context on self for [%d]\n", task
->pid
));
2573 if (task
->exit_state
== EXIT_ZOMBIE
) {
2574 DPRINT(("cannot attach to zombie task [%d]\n", task
->pid
));
2579 * always ok for self
2581 if (task
== current
) return 0;
2583 if ((task
->state
!= TASK_STOPPED
) && (task
->state
!= TASK_TRACED
)) {
2584 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task
->pid
, task
->state
));
2588 * make sure the task is off any CPU
2590 wait_task_inactive(task
);
2592 /* more to come... */
2598 pfm_get_task(pfm_context_t
*ctx
, pid_t pid
, struct task_struct
**task
)
2600 struct task_struct
*p
= current
;
2603 /* XXX: need to add more checks here */
2604 if (pid
< 2) return -EPERM
;
2606 if (pid
!= current
->pid
) {
2608 read_lock(&tasklist_lock
);
2610 p
= find_task_by_pid(pid
);
2612 /* make sure task cannot go away while we operate on it */
2613 if (p
) get_task_struct(p
);
2615 read_unlock(&tasklist_lock
);
2617 if (p
== NULL
) return -ESRCH
;
2620 ret
= pfm_task_incompatible(ctx
, p
);
2623 } else if (p
!= current
) {
2632 pfm_context_create(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
2634 pfarg_context_t
*req
= (pfarg_context_t
*)arg
;
2639 /* let's check the arguments first */
2640 ret
= pfarg_is_sane(current
, req
);
2641 if (ret
< 0) return ret
;
2643 ctx_flags
= req
->ctx_flags
;
2647 ctx
= pfm_context_alloc();
2648 if (!ctx
) goto error
;
2650 ret
= pfm_alloc_fd(&filp
);
2651 if (ret
< 0) goto error_file
;
2653 req
->ctx_fd
= ctx
->ctx_fd
= ret
;
2656 * attach context to file
2658 filp
->private_data
= ctx
;
2661 * does the user want to sample?
2663 if (pfm_uuid_cmp(req
->ctx_smpl_buf_id
, pfm_null_uuid
)) {
2664 ret
= pfm_setup_buffer_fmt(current
, ctx
, ctx_flags
, 0, req
);
2665 if (ret
) goto buffer_error
;
2669 * init context protection lock
2671 spin_lock_init(&ctx
->ctx_lock
);
2674 * context is unloaded
2676 ctx
->ctx_state
= PFM_CTX_UNLOADED
;
2679 * initialization of context's flags
2681 ctx
->ctx_fl_block
= (ctx_flags
& PFM_FL_NOTIFY_BLOCK
) ? 1 : 0;
2682 ctx
->ctx_fl_system
= (ctx_flags
& PFM_FL_SYSTEM_WIDE
) ? 1: 0;
2683 ctx
->ctx_fl_is_sampling
= ctx
->ctx_buf_fmt
? 1 : 0; /* assume record() is defined */
2684 ctx
->ctx_fl_no_msg
= (ctx_flags
& PFM_FL_OVFL_NO_MSG
) ? 1: 0;
2686 * will move to set properties
2687 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
2691 * init restart semaphore to locked
2693 sema_init(&ctx
->ctx_restart_sem
, 0);
2696 * activation is used in SMP only
2698 ctx
->ctx_last_activation
= PFM_INVALID_ACTIVATION
;
2699 SET_LAST_CPU(ctx
, -1);
2702 * initialize notification message queue
2704 ctx
->ctx_msgq_head
= ctx
->ctx_msgq_tail
= 0;
2705 init_waitqueue_head(&ctx
->ctx_msgq_wait
);
2706 init_waitqueue_head(&ctx
->ctx_zombieq
);
2708 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d \n",
2713 ctx
->ctx_fl_excl_idle
,
2718 * initialize soft PMU state
2720 pfm_reset_pmu_state(ctx
);
2725 pfm_free_fd(ctx
->ctx_fd
, filp
);
2727 if (ctx
->ctx_buf_fmt
) {
2728 pfm_buf_fmt_exit(ctx
->ctx_buf_fmt
, current
, NULL
, regs
);
2731 pfm_context_free(ctx
);
2737 static inline unsigned long
2738 pfm_new_counter_value (pfm_counter_t
*reg
, int is_long_reset
)
2740 unsigned long val
= is_long_reset
? reg
->long_reset
: reg
->short_reset
;
2741 unsigned long new_seed
, old_seed
= reg
->seed
, mask
= reg
->mask
;
2742 extern unsigned long carta_random32 (unsigned long seed
);
2744 if (reg
->flags
& PFM_REGFL_RANDOM
) {
2745 new_seed
= carta_random32(old_seed
);
2746 val
-= (old_seed
& mask
); /* counter values are negative numbers! */
2747 if ((mask
>> 32) != 0)
2748 /* construct a full 64-bit random value: */
2749 new_seed
|= carta_random32(old_seed
>> 32) << 32;
2750 reg
->seed
= new_seed
;
2757 pfm_reset_regs_masked(pfm_context_t
*ctx
, unsigned long *ovfl_regs
, int is_long_reset
)
2759 unsigned long mask
= ovfl_regs
[0];
2760 unsigned long reset_others
= 0UL;
2765 * now restore reset value on sampling overflowed counters
2767 mask
>>= PMU_FIRST_COUNTER
;
2768 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>= 1) {
2770 if ((mask
& 0x1UL
) == 0UL) continue;
2772 ctx
->ctx_pmds
[i
].val
= val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2773 reset_others
|= ctx
->ctx_pmds
[i
].reset_pmds
[0];
2775 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset
? "long" : "short", i
, val
));
2779 * Now take care of resetting the other registers
2781 for(i
= 0; reset_others
; i
++, reset_others
>>= 1) {
2783 if ((reset_others
& 0x1) == 0) continue;
2785 ctx
->ctx_pmds
[i
].val
= val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2787 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2788 is_long_reset
? "long" : "short", i
, val
));
2793 pfm_reset_regs(pfm_context_t
*ctx
, unsigned long *ovfl_regs
, int is_long_reset
)
2795 unsigned long mask
= ovfl_regs
[0];
2796 unsigned long reset_others
= 0UL;
2800 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs
[0], is_long_reset
));
2802 if (ctx
->ctx_state
== PFM_CTX_MASKED
) {
2803 pfm_reset_regs_masked(ctx
, ovfl_regs
, is_long_reset
);
2808 * now restore reset value on sampling overflowed counters
2810 mask
>>= PMU_FIRST_COUNTER
;
2811 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>= 1) {
2813 if ((mask
& 0x1UL
) == 0UL) continue;
2815 val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2816 reset_others
|= ctx
->ctx_pmds
[i
].reset_pmds
[0];
2818 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset
? "long" : "short", i
, val
));
2820 pfm_write_soft_counter(ctx
, i
, val
);
2824 * Now take care of resetting the other registers
2826 for(i
= 0; reset_others
; i
++, reset_others
>>= 1) {
2828 if ((reset_others
& 0x1) == 0) continue;
2830 val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2832 if (PMD_IS_COUNTING(i
)) {
2833 pfm_write_soft_counter(ctx
, i
, val
);
2835 ia64_set_pmd(i
, val
);
2837 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2838 is_long_reset
? "long" : "short", i
, val
));
2844 pfm_write_pmcs(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
2846 struct thread_struct
*thread
= NULL
;
2847 struct task_struct
*task
;
2848 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
2849 unsigned long value
, pmc_pm
;
2850 unsigned long smpl_pmds
, reset_pmds
, impl_pmds
;
2851 unsigned int cnum
, reg_flags
, flags
, pmc_type
;
2852 int i
, can_access_pmu
= 0, is_loaded
, is_system
, expert_mode
;
2853 int is_monitor
, is_counting
, state
;
2855 pfm_reg_check_t wr_func
;
2856 #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2858 state
= ctx
->ctx_state
;
2859 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
2860 is_system
= ctx
->ctx_fl_system
;
2861 task
= ctx
->ctx_task
;
2862 impl_pmds
= pmu_conf
->impl_pmds
[0];
2864 if (state
== PFM_CTX_ZOMBIE
) return -EINVAL
;
2867 thread
= &task
->thread
;
2869 * In system wide and when the context is loaded, access can only happen
2870 * when the caller is running on the CPU being monitored by the session.
2871 * It does not have to be the owner (ctx_task) of the context per se.
2873 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
2874 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
2877 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
2879 expert_mode
= pfm_sysctl
.expert_mode
;
2881 for (i
= 0; i
< count
; i
++, req
++) {
2883 cnum
= req
->reg_num
;
2884 reg_flags
= req
->reg_flags
;
2885 value
= req
->reg_value
;
2886 smpl_pmds
= req
->reg_smpl_pmds
[0];
2887 reset_pmds
= req
->reg_reset_pmds
[0];
2891 if (cnum
>= PMU_MAX_PMCS
) {
2892 DPRINT(("pmc%u is invalid\n", cnum
));
2896 pmc_type
= pmu_conf
->pmc_desc
[cnum
].type
;
2897 pmc_pm
= (value
>> pmu_conf
->pmc_desc
[cnum
].pm_pos
) & 0x1;
2898 is_counting
= (pmc_type
& PFM_REG_COUNTING
) == PFM_REG_COUNTING
? 1 : 0;
2899 is_monitor
= (pmc_type
& PFM_REG_MONITOR
) == PFM_REG_MONITOR
? 1 : 0;
2902 * we reject all non implemented PMC as well
2903 * as attempts to modify PMC[0-3] which are used
2904 * as status registers by the PMU
2906 if ((pmc_type
& PFM_REG_IMPL
) == 0 || (pmc_type
& PFM_REG_CONTROL
) == PFM_REG_CONTROL
) {
2907 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum
, pmc_type
));
2910 wr_func
= pmu_conf
->pmc_desc
[cnum
].write_check
;
2912 * If the PMC is a monitor, then if the value is not the default:
2913 * - system-wide session: PMCx.pm=1 (privileged monitor)
2914 * - per-task : PMCx.pm=0 (user monitor)
2916 if (is_monitor
&& value
!= PMC_DFL_VAL(cnum
) && is_system
^ pmc_pm
) {
2917 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2926 * enforce generation of overflow interrupt. Necessary on all
2929 value
|= 1 << PMU_PMC_OI
;
2931 if (reg_flags
& PFM_REGFL_OVFL_NOTIFY
) {
2932 flags
|= PFM_REGFL_OVFL_NOTIFY
;
2935 if (reg_flags
& PFM_REGFL_RANDOM
) flags
|= PFM_REGFL_RANDOM
;
2937 /* verify validity of smpl_pmds */
2938 if ((smpl_pmds
& impl_pmds
) != smpl_pmds
) {
2939 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds
, cnum
));
2943 /* verify validity of reset_pmds */
2944 if ((reset_pmds
& impl_pmds
) != reset_pmds
) {
2945 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds
, cnum
));
2949 if (reg_flags
& (PFM_REGFL_OVFL_NOTIFY
|PFM_REGFL_RANDOM
)) {
2950 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum
));
2953 /* eventid on non-counting monitors are ignored */
2957 * execute write checker, if any
2959 if (likely(expert_mode
== 0 && wr_func
)) {
2960 ret
= (*wr_func
)(task
, ctx
, cnum
, &value
, regs
);
2961 if (ret
) goto error
;
2966 * no error on this register
2968 PFM_REG_RETFLAG_SET(req
->reg_flags
, 0);
2971 * Now we commit the changes to the software state
2975 * update overflow information
2979 * full flag update each time a register is programmed
2981 ctx
->ctx_pmds
[cnum
].flags
= flags
;
2983 ctx
->ctx_pmds
[cnum
].reset_pmds
[0] = reset_pmds
;
2984 ctx
->ctx_pmds
[cnum
].smpl_pmds
[0] = smpl_pmds
;
2985 ctx
->ctx_pmds
[cnum
].eventid
= req
->reg_smpl_eventid
;
2988 * Mark all PMDS to be accessed as used.
2990 * We do not keep track of PMC because we have to
2991 * systematically restore ALL of them.
2993 * We do not update the used_monitors mask, because
2994 * if we have not programmed them, then will be in
2995 * a quiescent state, therefore we will not need to
2996 * mask/restore then when context is MASKED.
2998 CTX_USED_PMD(ctx
, reset_pmds
);
2999 CTX_USED_PMD(ctx
, smpl_pmds
);
3001 * make sure we do not try to reset on
3002 * restart because we have established new values
3004 if (state
== PFM_CTX_MASKED
) ctx
->ctx_ovfl_regs
[0] &= ~1UL << cnum
;
3007 * Needed in case the user does not initialize the equivalent
3008 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3009 * possible leak here.
3011 CTX_USED_PMD(ctx
, pmu_conf
->pmc_desc
[cnum
].dep_pmd
[0]);
3014 * keep track of the monitor PMC that we are using.
3015 * we save the value of the pmc in ctx_pmcs[] and if
3016 * the monitoring is not stopped for the context we also
3017 * place it in the saved state area so that it will be
3018 * picked up later by the context switch code.
3020 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3022 * The value in thread->pmcs[] may be modified on overflow, i.e., when
3023 * monitoring needs to be stopped.
3025 if (is_monitor
) CTX_USED_MONITOR(ctx
, 1UL << cnum
);
3028 * update context state
3030 ctx
->ctx_pmcs
[cnum
] = value
;
3034 * write thread state
3036 if (is_system
== 0) thread
->pmcs
[cnum
] = value
;
3039 * write hardware register if we can
3041 if (can_access_pmu
) {
3042 ia64_set_pmc(cnum
, value
);
3047 * per-task SMP only here
3049 * we are guaranteed that the task is not running on the other CPU,
3050 * we indicate that this PMD will need to be reloaded if the task
3051 * is rescheduled on the CPU it ran last on.
3053 ctx
->ctx_reload_pmcs
[0] |= 1UL << cnum
;
3058 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3064 ctx
->ctx_all_pmcs
[0],
3065 ctx
->ctx_used_pmds
[0],
3066 ctx
->ctx_pmds
[cnum
].eventid
,
3069 ctx
->ctx_reload_pmcs
[0],
3070 ctx
->ctx_used_monitors
[0],
3071 ctx
->ctx_ovfl_regs
[0]));
3075 * make sure the changes are visible
3077 if (can_access_pmu
) ia64_srlz_d();
3081 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
3086 pfm_write_pmds(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3088 struct thread_struct
*thread
= NULL
;
3089 struct task_struct
*task
;
3090 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
3091 unsigned long value
, hw_value
, ovfl_mask
;
3093 int i
, can_access_pmu
= 0, state
;
3094 int is_counting
, is_loaded
, is_system
, expert_mode
;
3096 pfm_reg_check_t wr_func
;
3099 state
= ctx
->ctx_state
;
3100 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
3101 is_system
= ctx
->ctx_fl_system
;
3102 ovfl_mask
= pmu_conf
->ovfl_val
;
3103 task
= ctx
->ctx_task
;
3105 if (unlikely(state
== PFM_CTX_ZOMBIE
)) return -EINVAL
;
3108 * on both UP and SMP, we can only write to the PMC when the task is
3109 * the owner of the local PMU.
3111 if (likely(is_loaded
)) {
3112 thread
= &task
->thread
;
3114 * In system wide and when the context is loaded, access can only happen
3115 * when the caller is running on the CPU being monitored by the session.
3116 * It does not have to be the owner (ctx_task) of the context per se.
3118 if (unlikely(is_system
&& ctx
->ctx_cpu
!= smp_processor_id())) {
3119 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3122 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
3124 expert_mode
= pfm_sysctl
.expert_mode
;
3126 for (i
= 0; i
< count
; i
++, req
++) {
3128 cnum
= req
->reg_num
;
3129 value
= req
->reg_value
;
3131 if (!PMD_IS_IMPL(cnum
)) {
3132 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum
));
3135 is_counting
= PMD_IS_COUNTING(cnum
);
3136 wr_func
= pmu_conf
->pmd_desc
[cnum
].write_check
;
3139 * execute write checker, if any
3141 if (unlikely(expert_mode
== 0 && wr_func
)) {
3142 unsigned long v
= value
;
3144 ret
= (*wr_func
)(task
, ctx
, cnum
, &v
, regs
);
3145 if (ret
) goto abort_mission
;
3152 * no error on this register
3154 PFM_REG_RETFLAG_SET(req
->reg_flags
, 0);
3157 * now commit changes to software state
3162 * update virtualized (64bits) counter
3166 * write context state
3168 ctx
->ctx_pmds
[cnum
].lval
= value
;
3171 * when context is load we use the split value
3174 hw_value
= value
& ovfl_mask
;
3175 value
= value
& ~ovfl_mask
;
3179 * update reset values (not just for counters)
3181 ctx
->ctx_pmds
[cnum
].long_reset
= req
->reg_long_reset
;
3182 ctx
->ctx_pmds
[cnum
].short_reset
= req
->reg_short_reset
;
3185 * update randomization parameters (not just for counters)
3187 ctx
->ctx_pmds
[cnum
].seed
= req
->reg_random_seed
;
3188 ctx
->ctx_pmds
[cnum
].mask
= req
->reg_random_mask
;
3191 * update context value
3193 ctx
->ctx_pmds
[cnum
].val
= value
;
3196 * Keep track of what we use
3198 * We do not keep track of PMC because we have to
3199 * systematically restore ALL of them.
3201 CTX_USED_PMD(ctx
, PMD_PMD_DEP(cnum
));
3204 * mark this PMD register used as well
3206 CTX_USED_PMD(ctx
, RDEP(cnum
));
3209 * make sure we do not try to reset on
3210 * restart because we have established new values
3212 if (is_counting
&& state
== PFM_CTX_MASKED
) {
3213 ctx
->ctx_ovfl_regs
[0] &= ~1UL << cnum
;
3218 * write thread state
3220 if (is_system
== 0) thread
->pmds
[cnum
] = hw_value
;
3223 * write hardware register if we can
3225 if (can_access_pmu
) {
3226 ia64_set_pmd(cnum
, hw_value
);
3230 * we are guaranteed that the task is not running on the other CPU,
3231 * we indicate that this PMD will need to be reloaded if the task
3232 * is rescheduled on the CPU it ran last on.
3234 ctx
->ctx_reload_pmds
[0] |= 1UL << cnum
;
3239 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3240 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3246 ctx
->ctx_pmds
[cnum
].val
,
3247 ctx
->ctx_pmds
[cnum
].short_reset
,
3248 ctx
->ctx_pmds
[cnum
].long_reset
,
3249 PMC_OVFL_NOTIFY(ctx
, cnum
) ? 'Y':'N',
3250 ctx
->ctx_pmds
[cnum
].seed
,
3251 ctx
->ctx_pmds
[cnum
].mask
,
3252 ctx
->ctx_used_pmds
[0],
3253 ctx
->ctx_pmds
[cnum
].reset_pmds
[0],
3254 ctx
->ctx_reload_pmds
[0],
3255 ctx
->ctx_all_pmds
[0],
3256 ctx
->ctx_ovfl_regs
[0]));
3260 * make changes visible
3262 if (can_access_pmu
) ia64_srlz_d();
3268 * for now, we have only one possibility for error
3270 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
3275 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3276 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3277 * interrupt is delivered during the call, it will be kept pending until we leave, making
3278 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3279 * guaranteed to return consistent data to the user, it may simply be old. It is not
3280 * trivial to treat the overflow while inside the call because you may end up in
3281 * some module sampling buffer code causing deadlocks.
3284 pfm_read_pmds(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3286 struct thread_struct
*thread
= NULL
;
3287 struct task_struct
*task
;
3288 unsigned long val
= 0UL, lval
, ovfl_mask
, sval
;
3289 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
3290 unsigned int cnum
, reg_flags
= 0;
3291 int i
, can_access_pmu
= 0, state
;
3292 int is_loaded
, is_system
, is_counting
, expert_mode
;
3294 pfm_reg_check_t rd_func
;
3297 * access is possible when loaded only for
3298 * self-monitoring tasks or in UP mode
3301 state
= ctx
->ctx_state
;
3302 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
3303 is_system
= ctx
->ctx_fl_system
;
3304 ovfl_mask
= pmu_conf
->ovfl_val
;
3305 task
= ctx
->ctx_task
;
3307 if (state
== PFM_CTX_ZOMBIE
) return -EINVAL
;
3309 if (likely(is_loaded
)) {
3310 thread
= &task
->thread
;
3312 * In system wide and when the context is loaded, access can only happen
3313 * when the caller is running on the CPU being monitored by the session.
3314 * It does not have to be the owner (ctx_task) of the context per se.
3316 if (unlikely(is_system
&& ctx
->ctx_cpu
!= smp_processor_id())) {
3317 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3321 * this can be true when not self-monitoring only in UP
3323 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
3325 if (can_access_pmu
) ia64_srlz_d();
3327 expert_mode
= pfm_sysctl
.expert_mode
;
3329 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3335 * on both UP and SMP, we can only read the PMD from the hardware register when
3336 * the task is the owner of the local PMU.
3339 for (i
= 0; i
< count
; i
++, req
++) {
3341 cnum
= req
->reg_num
;
3342 reg_flags
= req
->reg_flags
;
3344 if (unlikely(!PMD_IS_IMPL(cnum
))) goto error
;
3346 * we can only read the register that we use. That includes
3347 * the one we explicitely initialize AND the one we want included
3348 * in the sampling buffer (smpl_regs).
3350 * Having this restriction allows optimization in the ctxsw routine
3351 * without compromising security (leaks)
3353 if (unlikely(!CTX_IS_USED_PMD(ctx
, cnum
))) goto error
;
3355 sval
= ctx
->ctx_pmds
[cnum
].val
;
3356 lval
= ctx
->ctx_pmds
[cnum
].lval
;
3357 is_counting
= PMD_IS_COUNTING(cnum
);
3360 * If the task is not the current one, then we check if the
3361 * PMU state is still in the local live register due to lazy ctxsw.
3362 * If true, then we read directly from the registers.
3364 if (can_access_pmu
){
3365 val
= ia64_get_pmd(cnum
);
3368 * context has been saved
3369 * if context is zombie, then task does not exist anymore.
3370 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3372 val
= is_loaded
? thread
->pmds
[cnum
] : 0UL;
3374 rd_func
= pmu_conf
->pmd_desc
[cnum
].read_check
;
3378 * XXX: need to check for overflow when loaded
3385 * execute read checker, if any
3387 if (unlikely(expert_mode
== 0 && rd_func
)) {
3388 unsigned long v
= val
;
3389 ret
= (*rd_func
)(ctx
->ctx_task
, ctx
, cnum
, &v
, regs
);
3390 if (ret
) goto error
;
3395 PFM_REG_RETFLAG_SET(reg_flags
, 0);
3397 DPRINT(("pmd[%u]=0x%lx\n", cnum
, val
));
3400 * update register return value, abort all if problem during copy.
3401 * we only modify the reg_flags field. no check mode is fine because
3402 * access has been verified upfront in sys_perfmonctl().
3404 req
->reg_value
= val
;
3405 req
->reg_flags
= reg_flags
;
3406 req
->reg_last_reset_val
= lval
;
3412 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
3417 pfm_mod_write_pmcs(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3421 if (req
== NULL
) return -EINVAL
;
3423 ctx
= GET_PMU_CTX();
3425 if (ctx
== NULL
) return -EINVAL
;
3428 * for now limit to current task, which is enough when calling
3429 * from overflow handler
3431 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3433 return pfm_write_pmcs(ctx
, req
, nreq
, regs
);
3435 EXPORT_SYMBOL(pfm_mod_write_pmcs
);
3438 pfm_mod_read_pmds(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3442 if (req
== NULL
) return -EINVAL
;
3444 ctx
= GET_PMU_CTX();
3446 if (ctx
== NULL
) return -EINVAL
;
3449 * for now limit to current task, which is enough when calling
3450 * from overflow handler
3452 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3454 return pfm_read_pmds(ctx
, req
, nreq
, regs
);
3456 EXPORT_SYMBOL(pfm_mod_read_pmds
);
3459 * Only call this function when a process it trying to
3460 * write the debug registers (reading is always allowed)
3463 pfm_use_debug_registers(struct task_struct
*task
)
3465 pfm_context_t
*ctx
= task
->thread
.pfm_context
;
3466 unsigned long flags
;
3469 if (pmu_conf
->use_rr_dbregs
== 0) return 0;
3471 DPRINT(("called for [%d]\n", task
->pid
));
3476 if (task
->thread
.flags
& IA64_THREAD_DBG_VALID
) return 0;
3479 * Even on SMP, we do not need to use an atomic here because
3480 * the only way in is via ptrace() and this is possible only when the
3481 * process is stopped. Even in the case where the ctxsw out is not totally
3482 * completed by the time we come here, there is no way the 'stopped' process
3483 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3484 * So this is always safe.
3486 if (ctx
&& ctx
->ctx_fl_using_dbreg
== 1) return -1;
3491 * We cannot allow setting breakpoints when system wide monitoring
3492 * sessions are using the debug registers.
3494 if (pfm_sessions
.pfs_sys_use_dbregs
> 0)
3497 pfm_sessions
.pfs_ptrace_use_dbregs
++;
3499 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3500 pfm_sessions
.pfs_ptrace_use_dbregs
,
3501 pfm_sessions
.pfs_sys_use_dbregs
,
3510 * This function is called for every task that exits with the
3511 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3512 * able to use the debug registers for debugging purposes via
3513 * ptrace(). Therefore we know it was not using them for
3514 * perfmormance monitoring, so we only decrement the number
3515 * of "ptraced" debug register users to keep the count up to date
3518 pfm_release_debug_registers(struct task_struct
*task
)
3520 unsigned long flags
;
3523 if (pmu_conf
->use_rr_dbregs
== 0) return 0;
3526 if (pfm_sessions
.pfs_ptrace_use_dbregs
== 0) {
3527 printk(KERN_ERR
"perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task
->pid
);
3530 pfm_sessions
.pfs_ptrace_use_dbregs
--;
3539 pfm_restart(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3541 struct task_struct
*task
;
3542 pfm_buffer_fmt_t
*fmt
;
3543 pfm_ovfl_ctrl_t rst_ctrl
;
3544 int state
, is_system
;
3547 state
= ctx
->ctx_state
;
3548 fmt
= ctx
->ctx_buf_fmt
;
3549 is_system
= ctx
->ctx_fl_system
;
3550 task
= PFM_CTX_TASK(ctx
);
3553 case PFM_CTX_MASKED
:
3555 case PFM_CTX_LOADED
:
3556 if (CTX_HAS_SMPL(ctx
) && fmt
->fmt_restart_active
) break;
3558 case PFM_CTX_UNLOADED
:
3559 case PFM_CTX_ZOMBIE
:
3560 DPRINT(("invalid state=%d\n", state
));
3563 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state
));
3568 * In system wide and when the context is loaded, access can only happen
3569 * when the caller is running on the CPU being monitored by the session.
3570 * It does not have to be the owner (ctx_task) of the context per se.
3572 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
3573 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3578 if (unlikely(task
== NULL
)) {
3579 printk(KERN_ERR
"perfmon: [%d] pfm_restart no task\n", current
->pid
);
3583 if (task
== current
|| is_system
) {
3585 fmt
= ctx
->ctx_buf_fmt
;
3587 DPRINT(("restarting self %d ovfl=0x%lx\n",
3589 ctx
->ctx_ovfl_regs
[0]));
3591 if (CTX_HAS_SMPL(ctx
)) {
3593 prefetch(ctx
->ctx_smpl_hdr
);
3595 rst_ctrl
.bits
.mask_monitoring
= 0;
3596 rst_ctrl
.bits
.reset_ovfl_pmds
= 0;
3598 if (state
== PFM_CTX_LOADED
)
3599 ret
= pfm_buf_fmt_restart_active(fmt
, task
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
3601 ret
= pfm_buf_fmt_restart(fmt
, task
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
3603 rst_ctrl
.bits
.mask_monitoring
= 0;
3604 rst_ctrl
.bits
.reset_ovfl_pmds
= 1;
3608 if (rst_ctrl
.bits
.reset_ovfl_pmds
)
3609 pfm_reset_regs(ctx
, ctx
->ctx_ovfl_regs
, PFM_PMD_LONG_RESET
);
3611 if (rst_ctrl
.bits
.mask_monitoring
== 0) {
3612 DPRINT(("resuming monitoring for [%d]\n", task
->pid
));
3614 if (state
== PFM_CTX_MASKED
) pfm_restore_monitoring(task
);
3616 DPRINT(("keeping monitoring stopped for [%d]\n", task
->pid
));
3618 // cannot use pfm_stop_monitoring(task, regs);
3622 * clear overflowed PMD mask to remove any stale information
3624 ctx
->ctx_ovfl_regs
[0] = 0UL;
3627 * back to LOADED state
3629 ctx
->ctx_state
= PFM_CTX_LOADED
;
3632 * XXX: not really useful for self monitoring
3634 ctx
->ctx_fl_can_restart
= 0;
3640 * restart another task
3644 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3645 * one is seen by the task.
3647 if (state
== PFM_CTX_MASKED
) {
3648 if (ctx
->ctx_fl_can_restart
== 0) return -EINVAL
;
3650 * will prevent subsequent restart before this one is
3651 * seen by other task
3653 ctx
->ctx_fl_can_restart
= 0;
3657 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3658 * the task is blocked or on its way to block. That's the normal
3659 * restart path. If the monitoring is not masked, then the task
3660 * can be actively monitoring and we cannot directly intervene.
3661 * Therefore we use the trap mechanism to catch the task and
3662 * force it to reset the buffer/reset PMDs.
3664 * if non-blocking, then we ensure that the task will go into
3665 * pfm_handle_work() before returning to user mode.
3667 * We cannot explicitely reset another task, it MUST always
3668 * be done by the task itself. This works for system wide because
3669 * the tool that is controlling the session is logically doing
3670 * "self-monitoring".
3672 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && state
== PFM_CTX_MASKED
) {
3673 DPRINT(("unblocking [%d] \n", task
->pid
));
3674 up(&ctx
->ctx_restart_sem
);
3676 DPRINT(("[%d] armed exit trap\n", task
->pid
));
3678 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_RESET
;
3680 PFM_SET_WORK_PENDING(task
, 1);
3682 pfm_set_task_notify(task
);
3685 * XXX: send reschedule if task runs on another CPU
3692 pfm_debug(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3694 unsigned int m
= *(unsigned int *)arg
;
3696 pfm_sysctl
.debug
= m
== 0 ? 0 : 1;
3698 pfm_debug_var
= pfm_sysctl
.debug
;
3700 printk(KERN_INFO
"perfmon debugging %s (timing reset)\n", pfm_sysctl
.debug
? "on" : "off");
3703 memset(pfm_stats
, 0, sizeof(pfm_stats
));
3704 for(m
=0; m
< NR_CPUS
; m
++) pfm_stats
[m
].pfm_ovfl_intr_cycles_min
= ~0UL;
3710 * arg can be NULL and count can be zero for this function
3713 pfm_write_ibr_dbr(int mode
, pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3715 struct thread_struct
*thread
= NULL
;
3716 struct task_struct
*task
;
3717 pfarg_dbreg_t
*req
= (pfarg_dbreg_t
*)arg
;
3718 unsigned long flags
;
3723 int i
, can_access_pmu
= 0;
3724 int is_system
, is_loaded
;
3726 if (pmu_conf
->use_rr_dbregs
== 0) return -EINVAL
;
3728 state
= ctx
->ctx_state
;
3729 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
3730 is_system
= ctx
->ctx_fl_system
;
3731 task
= ctx
->ctx_task
;
3733 if (state
== PFM_CTX_ZOMBIE
) return -EINVAL
;
3736 * on both UP and SMP, we can only write to the PMC when the task is
3737 * the owner of the local PMU.
3740 thread
= &task
->thread
;
3742 * In system wide and when the context is loaded, access can only happen
3743 * when the caller is running on the CPU being monitored by the session.
3744 * It does not have to be the owner (ctx_task) of the context per se.
3746 if (unlikely(is_system
&& ctx
->ctx_cpu
!= smp_processor_id())) {
3747 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3750 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
3754 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3755 * ensuring that no real breakpoint can be installed via this call.
3757 * IMPORTANT: regs can be NULL in this function
3760 first_time
= ctx
->ctx_fl_using_dbreg
== 0;
3763 * don't bother if we are loaded and task is being debugged
3765 if (is_loaded
&& (thread
->flags
& IA64_THREAD_DBG_VALID
) != 0) {
3766 DPRINT(("debug registers already in use for [%d]\n", task
->pid
));
3771 * check for debug registers in system wide mode
3773 * If though a check is done in pfm_context_load(),
3774 * we must repeat it here, in case the registers are
3775 * written after the context is loaded
3780 if (first_time
&& is_system
) {
3781 if (pfm_sessions
.pfs_ptrace_use_dbregs
)
3784 pfm_sessions
.pfs_sys_use_dbregs
++;
3789 if (ret
!= 0) return ret
;
3792 * mark ourself as user of the debug registers for
3795 ctx
->ctx_fl_using_dbreg
= 1;
3798 * clear hardware registers to make sure we don't
3799 * pick up stale state.
3801 * for a system wide session, we do not use
3802 * thread.dbr, thread.ibr because this process
3803 * never leaves the current CPU and the state
3804 * is shared by all processes running on it
3806 if (first_time
&& can_access_pmu
) {
3807 DPRINT(("[%d] clearing ibrs, dbrs\n", task
->pid
));
3808 for (i
=0; i
< pmu_conf
->num_ibrs
; i
++) {
3809 ia64_set_ibr(i
, 0UL);
3810 ia64_dv_serialize_instruction();
3813 for (i
=0; i
< pmu_conf
->num_dbrs
; i
++) {
3814 ia64_set_dbr(i
, 0UL);
3815 ia64_dv_serialize_data();
3821 * Now install the values into the registers
3823 for (i
= 0; i
< count
; i
++, req
++) {
3825 rnum
= req
->dbreg_num
;
3826 dbreg
.val
= req
->dbreg_value
;
3830 if ((mode
== PFM_CODE_RR
&& rnum
>= PFM_NUM_IBRS
) || ((mode
== PFM_DATA_RR
) && rnum
>= PFM_NUM_DBRS
)) {
3831 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3832 rnum
, dbreg
.val
, mode
, i
, count
));
3838 * make sure we do not install enabled breakpoint
3841 if (mode
== PFM_CODE_RR
)
3842 dbreg
.ibr
.ibr_x
= 0;
3844 dbreg
.dbr
.dbr_r
= dbreg
.dbr
.dbr_w
= 0;
3847 PFM_REG_RETFLAG_SET(req
->dbreg_flags
, 0);
3850 * Debug registers, just like PMC, can only be modified
3851 * by a kernel call. Moreover, perfmon() access to those
3852 * registers are centralized in this routine. The hardware
3853 * does not modify the value of these registers, therefore,
3854 * if we save them as they are written, we can avoid having
3855 * to save them on context switch out. This is made possible
3856 * by the fact that when perfmon uses debug registers, ptrace()
3857 * won't be able to modify them concurrently.
3859 if (mode
== PFM_CODE_RR
) {
3860 CTX_USED_IBR(ctx
, rnum
);
3862 if (can_access_pmu
) {
3863 ia64_set_ibr(rnum
, dbreg
.val
);
3864 ia64_dv_serialize_instruction();
3867 ctx
->ctx_ibrs
[rnum
] = dbreg
.val
;
3869 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3870 rnum
, dbreg
.val
, ctx
->ctx_used_ibrs
[0], is_loaded
, can_access_pmu
));
3872 CTX_USED_DBR(ctx
, rnum
);
3874 if (can_access_pmu
) {
3875 ia64_set_dbr(rnum
, dbreg
.val
);
3876 ia64_dv_serialize_data();
3878 ctx
->ctx_dbrs
[rnum
] = dbreg
.val
;
3880 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3881 rnum
, dbreg
.val
, ctx
->ctx_used_dbrs
[0], is_loaded
, can_access_pmu
));
3889 * in case it was our first attempt, we undo the global modifications
3893 if (ctx
->ctx_fl_system
) {
3894 pfm_sessions
.pfs_sys_use_dbregs
--;
3897 ctx
->ctx_fl_using_dbreg
= 0;
3900 * install error return flag
3902 PFM_REG_RETFLAG_SET(req
->dbreg_flags
, PFM_REG_RETFL_EINVAL
);
3908 pfm_write_ibrs(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3910 return pfm_write_ibr_dbr(PFM_CODE_RR
, ctx
, arg
, count
, regs
);
3914 pfm_write_dbrs(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3916 return pfm_write_ibr_dbr(PFM_DATA_RR
, ctx
, arg
, count
, regs
);
3920 pfm_mod_write_ibrs(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3924 if (req
== NULL
) return -EINVAL
;
3926 ctx
= GET_PMU_CTX();
3928 if (ctx
== NULL
) return -EINVAL
;
3931 * for now limit to current task, which is enough when calling
3932 * from overflow handler
3934 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3936 return pfm_write_ibrs(ctx
, req
, nreq
, regs
);
3938 EXPORT_SYMBOL(pfm_mod_write_ibrs
);
3941 pfm_mod_write_dbrs(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3945 if (req
== NULL
) return -EINVAL
;
3947 ctx
= GET_PMU_CTX();
3949 if (ctx
== NULL
) return -EINVAL
;
3952 * for now limit to current task, which is enough when calling
3953 * from overflow handler
3955 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3957 return pfm_write_dbrs(ctx
, req
, nreq
, regs
);
3959 EXPORT_SYMBOL(pfm_mod_write_dbrs
);
3963 pfm_get_features(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3965 pfarg_features_t
*req
= (pfarg_features_t
*)arg
;
3967 req
->ft_version
= PFM_VERSION
;
3972 pfm_stop(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3974 struct pt_regs
*tregs
;
3975 struct task_struct
*task
= PFM_CTX_TASK(ctx
);
3976 int state
, is_system
;
3978 state
= ctx
->ctx_state
;
3979 is_system
= ctx
->ctx_fl_system
;
3982 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3984 if (state
== PFM_CTX_UNLOADED
) return -EINVAL
;
3987 * In system wide and when the context is loaded, access can only happen
3988 * when the caller is running on the CPU being monitored by the session.
3989 * It does not have to be the owner (ctx_task) of the context per se.
3991 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
3992 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3995 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
3996 PFM_CTX_TASK(ctx
)->pid
,
4000 * in system mode, we need to update the PMU directly
4001 * and the user level state of the caller, which may not
4002 * necessarily be the creator of the context.
4006 * Update local PMU first
4010 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) & ~IA64_DCR_PP
);
4014 * update local cpuinfo
4016 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP
);
4019 * stop monitoring, does srlz.i
4024 * stop monitoring in the caller
4026 ia64_psr(regs
)->pp
= 0;
4034 if (task
== current
) {
4035 /* stop monitoring at kernel level */
4039 * stop monitoring at the user level
4041 ia64_psr(regs
)->up
= 0;
4043 tregs
= ia64_task_regs(task
);
4046 * stop monitoring at the user level
4048 ia64_psr(tregs
)->up
= 0;
4051 * monitoring disabled in kernel at next reschedule
4053 ctx
->ctx_saved_psr_up
= 0;
4054 DPRINT(("task=[%d]\n", task
->pid
));
4061 pfm_start(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4063 struct pt_regs
*tregs
;
4064 int state
, is_system
;
4066 state
= ctx
->ctx_state
;
4067 is_system
= ctx
->ctx_fl_system
;
4069 if (state
!= PFM_CTX_LOADED
) return -EINVAL
;
4072 * In system wide and when the context is loaded, access can only happen
4073 * when the caller is running on the CPU being monitored by the session.
4074 * It does not have to be the owner (ctx_task) of the context per se.
4076 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
4077 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
4082 * in system mode, we need to update the PMU directly
4083 * and the user level state of the caller, which may not
4084 * necessarily be the creator of the context.
4089 * set user level psr.pp for the caller
4091 ia64_psr(regs
)->pp
= 1;
4094 * now update the local PMU and cpuinfo
4096 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP
);
4099 * start monitoring at kernel level
4104 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) | IA64_DCR_PP
);
4114 if (ctx
->ctx_task
== current
) {
4116 /* start monitoring at kernel level */
4120 * activate monitoring at user level
4122 ia64_psr(regs
)->up
= 1;
4125 tregs
= ia64_task_regs(ctx
->ctx_task
);
4128 * start monitoring at the kernel level the next
4129 * time the task is scheduled
4131 ctx
->ctx_saved_psr_up
= IA64_PSR_UP
;
4134 * activate monitoring at user level
4136 ia64_psr(tregs
)->up
= 1;
4142 pfm_get_pmc_reset(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4144 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
4149 for (i
= 0; i
< count
; i
++, req
++) {
4151 cnum
= req
->reg_num
;
4153 if (!PMC_IS_IMPL(cnum
)) goto abort_mission
;
4155 req
->reg_value
= PMC_DFL_VAL(cnum
);
4157 PFM_REG_RETFLAG_SET(req
->reg_flags
, 0);
4159 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum
, req
->reg_value
));
4164 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
4169 pfm_check_task_exist(pfm_context_t
*ctx
)
4171 struct task_struct
*g
, *t
;
4174 read_lock(&tasklist_lock
);
4176 do_each_thread (g
, t
) {
4177 if (t
->thread
.pfm_context
== ctx
) {
4181 } while_each_thread (g
, t
);
4183 read_unlock(&tasklist_lock
);
4185 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret
, ctx
));
4191 pfm_context_load(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4193 struct task_struct
*task
;
4194 struct thread_struct
*thread
;
4195 struct pfm_context_t
*old
;
4196 unsigned long flags
;
4198 struct task_struct
*owner_task
= NULL
;
4200 pfarg_load_t
*req
= (pfarg_load_t
*)arg
;
4201 unsigned long *pmcs_source
, *pmds_source
;
4204 int state
, is_system
, set_dbregs
= 0;
4206 state
= ctx
->ctx_state
;
4207 is_system
= ctx
->ctx_fl_system
;
4209 * can only load from unloaded or terminated state
4211 if (state
!= PFM_CTX_UNLOADED
) {
4212 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4218 DPRINT(("load_pid [%d] using_dbreg=%d\n", req
->load_pid
, ctx
->ctx_fl_using_dbreg
));
4220 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && req
->load_pid
== current
->pid
) {
4221 DPRINT(("cannot use blocking mode on self\n"));
4225 ret
= pfm_get_task(ctx
, req
->load_pid
, &task
);
4227 DPRINT(("load_pid [%d] get_task=%d\n", req
->load_pid
, ret
));
4234 * system wide is self monitoring only
4236 if (is_system
&& task
!= current
) {
4237 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4242 thread
= &task
->thread
;
4246 * cannot load a context which is using range restrictions,
4247 * into a task that is being debugged.
4249 if (ctx
->ctx_fl_using_dbreg
) {
4250 if (thread
->flags
& IA64_THREAD_DBG_VALID
) {
4252 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req
->load_pid
));
4258 if (pfm_sessions
.pfs_ptrace_use_dbregs
) {
4259 DPRINT(("cannot load [%d] dbregs in use\n", task
->pid
));
4262 pfm_sessions
.pfs_sys_use_dbregs
++;
4263 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task
->pid
, pfm_sessions
.pfs_sys_use_dbregs
));
4270 if (ret
) goto error
;
4274 * SMP system-wide monitoring implies self-monitoring.
4276 * The programming model expects the task to
4277 * be pinned on a CPU throughout the session.
4278 * Here we take note of the current CPU at the
4279 * time the context is loaded. No call from
4280 * another CPU will be allowed.
4282 * The pinning via shed_setaffinity()
4283 * must be done by the calling task prior
4286 * systemwide: keep track of CPU this session is supposed to run on
4288 the_cpu
= ctx
->ctx_cpu
= smp_processor_id();
4292 * now reserve the session
4294 ret
= pfm_reserve_session(current
, is_system
, the_cpu
);
4295 if (ret
) goto error
;
4298 * task is necessarily stopped at this point.
4300 * If the previous context was zombie, then it got removed in
4301 * pfm_save_regs(). Therefore we should not see it here.
4302 * If we see a context, then this is an active context
4304 * XXX: needs to be atomic
4306 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4307 thread
->pfm_context
, ctx
));
4309 old
= ia64_cmpxchg(acq
, &thread
->pfm_context
, NULL
, ctx
, sizeof(pfm_context_t
*));
4311 DPRINT(("load_pid [%d] already has a context\n", req
->load_pid
));
4315 pfm_reset_msgq(ctx
);
4317 ctx
->ctx_state
= PFM_CTX_LOADED
;
4320 * link context to task
4322 ctx
->ctx_task
= task
;
4326 * we load as stopped
4328 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE
);
4329 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP
);
4331 if (ctx
->ctx_fl_excl_idle
) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE
);
4333 thread
->flags
|= IA64_THREAD_PM_VALID
;
4337 * propagate into thread-state
4339 pfm_copy_pmds(task
, ctx
);
4340 pfm_copy_pmcs(task
, ctx
);
4342 pmcs_source
= thread
->pmcs
;
4343 pmds_source
= thread
->pmds
;
4346 * always the case for system-wide
4348 if (task
== current
) {
4350 if (is_system
== 0) {
4352 /* allow user level control */
4353 ia64_psr(regs
)->sp
= 0;
4354 DPRINT(("clearing psr.sp for [%d]\n", task
->pid
));
4356 SET_LAST_CPU(ctx
, smp_processor_id());
4358 SET_ACTIVATION(ctx
);
4361 * push the other task out, if any
4363 owner_task
= GET_PMU_OWNER();
4364 if (owner_task
) pfm_lazy_save_regs(owner_task
);
4368 * load all PMD from ctx to PMU (as opposed to thread state)
4369 * restore all PMC from ctx to PMU
4371 pfm_restore_pmds(pmds_source
, ctx
->ctx_all_pmds
[0]);
4372 pfm_restore_pmcs(pmcs_source
, ctx
->ctx_all_pmcs
[0]);
4374 ctx
->ctx_reload_pmcs
[0] = 0UL;
4375 ctx
->ctx_reload_pmds
[0] = 0UL;
4378 * guaranteed safe by earlier check against DBG_VALID
4380 if (ctx
->ctx_fl_using_dbreg
) {
4381 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
4382 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
4387 SET_PMU_OWNER(task
, ctx
);
4389 DPRINT(("context loaded on PMU for [%d]\n", task
->pid
));
4392 * when not current, task MUST be stopped, so this is safe
4394 regs
= ia64_task_regs(task
);
4396 /* force a full reload */
4397 ctx
->ctx_last_activation
= PFM_INVALID_ACTIVATION
;
4398 SET_LAST_CPU(ctx
, -1);
4400 /* initial saved psr (stopped) */
4401 ctx
->ctx_saved_psr_up
= 0UL;
4402 ia64_psr(regs
)->up
= ia64_psr(regs
)->pp
= 0;
4408 if (ret
) pfm_unreserve_session(ctx
, ctx
->ctx_fl_system
, the_cpu
);
4411 * we must undo the dbregs setting (for system-wide)
4413 if (ret
&& set_dbregs
) {
4415 pfm_sessions
.pfs_sys_use_dbregs
--;
4419 * release task, there is now a link with the context
4421 if (is_system
== 0 && task
!= current
) {
4425 ret
= pfm_check_task_exist(ctx
);
4427 ctx
->ctx_state
= PFM_CTX_UNLOADED
;
4428 ctx
->ctx_task
= NULL
;
4436 * in this function, we do not need to increase the use count
4437 * for the task via get_task_struct(), because we hold the
4438 * context lock. If the task were to disappear while having
4439 * a context attached, it would go through pfm_exit_thread()
4440 * which also grabs the context lock and would therefore be blocked
4441 * until we are here.
4443 static void pfm_flush_pmds(struct task_struct
*, pfm_context_t
*ctx
);
4446 pfm_context_unload(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4448 struct task_struct
*task
= PFM_CTX_TASK(ctx
);
4449 struct pt_regs
*tregs
;
4450 int prev_state
, is_system
;
4453 DPRINT(("ctx_state=%d task [%d]\n", ctx
->ctx_state
, task
? task
->pid
: -1));
4455 prev_state
= ctx
->ctx_state
;
4456 is_system
= ctx
->ctx_fl_system
;
4459 * unload only when necessary
4461 if (prev_state
== PFM_CTX_UNLOADED
) {
4462 DPRINT(("ctx_state=%d, nothing to do\n", prev_state
));
4467 * clear psr and dcr bits
4469 ret
= pfm_stop(ctx
, NULL
, 0, regs
);
4470 if (ret
) return ret
;
4472 ctx
->ctx_state
= PFM_CTX_UNLOADED
;
4475 * in system mode, we need to update the PMU directly
4476 * and the user level state of the caller, which may not
4477 * necessarily be the creator of the context.
4484 * local PMU is taken care of in pfm_stop()
4486 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE
);
4487 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE
);
4490 * save PMDs in context
4493 pfm_flush_pmds(current
, ctx
);
4496 * at this point we are done with the PMU
4497 * so we can unreserve the resource.
4499 if (prev_state
!= PFM_CTX_ZOMBIE
)
4500 pfm_unreserve_session(ctx
, 1 , ctx
->ctx_cpu
);
4503 * disconnect context from task
4505 task
->thread
.pfm_context
= NULL
;
4507 * disconnect task from context
4509 ctx
->ctx_task
= NULL
;
4512 * There is nothing more to cleanup here.
4520 tregs
= task
== current
? regs
: ia64_task_regs(task
);
4522 if (task
== current
) {
4524 * cancel user level control
4526 ia64_psr(regs
)->sp
= 1;
4528 DPRINT(("setting psr.sp for [%d]\n", task
->pid
));
4531 * save PMDs to context
4534 pfm_flush_pmds(task
, ctx
);
4537 * at this point we are done with the PMU
4538 * so we can unreserve the resource.
4540 * when state was ZOMBIE, we have already unreserved.
4542 if (prev_state
!= PFM_CTX_ZOMBIE
)
4543 pfm_unreserve_session(ctx
, 0 , ctx
->ctx_cpu
);
4546 * reset activation counter and psr
4548 ctx
->ctx_last_activation
= PFM_INVALID_ACTIVATION
;
4549 SET_LAST_CPU(ctx
, -1);
4552 * PMU state will not be restored
4554 task
->thread
.flags
&= ~IA64_THREAD_PM_VALID
;
4557 * break links between context and task
4559 task
->thread
.pfm_context
= NULL
;
4560 ctx
->ctx_task
= NULL
;
4562 PFM_SET_WORK_PENDING(task
, 0);
4564 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_NONE
;
4565 ctx
->ctx_fl_can_restart
= 0;
4566 ctx
->ctx_fl_going_zombie
= 0;
4568 DPRINT(("disconnected [%d] from context\n", task
->pid
));
4575 * called only from exit_thread(): task == current
4576 * we come here only if current has a context attached (loaded or masked)
4579 pfm_exit_thread(struct task_struct
*task
)
4582 unsigned long flags
;
4583 struct pt_regs
*regs
= ia64_task_regs(task
);
4587 ctx
= PFM_GET_CTX(task
);
4589 PROTECT_CTX(ctx
, flags
);
4591 DPRINT(("state=%d task [%d]\n", ctx
->ctx_state
, task
->pid
));
4593 state
= ctx
->ctx_state
;
4595 case PFM_CTX_UNLOADED
:
4597 * only comes to thios function if pfm_context is not NULL, i.e., cannot
4598 * be in unloaded state
4600 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] ctx unloaded\n", task
->pid
);
4602 case PFM_CTX_LOADED
:
4603 case PFM_CTX_MASKED
:
4604 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
4606 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task
->pid
, state
, ret
);
4608 DPRINT(("ctx unloaded for current state was %d\n", state
));
4610 pfm_end_notify_user(ctx
);
4612 case PFM_CTX_ZOMBIE
:
4613 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
4615 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task
->pid
, state
, ret
);
4620 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task
->pid
, state
);
4623 UNPROTECT_CTX(ctx
, flags
);
4625 { u64 psr
= pfm_get_psr();
4626 BUG_ON(psr
& (IA64_PSR_UP
|IA64_PSR_PP
));
4627 BUG_ON(GET_PMU_OWNER());
4628 BUG_ON(ia64_psr(regs
)->up
);
4629 BUG_ON(ia64_psr(regs
)->pp
);
4633 * All memory free operations (especially for vmalloc'ed memory)
4634 * MUST be done with interrupts ENABLED.
4636 if (free_ok
) pfm_context_free(ctx
);
4640 * functions MUST be listed in the increasing order of their index (see permfon.h)
4642 #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4643 #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4644 #define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4645 #define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4646 #define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4648 static pfm_cmd_desc_t pfm_cmd_tab
[]={
4649 /* 0 */PFM_CMD_NONE
,
4650 /* 1 */PFM_CMD(pfm_write_pmcs
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4651 /* 2 */PFM_CMD(pfm_write_pmds
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4652 /* 3 */PFM_CMD(pfm_read_pmds
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4653 /* 4 */PFM_CMD_S(pfm_stop
, PFM_CMD_PCLRWS
),
4654 /* 5 */PFM_CMD_S(pfm_start
, PFM_CMD_PCLRWS
),
4655 /* 6 */PFM_CMD_NONE
,
4656 /* 7 */PFM_CMD_NONE
,
4657 /* 8 */PFM_CMD(pfm_context_create
, PFM_CMD_ARG_RW
, 1, pfarg_context_t
, pfm_ctx_getsize
),
4658 /* 9 */PFM_CMD_NONE
,
4659 /* 10 */PFM_CMD_S(pfm_restart
, PFM_CMD_PCLRW
),
4660 /* 11 */PFM_CMD_NONE
,
4661 /* 12 */PFM_CMD(pfm_get_features
, PFM_CMD_ARG_RW
, 1, pfarg_features_t
, NULL
),
4662 /* 13 */PFM_CMD(pfm_debug
, 0, 1, unsigned int, NULL
),
4663 /* 14 */PFM_CMD_NONE
,
4664 /* 15 */PFM_CMD(pfm_get_pmc_reset
, PFM_CMD_ARG_RW
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4665 /* 16 */PFM_CMD(pfm_context_load
, PFM_CMD_PCLRWS
, 1, pfarg_load_t
, NULL
),
4666 /* 17 */PFM_CMD_S(pfm_context_unload
, PFM_CMD_PCLRWS
),
4667 /* 18 */PFM_CMD_NONE
,
4668 /* 19 */PFM_CMD_NONE
,
4669 /* 20 */PFM_CMD_NONE
,
4670 /* 21 */PFM_CMD_NONE
,
4671 /* 22 */PFM_CMD_NONE
,
4672 /* 23 */PFM_CMD_NONE
,
4673 /* 24 */PFM_CMD_NONE
,
4674 /* 25 */PFM_CMD_NONE
,
4675 /* 26 */PFM_CMD_NONE
,
4676 /* 27 */PFM_CMD_NONE
,
4677 /* 28 */PFM_CMD_NONE
,
4678 /* 29 */PFM_CMD_NONE
,
4679 /* 30 */PFM_CMD_NONE
,
4680 /* 31 */PFM_CMD_NONE
,
4681 /* 32 */PFM_CMD(pfm_write_ibrs
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_dbreg_t
, NULL
),
4682 /* 33 */PFM_CMD(pfm_write_dbrs
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_dbreg_t
, NULL
)
4684 #define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4687 pfm_check_task_state(pfm_context_t
*ctx
, int cmd
, unsigned long flags
)
4689 struct task_struct
*task
;
4690 int state
, old_state
;
4693 state
= ctx
->ctx_state
;
4694 task
= ctx
->ctx_task
;
4697 DPRINT(("context %d no task, state=%d\n", ctx
->ctx_fd
, state
));
4701 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4705 task
->state
, PFM_CMD_STOPPED(cmd
)));
4708 * self-monitoring always ok.
4710 * for system-wide the caller can either be the creator of the
4711 * context (to one to which the context is attached to) OR
4712 * a task running on the same CPU as the session.
4714 if (task
== current
|| ctx
->ctx_fl_system
) return 0;
4717 * if context is UNLOADED we are safe to go
4719 if (state
== PFM_CTX_UNLOADED
) return 0;
4722 * no command can operate on a zombie context
4724 if (state
== PFM_CTX_ZOMBIE
) {
4725 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd
));
4730 * context is LOADED or MASKED. Some commands may need to have
4733 * We could lift this restriction for UP but it would mean that
4734 * the user has no guarantee the task would not run between
4735 * two successive calls to perfmonctl(). That's probably OK.
4736 * If this user wants to ensure the task does not run, then
4737 * the task must be stopped.
4739 if (PFM_CMD_STOPPED(cmd
)) {
4740 if ((task
->state
!= TASK_STOPPED
) && (task
->state
!= TASK_TRACED
)) {
4741 DPRINT(("[%d] task not in stopped state\n", task
->pid
));
4745 * task is now stopped, wait for ctxsw out
4747 * This is an interesting point in the code.
4748 * We need to unprotect the context because
4749 * the pfm_save_regs() routines needs to grab
4750 * the same lock. There are danger in doing
4751 * this because it leaves a window open for
4752 * another task to get access to the context
4753 * and possibly change its state. The one thing
4754 * that is not possible is for the context to disappear
4755 * because we are protected by the VFS layer, i.e.,
4756 * get_fd()/put_fd().
4760 UNPROTECT_CTX(ctx
, flags
);
4762 wait_task_inactive(task
);
4764 PROTECT_CTX(ctx
, flags
);
4767 * we must recheck to verify if state has changed
4769 if (ctx
->ctx_state
!= old_state
) {
4770 DPRINT(("old_state=%d new_state=%d\n", old_state
, ctx
->ctx_state
));
4778 * system-call entry point (must return long)
4781 sys_perfmonctl (int fd
, int cmd
, void __user
*arg
, int count
)
4783 struct file
*file
= NULL
;
4784 pfm_context_t
*ctx
= NULL
;
4785 unsigned long flags
= 0UL;
4786 void *args_k
= NULL
;
4787 long ret
; /* will expand int return types */
4788 size_t base_sz
, sz
, xtra_sz
= 0;
4789 int narg
, completed_args
= 0, call_made
= 0, cmd_flags
;
4790 int (*func
)(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
4791 int (*getsize
)(void *arg
, size_t *sz
);
4792 #define PFM_MAX_ARGSIZE 4096
4795 * reject any call if perfmon was disabled at initialization
4797 if (unlikely(pmu_conf
== NULL
)) return -ENOSYS
;
4799 if (unlikely(cmd
< 0 || cmd
>= PFM_CMD_COUNT
)) {
4800 DPRINT(("invalid cmd=%d\n", cmd
));
4804 func
= pfm_cmd_tab
[cmd
].cmd_func
;
4805 narg
= pfm_cmd_tab
[cmd
].cmd_narg
;
4806 base_sz
= pfm_cmd_tab
[cmd
].cmd_argsize
;
4807 getsize
= pfm_cmd_tab
[cmd
].cmd_getsize
;
4808 cmd_flags
= pfm_cmd_tab
[cmd
].cmd_flags
;
4810 if (unlikely(func
== NULL
)) {
4811 DPRINT(("invalid cmd=%d\n", cmd
));
4815 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4823 * check if number of arguments matches what the command expects
4825 if (unlikely((narg
== PFM_CMD_ARG_MANY
&& count
<= 0) || (narg
> 0 && narg
!= count
)))
4829 sz
= xtra_sz
+ base_sz
*count
;
4831 * limit abuse to min page size
4833 if (unlikely(sz
> PFM_MAX_ARGSIZE
)) {
4834 printk(KERN_ERR
"perfmon: [%d] argument too big %lu\n", current
->pid
, sz
);
4839 * allocate default-sized argument buffer
4841 if (likely(count
&& args_k
== NULL
)) {
4842 args_k
= kmalloc(PFM_MAX_ARGSIZE
, GFP_KERNEL
);
4843 if (args_k
== NULL
) return -ENOMEM
;
4851 * assume sz = 0 for command without parameters
4853 if (sz
&& copy_from_user(args_k
, arg
, sz
)) {
4854 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz
, arg
));
4859 * check if command supports extra parameters
4861 if (completed_args
== 0 && getsize
) {
4863 * get extra parameters size (based on main argument)
4865 ret
= (*getsize
)(args_k
, &xtra_sz
);
4866 if (ret
) goto error_args
;
4870 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz
, xtra_sz
));
4872 /* retry if necessary */
4873 if (likely(xtra_sz
)) goto restart_args
;
4876 if (unlikely((cmd_flags
& PFM_CMD_FD
) == 0)) goto skip_fd
;
4881 if (unlikely(file
== NULL
)) {
4882 DPRINT(("invalid fd %d\n", fd
));
4885 if (unlikely(PFM_IS_FILE(file
) == 0)) {
4886 DPRINT(("fd %d not related to perfmon\n", fd
));
4890 ctx
= (pfm_context_t
*)file
->private_data
;
4891 if (unlikely(ctx
== NULL
)) {
4892 DPRINT(("no context for fd %d\n", fd
));
4895 prefetch(&ctx
->ctx_state
);
4897 PROTECT_CTX(ctx
, flags
);
4900 * check task is stopped
4902 ret
= pfm_check_task_state(ctx
, cmd
, flags
);
4903 if (unlikely(ret
)) goto abort_locked
;
4906 ret
= (*func
)(ctx
, args_k
, count
, ia64_task_regs(current
));
4912 DPRINT(("context unlocked\n"));
4913 UNPROTECT_CTX(ctx
, flags
);
4917 /* copy argument back to user, if needed */
4918 if (call_made
&& PFM_CMD_RW_ARG(cmd
) && copy_to_user(arg
, args_k
, base_sz
*count
)) ret
= -EFAULT
;
4921 if (args_k
) kfree(args_k
);
4923 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd
), ret
));
4929 pfm_resume_after_ovfl(pfm_context_t
*ctx
, unsigned long ovfl_regs
, struct pt_regs
*regs
)
4931 pfm_buffer_fmt_t
*fmt
= ctx
->ctx_buf_fmt
;
4932 pfm_ovfl_ctrl_t rst_ctrl
;
4936 state
= ctx
->ctx_state
;
4938 * Unlock sampling buffer and reset index atomically
4939 * XXX: not really needed when blocking
4941 if (CTX_HAS_SMPL(ctx
)) {
4943 rst_ctrl
.bits
.mask_monitoring
= 0;
4944 rst_ctrl
.bits
.reset_ovfl_pmds
= 0;
4946 if (state
== PFM_CTX_LOADED
)
4947 ret
= pfm_buf_fmt_restart_active(fmt
, current
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
4949 ret
= pfm_buf_fmt_restart(fmt
, current
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
4951 rst_ctrl
.bits
.mask_monitoring
= 0;
4952 rst_ctrl
.bits
.reset_ovfl_pmds
= 1;
4956 if (rst_ctrl
.bits
.reset_ovfl_pmds
) {
4957 pfm_reset_regs(ctx
, &ovfl_regs
, PFM_PMD_LONG_RESET
);
4959 if (rst_ctrl
.bits
.mask_monitoring
== 0) {
4960 DPRINT(("resuming monitoring\n"));
4961 if (ctx
->ctx_state
== PFM_CTX_MASKED
) pfm_restore_monitoring(current
);
4963 DPRINT(("stopping monitoring\n"));
4964 //pfm_stop_monitoring(current, regs);
4966 ctx
->ctx_state
= PFM_CTX_LOADED
;
4971 * context MUST BE LOCKED when calling
4972 * can only be called for current
4975 pfm_context_force_terminate(pfm_context_t
*ctx
, struct pt_regs
*regs
)
4979 DPRINT(("entering for [%d]\n", current
->pid
));
4981 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
4983 printk(KERN_ERR
"pfm_context_force_terminate: [%d] unloaded failed with %d\n", current
->pid
, ret
);
4987 * and wakeup controlling task, indicating we are now disconnected
4989 wake_up_interruptible(&ctx
->ctx_zombieq
);
4992 * given that context is still locked, the controlling
4993 * task will only get access when we return from
4994 * pfm_handle_work().
4998 static int pfm_ovfl_notify_user(pfm_context_t
*ctx
, unsigned long ovfl_pmds
);
5001 pfm_handle_work(void)
5004 struct pt_regs
*regs
;
5005 unsigned long flags
;
5006 unsigned long ovfl_regs
;
5007 unsigned int reason
;
5010 ctx
= PFM_GET_CTX(current
);
5012 printk(KERN_ERR
"perfmon: [%d] has no PFM context\n", current
->pid
);
5016 PROTECT_CTX(ctx
, flags
);
5018 PFM_SET_WORK_PENDING(current
, 0);
5020 pfm_clear_task_notify();
5022 regs
= ia64_task_regs(current
);
5025 * extract reason for being here and clear
5027 reason
= ctx
->ctx_fl_trap_reason
;
5028 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_NONE
;
5029 ovfl_regs
= ctx
->ctx_ovfl_regs
[0];
5031 DPRINT(("reason=%d state=%d\n", reason
, ctx
->ctx_state
));
5034 * must be done before we check for simple-reset mode
5036 if (ctx
->ctx_fl_going_zombie
|| ctx
->ctx_state
== PFM_CTX_ZOMBIE
) goto do_zombie
;
5039 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5040 if (reason
== PFM_TRAP_REASON_RESET
) goto skip_blocking
;
5042 UNPROTECT_CTX(ctx
, flags
);
5045 * pfm_handle_work() is currently called with interrupts disabled.
5046 * The down_interruptible call may sleep, therefore we
5047 * must re-enable interrupts to avoid deadlocks. It is
5048 * safe to do so because this function is called ONLY
5049 * when returning to user level (PUStk=1), in which case
5050 * there is no risk of kernel stack overflow due to deep
5051 * interrupt nesting.
5053 BUG_ON(flags
& IA64_PSR_I
);
5056 DPRINT(("before block sleeping\n"));
5059 * may go through without blocking on SMP systems
5060 * if restart has been received already by the time we call down()
5062 ret
= down_interruptible(&ctx
->ctx_restart_sem
);
5064 DPRINT(("after block sleeping ret=%d\n", ret
));
5067 * disable interrupts to restore state we had upon entering
5070 local_irq_disable();
5072 PROTECT_CTX(ctx
, flags
);
5075 * we need to read the ovfl_regs only after wake-up
5076 * because we may have had pfm_write_pmds() in between
5077 * and that can changed PMD values and therefore
5078 * ovfl_regs is reset for these new PMD values.
5080 ovfl_regs
= ctx
->ctx_ovfl_regs
[0];
5082 if (ctx
->ctx_fl_going_zombie
) {
5084 DPRINT(("context is zombie, bailing out\n"));
5085 pfm_context_force_terminate(ctx
, regs
);
5089 * in case of interruption of down() we don't restart anything
5091 if (ret
< 0) goto nothing_to_do
;
5094 pfm_resume_after_ovfl(ctx
, ovfl_regs
, regs
);
5095 ctx
->ctx_ovfl_regs
[0] = 0UL;
5099 UNPROTECT_CTX(ctx
, flags
);
5103 pfm_notify_user(pfm_context_t
*ctx
, pfm_msg_t
*msg
)
5105 if (ctx
->ctx_state
== PFM_CTX_ZOMBIE
) {
5106 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5110 DPRINT(("waking up somebody\n"));
5112 if (msg
) wake_up_interruptible(&ctx
->ctx_msgq_wait
);
5115 * safe, we are not in intr handler, nor in ctxsw when
5118 kill_fasync (&ctx
->ctx_async_queue
, SIGIO
, POLL_IN
);
5124 pfm_ovfl_notify_user(pfm_context_t
*ctx
, unsigned long ovfl_pmds
)
5126 pfm_msg_t
*msg
= NULL
;
5128 if (ctx
->ctx_fl_no_msg
== 0) {
5129 msg
= pfm_get_new_msg(ctx
);
5131 printk(KERN_ERR
"perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5135 msg
->pfm_ovfl_msg
.msg_type
= PFM_MSG_OVFL
;
5136 msg
->pfm_ovfl_msg
.msg_ctx_fd
= ctx
->ctx_fd
;
5137 msg
->pfm_ovfl_msg
.msg_active_set
= 0;
5138 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[0] = ovfl_pmds
;
5139 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[1] = 0UL;
5140 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[2] = 0UL;
5141 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[3] = 0UL;
5142 msg
->pfm_ovfl_msg
.msg_tstamp
= 0UL;
5145 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5151 return pfm_notify_user(ctx
, msg
);
5155 pfm_end_notify_user(pfm_context_t
*ctx
)
5159 msg
= pfm_get_new_msg(ctx
);
5161 printk(KERN_ERR
"perfmon: pfm_end_notify_user no more notification msgs\n");
5165 memset(msg
, 0, sizeof(*msg
));
5167 msg
->pfm_end_msg
.msg_type
= PFM_MSG_END
;
5168 msg
->pfm_end_msg
.msg_ctx_fd
= ctx
->ctx_fd
;
5169 msg
->pfm_ovfl_msg
.msg_tstamp
= 0UL;
5171 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5176 return pfm_notify_user(ctx
, msg
);
5180 * main overflow processing routine.
5181 * it can be called from the interrupt path or explicitely during the context switch code
5184 pfm_overflow_handler(struct task_struct
*task
, pfm_context_t
*ctx
, u64 pmc0
, struct pt_regs
*regs
)
5186 pfm_ovfl_arg_t
*ovfl_arg
;
5188 unsigned long old_val
, ovfl_val
, new_val
;
5189 unsigned long ovfl_notify
= 0UL, ovfl_pmds
= 0UL, smpl_pmds
= 0UL, reset_pmds
;
5190 unsigned long tstamp
;
5191 pfm_ovfl_ctrl_t ovfl_ctrl
;
5192 unsigned int i
, has_smpl
;
5193 int must_notify
= 0;
5195 if (unlikely(ctx
->ctx_state
== PFM_CTX_ZOMBIE
)) goto stop_monitoring
;
5198 * sanity test. Should never happen
5200 if (unlikely((pmc0
& 0x1) == 0)) goto sanity_check
;
5202 tstamp
= ia64_get_itc();
5203 mask
= pmc0
>> PMU_FIRST_COUNTER
;
5204 ovfl_val
= pmu_conf
->ovfl_val
;
5205 has_smpl
= CTX_HAS_SMPL(ctx
);
5207 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5208 "used_pmds=0x%lx\n",
5210 task
? task
->pid
: -1,
5211 (regs
? regs
->cr_iip
: 0),
5212 CTX_OVFL_NOBLOCK(ctx
) ? "nonblocking" : "blocking",
5213 ctx
->ctx_used_pmds
[0]));
5217 * first we update the virtual counters
5218 * assume there was a prior ia64_srlz_d() issued
5220 for (i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>= 1) {
5222 /* skip pmd which did not overflow */
5223 if ((mask
& 0x1) == 0) continue;
5226 * Note that the pmd is not necessarily 0 at this point as qualified events
5227 * may have happened before the PMU was frozen. The residual count is not
5228 * taken into consideration here but will be with any read of the pmd via
5231 old_val
= new_val
= ctx
->ctx_pmds
[i
].val
;
5232 new_val
+= 1 + ovfl_val
;
5233 ctx
->ctx_pmds
[i
].val
= new_val
;
5236 * check for overflow condition
5238 if (likely(old_val
> new_val
)) {
5239 ovfl_pmds
|= 1UL << i
;
5240 if (PMC_OVFL_NOTIFY(ctx
, i
)) ovfl_notify
|= 1UL << i
;
5243 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5247 ia64_get_pmd(i
) & ovfl_val
,
5253 * there was no 64-bit overflow, nothing else to do
5255 if (ovfl_pmds
== 0UL) return;
5258 * reset all control bits
5264 * if a sampling format module exists, then we "cache" the overflow by
5265 * calling the module's handler() routine.
5268 unsigned long start_cycles
, end_cycles
;
5269 unsigned long pmd_mask
;
5271 int this_cpu
= smp_processor_id();
5273 pmd_mask
= ovfl_pmds
>> PMU_FIRST_COUNTER
;
5274 ovfl_arg
= &ctx
->ctx_ovfl_arg
;
5276 prefetch(ctx
->ctx_smpl_hdr
);
5278 for(i
=PMU_FIRST_COUNTER
; pmd_mask
&& ret
== 0; i
++, pmd_mask
>>=1) {
5282 if ((pmd_mask
& 0x1) == 0) continue;
5284 ovfl_arg
->ovfl_pmd
= (unsigned char )i
;
5285 ovfl_arg
->ovfl_notify
= ovfl_notify
& mask
? 1 : 0;
5286 ovfl_arg
->active_set
= 0;
5287 ovfl_arg
->ovfl_ctrl
.val
= 0; /* module must fill in all fields */
5288 ovfl_arg
->smpl_pmds
[0] = smpl_pmds
= ctx
->ctx_pmds
[i
].smpl_pmds
[0];
5290 ovfl_arg
->pmd_value
= ctx
->ctx_pmds
[i
].val
;
5291 ovfl_arg
->pmd_last_reset
= ctx
->ctx_pmds
[i
].lval
;
5292 ovfl_arg
->pmd_eventid
= ctx
->ctx_pmds
[i
].eventid
;
5295 * copy values of pmds of interest. Sampling format may copy them
5296 * into sampling buffer.
5299 for(j
=0, k
=0; smpl_pmds
; j
++, smpl_pmds
>>=1) {
5300 if ((smpl_pmds
& 0x1) == 0) continue;
5301 ovfl_arg
->smpl_pmds_values
[k
++] = PMD_IS_COUNTING(j
) ? pfm_read_soft_counter(ctx
, j
) : ia64_get_pmd(j
);
5302 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k
-1, j
, ovfl_arg
->smpl_pmds_values
[k
-1]));
5306 pfm_stats
[this_cpu
].pfm_smpl_handler_calls
++;
5308 start_cycles
= ia64_get_itc();
5311 * call custom buffer format record (handler) routine
5313 ret
= (*ctx
->ctx_buf_fmt
->fmt_handler
)(task
, ctx
->ctx_smpl_hdr
, ovfl_arg
, regs
, tstamp
);
5315 end_cycles
= ia64_get_itc();
5318 * For those controls, we take the union because they have
5319 * an all or nothing behavior.
5321 ovfl_ctrl
.bits
.notify_user
|= ovfl_arg
->ovfl_ctrl
.bits
.notify_user
;
5322 ovfl_ctrl
.bits
.block_task
|= ovfl_arg
->ovfl_ctrl
.bits
.block_task
;
5323 ovfl_ctrl
.bits
.mask_monitoring
|= ovfl_arg
->ovfl_ctrl
.bits
.mask_monitoring
;
5325 * build the bitmask of pmds to reset now
5327 if (ovfl_arg
->ovfl_ctrl
.bits
.reset_ovfl_pmds
) reset_pmds
|= mask
;
5329 pfm_stats
[this_cpu
].pfm_smpl_handler_cycles
+= end_cycles
- start_cycles
;
5332 * when the module cannot handle the rest of the overflows, we abort right here
5334 if (ret
&& pmd_mask
) {
5335 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5336 pmd_mask
<<PMU_FIRST_COUNTER
));
5339 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5341 ovfl_pmds
&= ~reset_pmds
;
5344 * when no sampling module is used, then the default
5345 * is to notify on overflow if requested by user
5347 ovfl_ctrl
.bits
.notify_user
= ovfl_notify
? 1 : 0;
5348 ovfl_ctrl
.bits
.block_task
= ovfl_notify
? 1 : 0;
5349 ovfl_ctrl
.bits
.mask_monitoring
= ovfl_notify
? 1 : 0; /* XXX: change for saturation */
5350 ovfl_ctrl
.bits
.reset_ovfl_pmds
= ovfl_notify
? 0 : 1;
5352 * if needed, we reset all overflowed pmds
5354 if (ovfl_notify
== 0) reset_pmds
= ovfl_pmds
;
5357 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds
, reset_pmds
));
5360 * reset the requested PMD registers using the short reset values
5363 unsigned long bm
= reset_pmds
;
5364 pfm_reset_regs(ctx
, &bm
, PFM_PMD_SHORT_RESET
);
5367 if (ovfl_notify
&& ovfl_ctrl
.bits
.notify_user
) {
5369 * keep track of what to reset when unblocking
5371 ctx
->ctx_ovfl_regs
[0] = ovfl_pmds
;
5374 * check for blocking context
5376 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && ovfl_ctrl
.bits
.block_task
) {
5378 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_BLOCK
;
5381 * set the perfmon specific checking pending work for the task
5383 PFM_SET_WORK_PENDING(task
, 1);
5386 * when coming from ctxsw, current still points to the
5387 * previous task, therefore we must work with task and not current.
5389 pfm_set_task_notify(task
);
5392 * defer until state is changed (shorten spin window). the context is locked
5393 * anyway, so the signal receiver would come spin for nothing.
5398 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5399 GET_PMU_OWNER() ? GET_PMU_OWNER()->pid
: -1,
5400 PFM_GET_WORK_PENDING(task
),
5401 ctx
->ctx_fl_trap_reason
,
5404 ovfl_ctrl
.bits
.mask_monitoring
? 1 : 0));
5406 * in case monitoring must be stopped, we toggle the psr bits
5408 if (ovfl_ctrl
.bits
.mask_monitoring
) {
5409 pfm_mask_monitoring(task
);
5410 ctx
->ctx_state
= PFM_CTX_MASKED
;
5411 ctx
->ctx_fl_can_restart
= 1;
5415 * send notification now
5417 if (must_notify
) pfm_ovfl_notify_user(ctx
, ovfl_notify
);
5422 printk(KERN_ERR
"perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5424 task
? task
->pid
: -1,
5430 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5431 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5432 * come here as zombie only if the task is the current task. In which case, we
5433 * can access the PMU hardware directly.
5435 * Note that zombies do have PM_VALID set. So here we do the minimal.
5437 * In case the context was zombified it could not be reclaimed at the time
5438 * the monitoring program exited. At this point, the PMU reservation has been
5439 * returned, the sampiing buffer has been freed. We must convert this call
5440 * into a spurious interrupt. However, we must also avoid infinite overflows
5441 * by stopping monitoring for this task. We can only come here for a per-task
5442 * context. All we need to do is to stop monitoring using the psr bits which
5443 * are always task private. By re-enabling secure montioring, we ensure that
5444 * the monitored task will not be able to re-activate monitoring.
5445 * The task will eventually be context switched out, at which point the context
5446 * will be reclaimed (that includes releasing ownership of the PMU).
5448 * So there might be a window of time where the number of per-task session is zero
5449 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5450 * context. This is safe because if a per-task session comes in, it will push this one
5451 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5452 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5453 * also push our zombie context out.
5455 * Overall pretty hairy stuff....
5457 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task
? task
->pid
: -1));
5459 ia64_psr(regs
)->up
= 0;
5460 ia64_psr(regs
)->sp
= 1;
5465 pfm_do_interrupt_handler(int irq
, void *arg
, struct pt_regs
*regs
)
5467 struct task_struct
*task
;
5469 unsigned long flags
;
5471 int this_cpu
= smp_processor_id();
5474 pfm_stats
[this_cpu
].pfm_ovfl_intr_count
++;
5477 * srlz.d done before arriving here
5479 pmc0
= ia64_get_pmc(0);
5481 task
= GET_PMU_OWNER();
5482 ctx
= GET_PMU_CTX();
5485 * if we have some pending bits set
5486 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5488 if (PMC0_HAS_OVFL(pmc0
) && task
) {
5490 * we assume that pmc0.fr is always set here
5494 if (!ctx
) goto report_spurious1
;
5496 if (ctx
->ctx_fl_system
== 0 && (task
->thread
.flags
& IA64_THREAD_PM_VALID
) == 0)
5497 goto report_spurious2
;
5499 PROTECT_CTX_NOPRINT(ctx
, flags
);
5501 pfm_overflow_handler(task
, ctx
, pmc0
, regs
);
5503 UNPROTECT_CTX_NOPRINT(ctx
, flags
);
5506 pfm_stats
[this_cpu
].pfm_spurious_ovfl_intr_count
++;
5510 * keep it unfrozen at all times
5517 printk(KERN_INFO
"perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5518 this_cpu
, task
->pid
);
5522 printk(KERN_INFO
"perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5530 pfm_interrupt_handler(int irq
, void *arg
, struct pt_regs
*regs
)
5532 unsigned long start_cycles
, total_cycles
;
5533 unsigned long min
, max
;
5537 this_cpu
= get_cpu();
5538 min
= pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_min
;
5539 max
= pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_max
;
5541 start_cycles
= ia64_get_itc();
5543 ret
= pfm_do_interrupt_handler(irq
, arg
, regs
);
5545 total_cycles
= ia64_get_itc();
5548 * don't measure spurious interrupts
5550 if (likely(ret
== 0)) {
5551 total_cycles
-= start_cycles
;
5553 if (total_cycles
< min
) pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_min
= total_cycles
;
5554 if (total_cycles
> max
) pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_max
= total_cycles
;
5556 pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles
+= total_cycles
;
5558 put_cpu_no_resched();
5563 * /proc/perfmon interface, for debug only
5566 #define PFM_PROC_SHOW_HEADER ((void *)NR_CPUS+1)
5569 pfm_proc_start(struct seq_file
*m
, loff_t
*pos
)
5572 return PFM_PROC_SHOW_HEADER
;
5575 while (*pos
<= NR_CPUS
) {
5576 if (cpu_online(*pos
- 1)) {
5577 return (void *)*pos
;
5585 pfm_proc_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
5588 return pfm_proc_start(m
, pos
);
5592 pfm_proc_stop(struct seq_file
*m
, void *v
)
5597 pfm_proc_show_header(struct seq_file
*m
)
5599 struct list_head
* pos
;
5600 pfm_buffer_fmt_t
* entry
;
5601 unsigned long flags
;
5604 "perfmon version : %u.%u\n"
5607 "expert mode : %s\n"
5608 "ovfl_mask : 0x%lx\n"
5609 "PMU flags : 0x%x\n",
5610 PFM_VERSION_MAJ
, PFM_VERSION_MIN
,
5612 pfm_sysctl
.fastctxsw
> 0 ? "Yes": "No",
5613 pfm_sysctl
.expert_mode
> 0 ? "Yes": "No",
5620 "proc_sessions : %u\n"
5621 "sys_sessions : %u\n"
5622 "sys_use_dbregs : %u\n"
5623 "ptrace_use_dbregs : %u\n",
5624 pfm_sessions
.pfs_task_sessions
,
5625 pfm_sessions
.pfs_sys_sessions
,
5626 pfm_sessions
.pfs_sys_use_dbregs
,
5627 pfm_sessions
.pfs_ptrace_use_dbregs
);
5631 spin_lock(&pfm_buffer_fmt_lock
);
5633 list_for_each(pos
, &pfm_buffer_fmt_list
) {
5634 entry
= list_entry(pos
, pfm_buffer_fmt_t
, fmt_list
);
5635 seq_printf(m
, "format : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
5646 entry
->fmt_uuid
[10],
5647 entry
->fmt_uuid
[11],
5648 entry
->fmt_uuid
[12],
5649 entry
->fmt_uuid
[13],
5650 entry
->fmt_uuid
[14],
5651 entry
->fmt_uuid
[15],
5654 spin_unlock(&pfm_buffer_fmt_lock
);
5659 pfm_proc_show(struct seq_file
*m
, void *v
)
5665 if (v
== PFM_PROC_SHOW_HEADER
) {
5666 pfm_proc_show_header(m
);
5670 /* show info for CPU (v - 1) */
5674 "CPU%-2d overflow intrs : %lu\n"
5675 "CPU%-2d overflow cycles : %lu\n"
5676 "CPU%-2d overflow min : %lu\n"
5677 "CPU%-2d overflow max : %lu\n"
5678 "CPU%-2d smpl handler calls : %lu\n"
5679 "CPU%-2d smpl handler cycles : %lu\n"
5680 "CPU%-2d spurious intrs : %lu\n"
5681 "CPU%-2d replay intrs : %lu\n"
5682 "CPU%-2d syst_wide : %d\n"
5683 "CPU%-2d dcr_pp : %d\n"
5684 "CPU%-2d exclude idle : %d\n"
5685 "CPU%-2d owner : %d\n"
5686 "CPU%-2d context : %p\n"
5687 "CPU%-2d activations : %lu\n",
5688 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_count
,
5689 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_cycles
,
5690 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_cycles_min
,
5691 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_cycles_max
,
5692 cpu
, pfm_stats
[cpu
].pfm_smpl_handler_calls
,
5693 cpu
, pfm_stats
[cpu
].pfm_smpl_handler_cycles
,
5694 cpu
, pfm_stats
[cpu
].pfm_spurious_ovfl_intr_count
,
5695 cpu
, pfm_stats
[cpu
].pfm_replay_ovfl_intr_count
,
5696 cpu
, pfm_get_cpu_data(pfm_syst_info
, cpu
) & PFM_CPUINFO_SYST_WIDE
? 1 : 0,
5697 cpu
, pfm_get_cpu_data(pfm_syst_info
, cpu
) & PFM_CPUINFO_DCR_PP
? 1 : 0,
5698 cpu
, pfm_get_cpu_data(pfm_syst_info
, cpu
) & PFM_CPUINFO_EXCL_IDLE
? 1 : 0,
5699 cpu
, pfm_get_cpu_data(pmu_owner
, cpu
) ? pfm_get_cpu_data(pmu_owner
, cpu
)->pid
: -1,
5700 cpu
, pfm_get_cpu_data(pmu_ctx
, cpu
),
5701 cpu
, pfm_get_cpu_data(pmu_activation_number
, cpu
));
5703 if (num_online_cpus() == 1 && pfm_sysctl
.debug
> 0) {
5705 psr
= pfm_get_psr();
5710 "CPU%-2d psr : 0x%lx\n"
5711 "CPU%-2d pmc0 : 0x%lx\n",
5713 cpu
, ia64_get_pmc(0));
5715 for (i
=0; PMC_IS_LAST(i
) == 0; i
++) {
5716 if (PMC_IS_COUNTING(i
) == 0) continue;
5718 "CPU%-2d pmc%u : 0x%lx\n"
5719 "CPU%-2d pmd%u : 0x%lx\n",
5720 cpu
, i
, ia64_get_pmc(i
),
5721 cpu
, i
, ia64_get_pmd(i
));
5727 struct seq_operations pfm_seq_ops
= {
5728 .start
= pfm_proc_start
,
5729 .next
= pfm_proc_next
,
5730 .stop
= pfm_proc_stop
,
5731 .show
= pfm_proc_show
5735 pfm_proc_open(struct inode
*inode
, struct file
*file
)
5737 return seq_open(file
, &pfm_seq_ops
);
5742 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5743 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5744 * is active or inactive based on mode. We must rely on the value in
5745 * local_cpu_data->pfm_syst_info
5748 pfm_syst_wide_update_task(struct task_struct
*task
, unsigned long info
, int is_ctxswin
)
5750 struct pt_regs
*regs
;
5752 unsigned long dcr_pp
;
5754 dcr_pp
= info
& PFM_CPUINFO_DCR_PP
? 1 : 0;
5757 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5758 * on every CPU, so we can rely on the pid to identify the idle task.
5760 if ((info
& PFM_CPUINFO_EXCL_IDLE
) == 0 || task
->pid
) {
5761 regs
= ia64_task_regs(task
);
5762 ia64_psr(regs
)->pp
= is_ctxswin
? dcr_pp
: 0;
5766 * if monitoring has started
5769 dcr
= ia64_getreg(_IA64_REG_CR_DCR
);
5771 * context switching in?
5774 /* mask monitoring for the idle task */
5775 ia64_setreg(_IA64_REG_CR_DCR
, dcr
& ~IA64_DCR_PP
);
5781 * context switching out
5782 * restore monitoring for next task
5784 * Due to inlining this odd if-then-else construction generates
5787 ia64_setreg(_IA64_REG_CR_DCR
, dcr
|IA64_DCR_PP
);
5796 pfm_force_cleanup(pfm_context_t
*ctx
, struct pt_regs
*regs
)
5798 struct task_struct
*task
= ctx
->ctx_task
;
5800 ia64_psr(regs
)->up
= 0;
5801 ia64_psr(regs
)->sp
= 1;
5803 if (GET_PMU_OWNER() == task
) {
5804 DPRINT(("cleared ownership for [%d]\n", ctx
->ctx_task
->pid
));
5805 SET_PMU_OWNER(NULL
, NULL
);
5809 * disconnect the task from the context and vice-versa
5811 PFM_SET_WORK_PENDING(task
, 0);
5813 task
->thread
.pfm_context
= NULL
;
5814 task
->thread
.flags
&= ~IA64_THREAD_PM_VALID
;
5816 DPRINT(("force cleanup for [%d]\n", task
->pid
));
5821 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5824 pfm_save_regs(struct task_struct
*task
)
5827 struct thread_struct
*t
;
5828 unsigned long flags
;
5832 ctx
= PFM_GET_CTX(task
);
5833 if (ctx
== NULL
) return;
5837 * we always come here with interrupts ALREADY disabled by
5838 * the scheduler. So we simply need to protect against concurrent
5839 * access, not CPU concurrency.
5841 flags
= pfm_protect_ctx_ctxsw(ctx
);
5843 if (ctx
->ctx_state
== PFM_CTX_ZOMBIE
) {
5844 struct pt_regs
*regs
= ia64_task_regs(task
);
5848 pfm_force_cleanup(ctx
, regs
);
5850 BUG_ON(ctx
->ctx_smpl_hdr
);
5852 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
5854 pfm_context_free(ctx
);
5859 * save current PSR: needed because we modify it
5862 psr
= pfm_get_psr();
5864 BUG_ON(psr
& (IA64_PSR_I
));
5868 * This is the last instruction which may generate an overflow
5870 * We do not need to set psr.sp because, it is irrelevant in kernel.
5871 * It will be restored from ipsr when going back to user level
5876 * keep a copy of psr.up (for reload)
5878 ctx
->ctx_saved_psr_up
= psr
& IA64_PSR_UP
;
5881 * release ownership of this PMU.
5882 * PM interrupts are masked, so nothing
5885 SET_PMU_OWNER(NULL
, NULL
);
5888 * we systematically save the PMD as we have no
5889 * guarantee we will be schedule at that same
5892 pfm_save_pmds(t
->pmds
, ctx
->ctx_used_pmds
[0]);
5895 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5896 * we will need it on the restore path to check
5897 * for pending overflow.
5899 t
->pmcs
[0] = ia64_get_pmc(0);
5902 * unfreeze PMU if had pending overflows
5904 if (t
->pmcs
[0] & ~0x1UL
) pfm_unfreeze_pmu();
5907 * finally, allow context access.
5908 * interrupts will still be masked after this call.
5910 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
5913 #else /* !CONFIG_SMP */
5915 pfm_save_regs(struct task_struct
*task
)
5920 ctx
= PFM_GET_CTX(task
);
5921 if (ctx
== NULL
) return;
5924 * save current PSR: needed because we modify it
5926 psr
= pfm_get_psr();
5928 BUG_ON(psr
& (IA64_PSR_I
));
5932 * This is the last instruction which may generate an overflow
5934 * We do not need to set psr.sp because, it is irrelevant in kernel.
5935 * It will be restored from ipsr when going back to user level
5940 * keep a copy of psr.up (for reload)
5942 ctx
->ctx_saved_psr_up
= psr
& IA64_PSR_UP
;
5946 pfm_lazy_save_regs (struct task_struct
*task
)
5949 struct thread_struct
*t
;
5950 unsigned long flags
;
5952 { u64 psr
= pfm_get_psr();
5953 BUG_ON(psr
& IA64_PSR_UP
);
5956 ctx
= PFM_GET_CTX(task
);
5960 * we need to mask PMU overflow here to
5961 * make sure that we maintain pmc0 until
5962 * we save it. overflow interrupts are
5963 * treated as spurious if there is no
5966 * XXX: I don't think this is necessary
5968 PROTECT_CTX(ctx
,flags
);
5971 * release ownership of this PMU.
5972 * must be done before we save the registers.
5974 * after this call any PMU interrupt is treated
5977 SET_PMU_OWNER(NULL
, NULL
);
5980 * save all the pmds we use
5982 pfm_save_pmds(t
->pmds
, ctx
->ctx_used_pmds
[0]);
5985 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5986 * it is needed to check for pended overflow
5987 * on the restore path
5989 t
->pmcs
[0] = ia64_get_pmc(0);
5992 * unfreeze PMU if had pending overflows
5994 if (t
->pmcs
[0] & ~0x1UL
) pfm_unfreeze_pmu();
5997 * now get can unmask PMU interrupts, they will
5998 * be treated as purely spurious and we will not
5999 * lose any information
6001 UNPROTECT_CTX(ctx
,flags
);
6003 #endif /* CONFIG_SMP */
6007 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6010 pfm_load_regs (struct task_struct
*task
)
6013 struct thread_struct
*t
;
6014 unsigned long pmc_mask
= 0UL, pmd_mask
= 0UL;
6015 unsigned long flags
;
6017 int need_irq_resend
;
6019 ctx
= PFM_GET_CTX(task
);
6020 if (unlikely(ctx
== NULL
)) return;
6022 BUG_ON(GET_PMU_OWNER());
6026 * possible on unload
6028 if (unlikely((t
->flags
& IA64_THREAD_PM_VALID
) == 0)) return;
6031 * we always come here with interrupts ALREADY disabled by
6032 * the scheduler. So we simply need to protect against concurrent
6033 * access, not CPU concurrency.
6035 flags
= pfm_protect_ctx_ctxsw(ctx
);
6036 psr
= pfm_get_psr();
6038 need_irq_resend
= pmu_conf
->flags
& PFM_PMU_IRQ_RESEND
;
6040 BUG_ON(psr
& (IA64_PSR_UP
|IA64_PSR_PP
));
6041 BUG_ON(psr
& IA64_PSR_I
);
6043 if (unlikely(ctx
->ctx_state
== PFM_CTX_ZOMBIE
)) {
6044 struct pt_regs
*regs
= ia64_task_regs(task
);
6046 BUG_ON(ctx
->ctx_smpl_hdr
);
6048 pfm_force_cleanup(ctx
, regs
);
6050 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
6053 * this one (kmalloc'ed) is fine with interrupts disabled
6055 pfm_context_free(ctx
);
6061 * we restore ALL the debug registers to avoid picking up
6064 if (ctx
->ctx_fl_using_dbreg
) {
6065 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
6066 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
6069 * retrieve saved psr.up
6071 psr_up
= ctx
->ctx_saved_psr_up
;
6074 * if we were the last user of the PMU on that CPU,
6075 * then nothing to do except restore psr
6077 if (GET_LAST_CPU(ctx
) == smp_processor_id() && ctx
->ctx_last_activation
== GET_ACTIVATION()) {
6080 * retrieve partial reload masks (due to user modifications)
6082 pmc_mask
= ctx
->ctx_reload_pmcs
[0];
6083 pmd_mask
= ctx
->ctx_reload_pmds
[0];
6087 * To avoid leaking information to the user level when psr.sp=0,
6088 * we must reload ALL implemented pmds (even the ones we don't use).
6089 * In the kernel we only allow PFM_READ_PMDS on registers which
6090 * we initialized or requested (sampling) so there is no risk there.
6092 pmd_mask
= pfm_sysctl
.fastctxsw
? ctx
->ctx_used_pmds
[0] : ctx
->ctx_all_pmds
[0];
6095 * ALL accessible PMCs are systematically reloaded, unused registers
6096 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6097 * up stale configuration.
6099 * PMC0 is never in the mask. It is always restored separately.
6101 pmc_mask
= ctx
->ctx_all_pmcs
[0];
6104 * when context is MASKED, we will restore PMC with plm=0
6105 * and PMD with stale information, but that's ok, nothing
6108 * XXX: optimize here
6110 if (pmd_mask
) pfm_restore_pmds(t
->pmds
, pmd_mask
);
6111 if (pmc_mask
) pfm_restore_pmcs(t
->pmcs
, pmc_mask
);
6114 * check for pending overflow at the time the state
6117 if (unlikely(PMC0_HAS_OVFL(t
->pmcs
[0]))) {
6119 * reload pmc0 with the overflow information
6120 * On McKinley PMU, this will trigger a PMU interrupt
6122 ia64_set_pmc(0, t
->pmcs
[0]);
6127 * will replay the PMU interrupt
6129 if (need_irq_resend
) hw_resend_irq(NULL
, IA64_PERFMON_VECTOR
);
6131 pfm_stats
[smp_processor_id()].pfm_replay_ovfl_intr_count
++;
6135 * we just did a reload, so we reset the partial reload fields
6137 ctx
->ctx_reload_pmcs
[0] = 0UL;
6138 ctx
->ctx_reload_pmds
[0] = 0UL;
6140 SET_LAST_CPU(ctx
, smp_processor_id());
6143 * dump activation value for this PMU
6147 * record current activation for this context
6149 SET_ACTIVATION(ctx
);
6152 * establish new ownership.
6154 SET_PMU_OWNER(task
, ctx
);
6157 * restore the psr.up bit. measurement
6159 * no PMU interrupt can happen at this point
6160 * because we still have interrupts disabled.
6162 if (likely(psr_up
)) pfm_set_psr_up();
6165 * allow concurrent access to context
6167 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
6169 #else /* !CONFIG_SMP */
6171 * reload PMU state for UP kernels
6172 * in 2.5 we come here with interrupts disabled
6175 pfm_load_regs (struct task_struct
*task
)
6177 struct thread_struct
*t
;
6179 struct task_struct
*owner
;
6180 unsigned long pmd_mask
, pmc_mask
;
6182 int need_irq_resend
;
6184 owner
= GET_PMU_OWNER();
6185 ctx
= PFM_GET_CTX(task
);
6187 psr
= pfm_get_psr();
6189 BUG_ON(psr
& (IA64_PSR_UP
|IA64_PSR_PP
));
6190 BUG_ON(psr
& IA64_PSR_I
);
6193 * we restore ALL the debug registers to avoid picking up
6196 * This must be done even when the task is still the owner
6197 * as the registers may have been modified via ptrace()
6198 * (not perfmon) by the previous task.
6200 if (ctx
->ctx_fl_using_dbreg
) {
6201 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
6202 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
6206 * retrieved saved psr.up
6208 psr_up
= ctx
->ctx_saved_psr_up
;
6209 need_irq_resend
= pmu_conf
->flags
& PFM_PMU_IRQ_RESEND
;
6212 * short path, our state is still there, just
6213 * need to restore psr and we go
6215 * we do not touch either PMC nor PMD. the psr is not touched
6216 * by the overflow_handler. So we are safe w.r.t. to interrupt
6217 * concurrency even without interrupt masking.
6219 if (likely(owner
== task
)) {
6220 if (likely(psr_up
)) pfm_set_psr_up();
6225 * someone else is still using the PMU, first push it out and
6226 * then we'll be able to install our stuff !
6228 * Upon return, there will be no owner for the current PMU
6230 if (owner
) pfm_lazy_save_regs(owner
);
6233 * To avoid leaking information to the user level when psr.sp=0,
6234 * we must reload ALL implemented pmds (even the ones we don't use).
6235 * In the kernel we only allow PFM_READ_PMDS on registers which
6236 * we initialized or requested (sampling) so there is no risk there.
6238 pmd_mask
= pfm_sysctl
.fastctxsw
? ctx
->ctx_used_pmds
[0] : ctx
->ctx_all_pmds
[0];
6241 * ALL accessible PMCs are systematically reloaded, unused registers
6242 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6243 * up stale configuration.
6245 * PMC0 is never in the mask. It is always restored separately
6247 pmc_mask
= ctx
->ctx_all_pmcs
[0];
6249 pfm_restore_pmds(t
->pmds
, pmd_mask
);
6250 pfm_restore_pmcs(t
->pmcs
, pmc_mask
);
6253 * check for pending overflow at the time the state
6256 if (unlikely(PMC0_HAS_OVFL(t
->pmcs
[0]))) {
6258 * reload pmc0 with the overflow information
6259 * On McKinley PMU, this will trigger a PMU interrupt
6261 ia64_set_pmc(0, t
->pmcs
[0]);
6267 * will replay the PMU interrupt
6269 if (need_irq_resend
) hw_resend_irq(NULL
, IA64_PERFMON_VECTOR
);
6271 pfm_stats
[smp_processor_id()].pfm_replay_ovfl_intr_count
++;
6275 * establish new ownership.
6277 SET_PMU_OWNER(task
, ctx
);
6280 * restore the psr.up bit. measurement
6282 * no PMU interrupt can happen at this point
6283 * because we still have interrupts disabled.
6285 if (likely(psr_up
)) pfm_set_psr_up();
6287 #endif /* CONFIG_SMP */
6290 * this function assumes monitoring is stopped
6293 pfm_flush_pmds(struct task_struct
*task
, pfm_context_t
*ctx
)
6296 unsigned long mask2
, val
, pmd_val
, ovfl_val
;
6297 int i
, can_access_pmu
= 0;
6301 * is the caller the task being monitored (or which initiated the
6302 * session for system wide measurements)
6304 is_self
= ctx
->ctx_task
== task
? 1 : 0;
6307 * can access PMU is task is the owner of the PMU state on the current CPU
6308 * or if we are running on the CPU bound to the context in system-wide mode
6309 * (that is not necessarily the task the context is attached to in this mode).
6310 * In system-wide we always have can_access_pmu true because a task running on an
6311 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6313 can_access_pmu
= (GET_PMU_OWNER() == task
) || (ctx
->ctx_fl_system
&& ctx
->ctx_cpu
== smp_processor_id());
6314 if (can_access_pmu
) {
6316 * Mark the PMU as not owned
6317 * This will cause the interrupt handler to do nothing in case an overflow
6318 * interrupt was in-flight
6319 * This also guarantees that pmc0 will contain the final state
6320 * It virtually gives us full control on overflow processing from that point
6323 SET_PMU_OWNER(NULL
, NULL
);
6324 DPRINT(("releasing ownership\n"));
6327 * read current overflow status:
6329 * we are guaranteed to read the final stable state
6332 pmc0
= ia64_get_pmc(0); /* slow */
6335 * reset freeze bit, overflow status information destroyed
6339 pmc0
= task
->thread
.pmcs
[0];
6341 * clear whatever overflow status bits there were
6343 task
->thread
.pmcs
[0] = 0;
6345 ovfl_val
= pmu_conf
->ovfl_val
;
6347 * we save all the used pmds
6348 * we take care of overflows for counting PMDs
6350 * XXX: sampling situation is not taken into account here
6352 mask2
= ctx
->ctx_used_pmds
[0];
6354 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self
, ovfl_val
, mask2
));
6356 for (i
= 0; mask2
; i
++, mask2
>>=1) {
6358 /* skip non used pmds */
6359 if ((mask2
& 0x1) == 0) continue;
6362 * can access PMU always true in system wide mode
6364 val
= pmd_val
= can_access_pmu
? ia64_get_pmd(i
) : task
->thread
.pmds
[i
];
6366 if (PMD_IS_COUNTING(i
)) {
6367 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6370 ctx
->ctx_pmds
[i
].val
,
6374 * we rebuild the full 64 bit value of the counter
6376 val
= ctx
->ctx_pmds
[i
].val
+ (val
& ovfl_val
);
6379 * now everything is in ctx_pmds[] and we need
6380 * to clear the saved context from save_regs() such that
6381 * pfm_read_pmds() gets the correct value
6386 * take care of overflow inline
6388 if (pmc0
& (1UL << i
)) {
6389 val
+= 1 + ovfl_val
;
6390 DPRINT(("[%d] pmd[%d] overflowed\n", task
->pid
, i
));
6394 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task
->pid
, i
, val
, pmd_val
));
6396 if (is_self
) task
->thread
.pmds
[i
] = pmd_val
;
6398 ctx
->ctx_pmds
[i
].val
= val
;
6402 static struct irqaction perfmon_irqaction
= {
6403 .handler
= pfm_interrupt_handler
,
6404 .flags
= SA_INTERRUPT
,
6409 * perfmon initialization routine, called from the initcall() table
6411 static int init_pfm_fs(void);
6419 family
= local_cpu_data
->family
;
6424 if ((*p
)->probe() == 0) goto found
;
6425 } else if ((*p
)->pmu_family
== family
|| (*p
)->pmu_family
== 0xff) {
6436 static struct file_operations pfm_proc_fops
= {
6437 .open
= pfm_proc_open
,
6439 .llseek
= seq_lseek
,
6440 .release
= seq_release
,
6446 unsigned int n
, n_counters
, i
;
6448 printk("perfmon: version %u.%u IRQ %u\n",
6451 IA64_PERFMON_VECTOR
);
6453 if (pfm_probe_pmu()) {
6454 printk(KERN_INFO
"perfmon: disabled, there is no support for processor family %d\n",
6455 local_cpu_data
->family
);
6460 * compute the number of implemented PMD/PMC from the
6461 * description tables
6464 for (i
=0; PMC_IS_LAST(i
) == 0; i
++) {
6465 if (PMC_IS_IMPL(i
) == 0) continue;
6466 pmu_conf
->impl_pmcs
[i
>>6] |= 1UL << (i
&63);
6469 pmu_conf
->num_pmcs
= n
;
6471 n
= 0; n_counters
= 0;
6472 for (i
=0; PMD_IS_LAST(i
) == 0; i
++) {
6473 if (PMD_IS_IMPL(i
) == 0) continue;
6474 pmu_conf
->impl_pmds
[i
>>6] |= 1UL << (i
&63);
6476 if (PMD_IS_COUNTING(i
)) n_counters
++;
6478 pmu_conf
->num_pmds
= n
;
6479 pmu_conf
->num_counters
= n_counters
;
6482 * sanity checks on the number of debug registers
6484 if (pmu_conf
->use_rr_dbregs
) {
6485 if (pmu_conf
->num_ibrs
> IA64_NUM_DBG_REGS
) {
6486 printk(KERN_INFO
"perfmon: unsupported number of code debug registers (%u)\n", pmu_conf
->num_ibrs
);
6490 if (pmu_conf
->num_dbrs
> IA64_NUM_DBG_REGS
) {
6491 printk(KERN_INFO
"perfmon: unsupported number of data debug registers (%u)\n", pmu_conf
->num_ibrs
);
6497 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6501 pmu_conf
->num_counters
,
6502 ffz(pmu_conf
->ovfl_val
));
6505 if (pmu_conf
->num_pmds
>= IA64_NUM_PMD_REGS
|| pmu_conf
->num_pmcs
>= IA64_NUM_PMC_REGS
) {
6506 printk(KERN_ERR
"perfmon: not enough pmc/pmd, perfmon disabled\n");
6512 * create /proc/perfmon (mostly for debugging purposes)
6514 perfmon_dir
= create_proc_entry("perfmon", S_IRUGO
, NULL
);
6515 if (perfmon_dir
== NULL
) {
6516 printk(KERN_ERR
"perfmon: cannot create /proc entry, perfmon disabled\n");
6521 * install customized file operations for /proc/perfmon entry
6523 perfmon_dir
->proc_fops
= &pfm_proc_fops
;
6526 * create /proc/sys/kernel/perfmon (for debugging purposes)
6528 pfm_sysctl_header
= register_sysctl_table(pfm_sysctl_root
, 0);
6531 * initialize all our spinlocks
6533 spin_lock_init(&pfm_sessions
.pfs_lock
);
6534 spin_lock_init(&pfm_buffer_fmt_lock
);
6538 for(i
=0; i
< NR_CPUS
; i
++) pfm_stats
[i
].pfm_ovfl_intr_cycles_min
= ~0UL;
6543 __initcall(pfm_init
);
6546 * this function is called before pfm_init()
6549 pfm_init_percpu (void)
6552 * make sure no measurement is active
6553 * (may inherit programmed PMCs from EFI).
6559 * we run with the PMU not frozen at all times
6563 if (smp_processor_id() == 0)
6564 register_percpu_irq(IA64_PERFMON_VECTOR
, &perfmon_irqaction
);
6566 ia64_setreg(_IA64_REG_CR_PMV
, IA64_PERFMON_VECTOR
);
6571 * used for debug purposes only
6574 dump_pmu_state(const char *from
)
6576 struct task_struct
*task
;
6577 struct thread_struct
*t
;
6578 struct pt_regs
*regs
;
6580 unsigned long psr
, dcr
, info
, flags
;
6583 local_irq_save(flags
);
6585 this_cpu
= smp_processor_id();
6586 regs
= ia64_task_regs(current
);
6587 info
= PFM_CPUINFO_GET();
6588 dcr
= ia64_getreg(_IA64_REG_CR_DCR
);
6590 if (info
== 0 && ia64_psr(regs
)->pp
== 0 && (dcr
& IA64_DCR_PP
) == 0) {
6591 local_irq_restore(flags
);
6595 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6602 task
= GET_PMU_OWNER();
6603 ctx
= GET_PMU_CTX();
6605 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu
, task
? task
->pid
: -1, ctx
);
6607 psr
= pfm_get_psr();
6609 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6612 psr
& IA64_PSR_PP
? 1 : 0,
6613 psr
& IA64_PSR_UP
? 1 : 0,
6614 dcr
& IA64_DCR_PP
? 1 : 0,
6617 ia64_psr(regs
)->pp
);
6619 ia64_psr(regs
)->up
= 0;
6620 ia64_psr(regs
)->pp
= 0;
6622 t
= ¤t
->thread
;
6624 for (i
=1; PMC_IS_LAST(i
) == 0; i
++) {
6625 if (PMC_IS_IMPL(i
) == 0) continue;
6626 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu
, i
, ia64_get_pmc(i
), i
, t
->pmcs
[i
]);
6629 for (i
=1; PMD_IS_LAST(i
) == 0; i
++) {
6630 if (PMD_IS_IMPL(i
) == 0) continue;
6631 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu
, i
, ia64_get_pmd(i
), i
, t
->pmds
[i
]);
6635 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6638 ctx
->ctx_smpl_vaddr
,
6642 ctx
->ctx_saved_psr_up
);
6644 local_irq_restore(flags
);
6648 * called from process.c:copy_thread(). task is new child.
6651 pfm_inherit(struct task_struct
*task
, struct pt_regs
*regs
)
6653 struct thread_struct
*thread
;
6655 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task
->pid
));
6657 thread
= &task
->thread
;
6660 * cut links inherited from parent (current)
6662 thread
->pfm_context
= NULL
;
6664 PFM_SET_WORK_PENDING(task
, 0);
6667 * the psr bits are already set properly in copy_threads()
6670 #else /* !CONFIG_PERFMON */
6672 sys_perfmonctl (int fd
, int cmd
, void *arg
, int count
)
6676 #endif /* CONFIG_PERFMON */